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Abstract

This paper is a study of “topological” lower bounds for the chromatic number of a
graph. Such a lower bound was first introduced by Lovász in 1978, in his famous proof
of the Kneser conjecture via Algebraic Topology. This conjecture stated that the Kneser
graph KGm,n, the graph with all k-element subsets of {1, 2, . . . , n} as vertices and all pairs
of disjoint sets as edges, has chromatic number n−2k+2. Several other proofs have since
been published (by Bárány, Schrijver, Dol’nikov, Sarkaria, Kř́ıž, Greene, and others), all of
them based on some version of the Borsuk–Ulam theorem, but otherwise quite different.
Each can be extended to yield some lower bound on the chromatic number of an arbitrary
graph. (Indeed, we observe that every finite graph may be represented as a generalized
Kneser graph, to which the above bounds apply.)

We show that these bounds are almost linearly ordered by strength, the strongest
one being essentially Lovász’ original bound in terms of a neighborhood complex. We
also present and compare various definitions of a box complex of a graph (developing
ideas of Alon, Frankl, and Lovász and of Kř́ıž). A suitable box complex is equivalent
to Lovász’ complex, but the construction is simpler and functorial, mapping graphs with
homomorphisms to Z2-spaces with Z2-maps.

1 Introduction

Graph coloring is a classical combinatorial topic: For a given (finite) graph G, determine how
to distribute a minimal number of colors to the vertices in such a way that adjacent vertices
get different colors. The minimum number of colors is χ(G), the chromatic number of the
graph. The graph coloring problem has numerous important practical motivations; among
the more recent ones, we mention that it appears as a (simplified) model for the frequency
assignment problem in mobile communication (cf. Borndörfer et. al. [6] and Eisenblätter et
al. [13]).

The most famous graph coloring problem is, of course, the Four Color Problem, asking
whether every planar graph can be colored by four colors, which was answered positively
by Haken and Appell 1977 and re-solved by Robertson, Sanders, Seymour & Thomas [30].
Even for planar graphs, though, determining 3-colorability is already algorithmically difficult
(NP-hard), and beyond the range of planar graphs, the gaps between the upper and the lower
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bounds that one can reasonably obtain for χ(G) may be huge. This claim is supported both
by theoretical results on the complexity of graph coloring algorithms (see the discussion in
Khanna, Linial & Safra [17]) and from the perspective of combinatorial optimization (see
Mehrotra & Trick [26]).

For any given graph G, we obtain an upper bound on the chromatic number χ(G) by
“guessing” a coloring, for example, by running a coloring heuristic. (See [9] for implementa-
tions, and Reed & Molloy [28] for a theoretical study of randomized algorithms.) How can
we check that such an upper bound is good, that is, close to the actual chromatic number?
We need a lower bound on the chromatic number.

Two other basic graph parameters lead to straightforward “combinatorial” lower bounds
for χ(G): The clique number ω(G), the largest number of mutually adjacent vertices in G,
obviously satisfies ω(G) ≤ χ(G), and we also have χ(G) ≥ n/α(G) for every graph G on
n vertices, where α(G) is the independence number of G, that is, the maximum number of
mutually nonadjacent vertices in G. Both ω(G) and α(G) are hard to compute, or even
approximate, for general graphs. But even leaving this aside, both of these bounds may be
very weak, since one can construct graphs where both ω(G) and n/α(G) are arbitrarily small
compared to χ(G).

A considerably more sophisticated lower bound for χ(G) (still hard to compute in general)
is the fractional chromatic number χf (G), which can be briefly defined as the minimum ratio
a/b such that G has a b-fold covering by a independent sets. (The name is motivated by a
slightly different but equivalent definition, in which each color can still be used only on an
independent set of vertices, but one is allowed to use fractional amounts of colors, say to
color a vertex by 1

5 of red and by 4
5 of blue.) The gap between χf (G) and χ(G) can still be

arbitrarily large, but it is much harder to come up with examples of this. (See [28, Part VIII]
for further discussion.)

Actually, only very few types of such examples are known, and the arguably most im-
portant ones are provided by Kneser graphs. The Kneser graph KGn,k has all the N =

(n
k

)

k-element subsets of {1, 2, . . . , n} as vertices and all pairs of disjoint sets as edges. It arose
in an innocent little problem that Martin Kneser posed in 1955 here, in the Jahresbericht
der DMV [18]. (Apparently the problem arose from Kneser’s study of a number-theoretic
paper [16] by Kaplansky.) Kneser asked for a proof that χ(KGn,k) ≥ n − 2k + const ., and
conjectured that χ(KGn,k) = n− 2k + 2, where χ(KGn,k) ≤ n− 2k + 2 is easy to verify using
a simple greedy coloring.

Kneser’s question posed a substantial challenge since all the classical lower bounds listed
above fail for Kneser graphs. For suitable parameters, say for n = 3k − 1, we have:
• The chromatic number is large, χ(KG3k−1,k) = k + 1, and an optimal coloring is easy to

find (by a greedy approach).
• At the same time, the clique number is small, ω(KG3k−1,k) = 2 (the graph is triangle-free

for n < 3k).
• The independence number is huge, α(KG3k−1,k) =

(n−1
k−1

)
, and thus the corresponding lower

bound for the chromatic number, which also happens to agree with the fractional chromatic
number, are small: N/α(KG3k−1,k) = χf (KG3k−1,k) = 3k−1

k < 3.
Other, more “algebraic” types of lower bounds on the chromatic numbers of graphs, in terms
of the Lovász theta function (see Lovász [23] and Knuth [19]) or on the eigenvalues of the
adjacency matrix (see van Lint & Wilson [33, Chap. 31] and Godsil & Royle [14, Chap. 9])
do not help to close the gap in the case of Kneser graphs.

In 1978 Lovász [22] settled Kneser’s conjecture by an original application of a tool from
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Algebraic Topology, the Borsuk–Ulam theorem. He thus provided a completely new type of
lower bound which in the case of the Kneser conjecture was tight.

In subsequent years a number of new proofs of the Kneser conjecture and of various
extensions of it became available. All of them are of topological nature, and all of them
depend on the Borsuk–Ulam theorem or some variant of it. (This remains essentially true
despite recent demonstrations that some proofs can be combinatorialized [24], [37], since the
underlying ideas are still topological.) The proof methods are diverse, though, and at first
sight they look almost unrelated.

The Kneser graphs KGn,k are quite special, but the methods known for proving Kneser’s
conjecture, starting with Lovász’s [22] break-through, extend beyond the original examples:
Each of them yields, explicitly or implicitly, a lower bound for the chromatic number of any
graph (as we will see, every graph is a “generalized Kneser graph”), although they are rather
weak for some classes of graphs. These bounds are, of course, all tight in the case of the
Kneser graphs KGn,k, but otherwise their strengths are apparently different: For example,
only some of them yield tight bounds for the chromatic number of certain subgraphs of the
Kneser graphs investigated by Schrijver [32].

In the following, we will compare the various “topological lower bounds on the chromatic
number.” In the course of our arguments, we also sketch proofs for them; some of these
proofs are quite elementary and simple, and sometimes considerably simpler than the original
derivations.

We show that, surprisingly, the topological lower bounds for the chromatic number re-
sulting from known proofs fall neatly into a hierarchy, which is essentially linearly ordered.
So, we show that “(the index version of) the Lovász’ bound is stronger than the (generalized)
Sarkaria bound, which is stronger than the (generalized) Bárány bound, and also stronger
than the Dol’nikov–Kř́ıž bound.” (This, of course, should not indicate any comparison of
the usefulness of the methods or of the interest of the papers. The hierarchy concerns only
the bounds that, in principle, can be obtained by straightforward generalizations of these
approaches, and it does not say anything about the feasibility of actually obtaining these
bounds.)

Lovász’ proof and box complexes. A slightly modernized version of Lovász’ original
proof works along the following lines. To every graph G, one assigns a topological space
T (G). The construction goes via a simplicial complex. This, on the one hand, is a purely
combinatorial object (a hereditary set system), and on the other hand, it is canonically
associated with a topological space (the geometric realization). Then, for every coloring of
G by m colors, one constructs a continuous map from the space T (G) to the space T (Km)
assigned to the complete graph Km. To show that G has no m-coloring, it suffices to exclude
the existence of a continuous map T (G) → T (Km).

Of course, things cannot be as simple as this, since every topological space has a continuous
map to any nonempty topological space, namely, a constant map. One has to consider extra
structure on the space T (G), called a Z2-action. A Z2-action on a topological space T is a
homeomorphism ν : T → T such that ν(ν(x)) = x for every x ∈ T . A primary example of
a topological space with a Z2-action, or a Z2-space, is the n-dimensional unit sphere Sn in
Rn+1 with the Z2-action given by x &→ −x, i. e., the antipodality.

The cleverly constructed space T (G) comes equipped with a Z2-action ν = νG, and for
G = Km, the space T (Km) even miraculously happens to be (equivalent to) a sphere with the
antipodality as the Z2-action! (The dimension of this sphere depends on m, and as we will see,
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it may differ slightly in various possible constructions of T (G).) Moreover, the continuous
map f : T (G) → T (Km) obtained from an m-coloring of G is a Z2-map, meaning that it
commutes with the Z2-actions: f(νG(x)) = νKm(f(x)).

Here the Borsuk–Ulam theorem enters. The most popular version of it states that for
every continuous map f : Sn → Rn, there is a point x ∈ Sn with f(x) = f(−x). However,
an equivalent version asserts that there is no Z2-map Sn → Sm for m < n. A suitable
generalization of this result can sometimes be used to show that, for a particular graph G,
there is no Z2-map of T (G) into T (Km), and consequently, that G is not m-colorable.

This high-level outline of Lovász’ does not tell one how to construct suitable spaces T (G).
We should also remark that Lovász’ original proof proceeded in a slightly different way,
without explicitly introducing the Z2-map. A class of constructions which allows to phrase
the proof in the simple and conceptual way sketched above are various box complexes assigned
to a graph, which can successfully play the role of T (G) in the above discussion. A box
complex first appears in Alon, Frankl, and Lovász [1] (where it was defined for hypergraphs),
and another version was used by Kř́ıž [20].

Formal definitions of box complexes will be given later, but roughly we can say that a box
complex of a graph G is made of all complete bipartite subgraphs of G. A complete bipartite
subgraph of G is specified by two disjoint subsets A′ and A′′ of the vertex set, such that every
vertex a′ ∈ A′ is connected by an edge to every vertex a′′ ∈ A′′. The exchange of the subsets
A′ and A′′ yields an involution on the box complex, and makes it into a Z2-space.

On an intuitive level, the construction of the continuous Z2-map from the box complex
of G into the box complex of Km can be described as follows (we are indebted by Lovász
for a beautiful summary of the proof, which inspired much of the present discussion): If c
is a proper m-coloring of G, then whenever two disjoint sets A′, A′′ determine a complete
bipartite subgraph in G, they are assigned two disjoint color sets c(A′) and c(A′′), which
thus determine a complete bipartite subgraph of Km. Furthermore, if B′ ⊇ A′ and B′′ ⊇ A′′

give a larger complete bipartite subgraph, they receive larger color sets c(B′) ⊇ c(A′) and
c(B′′) ⊇ c(A′′). This allows one to define the continuous map of the box complexes. Finally,
if we interchange A′ and A′′, the color sets are interchanged as well, and this makes the map
of the box complexes a Z2-map.

Summarizing, an m-coloring of G yields a Z2-map of the box complex of G into the box
complex of Km. If we use the convenient notion of the index of a Z2-space, which is the
smallest m such that the Z2-space can be Z2-mapped into the sphere Sm with the antipodal
Z2-action, we get that the index of the box complex of any m-colorable graph has to be at
least as large as the index of the box complex of Km. The latter can be computed once and
for all (as we remarked above, the box complex of Km happens to be equivalent to a sphere
with the antipodal action). Thus, the application of this method boils down to bounding
below the index of the box complex of G.

Interestingly, these ideas have several different implementations: there are several distinct
possibilities to define “box complexes.” The different box complexes have different ground
sets, they are of different sizes (the numbers of vertices/faces differ on an exponential scale!),
and some of them may be considerably easier to use than others.

Our current favorite is the box complex B(G), defined in Section 3 below. It has a small
vertex set (the disjoint union of two copies of V (G)), and it yields the strongest bounds
available. However, we invite the reader to survey the panorama and to make his/her own
choices—several more versions of box complexes are discussed in Section 5. We will show
that many of them are equivalent for the purposes of estimating the chromatic number.
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2 Preliminaries

Here we recall some general notions, facts, and notation needed for a precise statement of the
results. We repeat some of the definitions mentioned in the introduction more formally.

Unfortunately, for space reasons, we cannot afford to introduce all the required topological
notions at a leisurely pace, and so the rest of the paper may not be easily accessible without
some knowledge of Topological Combinatorics. We refer to [5] or [38] for surveys of the
terminology and tools employed in this paper and to [25] for a detailed textbook treatment.
On the other hand, readers with basic knowledge of the area may perhaps want to skip this
section and refer to it as needed during further reading.

Graphs. The vertex set of a graph G is written as V (G), and the edge set as E(G). We
suppose that all graphs are finite, simple, and undirected. In order to avoid some trivial
special cases, we also assume that the considered graphs have no isolated vertices.

A homomorphism of a graph G into a graph H is a mapping f : V (G) → V (H) that
preserves edges; that is, {f(u), f(v)} ∈ E(H) whenever {u, v} ∈ E(G). For our purposes, it
is convenient to regard a (proper) coloring of G by m colors as a homomorphism of G into
the complete graph Km. The chromatic number of G is denoted by χ(G).

We regard a bipartite graph as a triple (V ′, V ′′, E), where V ′, V ′′ ⊆ V are disjoint and
E ⊆ {{v′, v′′} : v′ ∈ V ′, v′′ ∈ V ′′}. For a bipartite graph we assume that the bipartition is
fixed, and we also distinguish (V ′, V ′′, E) from (V ′′, V ′, E). Since we will be concerned with
various colorings of graphs, we call the parts V ′ and V ′′ of the bipartition the shores, rather
than the more common “color classes.” If A′, A′′ are disjoint subsets of the vertex set of some
graph G, we write G[A′, A′′] for the bipartite subgraph with shores A′ and A′′ induced by G.
(Note that this is not necessarily an induced subgraph of G, since only edges between distinct
shores are included.)

Kneser graphs. Let X be a finite set and F ⊆ 2X a system of subsets of X. The
Kneser graph KG(F) has vertex set F , and the edges are all pairs of disjoint sets in F .
For notational convenience, we assume that X = [n] := {1, 2, . . . , n}, unless stated otherwise.
Kneser’s conjecture can be succinctly stated as χ(KG(

([n]
k

)
)) = n−2k+2 for n ≥ 2k > 0, where([n]

k

)
denotes the family of all k-element subsets of [n]. In particular, KGn,k = KG(

([n]
k

)
)).

It is easy to see that every (finite) graph G = (V,E) can be represented as a Kneser graph
of some set system. A simple and natural representation is this: Let E :=

(V
2

)
\E denote the

set of non-edges of G, and for every v ∈ V , let us set Fv := {e ∈ E : v ∈ e}. The Kneser
graph of {Fv : v ∈ V } is isomorphic to G; the only problem is that the sets Fv need not be
all distinct (for example, for G = Kn, we have Fv = ∅ for all v). To remedy this, one can
define F ′

v := Fv ∪ {v}, obtaining distinct sets. For a more economical representation, we can
let C be a covering of E by cliques (each C ∈ C is a complete subgraph of (V,E) and each
edge of E is contained in some C ∈ C). For v ∈ V , we then define F ′′

v := {C ∈ C : v ∈ C};
this is a potentially much smaller Kneser representation. The problem of finding a Kneser
representation with the smallest ground set, i. e., the smallest C, is the minimum clique cover
for the complement of G, and hence NP-complete and hard to approximate; see, e. g., Ausiello
et al. [2].

Simplicial complexes. We use letters like K,L, . . . to denote simplicial complexes. (See,
e. g., [29], [5], [25] for more background). We consider only finite simplicial complexes, so a
simplicial complex K is a nonempty hereditary set system (i. e., S ∈ K and S′ ⊂ S implies
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S′ ∈ K); in particular, ∅ ∈ K. For example, 2[n] is the (n−1)-dimensional simplex considered as
a simplicial complex. We let V (K) denote the vertex set of K, and ‖K‖ denotes the polyhedron
of K (but sometimes we write just K for the polyhedron too, when it is clear that we mean
a topological space). The dimension of the complex K is dimK := max{|S|−1 : S ∈ K}. A
simplicial map of a simplicial complex K to a simplicial complex L is a map f : V (K) → V (L)
such that f(S) ∈ L for all S ∈ K.

For a partially ordered set (X,-), the order complex ∆(X,-) has X as the vertex set
and all chains as simplices; that is, a simplex has the form {x1, x2, . . . , xk} ⊆ X with x1 ≺
x2 ≺ · · · ≺ xk. In particular, if F is a set system, we write ∆F for ∆(F \ {∅},⊆). If K is
a simplicial complex, then ∆K is the first barycentric subdivision of K, also denoted by sd K
(the empty simplex ∅ is not a vertex of the barycentric subdivision, and this is the reason for
removing ∅ in the definition of ∆F).

The (twofold) deleted join of K, denoted by K∗2
∆ , has vertex set V (K)×[2] (two copies of

V (K)) and the simplices are {S1 0 S2 : S1, S2 ∈ K, S1 ∩ S2 = ∅}, where we use the shorthand
S1 0 S2 := (S1×{1}) ∪ (S2×{2}).
Z2-spaces and Z2-index. A Z2-space (also called antipodality space in the literature)
is a pair (T, ν), where T is a topological space and ν : T → T , called the Z2-action, is a
homeomorphism such that ν2 = ν ◦ ν = idT . If (T1, ν1) and (T2, ν2) are Z2-spaces, a Z2-map
between them is a continuous mapping f : T1 → T2 such that f ◦ ν1 = ν2 ◦ f . The sphere Sn

is considered as a Z2-space with the antipodal homeomorphism x &→ −x. Following Živaljević
[38], we define the Z2-index of a Z2-space (T, ν) by

ind (T, ν) := min {n ≥ 0 : there is a Z2-map (T, ν) → Sn} ∈ {0, 1, 2, . . .} ∪ {∞}

(the Z2-action ν is omitted from the notation if it is clear from context). If ind (T1, ν1) >
ind (T2, ν2), then there is no Z2-map T1 → T2. The Borsuk–Ulam theorem can be re-stated
as ind (Sn) = n.

A simplicial Z2-complex is a simplicial complex K with a simplicial map ν of K into itself
such that (the canonical affine extension of) ν is a Z2-action on ‖K‖. For the deleted join
K∗2

∆ , we have the canonical Z2-action given by “swapping the two copies of V (K),” formally
(v, 1) &→ (v, 2) and (v, 2) &→ (v, 1).

For any simplicial Z2-complex K whose Z2-action is free (that is, has no fixed point), we
have

dim K ≥ indK ≥ 1 + Z2-acyclicity(K) ≥ 1 + connectivity(K).

Here the first inequality needs freeness (in fact, indK = ∞ if the Z2-action has a fixed point).
The second inequality is a homological version of the Borsuk–Ulam theorem; see Walker [35].
The parameter connectivity(K) denotes the smallest k such that there exists a continuous
map Sk+1 → ‖K‖ that is not nullhomotopic, while the acyclicity parameter is defined by

Z2-acyclicity(K) := max{k : H̃i(K, Z2) = 0 for all i ≤ k}.

The Z2-acyclicity is of interest in this context, since it is effectively computable, both theo-
retically [29, §11] and practically (for not too large complexes; see [12]), while the Z2-index
and the connectivity are in general harder to determine.

We recall that two topological spaces X and Y are homotopy equivalent if there are
continuous maps f : X → Y and g : Y → X such that f ◦ g is homotopic to idY and g ◦ f
is homotopic to idX . For Z2-spaces, Z2-homotopy equivalence is defined analogously, but we
require that f , g, as well as all maps in the two homotopies be Z2-maps.
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3 Proof methods for Kneser’s conjecture

The box complex B(G). For a graph G and any subset A ⊆ V (G), let

CN(A) := {v ∈ V (G) : {a, v} ∈ E(G) for all a ∈ A} ⊆ V \ A

be the set of all common neighbors of A.
We define the box complex B(G) of a graph G as the simplicial complex with vertex set

X = V (G)×[2] (i. e., two disjoint copies of V (G)), with simplices given by

B(G) :=
{
A′ 0 A′′ : A′, A′′ ⊆ V (G), A′ ∩ A′′ = ∅,

G[A′, A′′] is complete, CN(A′),CN(A′′) 4= ∅
}
.

(We recall the notation A′0A′′ = (A′×{1})∪(A′′×{2}).) So the simplices of B(G) correspond
to complete bipartite subgraphs in G. We admit A′ or A′′ empty, but then it is required that
all vertices of the other shore have a common neighbor (if both A′ and A′′ are nonempty, the
condition CN(A′),CN(A′′) 4= ∅ is superfluous).

However, if the extra condition on “having a common neighbor” is deleted, then we get a
different box complex

B0(G) :=
{
A′ 0 A′′ : A′, A′′ ⊆ V (G), A′ ∩ A′′ = ∅, G[A′, A′′] is complete

}

that contains B(G), and which will also play a role in the following.
A canonical simplicial Z2-action on B(G) is given by interchanging the two copies of V (G);

that is, (v, 1) &→ (v, 2) and (v, 2) &→ (v, 1), for v ∈ V (G). This makes B(G) into a Z2-space.
If f : V (G) → V (G) is a graph homomorphism, we associate to it a map B(f) : V (B(G)) →

V (B(H)) in the obvious way: B(f)(v, j) := (f(v), j) for v ∈ V (G), j ∈ [2]. It is easily verified
that B(f) is a simplicial Z2-map of B(G) into B(H). Moreover, the construction respects the
composition of maps, and so B(.) can be regarded as a functor from the category of graphs
with homomorphisms into the category of Z2-spaces with Z2-maps.

It is not hard to show that B(Km) is Z2-homotopy equivalent to Sm−2, and indB(Km) =
m − 2 (see Section 5). Since an m-coloring of G can be regarded as a homomorphism of G
into Km, it induces a Z2-map of B(G) into Sm−2, and we obtain

χ(G) ≥ indB(G) + 2. (1)

The box complex B(G) is a variation of ideas from Alon, Frankl, and Lovász [1] and
Kř́ıž [20].

Neighborhood complexes and the Lovász bound. Lovász [22] defined the neighborhood
complex as N(G) := {S ⊆ V (G) : CN(S) 4= ∅}, and he proved that one always has χ(G) ≥
3+connectivity(N(G)). His proof uses another simplicial complex L(G), which can be defined
as the order complex of the system of all “closed sets” in N(G):

L(G) := ∆{A ⊂ V (G) : CN(CN(A)) = A}.

Thus, the vertices of L(G) are shores of inclusion-maximal complete bipartite subgraphs of G.
Unlike N(G), this L(G) is a simplicial Z2-complex, with the Z2-action given by A &→ CN(A),
and a slight modification of Lovász’ proof actually yields the lower bound

χ(G) ≥ ind L(G) + 2.
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As shown in [22], L(G) is a strong deformation retract of N(G). A version of Lovász’ bound,
formulated in terms of the classifying map of the Z2-bundle associated with L(G), was pub-
lished by Milgram and Zvengrowski [27]. Their formulation can be used as a tool for bounding
indL(G) from below.

In Section 5 we will show that ind L(G) = indB(G). So while B(G) and L(G) provide
the same lower bound, the functoriality of B(.) (which was probably known to experts, but
as far as we know, hasn’t appeared in print) is a significant advantage. Walker [34] shows
how a homomorphism induces a Z2-map for the L(.) complexes, but the construction is more
complicated and not canonical.

The subsequent lower bounds are formulated for Kneser graphs, in terms of the defining
set system F . The next definition is crucial in their formulation. With a set system F , we
associate the following simplicial complex K = K(F): The vertex set of K is X, the ground
set of F , and

K(F) := {S ⊆ X : F 4⊆ S for all F ∈ F}.

Thus F is the family of “minimal nonfaces” of K (plus possibly additional nonfaces), while K
is the complex of “F-free sets.”

The Sarkaria bound. From Sarkaria’s proof of Kneser’s conjecture [31], the following
general bound can be deduced (F is assumed to have the ground set [n]):

χ(KG(F)) ≥ ind∆
(
(2[n])∗2∆ \ K∗2

∆

)
+ 1.

As it turns out, the complex on the right-hand side is just another version of a box complex
of KG(F). Sarkaria, in the concrete cases he deals with, then proceeds to estimate the index
of that complex using an elegant trick with joins (“Sarkaria’s inequality”; see [38] or [25]),
which in general leads to

χ(KG(F)) ≥ n − 1 − indK∗2
∆ . (2)

We call the right-hand side of this inequality the Sarkaria bound. It is not explicitly stated
in this way in Sarkaria’s papers, and so perhaps “generalized Sarkaria bound” would be more
precise, but repeating the adjective “generalized” at every occasion seems annoying.

Bárány’s proof from [4] yields a lower bound that can generally be phrased as follows.
Suppose that for some d ≥ 1, the ground set X of F can be placed into the sphere Sd in such
a way that for every open hemisphere H there exists a set F ∈ F with F ⊆ X ∩ H. Then
χ(KG(F)) ≥ d+2. (Kneser’s conjecture is obtained from this using Gale’s lemma, stating
that, for every d, k ≥ 1, one can place 2k+d points on Sd so that every open hemisphere
contains at least k points.) For the purposes of comparing the bound with the other bounds,
we will rephrase it using the Gale transform; see Section 6. The result can be expressed as
follows: Suppose that K is a subcomplex of the boundary complex of an (n−d)-dimensional
convex polytope P (under a suitable identification of the vertices of K with the vertices of P ).
Then χ(KG(F)) ≥ d. We will refer to a number d as in this statement as the Bárány bound;
a comment similar to the one for the Sarkaria bound applies here as well.

From this form it is not hard to show that the Sarkaria bound is always at least as strong
as the Bárány bound (but, of course, the index in (2) might be difficult to evaluate).

The Dol’nikov–Kř́ıž bound is a purely combinatorial lower estimate for χ(KG(F)). For
a set system F , let the 2-colorability defect cd2(F) (called the width in [20]) be the minimum
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size of a subset Y ⊆ X such that the system of the sets of F that contain no points of Y is
2-colorable. In other words, we want to color each point of X red, blue, or white in such a
way that no set of F is completely red or completely blue (it may be completely white), and
cd2(F) is the minimum number of white points required for such a coloring. The following
bound was derived by Dol’nikov [10, 11] by a geometric argument from the Borsuk–Ulam
theorem, and independently (and as a part of a more general result) by Kř́ıž [20, 21], via
certain box complexes:

χ(KG(F)) ≥ cd2(F). (3)

(Since it is easily seen that cd2(
([n]

k

)
) = n− 2k +2, Kneser’s conjecture follows.) A very short

and elegant geometric reduction to a suitable version of the Borsuk–Ulam theorem follows
immediately from the recent work of Greene [15], which currently provides the shortest self-
contained proof of the Kneser conjecture.

The inequality (3) is also an immediate consequence of (2). Indeed, estimating the Z2-
index by the dimension, (2) leads to χ(G) ≥ n − 1 − dim K∗2

∆ , and some unwrapping of
definitions reveals that, surprisingly, the latter quantity is exactly cd2(F).

4 The hierarchy

In the following theorem, we summarize and compare all the considered lower bounds for χ(G).

Theorem 1 (The Hierarchy Theorem). Let G = (V,E) = KG(F) be a finite (Kneser)
graph with no isolated vertices, where F ⊆ 2[n], and let K = K(F) = {S ⊆ [n] : F 4⊆ S
for all F ∈ F}. Then we have the following chain* of inequalities and equalities:

χ(G)
(H1)
≥ indB(G) + 2

(H2)
= ind L(G) + 2 “the Lovász bound”

(H3)
≥ indB0(G) + 1

(H4)
= ind∆

(
(2[n])∗2∆ \ K∗2

∆

)
+ 1

(H5)
≥ n − 1 − ind K∗2

∆ “the Sarkaria bound”
(H6)
≥ d if K ⊆ ∂P for an (n−d)-polytope P “the Bárány bound”

(H7)
≥ n − 1 − dim K∗2

∆ = cd2(F) “the Dol’nikov–Kř́ı̌z bound.”

{

We have already proved (H1) (which is identical to (1)), as well as (H7). The inequality
(H5) was essentially proved by Sarkaria ([25] contains a detailed proof). The Bárány inequality
(H6) is proved in Section 6, and the remaining claims (H2), (H3) and (H4) follow from our
discussion of box complexes in Section 5.

Remarks on gaps/tightness.

(H1) The gap in the first inequality may be arbitrarily large. For example, for graphs without
a 4-cycle, which can have arbitrarily large chromatic number, all the topological lower

*We have labelled the equations and inequalities in the following chain of by (H1)–(H7); we will refer to these
labels below when we prove the relations, one by one. Note that this is a chain of inequalities and equations,
except at the end, where we do not imply a relation between the Bárány bound and the Dol’nikov–Kř́ıž bound.
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bounds presented here are trivial. Indeed, for every G without a 4-cycle, there is a
canonical Z2-equivariant Z2-map of sd B(G) to a 1-dimensional subcomplex of B(G),
given by A′ 0 A′′ &→ ∅ 0 CN(A′) for |A′| ≥ 2, A′ 0 A′′ &→ CN(A′′) 0 ∅ for |A′′| ≥ 2, and
A′ 0 A′′ &→ A′ 0 A′′ otherwise, and we get ind B(G) ≤ 1.

(H3) The gap in the inequality (H3) can be at most 1; this can be derived from the inequality
(M1) of Proposition 4 below, which yields indB0(G) ≥ ind B(G).

(H6) The Bárány bound can be strictly larger than the Dol’nikov–Kř́ıž bound, without any
bound on the gap, as will be discussed at the end of Section 6 for the example of the
Schrijver graphs. Thus, in particular, the gap in (H3) can be arbitrarily large.

The Bárány bound depends on the choice of the polytope P . At present we do not know
whether P can always be chosen of dimension at most dimK∗2

∆ + 1, that is, whether
the Bárány bound can always be made at least as strong as the Dol’nikov–Kř́ıž bound.
On the other hand, we do not have an example where the Bárány bound is necessarily
smaller than the Sarkaria bound.

Remarks on size/computability. Although the Dol’nikov-Kř́ıž “colorability defect”
bound is attractive since it is combinatorial, in general the Lovász bound may be much
tighter. However, the number of vertices of L(G) may be exponential in n = |V (G)|, and
similarly for some of the other box complexes. On the other hand, B(G) has only 2n vertices.
The number of simplices can still be exponential, but if, for example, the maximum degree
of G is bounded by a constant, then there are at most polynomially many simplices. Perhaps
a computation of the Z2-acyclicity of B(G), which provides a lower bound for indB(G) (and
thus for χ(G)), might be feasible in some cases.

5 Box complexes and neighborhood complexes

In the following definition, we collect six (natural) variants of box complexes, four defined for
a graph and two for a Kneser representation of it. For completeness, we also include the box
complexes B(G) and B0(G) that were already defined above.

Definition 2 (Box complexes). Let G = (V,E) = KG(F) be a finite (Kneser) graph with
no isolated vertices, and suppose that the ground set of F is [n]. The first two complexes are
on the vertex set V ×[2]; they were already defined in Section 3.

1. The box complex B(G) is

B(G) :=
{
A′ 0 A′′ : A′, A′′ ⊆ V, A′ ∩ A′′ = ∅,

G[A′, A′′] is complete, CN(A′),CN(A′′) 4= ∅
}
.

Equivalently, but more concisely, we can also write B(G) =
{
A′0A′′ : A′ ⊆ CN(A′′) 4= ∅,

A′′ ⊆ CN(A′) 4= ∅
}
.

2. A simpler definition, but a larger complex, is obtained as

B0(G) :=
{
A′ 0 A′′ : A′, A′′ ⊆ V, A′ ∩ A′′ = ∅, G[A′, A′′] is complete

}
.

This is almost as for B(G), but here if one shore is empty, the other can be anything.
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3. The following definition of a box complex, from Kř́ıž [20, p. 568], takes into account
only the complete bipartite graphs with both shores A′ and A′′ nonempty:

Bchain(G) := ∆
{
A′ 0 A′′ : ∅ 4= A′, A′′ ⊂ V,

A′ ∩ A′′ = ∅, G[A′, A′′] is complete
}
.

Here the vertices are the vertex sets of complete bipartite subgraphs of G, and the
simplices are chains of such sets under inclusion.

4. The vertices of the next box complex, from Alon, Frankl & Lovász [1, p. 361], are
directed edges of G; that is, ordered pairs (u, v) with {u, v} ∈ E. We let

Bedge(G) :=
{
&F ⊆ A′×A′′ : ∅ 4= A′, A′′ ⊂ V, A′ ∩ A′′ = ∅, G[A′, A′′] is complete

}
.

That is, simplices are subsets of edge sets of complete bipartite subgraphs of G, where
the edges are oriented from the first shore to the second shore.

5. The simplicial complex∆
(
(2[n])∗2∆ \K∗2

∆

)
appearing in Theorem 1, used as an intermediate

step by Sarkaria in the derivation of his lower bounds, can be more explicitly written as

BKG
Sark(F) := ∆

{
B′ 0 B′′ : B′, B′′ ⊆ [n], B′ ∩ B′′ = ∅,

at least one of B′, B′′ contains a set of F
}
.

The vertex set are pairs of disjoint subsets of the ground set of F that support a complete
bipartite subgraph of the Kneser graph, with at least one shore nonempty.

6. Finally, another Kneser box complex, as in Kř́ıž [20, p. 574], is

BKG
chain(F) := ∆

{
B′ 0 B′′ : B′, B′′ ⊆ [n], B′ ∩ B′′ = ∅,

both B′, B′′ contain a set of F
}
.

On each of these types of box complexes, we have the natural Z2-action that interchanges
the shores of the bipartite subgraph.

As we will show, all these box complexes fall into two groups, and those in each group
have the same Z2-index. Moreover, the Lovász complex L(G) can also be included in one of
the groups.

Theorem 3. The following holds for the Z2-indices of the various box complexes:

indBchain(G) = indBKG
chain(F) = indBedge(G) = indB(G) = ind L(G)

≤ indB0(G) = indBKG
Sark(F) ≤ ind Bchain(G) + 1.

For a proof of this theorem, the following proposition provides explicit simplicial Z2-maps
among the various box complexes. Here suspK denotes the suspension of a simplicial complex
K (a “double cone” over K): suspK := K ∪ {S ∪ {s} : S ∈ K} ∪ {S ∪ {n} : S ∈ K}, where s
and n are two new vertices not belonging to V (K). The last inequality of the theorem follows
from the map (M4) in the proposition, together with ind suspK ≤ ind K+ 1 and the fact that
suspSn is an Sn+1.
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Proposition 4 (Z2-maps). For every finite graph G = KG(F) without isolated vertices,
there are canonical simplicial Z2-maps

B(G) −→ B0(G), (M1)
sd Bedge(G) ←→ Bchain(G), (M2)

Bchain(G) −→ sd B(G), (M3)
sd B0(G) −→ suspBchain(G), (M4)
Bchain(G) ←→ BKG

chain(F), (M5)
sd B0(G) ←→ BKG

Sark(F), (M6)
sd sd B(G) −→ Bchain(G), (M7)

sdL(G) −→ Bchain(G), (M8)
sdBchain(G) −→ sd L(G). (M9)

Answering a question by the first author, Lovász (personal communication, February
2000) proved that L(G) is homotopy equivalent to Bchain(G) (using the nerve theorem); our
construction of the Z2-map in (M9) is inspired by his proof.

After a preliminary version of this paper was written, Csorba [8] proved that B0(G) is
Z2-homotopy equivalent to susp (B(G)) for every G, thereby considerably strengthening our
statements above concerning these box complexes.

The following figure sketches the three main box complexes for G = C5 and suggests the
maps between them. Here B(C5) is homeomorphic to S1 × I; it is a subcomplex of B0(C5),
which additionally contains two simplices on 5 vertices. The complex Bchain(C5), an S1 on 10
vertices, embeds into the barycentric subdivision of B(C5):

B0(C5)↪→↪→Bchain(C5)

1′′

3′′

5′′

2′

5′

3′

1′

4′

B(C5)

Proof.

(M1) This map is simply the identity on the vertex set: an inclusion map.

(M2) The map sdBedge(G) → Bchain(G) is defined on the vertices of sdBedge(G) by setting
&F &→ h(&F ) 0 t(&F ), where h(&F ) collects the tails, and t(&F ) collects the heads, of the
directed edges in &F .

The map Bchain(G) → sd Bedge(G) in the other direction is obtained by sending A′ 0A′′

to the (directed) edge set of the complete bipartite graph with shores A′ and A′′.

(M3) The map Bchain(G) → sd B(G) is simply an inclusion, as each vertex of Bchain(G) is also
a simplex of B(G).
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(M4) The map sd B0(G) → suspBchain(G) is obtained by mapping the “improper” complete
bipartite subgraphs (with one shore empty) to the suspension points.

(M5) A canonical Z2-map BKG
chain(F) → Bchain(G) is defined on the vertices by

B′ 0 B′′ &−→ {F ′ ∈ F : F ′ ⊆ B′} 0 {F ′′ ∈ F : F ′′ ⊆ B′′}.

A canonical Z2-map Bchain(G) → BKG
chain(F) is obtained by mapping the vertices:

A′ 0 A′′ &−→
( ⋃

A′) 0
( ⋃

A′′).

(M6) The same formulas define Z2-maps BKG
Sark(F) ←→ sd B0(KG(F)).

(M7) The map sd sdB(G) → Bchain(G) is defined on the second barycentric subdivision of
B(G), and so its vertices are chains of the form

A =
(
A′

0 0 A′′
0 ⊂ · · · ⊂ · · · ⊂ A′

k 0 A′′
k

)
.

We let µ′(A) be the smallest nonempty set in the chain of sets A′ := (A′
0 ⊂ · · · ⊂

A′
k ⊆ CN(A′′

k) ⊆ · · · ⊆ CN(A′′
0)), and similarly for µ′′(A) (here we use the condition

CN(A′),CN(A′′) 4= ∅ from the definition of B(G)). We let the image of A be µ′(A) 0
µ′′(A). This is a vertex of Bchain(G): Since the first barycentric subdivision does not
contain ∅ as a vertex, at least one of A′

0, A
′′
0 , say A′

0, is nonempty. Then we have
µ′(A) = A′

0, while µ′′(A) is contained in CN(A′′
0). If we extend the chain A, then this

also leads to an extension of the chains A′ and A′′, so the sets µ′(A) and µ′′(A) can
only get smaller. Therefore, our map is simplicial, and it is clearly a Z2-map.

(M8) We recall that the vertices of L(G) are the nonempty subsets A ⊂ V that are closed in
the sense that A = CN(CN(A)), or equivalently, A = CN(B) for some nonempty subset
B ⊂ V .

First we define a Z2-map f : sd L(G) → Bchain(G). A vertex of sdL(G) is a chain
A = (A0 ⊂ A1 ⊂ · · · ⊂ Ak) of nonempty closed sets. We set f(A) := A0 0 CN(Ak).
Since CN(Ak) ⊆ CN(A0), the image is indeed a vertex of Bchain(G). If a chain A′

extends A, its first set can only be smaller than the first set of A, and the last set can
only be larger than the last set of A. Therefore, f(A′) ⊆ f(A), and it follows that
f is simplicial. Finally, the image of A under the Z2-action on sd L(G) is the chain
B = (CN(Ak) ⊂ CN(Ak−1) ⊂ · · · ⊂ CN(A0)). We have f(A) = A0 0 CN(Ak) and
f(B) = CN(Ak) 0 CN2(A0) = CN(Ak) 0 A0 (as A0 is closed), and so f is a Z2-map.

(M9) Finally, we provide a Z2-map sdBchain(G) → sd L(G). A vertex in sd Bchain(G) is
a chain A =

(
A′

0 0 A′′
0 ⊂ · · · ⊂ A′

k 0 A′′
k

)
. All the sets CN2(A′

0),. . . , CN2(A′
k),

CN(A′′
0),. . . , CN(A′′

k) are closed and nonempty, and the following inclusion are eas-
ily verified: CN2(A′

0) ⊆ · · · ⊆ CN2(A′
k) ⊆ CN(A′′

k) ⊆ · · · ⊆ CN(A′′
0). So by omitting

repeated sets from this chain, we obtain a vertex of sd L(G). The chain A is mapped
to this vertex. If we extend A, the image stays the same or is extended as well, so the
map is simplicial. Finally, it is a Z2-map; here we use that CN3 = CN. !
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The above definitions by far do not exhaust the list of possible (and possibly interesting)
box complex variants. For example, we could also define the “Kneser counterparts” of B(G)
and B0(G), namely BKG(F) :=

{
S ⊆ B′ 0 B′′ : B′, B′′ ⊆ [n], B′ ∩ B′′ = ∅, both B′ and B′′

contain a set of F
}

and BKG
0 (F) :=

{
S ⊆ B′ 0B′′ : B′, B′′ ⊆ [n], B′ ∩B′′ = ∅, at least one of

B′, B′′ contains a set of F
}
. By similar arguments as in the proof of Proposition 4, it can be

shown that ind B0(KG(F)) = ind BKG
0 (F) and ind B(KG(F)) = indBKG(F), but we prefer to

omit this part.
In some of the cases in Proposition 4, the maps even provide Z2-homotopy equivalences

between the respective complexes. Since the proofs are not very interesting and, at present,
the Z2-homotopy types do not seem to bring anything new concerning the lower bounds for
the chromatic number, we have decided not to discuss this in the present paper.

The box complexes of complete graphs. In order to use a box complex for bounding
the chromatic number of a graph, we need to know the Z2-index of the box complex of Km. In
view of the equalities of indices established above for the various box complexes, we mention
only two of the box complexes here (but the others can also be analyzed directly without
difficulty).

Proposition 5. The polyhedron of the simplicial complex B0(Km) is (homeomorphic to) an
Sm−1, and thus ind B0(Km) = m−1.

The polyhedron of the simplicial complex B(Km) is homeomorphic to Sm−2×[0, 1], and
thus indB(Km) = m − 2.

Proof. B0(Km) is isomorphic to the boundary complex of an m-dimensional cross polytope
(“generalized octahedron,” or unit ball of the '1-norm), with its canonical antipodal Z2-action.

The complex B(Km) is isomorphic to the boundary complex of an m-dimensional cross
polytope with two opposite facets removed, and with its canonical antipodal Z2-action. !

By now, all parts of Theorem 1 have been proved, except for the claims involving the
Bárány bound.

6 The Bárány bound

Proof of the inequality (H6). We need to prove that if the simplicial complex K is a part of
the boundary of an k-dimensional convex polytope P , then indK∗2

∆ ≤ k−1. Briefly speaking,
the reason is that the deleted join of Sk−1 contains ‖K∗2

∆ ‖ and is Z2-homotopy equivalent to
Sk−1. A more detailed argument follows.

Let us recall that if X and Y are topological spaces, the join X ∗ Y is the quotient of the
product space X×Y ×[0, 1] by the equivalence ≈, where (x, y, 0) ≈ (x′, y, 0) and (x, y, 1) ≈
(x, y′, 1) for all x, x′ ∈ X and y, y′ ∈ Y . If K is a simplicial complex and K∗2 := {S 0 S′ :
S, S′ ∈ K}, then there is a (canonical) homeomorphism ‖K‖∗2 ∼= ‖K∗2‖.

Here we need the space

Z :=
(
Sk−1 ∗ Sk−1

)
\ {(x, x, 1

2) : x ∈ Sk−1};

this is a kind of deleted join of Sk−1 (considered as a topological space, not a simplicial
complex). The space Z is equipped with the Z2 action given by (x, y, t) &→ (y, x, 1−t).

Using the canonical homeomorphism ‖K∗2‖ → ‖K‖∗2 and a homeomorphism of the bound-
ary of P with Sk−1, we obtain a Z2-map h : ‖K∗2‖ → Sk−1 ∗ Sk−1. Moreover, if we restrict

14



the left-hand side to ‖K∗2
∆ ‖, then the image contains no point of the form (x, x, 1

2 ), and so h
is a Z2-map ‖K∗2

∆ ‖ → Z. So it suffices to show that indZ ≤ k−1. Let Sk−1 be represented as
the unit sphere in Rk. We define a Z2-map Z → Sk−1 by

(x, y, t) &→ tx − (1−t)y
‖tx − (1−t)y‖

.

If tx− (1−t)y = 0 for unit vectors x, y, then t = 1
2 and x = y. Thus, the map is well defined,

and one can also check that it is continuous. Clearly, it commutes with the respective Z2-
actions. This concludes the proof. !

An extension of Bárány’s proof. Here we directly prove the inequality χ(KG(F)) ≥ d
whenever K(F) is a part of the boundary of an (n−d)-dimensional simplicial convex polytope.
This explains the relation of this bound to Bárány’s [4] original proof of the Kneser conjecture.

Let V = (v1, v2, . . . , vn) ⊂ Rn−d be the vertex set of P , and let V ∗ = (v∗1 , v∗2 , . . . , v∗n) ⊂
Rd−1 be a Gale diagram of V (see, e. g., [36, Lect. 6] for an introduction to Gale diagrams).
Without loss of generality, we may assume that all points in V ∗ different from 0 lie in Sd−2. We
recall that the points of V , and thus also the points of V ∗, are in one-to-one correspondence
with the elements of the ground set of F .

We want to show that every open hemisphere in this Sd−2 contains a set corresponding to
a set of F . Once this is done, we can proceed exactly as in Bárány’s proof. Namely, supposing
that the sets of F have been colored by at most d−1 colors, we define the set Ai ⊆ Sd−2 as the
set of all x ∈ Sd−2 such that the open hemisphere centered at x contains at least one set of F
colored by i, i ∈ [d−1]. Each Ai is open, and by the above claim, the Ai together cover all of
Sd−2. By a suitable version of the Borsuk–Ulam theorem (called the Lyusternik–Shnirel’man
theorem), there exist x ∈ Sd−2 and i ∈ [d−1] such that x,−x ∈ Ai. This means that two
opposite open hemispheres both contain a set of color i, and so the coloring is not a proper
coloring of the Kneser graph.

To prove the claim, consider an open hemisphere H, and let S∗ := H ∩ V ∗. Since H is
defined by an open halfspace, there is a linear functional on Rd−1 that is positive on S∗ and
nonpositive on V ∗ \ S∗. Let S ⊂ V be the set corresponding to S∗. Properties of the Gale
diagram imply that there is an affine dependence of the points of V in which the points of S
have positive coefficients and the other points have nonpositive coefficients. This means that
conv(S) ∩ conv(V \ S) 4= ∅. So S is not the vertex set of a face of P , and thus S 4∈ K(F).
This means that S contains a set of F . The proof is finished. !

On Schrijver graphs and the Dol’nikov–Kř́ıž bound. Let 0 < 2k < n, and let
([n]

k

)
stab

denote the system of all sets F ⊆ [n] such that if i ∈ F then i+1 4∈ F , and if n ∈ F then 1 4∈ F .
(So the sets of

([n]
k

)
stab

can be identified with the independent sets in the cycle of length n,
with the numbering of vertices from 1 to n along the cycle.) Schrijver [32] proved that the
graph SGn,k := KG

(([n]
k

)
stab

)
is a vertex-critical subgraph of the Kneser graph KG

(([n]
k

))
.

That is, χ(SGn,k) = n − 2k + 2, and every proper induced subgraph of SGn,k has a smaller
chromatic number. The criticality follows by a clever coloring construction and we will not
consider it here; we look at a proof of the lower bound.

It turns out that the Bárány bound applies very neatly here. Let P := C2k−2(n) be a
cyclic polytope of dimension 2k − 2 on n vertices. With the usual numbering of the vertices,
Gale’s evenness criterion (see [36, Thm. 0.7]) shows that the S ⊆ [n] that contain no set of
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([n]
k

)
stab

are exactly the proper faces of P . Therefore, K
(([n]

k

)
stab

)
= ∂P , and the Bárány

bound immediately yields χ(SGn,k) ≥ n − 2k + 2.
The Schrijver graphs also provide examples where the Dol’nikov–Kř́ıž bound is consider-

ably weaker than the Bárány bound. Indeed, it is easy to check that cd2
(([n]

k

)
stab

)
= n−4k+4.

7 Concluding remarks

1. Many of the above considerations can easily be extended to Kneser hypergraphs (where
vertices are again the sets of F , and edges are r-tuples of pairwise disjoint sets, for some
given r), and even to the s-disjoint Kneser hypergraph version of Sarkaria, as in Ziegler
[37]. A detailed exploration of this is a subject for further research.

Indeed, the p-partite versions of some of our box complexes as presented in Section 5
appear in the published literature that concerns Kneser hypergraphs: The p-partite ver-
sion of Bedge(G) is used in Alon, Frankl & Lovász [1, p. 361]. The p-partite version of
Bchain(G) appears in Kř́ıž [20, p. 568], while in Kř́ıž [20, p. 574] we find the p-partite
version of BKG

chain(G). The box complexes appear in Kř́ıž’ work as “resolution complexes”
for equivariant cohomology.

2. In a discussion with Jarik Nešeťril, we noted the following interpretation of B0(G) (and
B(G)): the simplices of B0(G) are vertex sets of complete bipartite subgraphs in G ×
K2, where the “categorical product” of graphs G × H has vertex set V (G) × V (H) and
edges {(u, v), (u′, v′)} such that {u, u′} ∈ E(G) and {v, v′} ∈ E(H). The Z2-action is
then induced by the exchange of vertices of K2. A homomorphism G → G′ induces a
homomorphism G × K2 → G′ × K2 (so the B(·) functor “factors” in this way). This can
be generalized, for example, to a product G×Cp, where Cp is the p-cycle with the natural
Zp-action (cyclic shift).

3. In a similar spirit but earlier, Lovász and others have considered a setting of “Hom-
complexes”: For this let H and G be finite graphs, and let ∆G be a simplex with vertex
set V (G). The Cartesian power (∆G)|V (H)| is a polyhedral complex, whose vertices can
be identified with mappings V (H) → V (G). Then Hom(H,G) is the subcomplex induced
by the vertices that are homomorphisms (thus, the faces are all polyhedra F ∈ (∆G)|V (H)|

such that each vertex of F is a homomorphism). This rather general setting covers Lovász’
connectivity lower bound, as well as some of the recent work of Brightwell and Winkler [7].
Lovász conjectured that if Hom(C2r+1, G) is k-connected then χ(G) ≥ k + 4. Here r ≥
1 is an arbitrary integer and C2r+1 denotes the odd cycle of length 2r + 1. This was
recently proved by Babson and Kozlov [3] by advanced topological methods. Let us remark
that while χ(G) ≥ k + 3 is easy to establish by methods discussed in the present paper,
the improvement by 1 currently seems hard, and it represents new kind of topological
obstruction to (k + 4)-colorability, which apparently is not captured by any of the lower
bounds discussed above.

4. The inequality ind suspK ≤ indK may be strict for finite simplicial complexes K: For
example, one may obtain a cell complex model by taking h : S3 → S2 to be the Hopf
map, and attaching two 4-cells to S2 via 2h resp. −2h, where multiples of maps are taken
according to addition in π3(S2) ∼= Z. (This particular example was suggested by Péter
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Csorba, based on an earlier construction by Csorba, Živaljević, and the first author for a
different purpose; another approach was proposed by Wojchiech Chachólski.)

However, it is not clear whether ind suspK = indK occurs in the rather special setting
of (H3), where K is a box complex. An interesting step in this direction was recently taken
by Csorba (private communication), who proved that given any simplicial Z2-complex K,
there is a graph G such that N(G) is homotopy equivalent to K. At present it is not clear
whether this result can be extended to a Z2-homotopy equivalence of the box complex of a
suitable graph with a given K; if yes, this would provide many pathological examples and,
in particular, it would answer the above question.
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