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The topological aspects of wavefunctions for electrons in a two dimensional periodic poten- 
tial with a magnetic field are discussed. Special attention is paid to the linear response formula 
for the Hall conductance cxY. It is shown that the quantized value of gxY is related to the num- 
ber of zeros of wavefunctions in the magnetic Brillouin zone. A phase of wavefunctions cannot 
be determined in a unique and smooth way over the entire magnetic Brillouin zone unless the 
magnetic subband carries no Hall current. ,c: 1985 Academic Press. Inc. 

1. INTRODUCTION 

The discovery of the quantization of the Hall conductance by von Klitzing, 
Dorda, and Pepper [l] is one of the most important results in condensed matter 
physics in recent years. Since there had been no prediction of such a precise quan- 
tization, the subject has been under intensive theoretical investigation [2]. The 
ideal two dimensional electron system has integral values of the Hall conductance 
in unit of e2/h if the Fermi energy lies in a gap between Landau levels. The 
experimental result is astonishing because, in a real system, we would expect correc- 
tions of various sorts, due to, for example, electronelectron interactions, 
impurities, quasi-two-dimensionality, substrate potentials, finite size of samples, etc. 

The effects of periodic potentials have been discussed by several authors [3-61. 
Spectrum of electrons in a crystal with a magnetic field can display an amazing 
complexity including various kinds of scaling and a Cantor set structure [7-91. 
However, it was shown that the Hall conductance is still an integral multiple of e2/h 
as long as the Fermi energy lies in a gap. 

This paper discusses topological aspects of a two-dimensional periodic systems in 
a magnetic field. The Hall conductance is shown to be represented by a topological 
invariant which is naturally an integer. This is a sequel to Ref. [3] in a spirit similar 
to Laughlin’s arguments [lo] that an exact quantization must be a consequence of 
a general principle which is determined by the geometrical nature of the problem. 
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This subject has been first discussed by Avron, Seiler and Simon [6] using 
homotopy theory. More recently, Simon [ 1 l] made a connection between this 
topological invariant and Berry’s geometrical phase factor in the quantum adiabatic 
theorem [12]. The purpose of the present paper is to illustrate and explain the 
topological invariant of Thouless et al. and Avron et al. in a rather simple physical 
picture. 

In Section II, some relevant features of Bloch electrons in a magnetic field are 
reviewed. The implications of the topological features for wavefunctions are dis- 
cussed. In Section III, the linear response (Nakano-Kubo) formula for the Hall 
conductance is introduced. It is shown that a contribution of a single filled band to 
c.rv is given by an integer associated with a topological invariant. In Section IV, the 
problem is further analyzed by the theory of fiber bundles. It is shown that the 
quantized Hall conductance is related to the first Chern number which charac- 
terizes a principal U( 1) bundle. 

II. BLOCH ELECTRONS IN A UNIFORM MAGNETIC FIELD 

The Schrodinger equation for a 2-D non-interacting electron system in a uniform 
magnetic field perpendicular to the plane is written as 

HY= &(p+eA))2+ U(x,y)] !P=EY, (2.1) 

where the momentum p = -z%V and the gauge potential A are in the x-y plane. We 
consider the case where U(x, y) is periodic in both the x- and y-directions, i.e., 

U(x + a, y) = U(x, y + b) = U(x, y). (2.2) 

The system is invariant under a translation by a along the x-direction or a trans- 
lation by b along the y-direction. However, the Hamiltonian is not invariant under 
these translations. The reason for this is that the gauge potential A is not constant 
in spite of the fact that the magnetic field is uniform. An appropriate gauge 
transformation is required to make the Hamiltonian invariant. Let us introduce 
some formalism in order to better describe the point discussed above and also to 
clarify the topological aspects of the problem. Let R be a Bravais lattice vector, i.e., 

R=na+mb, 

where n and m are integers. For each Bravais lattice vector R we define a trans- 
lation operator T, which, when operating on any smooth function f(r), shifts the 
argument by R: 

TR f(r) =f(r + RI. (2.3) 
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This operator is explicitly written as 

T,=exp{(i/h)R*p}. (2.4) 

If T, is applied to the Hamiltonian (2.1), the potential U(r) is left invariant. 
However, the gauge potential is transformed to A(r + R) which is not generally 
equal to A(r). Instead, A(r) and A(r + R) differ by a gradient of a scalar function 
since the magnetic field is uniform: 

A(r) = A(r + R) + Vg(r). 

Let us consider the magnetic translation operators [13-153 

$R=exp{(i/fi)R-[p+e(rxB)/2]} 

= T,exp{(ie/fi)(BxR)+r/2}. 

(2.5 

(2.6 ) 

If the symmetric gauge A = (B x r)/2 is taken, FR leaves the Hamiltonian invariant, 
i.e., 

[&, H] =o. 

Now, we look for eigenstates which simultaneously diagonalize FR and H. 
However, note that the magnetic translations do not commute with each other in 
general since 

(2.7) 

where C$ = (eB/h) ab is a number of magnetic flux in the unit cell. When 4 is a 
rational number, 4 =p/q (p and q are integers which are relatively prime), we have 
a subset of translations which commute with each other. We take an enlarged unit 
cell (magnetic unit cell) which an integral multiple of magnetic flux goes through. 
For example, if the Bravais latice vectors of the form 

R’ = n(qa) + mb (2.8) 

are taken, then p magnetic flux quanta are in the magnetic unit cell which is formed 
by the vectors qa and b. The magnetic translation operators pRS which correspond 
to these new Bravais lattice vectors commute with each other. 

Let tj be an eigenfunction which diagonalizes H and pRS simultaneously, then it 
is easy to show that the eigenvalues of pqO and pb are given by 

(2.9) 

where k, and kz are generalized crystal momenta and can be restricted in the 
magnetic Brillouin zone: 0 <k, < 2n/qa, 0 < k2 < 2n/b. The eigenfunctions are 

595/160/Z-4 
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labeled by k, and k, in addition to a band index CI and are written in a Bloch form 
as 

(2.10) 

Equations (2.9) with (2.6) give the property of U&(X, y) 

u&&(x + qa, y) = e - i=~“‘bU~~,(X, y), 

24$,(x, y + 6) = eirrpx’%&(x, y), 
(2.11) 

These are the generalized Bloch conditions. Note that a gauge transformation 
A’ = A + Vf changes the phase of a wavefunction, $’ = e -ie’fif$. A gauge invariant, 
hence meaningful quantity, is the phase change around the boundary of the 
magnetic unit cell. From Eq. (2.11), the phase change is given by 271~. Writing the 
wavefunctions as 

(2.12) 

then one has 

p=~jdl.~~k,k2(x~Y) 
dl ’ 

(2.13) 

where j df represents a counterclockwise line integral around the boundary of the 
magnetic unit cell. As we will see below, Eq. (2.13) is gauge-invariant although 
Oklk2(x, y) depends on a gauge. This equation represents an important topological 
feature of the system. Consider an arrow whose directional angles are given by the 
phase Gk,,Jx, y) of the wavefunction. The arrow rotates p times as we go around 
the boundary. This gives a topological constraint to the wavefunction. Consider a 
zero of the wavefunction. If we go around clockwise a small circle which contains 
the zero, the corresponding arrow rotates once either clockwise or counter- 
clockwise. Therefore we can regard a zero of a wavefunction as a vortex which has 
a vorticity either 1 or - 1 corresponding to clockwise or counterclockwise rotation 
of the arrow, respectively. Cases where we have a multiple rotation are considered 
to be special ones of having several vortices at the same point. The magnetic field 
forces a wavefunction to have -p vorticity in the magnetic unit cell. This is a 
topological constraint because the total vorticity in the magnetic unit cell is 
independent of a particular potential chosen. 

III. LINEAR RESPONSE FORMULA FOR THE HALL CONDUCTANCE 

It is useful to write the Schrodinger equation (2.1) in a form 

f&b 2 4 u&c, = Ea%,k2, (3.1) 
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with 

(3.2) 

where k is a vector whose x- and y-components are k, and k,, respectively. Note 
that the eigenvalue E* depends on k continuously. For a fixed band index LX, a set of 
possible values of E” with k varying in the magnetic Brillouin zone forms a band 
(magnetic subband). 

When a small electric field is applied, a resulting current may be given by the 
linear response (Nakano-Kubo) formula. A linear response of current in the per- 
pendicular direction to the applied electric field is represented by the Hall conduc- 
tance 

(3.3) 

where E, is a Fermi energy and the summation implies the sum over all the states 
below and above the Fermi energy. The indices CI and /I label bands. One needs k to 
specify a state in addition to the band index. The existence of the index k must 
implicitly be understood wherever the band index appears. To obtain the matrix 
elements of the velocity operator v = ( - iW + eA)/m, it is sufficient to integrate over 
one magnetic unit cell 

(3.4) 

where the states are normalized as jr dx Ji dy 1 u 1’ = 1. In Eq. (3.3) the velocity 
operators can be replaced by partial derivatives of the k-dependent Hamiltonian 
(3.2), since only off-diagonal matrix elements are considered 

(3.5) 

Furthermore the m; atrix elements of the partial derivatives of fi are written as 

(3.6) 
, j=lor2. 
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From Eqs. (3.5) and (3.6), Eq. (3.3) is written as 

Using the identity CEa<E,<E~ (la)(al + I/3)(/.?])= 1, we have 

(3.7) 

where a$,) is a contribution of the Hall conductance from a completely tilled band a. 
Let us define a vector field in the magnetic Brillouin zone by 

&L k2) = j d24,&uw2 = +,c,k2 I v, I u,c,k2), (3.8) 

where Vk is a vector operator whose components are a/akl and a/ak2. The band 
index a is omitted from the wavefunction, since we will consider only a contribution 
from a single band only. The contribution is written from Eqs. (3.7) and (3.8) as 

where, [ ]3 represents the third component of the vector. 
The integration is over the magnetic Brillouin zone: 0 Q kl < 2x/qa, 0 < k2 < 2x/b. 

An important observation here is that the magnetic Brillouin zone is topologically a 
torus T2 rather than a rectangular in k-space. The two points in k-space kl = 0 and 
2n/qa (or, k2 = 0 and 2x/b) must be identified as the same point. Since a torus does 
not have a boundary, the application of Stokes’ theorem to Eq. (3.9) would give 
a@) = 0 if W(k,, k,) is uniquely defined on the entire torus T2. A possible non-zero A-.” 
value of alp,’ is a consequence of a non-trivial topology of &k,, k2). Note that the 
identification of the magnetic Brillouin zone as a torus T2 is essential here. Non- 
trivial ;i(k,, k2) can only be constructed when the global topology of the base space 
is non-contractible. 

In order to understand the topology of &k,, k2), let us first discuss a “gauge 
transformation” of a special kind. Suppose u ,&x, y) satisfies the Schrodinger 
equation (3.1), then so does u,&x, JJ) ei/(k1rk2), where f(k,, k2) is an arbitrary 
smooth function of k, and k2 and is independent of x and y. 

This introduces a transformation 

&&> Y) = U/cl/cl k Y) wCiS(kl~ k2)1. (3.10) 

Since this is a change of the overall phase of the wavefunction, any physical quan- 
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tity remains invariant under this transformation. From Eq. (3.8) the corresponding 
transformation of ji(k,, k2) is given by 

A’@, , kd = &k,, kz) + zV,f(k,, k,). (3.11) 

It is easy to see from Eqs. (3.9) and (3.11) that og is invariant under the transfor- 
mation (3.10). 

The non-trivial topology arises when the phase of the wavefunction cannot be 
determined uniquely and smoothly in the entire magnetic Brillouin zone. The 
transformation (3.10) implies that the overall phase factor for each state vector 
1 uklk2) can be chosen arbitrary. This phase can be determined, for example, by 
demanding that a component of the state vector u~,,Jx(~), y”‘) = (x(O), ~“‘1 uklk2) is 
real. However, this convention is not enough to fix the phase on the entire magnetic 
Brillouin zone, since z.Q&x’~), y(O)) vanishes for some (k,, k2). The existence of 
zeros of z+,,Jx, y) has been shown in Section II. For the sake of simplicity, consider 
the case where u,,,,(x(~), y(O)) vanishes only at one point (k\“, kh”) in the magnetic 
Brillouin zone. See Fig. 1. Divide T2 into two pieces HI and H,, such that H, con- 
tains (k!O), k$O)). We adopt a different convention in H, so that another component 
of the state vector z.++(x’~), y”)) = (x’~‘, y”‘] u~,~,) is real, where (x(l), y(l)) and H, 
are chosen such that LQ,,~~(x(‘), y’“) does not vanish in H,. Thus the overall phase 
is uniquely determined on the entrie T*. In Fig. 1, a phase of one component of the 
state vector u~,~~(x”‘, y(O)) = (.~~O’y(‘)l uklk2) is schematically drawn. 

IT rtt T 
0 

kl 
27T - 
qa 

FIG. 1. Schematic diagram of a phase of a wavefunction in the magnetic Brillouin zone. The 

Brillouin zone is actually a torus, so the edges (k,, kZ) = (0, k2) and (2z/qa, k,); and also the edges 

(k, . 0) and (k, , 2x/b) must be identified. 
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Note that the overall phase of the state vector is well defined at (k\O), k$O)) even 
though a phase of a single component u,+..(x(~), y(O)) = (x(O), y(O) 1 uklk2) cannot be 
defined there. At the boundary aH of HI and HII, we have a phase mismatch 

I 4t!lkz > =ex~Ck(k~, ~2)11~~,k2)~ (3.12) 

where ~(k,, k,) is a smooth function of (k,, k2) on aH. 
This non-trivial topology of 1 uklk2) is simply carried over to that of &k,, k2). 

Smooth vector fields A,(k,, k2) and &(k,, k2) are defined on H, and HII, respec- 
tively, by Eq. (3.8). The phase mismatch of the state vector given by Eq. (3.12) 
induces the following relation between Ai, k2) and Ai,, k2) on aH: 

&dkl, kd = &(k,, kJ + iV,cx(kl, W (3.13) 

Now, in Eq. (3.9) we can apply Stokes’ theorem to HI and H,, separately 

e* 1 g(a) = - -, 
X.b h 27.~1 11 

d*W, x kdklkdl3 
H, 

d*W, x -hW,, Ml3 + j 
HII 

e2 1 =-- h 2xi s iiH dk. C&h k2)-hdk~, kdl, (3.13) 

where JaH dk represents a line integral on dH and the sign change occurs because 
aH has the opposite orientation for H, and H,,. Using the relation between A1 and 
A,,, Eq. (3.12), we find 

with 

1 

n=% dH s dk * V,x(k,, kd 

(3.14) 

(3.15) 

n must be an integer for each of the state vectors must fit together exactly when we 
complete a full revolution around aH. 

A generalization of the above argument which allows u,&x(~), y”‘) to have 
more than one zero can be done using the theory of fiber bundles [ 161. This will be 
discussed in the following section. 

In Section II, it was shown that the vorticity of a wavefunction U&X, y) for a 
fixed (k,, k,) in a magnetic unit cell is given by an integer -p. There is a similar 
structure in the dual space, i.e., the magnetic Brillouin zone T*. Consider a 
wavefunction u~,,Jx, y) for a fixed (x, y). This wavefunction has a number of zeros 
in the magnetic Brillouin zone. As in Section II, we can assign vorticities 1 or - 1 to 
each zero by considering the phase in the neighborhood of a zero. The quantized 
value of o?: is given by the total vorticity of the wavefunction in the magnetic 
Brillouin zone. 
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IV. FIBER BUNDLE AND CHERN CLASS 

The topological structure discussed in Section III has a close resemblance to that 
of the Dirac magnetic monopole bundle which is a principal U( 1) bundle over a 
sphere S2 [16]. 

We have been considering the normalized eigenstate 1 uklkZ). Since 
exp[if(k, , k2)] 1 uklk2) is also a normalized eigenstate, it is natural to consider a 
principal U( 1) bundle over T2. A torus is covered by four neighborhoods {Hi}, 
i= l,..., 4 where each H, is a subspace of R2. For example, if we define four regions 

by 
H;={(k,,k2)~O<k,<~/qa,0<k2<n/b), 

H2={(k,,k2)171/qa<k,<2~Jqa,0<k,<?ljb), 

H;={(k,,k2)171/qa<k,<271/qa,~lb<k2<271/b), 
(4.1) 

then we can choose Hi (i = l,..., 4) to be slightly larger regions each of which com- 
pletely includes Hi (i = l,..., 4). A principal U( 1) bundle is a topological space which 
is locally isomorphic to Hi x U( 1) in each neighborhood Hi. We consider a specific 
fiber whose global topology is determined by the eigenstate 1 uklkZ). A construction 
of a fiber bundle is as follows: Take a component of the state vector ZQJX(‘), 
y(O)) = (x(O)y(O)l Uk,k* ) which does not vanish in the overlaps of Hi. Since Hi is con- 
tractible, it is possible to choose a phase convention such that the phase factor 

H. except at zeros of (: 
exp[i@“(kl, k2)] = U&,(X(~), y”‘)/[ u~&~ (x(O), y”‘)l is smooth in each neighborhood 

(x(O), y”‘). As exemplified in Section III, it is not possible 
in’ general to have ?global phase convention which is good to all the 
neighborhoods. As a result, we have a transition function Qn, in the overlap between 
two neighborhoods, Hi n H,: 

Qii=exp i[B”)(k,k,)-B”‘(k,, k,)] =exp[if’“‘(k,k,)]. (4.2) 

If we regard Qi, to be a map Cp,: U( 1) + U(l), a principal U( 1) bundle over T2 is 
completely specified by this transition function. 

Thus, we have constructed a nontrivial fiber bundle. Fiber bundles are classified 
by certain integers characterizing the transition functions. These integers also 
correspond to integrals involving a bundle curvature when we put connections on 
the bundles. We may write a connection l-form as 

W=g-‘Ag+g-‘dg 

= A + idx, 
(4.3) 

where g = eix E U( 1) is a fiber. We choose a l-form A by 

A(k,,k,)=/i,(k,,k,)dk,,=(u~,*,l~l~*,~~)dk~. (4.4) 
fi 
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The transition functions of the form (4.2) act on fibers by left multiplication. In an 
overlap of two neighborhoods Hi and Hi, a transition function @ = Gii ‘relates the 
local fiber coordinated g and g’ in Hi and Hi as 

g’ = @g. (4.5) 

This is equivalent to the “gauge transformation” Eq. (3.10). From Eqs. (3.11), (4.2) 
and (4.5), a transformation of A(k,, k2) is given by 

A’=OAQ-‘+~d~-‘=A-i~dk,,. (4.6) 
P 

It can be shown that w is invariant under the transformations (4.5) and (4.6). So, o 
is indeed a legitimate connection l-form with a choice of A in Eq. (4.4). 

Since a connection is given, we have a differential geometry on the topological 
space. The curvature is given by 

F=dA=aA^,dk A dk 
ak, ” p’ 

(4.7) 

Since ci = (i/2x) F is the first Chern form, an integral of c1 over the entire manifold 
T2, 

C,=&-F=&-dA=&+dk, /, dk,, (4.8) 

is the first Chern number. This number is an integer which is independent of a par- 
ticular connection chosen. It is only given by the topology of the principal U( 1) 
bundle which is constructed from the state vector 1 Uk,k2). 

A comparison of Eqs. (3.9) and (4.8) gives 

(4.9) 

i.e., a contribution to the Hall conductance from a single tilled band in unit of e2/h 
is given by minus the first Chern number. 

V. CONCLUDING REMARKS 

The methods of differential geometry have been essential in modern gauge theory 
as well as in Einstein’s theory of gravity. Maxwell’s electromagnetism is nothing but 
an Abelian gauge theory. The differential geometry in the real physical space is 
given by a gauge potential. 

In the present problem of two dimensional periodic potentials with a uniform 
magnetic field, we have a differential geometry on the reciprocal k-space (magnetic 
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Brillouin zone) which is a torus T 2. A connection is given by &k, , k,) (see 
Eqs. (3.8) and (4.3)). The phase factor of the state vector in the magnetic Brillouin 
zone is a section of a principal U( 1) bundle. The first Chern number characterizing 
this fiber bundle is an integer and is given by a certain integral involving &k,, k2). 
It is remarkable that this integral can be identified as the linear response formula 
for a$$: a contribution to the Hall conductance from a single band. There is no 
higher order Chern number associated with the U( 1) bundle since the base space is 
two dimensional. Therefore a!$ is the only quantized quantity of this kind. 

The quantized value of a!$) is related to zeros of wavefunction in the magnetic 
Brillouin zone. An integer vorticity can be assigned to each of the zeros from a local 
structure around it. The total vorticity in the magnetic Brillouin zone gives a$,). 
Therefore if the topological structures of wavefunctions are known, we do not have 
to perform the four dimensional integration in Eq. (3.7) to calculate a!$). 

When g$! takes a non-zero value, wavefunctions have a non-trivial topological 
structure in the magnetic Brillouin zone. This means that a phase of wavefunctions 
cannot be determined globally. We need several different phase conventions to 
cover the entire magnetic Brillouin zone. 

The topological nature of the formula for c$,) implies that it will be unchanged 
when the potential is varied in a way that the band a remains non-degenerate. This 
gives a convenient calculational method since we can take the most convenient 
form of a potential to obtain c&$,’ [3]. 

In case two bands touch each -other while a potential is varied, we can still expect 
that the sum of the Hall conductances remains unchanged. However, each conduc- 
tance may not be conserved when the bands split again. This has been proved by 
Avron et al. [6]. 

The linear response (Nakano-Kubo) formula for the Hall conductance has 
played a crucial role in relating an abstract mathematical quantity (the Chern num- 
ber) to the quantity of physical interests. There are serious foundational questions 
regarding this formula [17 3. The physical system we have considered is dis- 
sipationless. There is no longitudinal current [lS] when the Fermi energy lies in a 
gap. In this case, it is possible to have an alternative derivation of the formula 
which is free from the criticisms of van Kampen and others. 

The topological aspects of the quantized Hall effect in periodic potentials have 
been discussed. It will be of great interest to generalize the above arguments to 
more realistic models of the experimental systems which should include the effects 
of disorder and/or electron-electron interactions. 
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