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1 Introduction

There exist various dualities in string theory. Among them, T-duality is directly connected

with the geometry of the target space and thus has to be a characteristic property of stringy

geometry.

One of the formulations to analyze T-duality is the approach of doubled geometry,

which has manifest O(d, d) invariance, and there, the existence of so-called nongeomet-

ric fluxes has been proposed [1]. On the other hand, the fluxes H, F , Q and R and

their transformations have also been conjectured from T-duality analysis in supergravity

compactification scenario [2, 3]. It has been proposed that T-duality converts H-, F -,

Q- and R-fluxes into each other. Recently, there are further developments related to T-

duality. Double field theory [4] is a manifestly O(d, d) covariant field theory which allows

also for T-duality along non-isometry directions. Examples for other developments are the

branes as sources for Q- and R-fluxes [5, 6] and the β-supergravity [7]. The topological

T-duality [8, 9] is also proposed to analyze T-duality with flux. However, the background

geometric structures for nongeometric fluxes are not well understood.

A background geometry in string theory with NS H-flux [10] is known to be a Courant

algebroid [11, 12], and the standard Courant algebroid of the generalized tangent bundle

TM ⊕T ∗M is of particular interest in the framework of generalized geometry [13, 14]. The

T-duality on the H-flux is well understood as an automorphism on the standard Courant

algebroid if ιXιY H = 0 [15].

However, we cannot simultaneously introduce all degrees of freedom of H-, F -, Q-, R-

fluxes as deformation of the Courant algebroid. The only independent deformation in the

exact Courant algebroid is a 3-form (H-flux) degree of freedom [16, 17].

Recently, the Courant algebroid on a Poisson manifold, i.e. the Poisson Courant alge-

broid, has been introduced in [18] as a geometric object for a background with R-flux. It is

shown that the nontrivial flux R of a 3-vector can be introduced consistently on a Poisson

manifold as a deformation of the Courant algebroid. It is the ‘contravariant object’ [19]

with respect to the standard Courant algebroid, which is the exchange of T ∗M with TM

and H-flux with R-flux. The T-duality on the R-flux has also been analyzed and it has

been shown that the duality of R-flux with Q-flux is also understood as an automorphism

on the Poisson Courant algebroid [20].

In this paper, we analyze the geometric structure of the Poisson Courant algebroid

and a duality between H-flux and R-flux, which we call flux duality, in detail. We also

construct the corresponding worldvolume theories, a topological sigma model and a current

algebra with the structure of this Poisson Courant algebroid.
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We first discuss the mathematical features and some structural correspondences be-

tween the standard Courant algebroid with H-flux and the Poisson Courant algebroid with

R-flux. By analyzing both coboundary operators, we generalize the duality between the

de Rham cohomology and the Poisson cohomology as the background algebraic structure.

Moreover, we have a new interpretation of this duality as a canonical transformation on a

graded symplectic manifold,1 and we formulate a flux duality, a duality between the H-flux

and R-flux.

Then, we discuss field theoretic realizations of the Poisson Courant algebroid as a

symmetry; we construct a topological sigma model and a current algebra. To this end,

first we reformulate the Courant algebroid in terms of supergeometry. The construction

of the Courant algebroid by using supergeometry and the derived brackets are introduced

in [23]. This formulation uses a so-called QP-manifold, a differential graded symplectic

manifold [24, 25]. The advantage of the use of supergeometry is that the topological sigma

model and the current algebra are constructed straightforwardly from the supergeometric

data. The general theories are known as the AKSZ construction of topological sigma

models [26] and the supergeometric BFV formulation of current algebras [27].

It is known that the AKSZ sigma model in three dimensions generally has the structure

of a Courant algebroid [28–30]. Physically, this is a theory of a topological membrane.

Following general arguments, we construct a topological sigma model from the Poisson

Courant algebroid in three dimensions. When the three-dimensional world volume has a

boundary, i.e. when we consider the open membrane, we obtain a two-dimensional boundary

sigma model à la WZW. This is the Poisson sigma model with R-flux on the Dirac structure

of a Poisson Courant algebroid. From the point of view of the sigma model, T-duality is

changing the boundary conditions of the topological membranes. There is an approach

with a similar concept proposed in [31]. The difference is that our formalism is based on

the Poisson Courant algebroid.

We also construct a current algebra of the Poisson Courant algebroid on loop space,

coming from the canonical formulation of the theories on (1 + 1)-dimensional spacetime

S1 ×R. In the H-flux case, this is the Alekseev-Strobl current algebra [32], which has the

structure of the standard Courant algebroid with H-flux as underlying symmetry. This type

of current algebra can also be reformulated by using the supergeometric construction [27,

33]. Following these general formulations, we construct a corresponding current algebra

with R-flux.

This paper is organized as follows. In section 2, we review the supergeometric construc-

tion of Courant algebroids and, in section 3, we apply it to the Poisson Courant algebroid.

In section 4, we discuss the mathematical structure of the duality of the standard Courant

algebroid and the Poisson Courant algebroid. In section 5, we discuss the meaning of R-flux

of the Poisson Courant algebroid from the perspective of double field theory. In section

6, we review the AKSZ sigma model. Then, we construct a topological sigma model of

the Poisson Courant algebroid and analyze its boundary theories. In section 7, we con-

1T-duality has been formulated as a canonical transformation on the string phase space in [21, 22].

Canonical transformations in this paper are defined on a graded target manifold.
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struct the current algebra of the Poisson Courant algebroid. Finally, section 8 is devoted

to conclusion and discussion. In the appendix, our notation of supergeometry in this paper

is summarized.

2 Courant algebroids and supergeometry

In this section, we briefly review supergeometry, its definition and related terms which are

necessary to construct the topological sigma models from the standard Courant algebroids

using the AKSZ construction in section 5. Here, we review definitions of Courant algebroids

in the first subsection. Courant algebroids provide the background geometry of T-duality.

The second subsection then reviews a differential graded symplectic manifold, which is

called a QP-manifold. In the AKSZ formulation, a QP-manifold is used to construct a

topological sigma model. Finally, in the third subsection, the supergeometric construction

of the Courant algebroids from QP-manifolds of degree 2 is explained. The formulation is

based on the fundamental theorem that general Courant algebroids are equivalent to QP-

manifolds of degree 2. This short review of the techniques involved provides the foundation

to flow into the definition of Poisson Courant algebroids and their realization through

supergeometric construction.

2.1 Courant algebroids

Let us start with recalling the definition of the Courant algebroid.

Definition 2.1. [12, 34] The Courant algebroid is a vector bundle E over M with three

operations, a pseudo-Euclidean metric 〈− ,−〉 on the fiber, a bundle map ρ : E −→ TM

(called the anchor map), and a binary bracket [−,−]D (the Dorfman bracket) on the space

of sections Γ(E), which satisfy the following conditions:

1) [e1, [e2, e3]D]D = [[e1, e2]D, e3]D + [e2, [e1, e3]D]D,

2) ρ(e1)〈e2 , e3〉 = 〈[e1, e2]D , e3〉+ 〈e2 , [e1, e3]D〉,

3) ρ(e1)〈e2 , e3〉 = 〈e1 , [e2, e3]D + [e3, e2]D〉,

where e1, e2, e3 ∈ Γ(E).

Regarding its application to string theory, Courant algebroids appeared in the context

of generalized geometry [13, 14]. In this case, the vector bundle is the direct sum of tangent

bundle and cotangent bundle E = TM ⊕ T ∗M and is introduced as an extension of the

Lie algebroid of tangent vectors. We call such a Courant algebroid the standard Courant

algebroid :

Definition 2.2. The standard Courant algebroid is a Courant algebroid as defined above,

where we take E = TM ⊕ T ∗M . The anchor is the natural projection ρ : TM ⊕ T ∗M −→

TM . The operations of the Courant algebroid are as follows:

〈X + α , Y + β〉 = ιXβ + ιY α,

ρ(X + α) = X,

[X + α, Y + β]D = [X,Y ] + LXβ − ιY dα,

for sections X+α, Y+β ∈ Γ(TM⊕T ∗M), where X,Y are vector fields and α, β are 1-forms.
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In string theory, there exists a 3-form flux, which is usually called H-flux. In the case of

a compactification, this flux can be nonvanishing in general. We can make a deformation

of the standard Courant algebroid by a closed 3-form H, which preserves the Courant

algebroid conditions. We call such a deformed Courant algebroid a Courant algebroid

with H-flux.

Definition 2.3. The standard Courant algebroid with H-flux is the Courant algebroid

which contains the same inner product 〈− ,−〉 and anchor map ρ : TM ⊕ T ∗M −→ TM

as the standard Courant algebroid. The Dorfman bracket is deformed by the 3-form flux to

the bracket defined by

[X + α, Y + β]H = [X,Y ] + LXβ − ιY dα+ ιXιY H. (2.1)

The Courant algebroids on TM ⊕ T ∗M , more precisely, exact Courant algebroids

are classified by H3(M,R) [16, 17]. This means that we can only introduce the H-flux

deformation as independent degree of freedom among all fluxes in the standard Courant

algebroid.

2.2 Supergeometric construction

In the following, we review the supergeometric formulation of the Courant algebroids based

on a so-called QP-manifold. Here, the structures of a Courant algebroid in the previous

section is reconstructed by the supergeometric method.

First, we give a definition of a graded manifold. A graded manifoldM is a ringed space,

whose structure sheaf is a Z-graded commutative algebra over an ordinary smooth manifold

M . The grading is compatible with the supermanifold grading, that is, a variable of even

degree is commutative and a variable of odd degree is anticommutative. By definition, the

structure sheaf ofM is locally isomorphic to C∞(U)⊗ S•(V ), where U is a local chart on

M , V is a graded vector space, and S•(V ) is a free graded commutative ring on V . For

rigorous mathematical definitions, we refer to [35, 36].

In this paper, we only consider nonnegatively graded manifolds. An N-manifold (i.e., a

nonnegatively graded manifold)M equipped with a graded symplectic structure ω of degree

n is called P-manifold of degree n and denoted by (M, ω). ω is also called P -structure.

We denote the degree of a function f ∈ C∞(M) by |f |. A graded Poisson bracket on

C∞(M) is defined as {f, g} = (−1)|f |+n+1iXf
iXgω, where the Hamiltonian vector field Xf

is defined by the equation iXf
ω = −δf for any f ∈ C∞(M), where δ is the differential on

M. A vector field Q onM is called homological if Q2 = 0.

Definition 2.4. A QP-manifold is a P -manifold (M, ω) endowed with a degree 1 homo-

logical vector field Q such that LQω = 0 [24].

We call the homological vector field Q a Q-structure and the corresponding triple

(M, ω,Q) a QP-manifold. For any QP-manifold, there exists a Hamiltonian function Θ ∈

C∞(M) associated to the homological vector field Q with respect to the graded Poisson

bracket {−,−}, that is,

Q = {Θ,−}. (2.2)
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Then the homological condition, Q2 = 0, implies that Θ is a solution of the classical

master equation

{Θ,Θ} = 0. (2.3)

Such Θ is called a homological function or a Hamiltonian function. In order to construct

a QP-manifold, we specify a symplectic structure ω and a Hamiltonian function Θ. The

classical master equation provides one unique geometric condition on the objects involved.

In the next subsection, we demonstrate how the structures of a Courant algebroid emerge

from a solution of the classical master equation in QP-manifold of degree 2.

2.3 QP-manifolds of degree 2

In this paper, we want to formulate a specific type of Courant algebroid, the Poisson

Courant algebroid, using the above-mentioned supergeometric method. This formulation

is possible due to the well-known equivalence of a QP-structure of degree 2 with a Courant

algebroid on a vector bundle E [23]. This subsection reviews the construction of the

Courant algebroid on a general vector bundle E including the special case where E =

TM ⊕ T ∗M . In the next section, the construction is applied to the Poisson Courant

algebroid and its properties are discussed.

First, we start with a vector bundle E over a smooth manifold M with fiber V and a

graded manifoldM = T ∗[2]E[1]. Here E[n] denotes the shift of fiber degree by n.

Let xi be a local coordinate on M and ea a basis of sections of E. Local coordinates on

the graded double vector bundleM are denoted by (xi, ηa, ξi) with degrees (0, 1, 2). Local

coordinates on E[1] are (xi, ηa), where ηa is a local coordinate on fiber V [1] of E[1]. By

assuming a fiber metric 〈− ,−〉, we identify V ∗[1] with V [1]. Therefore, we use the same

local coordinate ηa for the cotangent space T ∗[2] of the fiber of V [1]. Finally, ξi is a local

coordinate on the fiber of T ∗[2]M . The structure of the graded manifold can schematically

be represented by the following diagram,

M −−−−→ E[1]
y

y
T ∗[2]M −−−−→ M

We consider the canonical embedding map of the vector bundle E intoM:

j : E ⊕ TM →M .

The embedding map j can be written using local coordinates by

j :

(
xi, ea,

∂

∂xi

)
7→ (xi, ηa, ξi).

For a section e ∈ Γ(E) the pushforward is a function, j∗e ∈ C∞(E[1]). We use the same

symbol for E and jE, if there is no risk of confusion.

We decompose the structure sheaf by degree, i.e., the space of functions on M as

C∞(M) =
∑

i≥0Ci(M), where Ci(M) is the space of smooth functions of degree i. We

– 6 –
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have the following equivalences by the map j:

C0(M) ≃ C∞(M),

C1(M) ≃ Γ(E),

C2(M) ≃ Γ(∧2E ⊕ TM)

etc.

The next step is to introduce a graded symplectic form of degree 2 on M. We take

the following symplectic structure,

ω = δxi ∧ δξi +
1

2
kabδη

a ∧ δηb, (2.4)

where 〈ηa , ηb〉 = kab is the fiber metric. This defines a P-structure and leads to the

corresponding graded Poisson bracket {xi, ξj} = δij and {ηa, ηb} = kab.

Finally, a Q-structure on M is defined by a homological function Θ of degree 3 as

in (2.2). Using local coordinates, the general form of a degree 3 function is given by

Θ = ρia(x)ξiη
a +

1

3!
Cabc(x)η

aηbηc, (2.5)

where ρia(x) and Cabc(x) are arbitrary local functions of x. The homological function

satisfies the classical master equation, {Θ,Θ} = 0. This gives a set of relations among

the degree zero local functions ρia(x) and Cabc(x). The above triple (M, ω,Q) defines a

QP-manifold of degree 2.

The operations on the Courant algebroid are defined using a graded Poisson bracket

and derived brackets. The pseudo-metric, Dorfman bracket and anchor map are then

reconstructed via the following expressions:

〈e1 , e2〉 ≡ j∗{j∗e
1, j∗e

2} ,

[e1, e2]D ≡ j∗{{j∗e
1,Θ}, j∗e

2},

ρ(e)f ≡ j∗{j∗e, {Θ, j∗f}}, (2.6)

where f is a function on M and e, e1, e2 ∈ Γ(E). As a consequence of the classical master

equation, these three operations satisfy the defining relations of a Courant algebroid.

In the case of E = TM ⊕ T ∗M , we take local coordinates (xi, qi, pi, ξi) with degree

(0, 1, 1, 2), where xi are local coordinates on M , qi is a local basis on the fiber of T [1]M , pi
is a local basis on the fiber of T ∗[1]M and ξi are local coordinates on the fiber of T ∗[2]M .

Note that we have identified ηa = (qi, pj). The fiber metric is taken as k =
(

0 δij
δj

i 0

)
. Then

the graded symplectic form is given by

ω = δxi ∧ δξi + δqi ∧ δpi. (2.7)

If we take the Q-structure function as

Θ = ξiq
i +

1

3!
Hijk(x)q

iqjqk, (2.8)

we get the standard Courant algebroid by (2.6). The anchor ρ becomes the natural pro-

jection from TM ⊕ T ∗M to TM and the Dorfman bracket becomes (2.1).
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3 Supergeometric description of Poisson Courant algebroids

In this section, we reformulate the Poisson Courant algebroid, the Courant algebroid on

a Poisson manifold in [18], using supergeometry. First, we give its definition and then

construct the corresponding QP-manifold.

Definition 3.1. Let (M,π) be a Poisson manifold with a Poisson structure π ∈ Γ(∧2TM)

and R ∈ Γ(∧3TM) be a 3-vector field, which is closed with respect to the Poisson bivector

field, [π,R]S = 0, where [−,−]S is the Schouten bracket on multivector fields on ∧•TM .

A Poisson Courant algebroid is a vector bundle E = TM ⊕ T ∗M over the Poisson

manifold M , which incorporates the three operations of a Courant algebroid. The inner

product 〈−,−〉 on TM ⊕ T ∗M is the same as in the standard Courant algebroid case. The

bundle map ρ : TM⊕T ∗M → TM is defined by ρ(X+α) = π♯(α), where π♯ : T ∗M → TM .2

The bilinear operation is defined by

[X + α, Y + β]πR ≡ [α, β]π + Lπ
αY − ιβdπX − ιαιβR,

where X+α, Y +β ∈ Γ(TM⊕T ∗M), dπ(−) = [π,−]S and [−,−]π : T ∗M×T ∗M → T ∗M is

the Koszul bracket given by [α, β]π = Lπ♯(α)β−Lπ♯(β)α−d(π(α, β)). The data of a Poisson

Courant algebroid can then be encoded in the quadruple (E = TM ⊕ T ∗M, 〈−,−〉, [−,−]πR,

ρ = 0⊕ π♯).

We can regard the Poisson Courant algebroid as a contravariant object associated to the

standard Courant algebroid. Contravariant geometry is a differential calculus in which the

roles of TM and T ∗M are exchanged [19, 37]. Therefore, we call [−,−]πR the contravariant

Dorfman bracket and we can call this structure the contravariant Courant algebroid.

After giving the definition of the Poisson Courant algebroid, we reconstruct this al-

gebroid by supergeometric methods. For this, we use the same graded manifold M =

T ∗[2]T ∗[1]M as in the case of the standard Courant algebroid. We also take the same sym-

bols for the local coordinates (xi, qi, pi, ξi) and the canonical graded symplectic form (2.7).

Then the homological function defining the Q-structure for the Poisson Courant alge-

broid is

Θ = πij(x)ξipj −
1

2

∂πjk

∂xi
(x)qipjpk +

1

3!
Rijk(x)pipjpk, (3.1)

where π = 1
2π

ij(x) ∂
∂xi ∧

∂
∂xj ∈ Γ(∧2TM) is a bivector field and R = 1

3!R
ijk(x) ∂

∂xi ∧
∂

∂xj ∧
∂

∂xk

is a 3-vector field. The function Θ satisfies {Θ,Θ} = 0, i.e., it defines a Q-structure, if and

only if π is a Poisson bivector field and R satisfies [π,R]S = 0, i.e., it is dπ closed. These

two conditions are exactly the ones required for the Poisson Courant algebroid.

The derived brackets define all the operations on C∞(T ∗[1]M ⊕ T [1]M) ∼= Γ(TM ⊕

T ∗M) appearing in the Poisson Courant algebroid as

ρ(X + α)f(x) = j∗{{Xi(x)pi + αi(x)q
i,Θ}, f(x)}, (3.2)

[X + α, Y + β]πR = j∗{{Xi(x)pi + αi(x)q
i,Θ}, Y j(x)pj + βj(x)q

j}, (3.3)

〈X + α, Y + β〉 = j∗{j∗(X + α), j∗(Y + β)}. (3.4)

2π♯ : T ∗M → TM is defined by the map π♯(α) = πijαi(x)
∂

∂xj for any 1-form, α = αi(x)dx
i.

– 8 –
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We can confirm the above relations using local coordinates. The first equation gives

ρ(X + α)f(x) = j∗{{Xi(x)pi + αi(x)q
i,Θ}, f(x)} = πijαi

∂f

∂xj
(x), (3.5)

and thus this is the anchor map ρ = 0⊕π♯ : TM⊕T ∗M → TM . The second equation gives

[X + α, Y + β]πR = j∗{{Xi(x)pi + αi(x)q
i,Θ}, Y j(x)pj + βj(x)q

j}

=

(
αjπ

jk ∂Y
i

∂xk
+

∂X i

∂xj
πjkβk −

∂Xj

∂xk
πkiβj −

∂αj

∂xk
πkiY j

+
∂πki

∂xj
Xjβk −

∂πji

∂xk
αjY

k −Rjkiαjβk

)
j∗pi

+

(
αjπ

jk ∂βi

∂xk
+

∂αi

∂xj
πjkβk +

∂πjk

∂xi
αjβk

)
j∗qi

= [α, β]π + Lπ
αY − ιβdπX −R(α, β,−), (3.6)

and thus is the Dorfman bracket of the Poisson Courant algebroid on TM ⊕ T ∗M . The

third equation is the same as in the case of the standard Courant algebroid.

The classical master equation, {Θ,Θ} = 0, leads to the following conditions on these

operations,

ρ([e1, e2]
π
R) = [ρ(e1), ρ(e2)], (3.7)

[e1, [e2, e3]
π
R]

π
R = [[e1, e2]

π
R, e3]

π
R + [e2, [e1, e3]

π
R]

π
R, (3.8)

ρ(e1)〈e2 , e3〉 = 〈[e1, e2]
π
R , e3〉+ 〈e2 , [e1, e3]

π
R〉, (3.9)

ρ(e1)〈e2, e3〉 = 〈e1, [e2, e3]
π
R + [e3, e2]

π
R〉, (3.10)

where ei ∈ Γ(TM ⊕ T ∗M). These are the relations required for the Poisson

Courant algebroid.

Thus, in the graded manifold method, the difference between the standard Courant

algebroid and the Poisson Courant algebroid lies in the choice of the homological function.

The most general homological function Θ on E = TM ⊕ T ∗M possible for the Courant

algebroid is

Θ = τ ij(x)ξiq
j + σij(x)ξipj +

1

3!
Hijk(x)q

iqjqk +
1

2
Fij

k(x)qiqjpk

+
1

2
Qi

jk(x)qipjpk +
1

3!
Rijk(x)pipjpk. (3.11)

The classical master equation then imposes structural restrictions onto the expansion co-

efficients. One of the conditions for τ and σ is τ ikσ
jk + σikτ jk = 0. The two simplest

solutions are τ = 0, σ 6= 0 or τ 6= 0, σ = 0. In the standard Courant algebroid case,

τ ij = δij and σ = F = Q = R = 0, and in the Poisson Courant algebroid case, σ = π,

Qi
jk(x) = −∂πjk

∂xi (x) and τ = H = F = 0.

– 9 –



J
H
E
P
0
4
(
2
0
1
6
)
1
7
0

4 Duality between H-flux and R-flux

In this section, we study the meaning of H-flux geometry and R-flux geometry. We analyze

the ‘duality’ transformation between two Courant algebroids in terms of supergeometry and

the homological algebra. The key operation is a canonical transformation on the graded

symplectic manifold (the P-manifold). This duality is a generalization of the correspon-

dence between de Rham cohomology on differential forms and Poisson cohomology on

multivector fields.

In this section, we denote the homological function Θ of the standard Courant algebroid

in (2.8) as ΘH and the one of the Poisson Courant algebroid in (3.1) as ΘR.

4.1 Flux duality transformations as canonical transformations

Suppose the Poisson structure π is nondegenerate. We construct the duality transforma-

tion between the standard Courant algebroid and the Poisson Courant algebroid, which is

derived from the transformation between the two homological functions ΘH and ΘR. This

leads to a duality between the standard Courant algebroid cohomology and the Poisson

Courant algebroid cohomology.

First, we define a canonical transformation on a P-manifold. Let α ∈ C∞(M). eδα is

the exponential adjoint operation,

eδαf = f + {f, α}+
1

2
{{f, α}, α}+ · · · ,

for any f ∈ C∞(M). If α is of degree n, this transformation preserves degree and satisfies

{eδαf, eδαg} = eδα{f, g}, where f, g ∈ C∞(M).

Definition 4.1. For any function α of degree n, eδα is called a canonical transformation.

eδα is also called twisting [39].

Both the standard Courant algebroid and the Poisson Courant algebroid are realized

on the same P-manifold (T ∗[2]T ∗[1]M,ω). Therefore, the duality transformation T from

H-flux to R-flux is a symplectomorphism on T ∗[2]T ∗[1]M such that the two homological

functions are mapped, T : ΘH 7→ ΘR, where

ΘH = ξiq
i +

1

3!
Hijk(x)q

iqjqk, (4.1)

ΘR = πij(x)ξipj −
1

2

∂πjk

∂xi
(x)qipjpk +

1

3!
Rijk(x)pipjpk. (4.2)

We denote αp = 1
2π

ij(x)pipj and αq = 1
2π
−1
ij (x)qiqj . αp generates a so-called β-

transformation and αq generates a b-transformation. Note that αq is a trivial transfor-

mation on ΘH , eδαqΘH = ΘH , and αp is a trivial transformation on ΘR, e
δαpΘR = ΘR,

from {ΘH , αq} = 0 and {ΘR, αp} = 0. By direct computation, we get the relation

ΘR = eδαpe−δαq eδαpΘH , (4.3)

– 10 –



J
H
E
P
0
4
(
2
0
1
6
)
1
7
0

where R = ∧3π♯H. On the basis of the QP-manifold, this canonical transformation acts as

eδαpe−δαq eδαpxi = xi, (4.4)

eδαpe−δαq eδαp qi = πij(x)pj , (4.5)

eδαpe−δαq eδαppi = −π
−1
ij (x)qj , (4.6)

eδαpe−δαq eδαp ξi = ξi +
∂πjk

∂xi
π−1kl (x)pjq

l. (4.7)

The Liouville 1-form is transformed as

ϑ = ξiδx
i − qiδpi 7→ ξiδx

i − piδq
i = ϑ′. (4.8)

Note that j∗π♯(α) = eδαpe−δαq eδαp j∗α for a 1-form α.

The standard Courant algebroid with H-flux and the Poisson Courant algebroid with

R-flux are transformed by a symplectomorphism between two QP-manifolds if π is nonde-

generate. From this observation, we understand that a flux duality is characterized by a

symplectomorphism between two QP-manifolds T : (M, ω,Q)→ (M, ω,Q′). In this sense,

B- and β-transformations are special cases of flux duality transformations.

The flux duality transformation in (4.3) will be reinterpreted in the sigma model lan-

guage on an open manifold as a change of boundary conditions in subsection 6.4.

4.2 Two cohomologies on T ∗[2]T ∗[1]M

QH = {ΘH ,−} and QR = {ΘR,−} are two coboundary operators increasing degree by 1

on the space of functions on the QP-manifold M = T ∗[2]T ∗[1]M . Expanding C∞(M) =∑
i≥0Ci(M) by degree, (C•(M), Q) becomes the complex for both coboundary operators,

the so-called standard complex of the Courant algebroid [40], where Q = QH or Q =

QR. (C•(M), QH) defines the standard Courant algebroid cohomology H•SCA(M,QH) and

(C•(M), QR) defines the Poisson Courant algebroid cohomology H•PCA(M,QR).

Both cohomologies are known cohomologies on the special subspaces. As discussed in

section 2, there exists the embedding map of the Courant algebroid to a graded manifold,

j : E ⊕ TM → T ∗[2]T ∗[1]M , where E = TM ⊕ T ∗M is the Courant algebroid. We take a

local basis
(

∂
∂xi , dx

i, ∂
∂xi

)
on E ⊕ TM .3 The local basis is mapped as j :

(
∂
∂xi , dx

i, ∂
∂xi

)
7→

(pi, q
i, ξi).

First, we consider the standard Courant algebroid with H-flux. Since T [1]M is isomor-

phic to T ∗M , let us consider the subspace C∞(T [1]M). An element γ ∈ C∞(T [1]M) can

be written ss

γ =
1

s!
γi1···is(x)q

i1 · · · qis . (4.9)

γ is mapped to a differential form by pullback,

j∗γ =
1

s!
γi1···is(x)dx

i1 ∧ · · · ∧ dxis . (4.10)

3The first ∂
∂xi is the basis of the tangent bundle in the Courant algebroid and the third ∂

∂xi is the basis

of the tangent bundle of the image of the anchor map.
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Thus, C∞(T [1]M) is equivalent to the space of differential forms Ω•(M). We can easily

show that the operation of QH on C∞(T [1]M) is the de Rham differential d on Ω•(M),

d(j∗γ) = −j∗QHγ. (4.11)

Therefore, the restriction of the standard Courant cohomology H•SCA(M,QH) to

C∞(T [1]M) is equivalent to the de Rham cohomology,

H•SCA(M,QH)
∣∣∣
C∞(T [1]M)

≃ H•dR(M,d). (4.12)

Next, we consider the Poisson Courant algebroid case. Note that T ∗[1]M is isomorphic

to TM . Let us consider the subspace C∞(T ∗[1]M), whose elements can be written as

u =
1

s!
ui1···is(x)pi1 · · · pis . (4.13)

The pullback maps u to a multivector field,

j∗u =
1

s!
ui1···is(x)

∂

∂xi1
∧ · · · ∧

∂

∂xis
. (4.14)

Hence, C∞(T ∗[1]M) is equivalent to the space of multivector fields T •poly(M).

If we put R = 0, then ΘR is given by

ΘR

∣∣∣
R=0

= −{π,Θ0} = −

{
1

2
πjk(x)pjpk, ξiq

i

}
, (4.15)

and

QRu = {ΘR, u} = −{{π,Θ0}, u}, (4.16)

for u ∈ C∞(T ∗[1]M). Since the derived bracket {{−,Θ0},−} is equivalent to the Schouten

bracket [−,−]S , and the graded Poisson bracket of R with elements of C∞(T ∗[1]M) is zero,

QR is equivalent to the Poisson differential dπ = [π,−]S on T •poly(M),

dπ(j
∗u) = −j∗QRu . (4.17)

The cohomology defined by the coboundary operator dπ is the Poisson cohomology,

Hk
P (M,dπ). Therefore, the restriction of the Poisson Courant cohomology H•PCA(M,QR)

to C∞(T ∗[1]M) is equivalent to the Poisson cohomology,

H•PCA(M,QR)
∣∣∣
C∞(T ∗[1]M)

≃ H•P (M,dπ). (4.18)

4.3 Duality of cohomologies

Since we are considering an even dimensional manifold and a nondegenerate Poisson struc-

ture, we can prove that H•SCA(M,QH) is isomorphic to H•PCA(M,QR). This is a general-

ization of the well known result that if M is symplectic, the de Rham cohomology and the

Poisson cohomology are isomorphic, Hk
dR(M,d) ≃ Hk

P (M,dπ) [37].
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The map ∧kπ♯ : Ωk(M) → T k
poly(M) induces a homomorphism between de Rham

cohomology and Poisson cohomology,

∧kπ♯ : Hk
dR(M,d)→ Hk

P (M,dπ).

If π−1 is symplectic, the de Rham cohomology on Ω•(M) is isomorphic to the Poisson

cohomology:

Hk
dR(M,d) ≃ Hk

P (M,dπ). (4.19)

In our duality theory, the de Rham cohomology is extended to H•SCA(M,QH) and

the Poisson cohomology is extended to H•PCA(M,QR). Duality of H-flux and R-flux is

understood as duality of H•SCA(M,QH) and H•PCA(M,QR) on the same space C∞(M).

Let f be a general function on M = T ∗[2]T ∗[1]M , f ∈ C∞(M). From (4.3),

it follows that QHf = 0 ⇔ QR(e
δαpe−δαq eδαpf) = 0 and f = QHg ⇔ f =

QR(e
δαpe−δαq eδαpg). Therefore, we obtain maps from elements of the QH -complex to ele-

ments of the QR-complex,

T : f 7→ eδαpe−δαq eδαpf. (4.20)

The flux duality map of complexes T : C•(M)→ C•(M) gives rise to the isomorphism of

cohomologies, T : H•SCA(M,dH)→ H•PCA(M,dR).

We obtain the following theorem.

Theorem 4.2. Let π be a nondegenerate Poisson structure, that is, π−1 is symplectic,

and R = ∧3π♯H. Then, the standard Courant algebroid cohomology is isomorphic to the

Poisson Courant algebroid cohomology,

Hk
SCA(M,QH)

∼
→ Hk

PCA(M,QR). (4.21)

5 Poisson Courant algebroids from double field theory

In this section, we show that the Poisson Courant algebroid is a solution of the section

condition (the strong constraint) in double field theory. This shows that the Poisson

Courant algebroid is directly connected to the geometry of double field theory.

5.1 Supergeometric formulation, Poisson structure and double field theory

We start with the supergeometric formulation of the geometry of double field theory [38].

We take a doubled configuration space M̂ in 2d dimensions with local coordinates (yi, ỹi)

and a QP-manifold of degree 2, T ∗[2]M̂ with fiber coordinates, (ηi, η̃
i), such that {yi, ηj} =

{ỹj , η̃
i} = δij . Moreover, we introduce degree one canonical conjugate coordinates (qi, pi)

such that {qi, pj} = δij .

On this P-manifold, the geometry of double field theory is formulated using the Q-

structure homological function,

ΘC = ηiq
i + η̃ipi. (5.1)
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The classical master equation, {ΘC ,ΘC} = 0, gives rise to the section condition,

η̃iηi = 0. (5.2)

The C-bracket is constructed by the derived bracket,

[e1, e2]C = j∗{{j∗e1,ΘC}, j∗e2}, (5.3)

where e1, e2 are sections of TM̂ ⊕ T ∗M̂ .

We choose a nontrivial physical configuration space, a d-dimensional submanifold M ⊂

M̂ with local coordinate xi under the assumption that M has a Poisson structure π. We

can consider a local coordinate transformation with following Jacobian,

∂(x, x̃)

∂(y, ỹ)
=




∂xi

∂yj
∂xi

∂ỹj

∂x̃i

∂yj
∂x̃i
∂ỹj


 =

(
δij πij

0 δi
j

)
. (5.4)

Alternatively, this local coordinate transformation can be realized as a twist of the original

ΘC by the canonical function αp = 1
2π

ij(x)pipj . Here, we denote the original homolog-

ical function as Θ′C = ξiq
i + ξ̃ipi. The canonical transformation deforms the homologi-

cal function,

ΘC = eαpΘ′C = ξiq
i + ξ̃ipi + πijξipj −

1

2

∂πjk

∂xi
(x)qipjpk. (5.5)

This corresponds to the change of variables,

ηi = ξi −
1

2

∂πjk

∂xi
(x)pjpk, (5.6)

η̃i = ξ̃i − πijξj . (5.7)

We need the second term in (5.6) for consistency of the Poisson structure with the local

coordinate transformation (5.4). The section condition is deformed to

ξ̃i
(
ξi −

1

2

∂πjk

∂xi
(x)pjpk

)
= 0. (5.8)

Finally, we take ξ̃i = 0 corresponding to the submanifold defined by x̃i = 0, and obtain

homological functions of both standard and Poisson Courant algebroids,

ΘC |x̃=0 = ΘH=0 +ΘR=0. (5.9)

Note that ΘC defines a double complex, since {ΘH=0,ΘR=0} = 0. In this paper, we

analyze these two Courant algebroids. In fact, ΘH=0 +ΘR=0 defines a Lie bialgebroid on

TM ⊕ T ∗M .4 Since we change the section condition η̃i = 0 to ξ̃i = 0, in general, the

configuration space M is not embedded as a direct product M × M̃ in the doubled space,

but is a nontrivial submanifold of the doubled configuration space.

4In the case where H and R are nonzero this defines a proto-Lie bialgebroid [34, 42]. Solutions of the

classical master equation give a dependency between both fluxes if the Courant algebroid is exact [16, 17].
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5.2 Poisson Courant algebroid R-flux in double field theory

Finally, we want to discuss how the R-flux of the Poisson Courant algebroid relates to the

R-flux in double field theory. For this, we compute the B- and β-twist of the homological

function (5.1). This gives the following description of all fluxes H, F , Q and R in terms of

their potentials

e−δβe−δBΘC = (ηi −Bmiη̃
m)qi + (η̃i − ηmβmi + η̃nBnmβmi)pi

+
1

2

[
−Bin∂̃

iBrs + ∂nBrs

]
qnqrqs

+

[
1

2
∂̃iBmn +

(
Blm∂̃lBns − ∂mBns +

1

2
Bls∂̃

lBmn −
1

2
∂sBmn

)
βsi

]
piq

mqn

+

[
1

2
∂iβ

hk −
1

2
Bli∂̃

lβhk + ∂̃hBinβ
nk

−
1

2

[
−Bli∂̃

lBrs + ∂iBrs −Bls∂̃
lBir + ∂sBir +Blr∂̃

lBis − ∂rBis

]
βshβrk

]
qiphpk

+

[
1

2
∂̃iβhk −

1

4
∂lβ

ihβlk −
1

4
βli∂lβ

hk +
1

4
Bln∂̃

lβihβnk

+
1

4
Blnβ

ni∂̃lβhk −
1

2
∂̃iBmnβ

nhβmk

+
1

3!
(−Bln∂̃

lBrs+∂nBrs−Bls∂̃
lBnr+∂sBnr+Blr∂̃

lBns−∂rBns)β
siβrhβnk

]
piphpk,

(5.10)

where B = 1
2Bij(y, ỹ)q

iqj and β = 1
2β

ij(y, ỹ)pipj are functions on the ordinary coordinates

y and their duals ỹ. The Q-structure function of the H-twisted standard Courant alge-

broid (2.8) realizes the double field theory H-flux in the supergravity limit (η̃i = ∂̃i = 0)

with vanishing β-field, βij = 0. Indeed, truncation of (5.10) to this frame leads to the

correct local description of H-flux in terms of its potential Hnrs =
1
2∂[nBrs]. On the other

hand, truncation to the non-geometric frame, where ηi = ∂i = 0 and Bij = 0, leads to

the correct description of R-flux in terms of its potential Rihk = 1
2 ∂̃

[iβhk]. Finally, the

truncation to the frame such that η̃i = ∂̃i = 0 and Bij = 0 gives the correct description

of R-flux in terms of Rihk = 1
2β

[i|l|∂lβ
hk]. This brings us into the position to compare the

R-flux of the Poisson Courant algebroid to the R-flux of double field theory. For this, we

have to distinguish two cases, which will be discussed in the following.

The first case concerns the meaning of the transformation ΘH → ΘR (4.3) of the

standard Courant algebroid with H-flux to the Poisson Courant algebroid R-flux. For this

transformation, we introduce the Poisson bivector field π. Since, as described above, the

standard Courant algebroid with H-flux already works in the supergravity frame with zero

β-field by the identification yi = xi and ỹi = x̃i = 0, the resulting Poisson Courant algebroid

also works in the same frame. The Poisson tensor π is introduced as additional freedom,

which is not related to the flux potentials β and B, and the resulting Poisson Courant

algebroid with R-flux serves as a different way of representing an H-flux background on a

Poisson manifold. On the other hand, the term −1
2
∂πij

∂xk q
kpipj in (3.1) is a so-called Poisson
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connection with vanishing curvature. Therefore, it must be distinguished from a Q-flux

term in double field theory.

In the second case, if the Poisson Courant algebroid is seen as a stand-alone object,

we can make contact to the double field theory R-flux. Through identification of (5.10)

to (3.1) we find

πij(x)ξi = η̃j − ηmβmj(y, ỹ) + η̃nBnm(y, ỹ)βmj(y, ỹ), (5.11)

0 = ηi −Bmi(y, ỹ)η̃
m, (5.12)

which leads to the identification πij(x)ξi = η̃j or πij(x) ∂
∂xi =

∂
∂ỹj

and we can read off how

the section condition is solved. Integration of this equation leads to

ỹi =

∫
π−1ij (x)dxj . (5.13)

Since there is no H-flux coefficient in the Poisson Courant algebroid, we obtain the relation

Bij = 0, which leads to ∂
∂yi

= 0 due to (5.12). The term −1
2
∂πij

∂xk q
kpipj in (3.1) is not sourced

by the potentials B or β, but is a Poisson connection arising from the underlying space, and

its origin is different from the Q-flux in double field theory. Finally, the local description

of R-flux is then given in terms of the β-potential via

Rihk =
1

2

∂

∂ỹ[i
βhk](y, ỹ)

∣∣
y=0,ỹ=

∫
π−1(x)dx

=
1

2
πj[i(x)

∂

∂xj
βhk](x)

=
1

2
[π, β]S . (5.14)

To summarize, the Poisson Courant algebroid can be interpreted in two different ways,

depending on the frame chosen in double field theory. In order to analyze the property of

R-flux, we can use this correspondence, and on spacetime with a Poisson structure, some

parts of R-flux geometry can be analyzed as H-flux geometry.

6 Topological sigma models

We want to consider field theoretical models with Poisson Courant algebroid symmetry.

Here, we construct a 3-dimensional AKSZ sigma model, i.e., a theory of a topological

membrane with 3-vector flux R, following the construction of a topological membrane

theory based on the standard Courant algebroid [41, 42]. For this purpose, first we shortly

review the concept of AKSZ sigma models [26, 30, 43].

6.1 AKSZ sigma models

Let (X , D, µ) be a differential graded manifold X with aD-invariant nondegenerate measure

µ, where D is a differential on X . Let (M, ω,Q) be a QP-manifold, and let Map(X ,M)

be the space of smooth maps from X to M. It means that we consider the sigma model

on the worldvolume X embedded into the target spaceM.
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Since Diff(X )×Diff(M) naturally acts on Map(X ,M), D and Q induce differentials D̂

and Q̌, respectively, on Map(X ,M). Explicitly, D̂(z, f) = D(z)δf(z) and Q̌(z, f) = Qf(z),

for all z ∈ X and f ∈ Map(X ,M).

The evaluation map ev : X ×Map(X ,M) −→M is defined as ev : (z, f) 7−→ f(z), for

any z ∈ X and f ∈ Map(X ,M). The chain map on the space of graded differential forms,

µ∗ : Ω
•(X ×Map(X ,M)) −→ Ω•(Map(X ,M)), is defined as

µ∗ω(f)(v1, . . . , vk) =

∫

X
µ(z)ω(z, f)(v1, . . . , vk),

for a graded differential form ω, where vi are a vector fields on X and
∫
X µ is the Berezin

integration on X . The composition µ∗ev
∗ : Ω•(M) −→ Ω•(Map(X ,M)) is called trans-

gression map.

A P-structure ω on Map(X ,M) is defined by

ω := µ∗ev
∗ω.

Note that ω is nondegenerate and closed since the operation µ∗ev
∗ preserves these proper-

ties. The corresponding graded Poisson bracket on the mapping space Map(X ,M) is also

denoted by {−,−}. We show later that this bracket is the BV bracket {−,−}BV or the

Poisson bracket {−,−}PB.

A Q-structure function S on Map(X ,M) is constructed as follows. S consists of two

parts S = S0 + S1. We take a canonical 1-form (the Liouville 1-form) ϑ on M such that

ω = −δϑ and define S0 = ιD̂µ∗ev
∗ϑ. Moreover, we define S1 = µ∗ev

∗Θ, where Θ is

the homological function on M. Then we can prove that S is a homological function on

Map(X ,M),

{S, S} = 0, (6.1)

using the definitions of S0 and S1 and the properties of the maps. A degree 1 homological

vector field Q is defined as Q = {S,−}. The classical master equation shows that Q is a

coboundary operator, Q2 = 0.

From the above construction, we can prove that the mapping space Map(X ,M) is a

QP-manifold. This structure is called an AKSZ sigma model. If X = T [1]X, where X is a

manifold in n+1 dimensions, the QP-structure on Map(X ,M) is of degree −1. In this case,

a QP-structure on Map(T [1]X,M) is equivalent to the Batalin-Vilkovisky formalism of a

topological sigma model including all ghosts and antifields. {−,−} is the BV antibracket,

and it is denoted by {−,−}BV.

If X is a manifold in n dimensions, the QP-structure on Map(X ,M) is of degree

0. In this case, a QP-structure on Map(T [1]X,M) is equivalent to the Hamiltonian BFV

formalism and {−,−} is an ordinary Poisson bracket. Then we denote {−,−} by {−,−}PB.

6.2 AKSZ sigma models with boundary

Recall the definition of a canonical transformation in subsection 4.1. Let M be a QP-

manifold of degree n. For any function α ∈ C∞(M) of degree n, eδα is called a canonical

transformation, since {eδαf, eδαg} = eδα{f, g}, where f, g ∈ C∞(M).
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For our purpose, we choose a special kind of canonical transformation, called canonical

function with respect to a Lagrangian submanifold L.

Definition 6.1. Let (M, ω,Q) be a QP-manifold of degree n. A function α of degree n

is called canonical function with respect to L, if eδαΘ|L = 0, where L is a Lagrangian

submanifold of (M, ω) and |L is the restriction to L.

This transformation changes the target QP-manifold to (M, ω,Θα) with Θα = eδαΘ.

Since the P-structure does not change, the new Q-structure function S′ in the AKSZ sigma

model becomes

S′ = S0 + S′1

= ιD̂µ∗ev
∗ϑ+ µ∗ev

∗eδαΘ. (6.2)

If ∂X = ∅, S′ also satisfies the classical master equation, since {eδαΘ, eδαΘ} = eδα{Θ,Θ} =

0. If ∂X 6= ∅, the boundary conditions are deformed by α, so that S′ satisfies the classical

master equation. In this case, using Stokes’ theorem, a straightforward computation gives

{S′, S′} = ιD̂µ∂X∗ (i∂ × id)∗ ev∗ϑ+ µ∂X∗ (i∂ × id)∗ ev∗eδαΘ, (6.3)

where i∂ is the inclusion map i∂ : ∂X −→ X and µ∂X∗ is the boundary integration on ∂X

by the pullback µ∗ by the map i∂ . Since the classical master equation, {S′, S′} = 0, must

be satisfied for consistency of the theory, the right hand side of (6.3) must vanish. The

condition is expressed onM as follows [29, 44].

Proposition 6.2. We assume ∂X 6= ∅. Let (M, ω,Θ) be a QP-manifold of degree n and

L a Lagrangian submanifold ofM, which is the zero locus of the canonical 1-form ϑ, where

ω = −δϑ.

Let α ∈ C∞(M) of degree n be a canonical function with respect to L, i.e.,

eδαΘ|L = 0. Then, the classical master equation, {S′, S′} = 0, is satisfied in an AKSZ

sigma model (6.2).

From proposition 6.2, the mathematical structure of an AKSZ sigma model with

boundary is described by a quintuple (M, ω,Θ,L, α).

A canonical transformation by a canonical function α can be interpreted as an intro-

duction of a boundary term in the sigma model action S.

Let S′′ = e−δα̂S′, where α̂ = µ∗ev
∗α. Then, S′ and S′′ have equivalent geometric

structures,

S′′ = e−δα̂S′

= e−δα̂S0 + µ∗ev
∗e−δαeδαΘ

= e−δα̂S0 + µ∗ev
∗Θ. (6.4)

Let us consider the special case, where α satisfies {α, α} = 0. Then, since e−δα̂S0 =

S0 − {S0, α̂}, α generates a boundary term S∂X = −µ∂X∗(i∂ × id)∗ev∗α,

S′′ = S0 − {S0, α̂}+ µ∗ ev
∗Θ

= S0 − LD̂ µ∗ev
∗α+ µ∗ ev

∗Θ

= S − µ∂X∗ (i∂ × id)∗ev∗α. (6.5)
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Therefore, twisting of S by α introduces a boundary term induced by transgression of α,

S∂X = −
∫
∂X µ (i∂ × id)∗ev∗α.

6.3 Contravariant Courant sigma models

We construct the AKSZ sigma model induced from the Poisson Courant algebroid.

Let us take a 3-dimensional manifold X with boundary ∂X. The worldvolume is

a supermanifold X = T [1]X. Let (σµ, θµ) be local coordinates of degree (0, 1) on X .

Elements of Map(X ,M) are superfields, which we denote by boldface letters. For example,

e ∈ Γ(X ,x∗M) corresponds to a local coordinate e onM, where x : X →M .

The AKSZ construction on Map(X , T ∗[2]T ∗[1]M) gives the bulk AKSZ sigma model.

We denote the P-structure by

ω =

∫

X
µ (δxi ∧ δξi + δqi ∧ δpi). (6.6)

If α = 0, the Q-structure function has the following form:

S =

∫

X
µ

(
ξidx

i − pidq
i + πij(x)ξipj −

1

2

∂πjk

∂xi
(x)qipjpk +

1

3!
Rijk(x)pipjpk

)
. (6.7)

We call (6.7) the Poisson Courant sigma model or the contravariant Courant sigma model.

We take the variation of S,

δS =

∫

X
µ

(
δξidx

i + ξidδx
i − δpidq

i − pidδq
i

+δ

(
πij(x)ξipj −

1

2

∂πjk

∂xi
(x)qipjpk +

1

3!
Rijk(x)pipjpk

))
. (6.8)

The equations of motion for ξ and q are obtained by integration by parts. Since

δS|∂X =

∫

∂X
µ∂X

(
ξiδx

i + piδq
i
)
|∂X , (6.9)

the boundary terms, ξiδx
i + piδq

i, must vanish in order to derive consistent equations

of motion. This equation determines the boundary conditions. It is satisfied, if for the

Liouville 1-form it holds ev∗ϑ = 0 on the boundary of the membrane in the target space.

This means, that the Lagrangian submanifold L is the zero locus of ϑ.

On the other hand, the boundary condition must be consistent with the classical master

equation on the mapping space, {S, S}BV = 0. Direct computation gives

{S, S}BV =

∫

∂X
µ∂X

(
ξidx

i − pidq
i + πij(x)ξipj

−
1

2

∂πjk

∂xi
(x)qipjpk +

1

3!
Rijk(x)pipjpk

)∣∣∣∣
∂X

. (6.10)

We can take boundary conditions ξi|∂X = 0 and pi|∂X = 0, such that (6.9) and (6.10)

vanish. Therefore, in terms of the target space, the structure is ξi = pi = 0. This

corresponds to the Dirac structure [12] T ∗M of the Poisson Courant algebroid TM⊕T ∗M .
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Next, we consider a more nontrivial case with boundary term, modifying the Q-

structure by a canonical function α. As an example, we take α = −1
2Bij(x)q

iqj , constructed

from a 2-form B = 1
2Bij(x)dx

i ∧ dxj . The Q-structure changes to

S′′ =

∫

X
µ

(
ξidx

i − pidq
i + πij(x)ξipj −

1

2

∂πjk

∂xi
(x)qipjpk +

1

3!
Rijk(x)pipjpk

)

+

∫

∂X
µ∂X

1

2
Bij(x)q

iqj , (6.11)

where we have used the expression S′′ = e−δα̂S′ in (6.5). The boundary term deforms the

boundary conditions. The variation δS′′ restricted to the boundary is

δS′′|∂X =

∫

∂X
µ∂X

[(
ξi +

1

2

∂Bjk(x)

∂xi
qjqk

)
δxi +

(
pi −Bij(x)q

j
)
δqi + · · ·

]
.

Since these terms must vanish, consistent boundary conditions are as follows:

ξi|∂X = −
1

2

∂Bjk(x)

∂xi
qjqk|∂X , pi|∂X = Bij(x)q

j |∂X . (6.12)

The master equation, {S′′, S′′}BV = 0, requires another consistency condition, i.e., the

integrand of S1 is zero on the boundary,

(
πij(x)ξipj −

1

2

∂πjk

∂xi
(x)qipjpk +

1

3!
Rijk(x)pipjpk

)∣∣∣∣
∂X

= 0. (6.13)

Similarly, (6.12) and (6.13) can be converted to a condition on the target space, such that

Θ = πij(x)ξipj −
1

2

∂πjk

∂xi
(x)qipjpk +

1

3!
Rijk(x)pipjpk = 0 (6.14)

holds on the Lagrangian submanifold L′, defined by

ξi = −
1

2

∂Bjk(x)

∂xi
qjqk, pi = Bij(x)q

j . (6.15)

Substituting (6.15) into (6.14), we obtain the following geometric structure on L′:

πij(x)ξipj −
1

2

∂πjk

∂xi
(x)qipjpk +

1

3!
Rijk(x)pipjpk (6.16)

=

(
−
1

2
πlm∂Bij

∂xl
Bmk −

1

2

∂πlm

∂xi
BjlBkm −

1

3!
RlmnBilBjmBkn

)
qiqjqk = 0.

(6.16) is equivalent to5

[B,B]π = ∧3B♭R. (6.17)

5The Koszul bracket [−,−]π is extended to the space of all differential forms as the Lie bracket satisfying

the Leibniz rule. The homomorphism B♭ : TM → T ∗M is defined by B♭(X) = BijX
i(x)∂/∂xj , where

X = Xi(x)∂/∂xi is a vector field.
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The commutator of a 2-form B with respect to the Koszul bracket is twisted by a 3-vector

field R. If B = π−1, (6.16) becomes

H = dB = ∧3B♭R. (6.18)

Next, we construct the boundary action on T [1]∂X by integrating out the superfield

ξi and using the Stokes’ theorem. Suppose π is nondegenerate, i.e., π−1 is symplectic.

Integrating out ξi from the action (6.11), we obtain the equations of motion pi = −π
−1
ij dxj .

By substituting this equation to (6.11), the action becomes the boundary (twisted) AKSZ

sigma model with WZ term in two dimensions,

S =

∫

∂X
µ∂X (π−1)ijq

idxj +
1

2
Bij(x)q

iqj

−

∫

X
µ

1

3!
Rijk(x)(π−1)il(π

−1)jm(π−1)kndx
ldxmdxn. (6.19)

This is the Poisson sigma model [45–47] deformed by a WZ term [48].

The action without ghosts can be obtained as follows. We expand the superfields in

components as

Φ(σ, θ) = Φ(0)(σ) + Φ(1)
µ (σ)θµ +

1

2
Φ(2)
µν (σ)θ

µθν . (6.20)

If we integrate over θµ and drop ghost fields with nonzero degrees, we get the

physical action:

S = −

∫

∂X

(
(π−1)ijq

i ∧ dxj −
1

2
Bij(x)q

i ∧ qj
)

−

∫

X

1

3!
Rijk(x)(π−1)il(π

−1)jm(π−1)kndx
l ∧ dxm ∧ dxn, (6.21)

where xi = x(0)i and qi = dσµq
(1)i
µ . If we add the kinetic term, we obtain a string sigma

model action with R-flux,

S =
1

2

∫

∂X

Gij(x)dx
i ∧ ∗dxj −

∫

∂X

(
(π−1)ijq

i ∧ dxj −
1

2
Bij(x)q

i ∧ qj
)

−

∫

X

1

3!
Rijk(x)(π−1)il(π

−1)jm(π−1)kndx
l ∧ dxm ∧ dxn. (6.22)

6.4 Duality of Courant sigma models

We have discussed duality transformations of the standard and the Poisson Courant alge-

broids in section 4. In this subsection, we derive the same result from the analysis of the

corresponding sigma models.

We perform the duality transformation on the level of sigma models. The AKSZ con-

struction on a three-dimensional manifold X with boundary gives rise to two Courant sigma

models, one with the Poisson Courant algebroid structure with R-flux, constructed in the

previous subsection, and one with the standard Courant algebroid structure with H-flux.
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The BV action of the Poisson Courant sigma model is (6.7). On the other hand, from

the AKSZ construction, the BV action of the standard Courant sigma model is

S =

∫

X
µ

(
ξidx

i − pidq
i + ξiq

i +
1

3!
Hijk(x)q

iqjqk
)
. (6.23)

We consider the following twisting of the standard Courant sigma model by applying the

twist (4.3) as

S′ =

∫

X
µ
(
ξidx

i − qidpi

)
+ eδαpe−δαq eδαp

∫

X
µ

(
ξiq

i +
1

3!
Hijk(x)q

iqjqk
)
. (6.24)

This is equivalent to

S′′ = e−δαpeδαq e−δαp

∫

X
µ
(
ξidx

i − qidpi

)
+

∫

X
µ

(
ξiq

i +
1

3!
Hijk(x)q

iqjqk
)
, (6.25)

where αp and αq are understood as µ∂X∗ev
∗αp and µ∂X∗ev

∗αq. We have

e−δαpeδαq e−δαpS0 = S0 +

∫

∂X
µ∂X

(
1

2
πij(x)pipj + piq

i

)

−

∫

∂X
µ∂X

(
−
1

2
πij(x)pipj + πij(x)pipj

)

= S0 +

∫

∂X
µ∂X

(
piq

i
)
. (6.26)

Therefore, by this twist, the action becomes the Courant sigma model with boundary term,

S′′ =

∫

X
µ

(
ξidx

i − qidpi + ξiq
i +

1

3!
Hijk(x)q

iqjqk
)
+

∫

∂X
µ∂X

(
piq

i
)
. (6.27)

From (4.4)–(4.7), redefining the superfields as

xi = x′i, (6.28)

qi = πij(x)p′

j , (6.29)

pi = −π
−1
ij (x)q′j , (6.30)

ξi = ξ′i +
∂πjk

∂xi
π−1kl (x)p

′

jq
′l, (6.31)

we can simplify the total action as

S′′ =

∫

X
µ

(
ξ′idx

′i − p′

idq
′i

+πij(x)ξ′ip
′

j −
1

2

∂πjk

∂xi
(x)q′ip′

jp
′

k +
1

3!
Rijk(x)p′

ip
′

jp
′

k

)
. (6.32)

The resulting action is the same as the BV action of the Poisson (contravariant) Courant

sigma model (6.7), and we obtain the relation between H and R, R = ∧3π♯H, again.

Therefore, in the theory of the topological membrane, the duality transformation between

H-flux and R-flux is a change of boundary conditions.
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7 Current algebras

In this section, we consider a current algebra à la Alekseev and Strobl [27, 32, 33, 51]

corresponding to the Poisson Courant algebroid in two-dimensional spacetime.

7.1 Poisson brackets with fluxes from target QP-structures

In this subsection, we briefly review the Hamiltonian method to construct a Poisson bracket

of canonical variables with fluxes from general target QP-structures [27].

Let (M, ω) be a P-manifold of degree n − 1. We take a worldvolume X =

Σ × R in n dimensions and a space supermanifold X = T [1]Σ, since we consider the

Hamiltonian formalism.

The simplest method to determine a Poisson bracket is to construct it from ω =

µ∗ev
∗ω. Since Σ is in n − 1 dimensions and ω is of degree n − 1, the graded symplectic

structure ω is of degree zero due to the integration µ∗. Then, we obtain a graded Poisson

bracket of degree zero, that is, an ordinary Poisson bracket {−,−}PB. However, the Pois-

son brackets obtained in this way cannot include fluxes, since the target space geometric

datum Θ is not used. In [32], the symplectic form was deformed by b-transformation to

include H-flux.

Here, we use another method to incorporate the geometric datum Θ. First we consider

a QP-manifold of degree n, (M, ω,Θ), as an extended target space. A Lagrangian subman-

ifold L with respect to ω is regarded as the target space of physical canonical quantities.

ω defines a graded Poisson bracket, {−,−}, of degree −n.

Then, we consider the derived bracket {{−,Θ},−}, which is of degree −n+1, and use

the following fact.

Theorem 7.1. Let (M, ω,Q) be a QP-manifold, L a Lagrangian submanifold with respect

to ω, and pr : M → L the natural projection. If the derived bracket is restricted to L,

then it gives the graded Poisson bracket {f, g}L ≡ {{pr
∗f,Θ}, pr∗g}

∣∣∣
L
for functions f and

g on L.

We can easily prove that {f, g}L is antisymmetric and satisfies both the Leibniz rule

and the Jacobi identity using {pr∗f, pr∗g} = 0.

In order to define a Poisson bracket on the mapping space, we transgress the derived

bracket to the mapping space Map(X ,M). Then, the derived bracket {{−, S1},−} of

degree zero, with S1 = µ∗ev
∗Θ, defines the Poisson bracket on the mapping space,

{F,G}PB = {{F, S1}, G}
∣∣∣
L̂
, (7.1)

where F,G are functions on the mapping space. Precisely speaking, for a function

f ∈ C∞(L), we introduce test functions ǫ on X of degree n − 1 − |f |. A Lagrangian sub-

manifold of Map(X ,M) is denoted by L̂, and the projection map is p̂r : Map(X ,M)→ L̂.

We can prove that the restriction of the derived bracket to a Lagrangian submanifold L̂,

p̂r∗{{−, S1},−} = {{−, S1},−}|L̂, becomes an ordinary Poisson bracket {−,−}PB,

{µ∗ǫ1ev
∗pr∗f, µ∗ǫ2ev

∗pr∗g}PB = p̂r∗{{µ∗ǫ1ev
∗pr∗f, S1}, µ∗ǫ2ev

∗pr∗g}. (7.2)
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The Poisson bracket depends not only on Θ, but also on the choice of the Lagrangian

submanifold L̂.

Note that we can use the following formula to connect the target space computations

to the superfield computations,

{{µ∗ǫ1ev
∗pr∗f, S1}, µ∗ǫ2ev

∗pr∗g} = µ∗ǫ1ǫ2ev
∗{{pr∗f,Θ}, pr∗g}, (7.3)

where f, g ∈ C∞(L).

Simple candidates for L̂ are canonical Lagrangian submanifolds, which we denote by

L̂0. For instance, in the case of the Courant algebroids, two simple Lagrangian subman-

ifolds in Map(X , T ∗[2]T ∗[1]M) are Map(X , T ∗[1]M) = {(xi,pi, q
i, ξi)|ξi = qi = 0} or

Map(X , T [1]M) = {(xi,pi, q
i, ξi)|ξi = pi = 0}. Generally, we cannot obtain the twisted

Poisson bracket with fluxes by simple restriction to these canonical Lagrangian submani-

folds. We do a special twisting of functions on the mapping space, before restricting the

space to a canonical Lagrangian submanifold, where the twisting does not depend on fluxes.

This procedure derives a Poisson bracket with flux.

The space of functions on a canonical Lagrangian submanifold is con-

structed as C∞(L̂0) ≡ {p̂r∗µ∗ǫev
∗pr∗f |f ∈ C∞(L0)}. We twist the func-

tions to be eδαµ∗ǫev
∗pr∗f = eδα

∫
X µǫ(σ, θ)f(p(σ, θ)). The twisted derived bracket

{{eδαµ∗ǫev
∗pr∗f, S1}, e

δαµ∗ǫev
∗pr∗g} restricted to L̂0 gives rise to a Poisson bracket with

fluxes, if we choose α properly. The formula is

{eδαµ∗ǫ1ev
∗pr∗f, eδαµ∗ǫ2ev

∗pr∗g}PB ≡ p̂r∗{{e
δαµ∗ǫ1ev

∗pr∗f, S1}, e
δαµ∗ǫ2ev

∗pr∗g}. (7.4)

Assume that a nontwisted Poisson bracket {−,−}PB on the canonical Lagrangian

submanifold is nondegenerate, that is, symplectic.6 Then, there exists a graded symplectic

form ω
L̂0

= µ∗ev
∗ωL0 on L̂0 corresponding to this Poisson bracket. We choose α0 =

ιD̂µ∗ev
∗ϑL0 as the twisting function, where ϑL0 is the Liouville 1-form, such that ωL0 =

−δϑL0 . Note that α0 does not depend on the fluxes.

Here, we have twisted the space of functions on the mapping space and restricted it to

the canonical Lagrangian submanifold. We could also obtain the same Poisson bracket by

twisting the canonical Lagrangian submanifold with a canonical transformation e−δα and

restricting the derived bracket to the twisted Lagrangian submanifold.

We demonstrate the procedure in the H-flux case.

Example 7.1 (Poisson brackets twisted by H-flux). We construct the Poisson bracket

of the standard Courant algebroid with H-flux on the cotangent space of the loop space

Map(S1, T ∗M). First we determine the Poisson brackets of the canonical quantities.

Let us consider the QP-manifold of the standard Courant algebroid,M = T ∗[2]T ∗[1]M ,

in section 2. Take local Darboux coordinates (xi, pi, q
i, ξi) of degree (0, 1, 1, 2). The canon-

ical graded symplectic structure is expressed by ω = δxi ∧ δξi + δpi ∧ δqi. We take a

canonical Lagrangian submanifold with respect to ω, L0 = {(x
i, pi)|ξi = qi = 0}.

6This condition is satisfied, if M is a double graded cotangent bundle of a graded manifold N , for

example, M = T ∗[n]T ∗[n− 1]N . All QP-manifolds in this paper are double cotangent bundles.
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Since the Q-structure function of the standard Courant algebroid is Θ = ξiq
i +

1
3!Hijk(x)q

iqjqk, the derived brackets for the canonical quantities on L0 are

{{xi,Θ}, xj} = 0, (7.5)

{{xi,Θ}, pj} = δij , (7.6)

{{pi,Θ}, pj} = −Hijk(x)q
k. (7.7)

Next, we consider the mapping space. Take the supermanifold X = T [1]S1 with lo-

cal coordinates (σ, θ). Local coordinates on Map(T [1]S1, T ∗[2]T [1]M) are superfields

xi(σ, θ) : T [1]S1 →M and qi(σ, θ) ∈ Γ(T ∗[1]S1⊗x∗(Tx[1]M)) of degree (0, 1) and canoni-

cal conjugates ξi(σ, θ) and pi(σ, θ) of degree (2, 1), ξi(σ, θ) ∈ Γ(T ∗[1]S1⊗x∗(T ∗x [2]M)) and

pi(σ, θ) ∈ Γ(T ∗[1]S1 ⊗ x∗(T ∗q [2]Tx[1]M)).

The transgression of (7.5)–(7.7) induces the derived bracket on superfields. The con-

crete expression is

{{xi(σ, θ), S1},x
j(σ′, θ′)} = 0, (7.8)

{{xi(σ, θ), S1},pj(σ
′, θ′)} = −δijδ(σ − σ′)δ(θ − θ′), (7.9)

{{pi(σ, θ), S1},pj(σ
′, θ′)} = Hijk(x)q

k(σ, θ)δ(σ − σ′)δ(θ − θ′). (7.10)

The Liouville 1-form on the Lagrangian submanifold is α0 = ιD̂µ∗ev
∗ϑL = −

∫
µpidx

i.

Twisting by the Liouville 1-form α0 gives rise to the transformation qk → qk − dxk. If we

reduce to the canonical Lagrangian submanifold L̂0 defined by ξi = qi = 0, we obtain

{xi(σ, θ),xj(σ′, θ′)}PB = 0, (7.11)

{xi(σ, θ),pj(σ
′, θ′)}PB = −δijδ(σ − σ′)δ(θ − θ′), (7.12)

{pi(σ, θ),pj(σ
′, θ′)}PB = −Hijk(x(σ, θ))dx

k(σ, θ)δ(σ − σ′)δ(θ − θ′). (7.13)

We expand the superfields by the local coordinate θ on T [1]S1,

Φ(σ, θ) = Φ(0)(σ) + Φ(1)(σ)θ. (7.14)

The degree zero component in the expansion is the physical field (and degree nonzero

components are ghost fields). In this example, physical fields are xi(σ) = x(0)i(σ) and

pi(σ) = p
(1)
i (σ). The Poisson brackets of the physical canonical quantities are degree zero

components of (7.11)–(7.13):

{xi(σ), xj(σ′)}PB = 0, (7.15)

{xi(σ), pj(σ
′)}PB = δijδ(σ − σ′), (7.16)

{pi(σ), pj(σ
′)}PB = −Hijk(x)∂σx

k(σ)δ(σ − σ′). (7.17)

These are the Poisson brackets of the canonical quantities with H-flux in [32]. The sym-

plectic form of Alekseev-Strobl type, which induces (7.15)–(7.17), is

ω =

∫

S1

dσ δxi ∧ δpi +
1

2

∫

S1

dσHijk(x)∂σx
iδxj ∧ δxk. (7.18)
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7.2 Current algebras from target QP-structures

A current algebra is a Poisson algebra on the mapping space. Consider a subspace of

C∞(M), which is closed under the derived bracket {{−,Θ},−}. This subspace becomes

a Poisson algebra on the mapping space after transgression. The finite degree subspace,∑n−1
i=0 Ci(M) = {f ∈ C∞(M)||f | ≤ n−1}, is closed under the derived bracket. If Cn−1(M)

is transgressed to Map(X ,M), twisted by α0 and restricted to the Lagrangian submanifold

L̂0, we obtain a current algebra with fluxes.

For the H-flux case, we demonstrate the construction in the following example.

Example 7.2 (Alekseev-Strobl current algebras). Based on the result in example 7.1,

we take C0 ⊕ C1 = {f ∈ C∞(T ∗[2]T ∗[1]M)||f | ≤ 1} as space of functions. Elements of

C0 ⊕ C1 are functions of degree zero, j0(f) = f(x) and functions of degree one, j1(X+α) =

αi(x)q
i +Xi(x)pi. j1(X+α) is equivalent to a section of TM ⊕ T ∗M , since it corresponds

to αi(x)dx
i +Xi(x) ∂

∂xi . Let j(0)(g) = g(x) and j(1)(Y+β) = βi(x)q
i + Y i(x)pi. The derived

brackets of functions are easily computed,

{{j0(f),Θ}, j0(g)} = 0,

{{j1(X+α),Θ}, j0(g)} = −X
i
∂j0(g)

∂xi
= −ρ(X + α)j0(g),

{{j1(X+α),Θ}, j1(Y+β)} = −j1([X+α,Y+β]H), (7.19)

where [X + α, Y + β]H is the Dorfman bracket on the standard Courant algebroid with

flux H,

[X + α, Y + β]H = [X,Y ] + LXβ − ιY dα+ ιXιY H. (7.20)

for X,Y ∈ Γ(TM), α, β ∈ Γ(T ∗M).

Currents are identified with twisted functions on the Lagrangian submanifold of the

mapping space. In order to construct currents, we apply the transgression map to j0 and

j1. Then, we twist them by α0 and finally restrict the resulting functions to the Lagrangian

submanifold defined by ξi = qi = 0. The corresponding currents are

J(0)(f)(ǫ(1)) = p̃r∗e
δα0µ∗ǫ(1)ev

∗j(0)(f) =

∫

T [1]S1

µǫ(1)f(x),

J(1)(X+α)(ǫ(0)) = p̃r∗e
δα0µ∗ǫ(0)ev

∗j(1)(u,α) =

∫

T [1]S1

µǫ(0)(−αi(x)dx
i +Xi(x)pi), (7.21)

where ǫ(i) = ǫ(i)(σ, θ) is a test function of degree i on the super circle X = T [1]S1. The

integrands of degree zero components of J0 and J1 are

J(0)(f)(σ) = f(x(σ)), J(1)(X+α)(σ) = αi(x)∂σx
i(σ) +Xi(x)pi(σ), (7.22)

which are the correct AS currents.
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We compute the Poisson algebra of these supergeometric currents from the Poisson

brackets of canonical quantities (xi,pi) obtained in example 7.1:

{J0(f)(ǫ),J0(g)(ǫ
′)}PB = 0, (7.23)

{J1(X+α)(ǫ),J0(g)(ǫ
′)}PB = ρ(X + α)J0(g)(ǫǫ

′), (7.24)

{J1(X+α)(ǫ),J1(Y+β)(ǫ
′)}PB = J1([X+α,Y+β]H)(ǫǫ

′)

+

∫

T [1]S1

µdǫ(0)ǫ
′
(0)〈X + α , Y + β〉(x), (7.25)

where J ′0(g) =
∫
T [1]S1 µǫ(1)g(x), J

′
1(Y+β) =

∫
T [1]S1 µǫ(0)(−βi(x)dx

i + Y i(x)pi). The AS

current algebra is given by the physical components of the supergeometric currents, i.e.,

degree zero components, in (7.23)–(7.25):

{J0(f)(σ), J0(g)(σ
′)}PB = 0, (7.26)

{J1(X+α)(σ), J0(g)(σ
′)}PB = −ρ(X + α)J0(g)(x(σ))δ(σ − σ′), (7.27)

{J1(X+α)(σ), J1(Y+β)(σ
′)}PB = −J1([X+α,Y+β]H)(σ)δ(σ − σ′)

+〈(X + α), (Y + β)〉(σ′)∂σδ(σ − σ′). (7.28)

This coincides with the generalized current algebra described in [32].

7.3 Poisson bracket twisted by R-flux

By the same method as in the previous section, we derive a current algebra with R-flux

from the supergeometric data of the Poisson Courant algebroid.

Let us consider a two-dimensional worldsheet Σ = S1×R and take the tangent bundle

TLM = Map(S1, TM) of the loop space LM = Map(S1,M) as phase space, dual to the

cotangent bundle T ∗LM = Map(S1, T ∗M) in the standard Courant algebroid case. Let

xi(σ) be local coordinates on the base and qi(σ) local coordinates on the fiber, where σ

parametrizes S1.

We would like to construct Poisson brackets between xi(σ) and qi(σ). For that, we

use the QP-manifold of the Poisson Courant algebroid, which is M = T ∗[2]T ∗[1]M with

Q-structure Θ = πij(x)ξipj −
1
2
∂πjk

∂xi (x)q
ipjpk + 1

3!R
ijk(x)pipjpk. We take a Lagrangian

submanifold L0 = T [1]M of M parametrized by local coordinates (xi, qi). The derived

bracket on T [1]M is

{{xi,Θ}, xj} = 0, (7.29)

{{xi,Θ}, qj} = πij(x), (7.30)

{{qi,Θ}, qj} = −Rijk(x)pk +
∂πij

∂xk
(x)qk. (7.31)

The transgression of (7.29)–(7.31) gives the derived brackets on the superfields. If we

restrict them without twisting to the canonical Lagrangian submanifold parametrized by
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ξi = pi = 0, we obtain the Poisson bracket without R-flux,

{xi(σ, θ),xj(σ′, θ′)}PB = 0, (7.32)

{xi(σ, θ), qj(σ′, θ′)}PB = −πij(x(σ, θ))δ(σ − σ′)δ(θ − θ′), (7.33)

{qi(σ, θ), qj(σ′, θ′)}PB = −
∂πij

∂xk
(x(σ, θ))qk(σ, θ)δ(σ − σ′)δ(θ − θ′). (7.34)

In order to introduce R-flux, we would like to consider a nontrivial restriction with twisting.

For simplicity, we assume that π is nondegenerate. In order to obtain an AS type

current algebra, we take the Liouville 1-form induced by the symplectic form ωL0 defined

by the Poisson bracket (7.32)–(7.34). This is α0 = −
∫
X µ qi(π−1)ijdx

j + · · · , where · · ·

contains terms without qi.

Twisting by α0 induces the twist pi → pi−(π
−1)ijdx

j . After the restriction ξi = pi = 0

to the canonical Lagrangian submanifold, we get the Poisson brackets with R-flux,

{xi(σ, θ),xj(σ′, θ′)}PB = 0, (7.35)

{xi(σ, θ), qj(σ′, θ′)}PB = −πij(x(σ, θ))δ(σ − σ′)δ(θ − θ′), (7.36)

{qi(σ, θ), qj(σ′, θ′)}PB = −

(
Rijk(x)(π−1)kldx

l +
∂πij

∂xk
(x)qk

)
δ(σ − σ′)δ(θ − θ′). (7.37)

Physical Poisson brackets are the degree zero components of these equations. Here we

denote physical fields by xi(σ) = x(0)i(σ) and qi(σ) = q(1)i(σ). Then, the Poisson brackets

on the physical canonical quantities are

{xi(σ), xj(σ′)}PB = 0, (7.38)

{xi(σ), qj(σ′)}PB = πij(x(σ))δ(σ − σ′), (7.39)

{qi(σ), qj(σ′)}PB =

(
−Rijk(x)(π−1)kl(x)∂σx

l +
∂πij

∂xk
(x)qk

)
(σ)δ(σ − σ′). (7.40)

The relations (7.38)–(7.40) can also be derived by β-transformation. If R = 0, the

relations (7.38)–(7.40) are obtained by pullback of the Poisson structure on TM , lifted

from the Poisson structure π on M [52], to the mapping space. In this case, the R-

term is introduced by β-transformation, xi → xi and qi → qi + βijπ−1jk ∂σx
k, where β =

1
2β

ij(x) ∂
∂xi ∧

∂
∂xj is a bivector field such that [π, β]S = R.

The symplectic form of Alekseev-Strobl type which induces (7.38)–(7.40) is

ω =

∫

S1

dσ (π−1)ijδx
i ∧ δqj

−
1

2

∫

S1

dσ

(
−Rijk(π−1)kl∂σx

l +
∂πij

∂xk
qk
)
(π−1)imδxm ∧ (π−1)jnδx

n. (7.41)
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7.4 Contravariant current algebras with R-flux

Here, currents are constructed from functions of degree equal to or less than one on the

target space, C0 ⊕C1 = {f ∈ C∞(T ∗[2]T [1]M)||f | ≤ 1}, which is the same space as in the

case of the AS current algebra. Take a function of degree zero j0 = f(x) and a function

of degree one j1 = Xi(x)pi + αi(x)q
i. By transgression of j0 and j1 to the mapping space,

twisting by α0 such that pi → pi − (π−1)ijdx
j , and restricting them to the canonical

Lagrangian submanifold, we obtain the supergeometric currents,

J(0)(f)(ǫ(1)) = p̃r∗e
δα0µ∗ǫ(1)ev

∗j(0)(f) =

∫

T [1]S1

µǫ(1)f(x),

J(1)(X+α)(ǫ(0)) = p̃r∗e
δα0µ∗ǫ(0)ev

∗j(1)(u,α) =

∫

T [1]S1

µǫ(0)(−X
i(x)(π−1)ijdx

j + αi(x)q
i).

If we take the degree zero components of the superfields, we obtain AS type currents,

J0(f)(σ) = f(x(σ)), J1(X+α)(σ) = Xi(x(σ))(π−1)ij∂σx
j(σ) + αi(x(σ))q

i(σ). (7.42)

The algebra of these supergeometric currents is computed from the Poisson brackets of the

canonical quantities (7.35)–(7.37):

{J0(f)(ǫ),J0(g)(ǫ
′)}PB = 0,

{J1(X+α)(ǫ),J0(g)(ǫ
′)}PB = ρ(X + α)J0(g)(ǫǫ

′),

{J1(X+α)(ǫ),J1(Y+β)(ǫ
′)}PB = J1([X+α,Y+β]πR

(ǫǫ′)

+

∫

T [1]S1

µdǫ(0)ǫ
′
(0)〈X + α , Y + β〉(x), (7.43)

where

[X + α, Y + β]πR = [α, β]π + Lπ
αY − ιβdπX −R(α, β,−), (7.44)

is the contravariant Dorfman bracket with R-flux on TM ⊕ T ∗M and ρ(X +α) = π♯(α) is

the anchor map. Component expansions give rise to physical current algebras:

{J0(f)(σ), J0(g)(σ
′)}PB = 0, (7.45)

{J1(X+α)(σ), J0(g)(σ
′)}PB = −ρ(X + α)J0(g)(x(σ))δ(σ − σ′), (7.46)

{J1(X+α)(σ), J1(Y+β)(σ
′)}PB = −J1([X+α,Y+β]πR)(σ)δ(σ − σ′)

+〈X + α, Y + β〉(σ′)∂σδ(σ − σ′). (7.47)

This formula (7.45)–(7.47) is consistent, even if the Poisson structure π is degenerate.

Therefore, we do not need to impose a nondegeneracy condition for π in the current algebra.

8 Conclusions and discussion

The Poisson Courant algebroid, which is a contravariant object of the standard Courant

algebroid, has been formulated by supergeometric construction. The duality between these
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two specific Courant algebroids has been analyzed in detail. As a result, the duality trans-

formation is a canonical transformation on the graded symplectic manifold and the trans-

formation between the 3-form H-flux in the standard Courant algebroid and the trivector

R-flux in the Poisson Courant algebroid has been derived. In [29, 48, 53], twisting of a

bivector field by a 3-form H, a so-called twisted Poisson structure, has been discussed.

From the above duality, we have obtained its contravariant geometric structure in (6.17),

twisting of a 2-form by a trivector field R.

Moreover, we have shown that this duality is, from the mathematical viewpoint, the

generalization of the correspondence between the de Rham cohomology and the Poisson co-

homology. We also discussed that the same duality can be derived on the sigma model level.

By using the supergeometric formulation, we have constructed a 3-dimensional AKSZ

sigma model and a 2-dimensional boundary sigma model with the structure of a Poisson

Courant algebroid. From the physical viewpoint, we are considering a theory of a topolog-

ical membrane on a Poisson manifold. From the general form of the homological function

given in (3.11), (see also [28, 29]) we can introduce all types of third rank tensors (H,F ,Q

and R) with various covariant and contravariant suffixes. However, it is remarkable that the

3-vector R can only be introduced on the Poisson manifold. Then, we derived the topolog-

ical string on the Poisson manifold as the boundary theory of that topological membrane.

Of course, the theory obtained in this way can be identified with the Poisson sigma model

by field redefinition. What we found is that there is a specific way to lift the boundary

theory to the topological membrane including R-flux on the Poisson manifold.

We have also constructed a current algebra with R-flux on the tangent space of the

loop space from the target space QP-manifold data. The resulting current algebra is the

contravariant counterpart of the current algebra with H-flux of Alekseev-Strobl type.

The R-flux has also been discussed in [54, 55] using double field theory. There, the

nongeometric R-flux is characterized as a Jacobiator, the quantity corresponding to the

anomaly of the Jacobi identity, i.e. Rijk ∼ βl[i ∂βjk]

∂xl . In section 5, we have discussed the

Poisson Courant algebroid and its trivector field R from the point of view of double field

theory. If we take the special solution of the section condition defined by the Poisson

structure π, the resulting spacetime has the Poisson Courant algebroid structure. There-

fore, we have found that our formalism describes the R-flux in the frame specified by this

particular solution.

In our formulation, β is independent of the Poisson bivector π, thus we can consider the

special case [π+β, π+β]S = 0. It means that π+β is again a Poisson structure. Note that

it does not mean a deformation of the Poisson Courant algebroid. This is a Maurer-Cartan

condition of β, dπβ + 1
2 [β, β]S = 0, and we obtain the R-flux as the Jacobiator [56, 57],

R = −
1

2
[β, β]S . (8.1)

This is the same formula in the definition inspired by the double field theory. The meaning

of this observation will be discussed in future work.
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A Formulas in graded differential calculus

We summarize formulas of graded symplectic geometry.

A.1 Basic definitions

Let z be a local coordinate on a graded manifold M. A differential on a function is

defined by

df(z) = dza
−→
∂ f

∂za
. (A.1)

A vector field X is expanded using local coordinates by

X = Xa(z)

−→
∂

∂za
. (A.2)

The interior product is defined by the differentiation by the following graded vector field

on T [1]M,

ιX = (−1)|X|Xa(z)

−→
∂

∂dza
, (A.3)

where we define
−→
∂

∂dzadz
b = δba. For a graded differential form α, we denote |α| as total

degree (form degree plus degree by grading) of α. Note that |d| = 1, |dza| = |za| + 1 and

|ιX | = |X| − 1. For vector fields, X = Xa(z)
−→
∂

∂za , Y = Y a(z)
−→
∂

∂za , the graded Lie bracket is

[X,Y ] = Xa

−→
∂ Y b

∂za

−→
∂

∂zb
− (−1)|X||Y |Y a

−→
∂ Xb

∂za

−→
∂

∂zb
. (A.4)

We obtain the following formula,

Xf = (−1)|X|ιXdf = (−1)(|f |+1)|X|df(X), (A.5)

where

dza

( −→
∂

∂zb

)
= δab. (A.6)

Proof. We prove (A.5). Since Xf = Xa(z)
−→
∂ f
∂za , we have

(−1)|X|ιXdf = (−1)|X|(−1)|X|Xa(z)

−→
∂

∂dza

(
dza
−→
∂ f

∂za

)
. (A.7)
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Therefore,

df(X) = dza
−→
∂ f

∂za

(
Xb(z)

−→
∂

∂zb

)

= (−1)(|f |−|z|)|X|

[
dza

(
Xb(z)

−→
∂

∂zb

)] −→
∂ f

∂za

= (−1)(|f |−|z|)|X|(−1)(|X|−|z|)(|z|+1)Xb(z)

[
dza

( −→
∂

∂zb

)] −→
∂ f

∂za

= (−1)(|f |+1)|X|Xa(z)

−→
∂ f

∂za
. (A.8)

A.2 Cartan formulas

The Lie derivative is defined by

LX = ιXd− (−1)(|X|−1)×1dιX = ιXd+ (−1)|X|dιX . (A.9)

Its degree is |LX | = |X|.

Let α and β be graded differential forms. We can show the following graded Cartan

formulas,

α ∧ β = (−)|α||β|β ∧ α, (A.10)

d(α ∧ β) = dα ∧ β + (−1)|α|α ∧ dβ, (A.11)

ιX(α ∧ β) = ιXα ∧ β + (−1)|α|(|X|+1)α ∧ ιXβ, (A.12)

LX(α ∧ β) = LXα ∧ β + (−1)|α||X|α ∧ LXβ, (A.13)

LXd = (−1)|X|dLX , (A.14)

ιXιY − (−1)(|X|−1)(|Y |−1)ιY ιX = 0, (A.15)

LXιY − (−1)|X|(|Y |−1)ιY LX = ι[X,Y ], (A.16)

LXLY − (−1)|X||Y |LY LX = L[X,Y ]. (A.17)

A.3 Differential forms

Let α = dza1∧· · ·∧dzamαa1···am(z) be an m-form onM. The contraction of α(X,−, · · · ,−)

with a vector field X onM is

α(X,−, · · · ,−) = (−1)|X|(|α|+1)ιXα(−, · · · ,−). (A.18)

Proof.

α(X,−, · · · ,−) = dza1 ∧ · · · ∧ dzamαa1···am(z)

(
Xb

−→
∂

∂zb

)

= (−1)|X|(|α|−|z|−1)dza1

(
Xb

−→
∂

∂zb

)
dza2 ∧ · · · ∧ dzamαa1···am(z)
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= (−1)|X|(|α|−|z|−1)(−1)(|X|−|z|)(|z|+1)Xa1dza2 ∧ · · · ∧ dzamαa1···am(z)

= (−1)|X||α|Xa1dza2 ∧ · · · ∧ dzamαa1···am(z)

= (−1)|X||α|(−1)|X|ιXα (A.19)

By induction using (A.18), we obtain the general formula,

α(Xm, Xm−1, · · · , X1) = −(−1)
∑m

i=1 |Xi|(|α|+i)ιXm · · · ιX1α, (A.20)

α(Xm, · · · , Xj , · · · , Xi, · · ·X1) = −(−1)|Xi||Xj |α(Xm, · · · , Xi, · · · , Xj , · · ·X1). (A.21)

Especially, if α is a 2-form, we derive

α(X,Y ) = −(−1)|X||Y |α(Y,X). (A.22)

A.3.1 Exterior derivatives

The exterior derivative on a function is given by (A.5),

df(X) = (−1)|X|(|f |+1)Xf. (A.23)

Let α be a 1-form onM. Then, from the Cartan formulas, we obtain

dα(X1, X2) = (−1)|X1||α|X1α(X2)− (−1)|X2||α|(−1)|X1||X2|X2α(X1)−α([X1, X2]). (A.24)

For a 2-form α, the formula gives

dα(X1, X2, X3) = (−1)|X1|(|α|+1)X1α(X2, X3)− (−1)|X2|(|α|+1)(−1)|X1||X2|X2α(X1, X3)

+(−1)|X3|(|α|+1)(−1)(|X1|+|X2|)|X3|X3α(X1, X2)− α([X1, X2], X3)

+(−1)|X2||X3|α([X1, X3], X2)− (−1)|X1|(|X2|+|X3|)α([X2, X3], X1).

(A.25)

Let α = dza1 ∧· · ·∧dzamαa1···am(z) be an m-form onM. Then, we can prove the following

formula by induction,

dα(X1, X2, · · · , Xm)

=

m∑

i=1

(−1)i−1(−1)|Xi|(|α|+m)(−1)
∑i−1

k=1 |Xi||Xk|Xiα(X1, · · · , X̂i, · · · , Xm) (A.26)

+
∑

i<j

(−1)i+j(−1)
∑i−1

k=1 |Xi||Xk|+
∑j−1

l=1,l 6=j |Xj ||Xl|α([Xi, Xj ], · · · , X̂i, · · · , X̂j , · · · , Xm).

A.4 Graded symplectic form and Poisson bracket

Let ω be a symplectic form of degree n. Since ω is a 2-form, its total degree is |ω| = n+2.

Let z = (qa, pa) be Darboux coordinates such that |q|+ |p| = n. Then we obtain

ω = (−1)|q|(|p|+1)dqa ∧ dpa = (−1)n|q|dqa ∧ dpa

= (−1)n|q|(−1)(|q|+1)(|p|+1)dpa ∧ dqa = (−1)|p|+1dpa ∧ dqa. (A.27)
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Then, the Liouville 1-form ω = −dϑ is given by

ϑ = (−1)|p|padq
a = −(−1)n+1−|q|padq

a = (−1)|q||p|dqapa (A.28)

= −(−1)|q|(|p|+1)qadpa = −dpaq
a. (A.29)

The Hamiltonian vector field Xf of a function f is defined by

ιXf
ω = −df. (A.30)

Its total degree is |Xf | = |f | − n. In order to obtain the Darboux coordinate expression of

Xf , assume that X = Xa

−→
∂

∂pa
+ Y a

−→
∂

∂qa . Then we derive

ιXf
ω =

(
(−1)|X|+pXa

−→
∂

∂dpa
+ (−1)|X|+qY a

−→
∂

∂dqa

)
·
(
(−1)n|q|dqa ∧ dpa

)

= −dqa
−→
∂ f

∂qa
− dpa

−→
∂ f

∂pa
. (A.31)

By solving this equation, we finally obtain

Xf =
f
←−
∂

∂qa

−→
∂

∂pa
− (−1)|q||p|

f
←−
∂

∂pa

−→
∂

∂qa
. (A.32)

Here, f
←−
∂

∂qa = (−1)(|f |−q)q
−→
∂ f
∂qa is the right derivative.

The graded Poisson bracket is defined by

{f, g} = Xfg = (−1)|f |+nιXf
dg = (−1)|f |+n+1ιXf

ιXgω. (A.33)

It satisfies

{f, g} = −(−1)(|f |−n)(|g|−n){g, f},

{f, gh} = {f, g}h+ (−1)(|f |−n)|g|g{f, h},

{f, {g, h}} = {{f, g}, h}+ (−1)(|f |−n)(|g|−n){g, {f, h}}.

For the Darboux coordinates, we get the relations

{qa, pb} = δab, {pb, q
a} = −(−1)|q||p|δab. (A.34)

For functions, f = f(q, p) and g = g(q, p), the graded Poisson bracket is given by

{f, g} =
f
←−
∂

∂qa

−→
∂ g

∂pa
− (−1)|q||p|

f
←−
∂

∂pa

−→
∂ g

∂qa
. (A.35)

X is called symplectic vector field, if LXω = 0, i.e., dιXω = 0. Let X,Y be symplectic

vector fields. Then, [X,Y ] is the Hamiltonian vector field for −(−1)|X|ιXιY ω.

Proof.

ι[X,Y ]ω = (LXιY − (−1)|X|(|Y |−1)ιY LX)ω = (−1)|X|dιXιY ω

= −d[−(−1)|X|ιXιY ω]. (A.36)
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If X = Xf , Y = Xg are Hamiltonian vector fields, then the following equation holds,

ι[Xf ,Xg ]ω = (−1)|f |+ndιXf
ιXgω. (A.37)

Therefore, we get

X{f,g} = −[Xf , Xg]. (A.38)

Since ιXf
ιXgω = −(−1)|f |n+|g|(n+1)ω(Xg, Xf ), we easily derive

{f, g} = (−1)|f |+n+1ιXf
ιXgω

= (−1)(|f |+|g|)(n+1)ω(Xg, Xf ) = (−1)|f ||g|+n+1ω(Xf , Xg). (A.39)

We consider the AKSZ construction on Map(X ,M). Let D be a differential on X . It

can be locally expressed as D = θµ ∂
∂σµ . We denote with D̂ the vector field on Map(X ,M)

of degree 1, which is induced by D. Then the following equation holds,

{ιD̂µ∗ev
∗ϑ, µ∗ev

∗f} = −ιD̂µ∗ev
∗df

(
=

∫
dn+1σdn+1θdf(σ, θ)

)
, (A.40)

for f ∈ C∞(M).

Proof. S0 = ιD̂µ∗ev
∗ϑ is a Hamiltonian for the vector field D̂,i.e., XS0 = D̂. Therefore,

we get

{ιD̂µ∗ev
∗ϑ, µ∗ev

∗f} = {S0, µ∗ev
∗f}

= (−1)|S0|ιD̂ιXµ∗ev∗f
ω

= −ιD̂µ∗ev
∗df. (A.41)

B Formulas on the mapping space

B.1 Functional differential calculus

We list the formulas, that we use on the mapping space Map(X ,M). Let X be a manifold

of dimension d = n + 1. The mapping space functions are superfields. They depend

on variables on X = T [1]X, which is a (d, d)-dimensional supermanifold with even local

coordinates σµ and odd local coordinates θµ, where µ = 1, . . . , d.

A component expansion of a superfield Φ(σ, θ) of degree |Φ| in Grassmann variables is

defined as

Φ(σ, θ) =
d∑

j=0

1

j!
φµ1···µj (σ)θ

µ1 · · · θµj , (B.1)

where the j = 0 term φ(σ) is not accompanied by θµ. Since |θµ| = 1, we get |φµ1···µj | =

|Φ| − j.
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The functional derivative on the mapping space is
−→
δ Φ(σ, θ)

δΦ(σ′, θ′)
= δd(σ′ − σ)δd(θ′ − θ). (B.2)

Expanding this equation in components, we obtain the formula for the left functional

derivative,

−→
δ

δΦ(σ, θ)
=

d∑

j=0

(−1)d−j

j!(d− j)!
θµ1 · · · θµj ǫµ1···µjµj+1···µd

−→
δ

δφµj+1···µd
(σ)

, (B.3)

where ǫµ1···µjµj+1···µd
is the completely antisymmetric Levi-Civita symbol. By degree count-

ing, we obtain
∣∣∣

−→
δ

δφµj+1···µd
(σ)

∣∣∣ = −(|Φ| − d + j). We require the following identity for the

right functional derivative,
−→
δ F

δΦ
= (−1)|F |(|Φ|−d)

F
←−
δ

δΦ
, (B.4)

for an arbitrary superfield F . From this equation, we have the right derivative

for components,

←−
δ

δΦ(σ, θ)
=

d∑

j=0

1

j!(d− j)!
(−1)|Φ|+j(|Φ|+d+1)

←−
δ

δφµj+1···µd
(σ)

θµ1 · · · θµj ǫµ1···µjµj+1···µd
. (B.5)

Computing the right derivative Φ(σ,θ)
←−
δ

δΦ(σ′,θ′) using the above formula, we summarize

−→
δ Φ(σ, θ)

δΦ(σ′, θ′)
= δd(σ′ − σ)δd(θ′ − θ), (B.6)

Φ(σ, θ)
←−
δ

δΦ(σ′, θ′)
= (−1)|Φ|(1+d)+dδd(σ − σ′)δd(θ − θ′). (B.7)

The degrees of the right and left derivatives are
∣∣∣∣∣

−→
δ

δΦ(σ, θ)

∣∣∣∣∣ =
∣∣∣∣∣

←−
δ

δΦ(σ, θ)

∣∣∣∣∣ = d− |Φ|. (B.8)

For an arbitrary superfield F , we have
∣∣∣∣∣

−→
δ F

δΦ(σ, θ)

∣∣∣∣∣ =
∣∣∣∣∣

F
←−
δ

δΦ(σ, θ)

∣∣∣∣∣ = |F |+ d− |Φ|. (B.9)

The following left and right Leibniz rules hold for arbitrary superfields F and G:
−→
δ

δΦ
(FG) =

−→
δ F

δΦ
·G+ (−1)|F |(d−|Φ|)F ·

−→
δ G

δΦ
, (B.10)

(FG)

←−
δ

δΦ
= F ·

G
←−
δ

δΦ
+ (−1)|G|(d−|Φ|)

F
←−
δ

δΦ
·G. (B.11)

The measure on the worldvolume supermanifold is defined by µ = dσ1 · · · dσddθd · · · dθ1

and its degree is |µ| = −d. The following equation for the Grassmann delta function holds
∫

µθδ
d(θ − θ′)Φ(σ, θ) = Φ(σ, θ′) (B.12)

where µθ = ddθ · · · d1θ.

– 36 –



J
H
E
P
0
4
(
2
0
1
6
)
1
7
0

B.2 Graded symplectic geometry

In this subsection, we map the structures on M to structures on the target space

Map(X ,M) by the transgression map µ∗ev
∗.

Let zi(σ, θ) be a local basis superfield of the mapping space Map(X ,M), corresponding

to a local coordinate zi on M. We write a vector field on the mapping space for X =

Xi(z)
−→
∂
∂zi

as

X =

∫

X
µ (−1)d|X

i|Xi(z(σ, θ))

−→
δ

δzi(σ, θ)
. (B.13)

Then, the interior product is

ιX = (−1)|X|
∫

X
µ (−1)d|X

i|Xi(z(σ, θ))

−→
δ

δ(δzi)(σ, θ)
. (B.14)

The symplectic form ω on the mapping space corresponding to ω = (−1)n|q|δqi ∧ δpi is

defined as

ω =

∫

X
µ (−1)(d−1)|q|δqi(σ, θ) ∧ δpi(σ, θ). (B.15)

We have |ω| = |µ|+ 1 + |qi|+ 1 + |pi| = −d+ 2 + d− 1 = 1.7

The differential on a function f is

δf =

∫

X
µ (−1)d(|z

i|+1)(δzi)(σ, θ)

−→
δ f

δzi(σ, θ)
. (B.16)

We define the Liouville 1-form (the canonical 1-form) ϑ on the mapping space as

ω = −δϑ. (B.17)

The Hamiltonian vector field is defined by

ιXf
ω = −δf, (B.18)

and the BV bracket we define by

{f, g}BV = Xfg. (B.19)

Then, direct computation gives the following local expression of the BV bracket on the

mapping space,

{f, g}BV = (−1)d−|q|
∫

X

[
f
←−
δ

δqi
µ

−→
δ g

δpi

+ (−1)d(1+|q|)
f
←−
δ

δpi

µ

−→
δ g

δqi

]
. (B.20)

We can prove the following identities of the graded Poisson bracket of degree 1,

{f, g}BV = −(−1)(|f |+1)(|g|+1){g, f}BV, (B.21)

{f, gh}BV = {f, g}BVh+ (−1)(|f |+1)|g|g{f, h}BV, (B.22)

{f, {g, h}BV}BV = {{f, g}BV, h}BV + (−1)(|f |+1)(|g|+1){g, {f, h}BV}BV. (B.23)
7This is degree counting to determine the sign factor. In fact, ω is a 2-form of degree d − 1. Then we

count the sign factor as degree d+ 1.
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Remark B.1. We list up the degrees of the defined objects.

A vector field has |X| = −d + |Xi| + d − |zi| = |Xi| − |zi|. An interior product has

|ιX | = −d + |Xi| + d − (|zi| + 1) = |Xi| − |za| − 1 = |X| − 1, since |δzi| = |zi| + 1. A

symplectic structure has |ω| = −d+1+ |qi|+1+ |pi| = 1. A differential on a function has

|δf | = −d+1+ |zi|+ |f |+ d−|zi| = 1+ |f |. A Hamiltonian vector field has |Xf | = 1+ |f |

and therefore |ιXf
| = |f |.
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