TOPOLOGICAL METHODS IN CHEMISTRY

Richard E. Merrifield Howard E. Simmons

Central Research and Development Department E. I. du Pont de Nemours and Co. (Inc.) Wilmington, Delaware

A WILEY-INTERSCIENCE PUBLICATION

JOHN WILEY & SONS

NEW YORK . CHICHESTER . BRISBANE . TORONTO . SINGAPORE

CONTENTS

Introduction

				Page
Structure and Topology				1
Nearness and Adjacency				
General Topology	•			3
Finite and Infinite Topologies				
Format of the Text		•	•	6
Applications			•	7
Elementary Set Theory			•	7

Part I. FINITE TOPOLOGY

Chapter

1.	Торо	logical Spaces	13						
	1.1	Definition of a Topological Space	13						
	1.2	Closed Sets and the Cotopology	15						
	1.3	Bases and Subbases	16						
	1.4	Irreducible Basis of a Topology	17						
	1.5								
		a General Set	19						
	1.6	Subspaces	21						
	1.7	Product Spaces	23						
	1.8	Metric Spaces	24						
2.	Finite	e Topologies and Lattices	27						
	2.1	Partially Ordered Sets and Lattices	27						
	2.2	Distributive Lattices	31						
	2.3	Intervals in Distributive Lattices	32						
	2.4	Direct Products	34						
	2.5	Reducibility	37						
з.	Finit	e Topologies and Graph Theory	39						
	3.1	Topologies and Directed Graphs	39						
	3.2	Topologies and Graphs	44						
	3.3	Subbases and Graphs	47						

Cha	pter		Page				
4.	Conn	nectivity	49				
	4.1	Topological and Graphical Connectivity					
	4.2	Lattices of Connected and Disconnected Spaces					
	4.3	Connectivity of Subsets					
	4.4	Separated Sets	53				
5.	Class	sification of Topological Spaces:					
	Sepa	ration Axioms	55				
	5.1	<i>T</i> _{<i>n</i>} -Spaces	55				
	5.2	Regular and Normal Spaces					
6.	Com	binatorics	63				
	6.1	Cardinality of a Topology	63				
	6.2 Cardinality of a Subspace; Number of Sets Containing a						
		Given Subset	69				
	6.3	Connected Sets					
	6.4	Generating Functions	. 74				
	6.5	Two-Point Correlation Functions in $T_{1/2}$ -Spaces	77				
7.	Func	tions and Continuity	81				
	7.1	Functions	81				
	7.2	Continuous Functions					
	7.3	Continuity in a General Finite Topological Space	88				
	7.4	Fixed Points of Endomorphisms of $T_{1/2}$ -Spaces	. 89				
	7.5	Quotient Maps	. 92				
	7.6	Topology Induced by a Function	95				

Part II. FINITE TOPOLOGY AND CHEMISTRY

8.	Торо	logical Description of Molecular Structure	99
	8.1	General Considerations	99
	8.2	Approaches to Molecular Topology	100
	8.3	Analysis of Molecular Topologies	100
9.	Bond	Topology	103
	9.1	Construction of the Bond Topology	103
	9.2	Structure of the Bond Topology	104
	9.3	Combinatorial Properties of the Bond Topology	108
	9.4	Bond Topology of Alkanes	119

Chapt	er			Page
10.	Grap	h Topo	ology	121
	10.1	Constru	uction of the Graph Topology	121
	10.2		re of the Graph Topology	
	10.3	Combin	natorial Properties of the Graph Topology	130
	10.4	Coresio	duality	137
	10.5	Topolo	gical Perturbation Theory and the Propagator	143
	10.6	Physica	al Models and the Graph Topology	151
	10.7	The Gr	aph Topology of Extended Structures	154
	10.8	Topolo	gy of Saturated Hydrocarbons	161
	10.9	Contin	uous Transformations in the Graph Topology	165
11.	Duple	ex Spa	ICes	167
	11.1	Duplex	of a Graph	167
	11.2		tion of the Duplex Space	
	11.3		ality of the Duplex Topology	
	11.4		Spaces of Alternants	
	11.5	100 100 10 Percenter	Spaces of Nonalternants	
	11.6		ectrality	
12.	Торо	logy o	f Chemical Reactions	179
	12.1	Chemi	cal Reaction Spaces	179
	12.2		cs in Chemical Reaction Spaces	
	Appendixes			
	Apper	ndix A.	Number of Finite Topologies and Some of	
			Their Lattices	191
	Apper	ndix B.	Coresiduality in Molecular Orbital Theory	197
	Appendix C.		Some Properties of the Fibonacci Numbers	203
	Apper	ndix D.	Alternative Formulations of the Combinatorics of	
			Independent Sets	205
	Apper	ndix E.	Group of a Finite Topology	211
	Apper	ndix F.	Openness and Topological Bond Orders	
			as Probabilities	
	Apper		Graphs Having the Same Number of Independent Sets;	
			A Contraction–Subdivision Identity for $\sigma(G)$	
	Apper	ndix H.	Some Special Spaces	223
	Bibli	ograpi	hy	227
	Inde	x		229