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Topological Mott insulator at quarter filling in the interacting Haldane model
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While the recent advances in topology have led to a classification scheme for electronic bands described
by the standard theory of metals, a similar scheme has not emerged for strongly correlated systems such as
Mott insulators in which a partially filled band carries no current. By including interactions in the topologically
nontrivial Haldane model, we show that a quarter-filled state emerges with a nonzero Chern number provided
the interactions are sufficiently large. We first motivate this result on physical grounds and then by two methods:
Analytically by solving exactly a model in which interactions are local in momentum space and then numerically
through the corresponding Hubbard model. All methods yield the same result: For sufficiently large interaction
strengths, the quarter-filled Haldane model is a ferromagnetic topological Mott insulator with a Chern number
of unity. Possible experimental realizations in cold-atom and solid-state systems are discussed.
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I. INTRODUCTION

To a large extent, topology and strong electron correlation,
the two pillars of quantum materials, have evolved essentially
independently. The highly successful classification scheme
[1,2] of band insulators into topologically trivial or nontriv-
ial assumes the electrons are noninteracting and hence only
the details of the band structure are relevant. In the other
extreme lies the physics of doped Mott insulators, the parent
state of copper-oxide high-temperature superconductors. As
Mott insulation traditionally obtains in a half-filled band, it
naturally implies a breakdown of the single-particle concept.
Further, Mott insulation is generally formulated in real-space
from on-site interactions and topological invariants require a
momentum-space picture. How is it then possible to formulate
a topological classification scheme for Mott insulators?

To uncloak topological features of Mott physics, we note
that although traditionally topology is concerned with the
equivalent ways of distorting a geometric object, it is the
algebraic formulation that is most relevant to condensed mat-
ter systems. Consider the energy spectrum of some quantum
mechanical systems. Any continuous deformation of the un-
derlying Hamiltonian, keeping the same boundary conditions,
which leaves the bulk physics unchanged is inherently topo-
logical. It is this realization [1,2] that accounts for the stability
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of edge currents in the quantum Hall [3] effect and protects the
surface states [2,4–8] in topological insulators from acquiring
a gap. While it is a large perpendicular magnetic field that
creates the edge currents in quantum Hall systems, the same
physics obtains even in the absence of a net magnetic field. In
practice, topologically nontrivial insulation arises either from
the relativistic effect resulting from the a spin-dependent force
or spin-orbit coupling [2,4–8] or complex hoppings on a hon-
eycomb [1] as in Fig. 1 or a square lattice [8]. The hallmark
of bands with nontrivial topology is a nonzero Chern num-
ber [9], which is computable entirely from the single-particle
states.

Of course there are instances in which topology and in-
teractions merge as in the fractional [10,11] quantum Hall
effect (FQHE). Here, no single-particle description can en-
code the fractional charge or statistics of the quasiparticles in
the fractional regime of the QHE. However, while it is the
interactions that mediate the FQHE, the gap is set by the
magnetic field rather than the interactions as in traditional
Mott insulators. Recently, numerous examples have arisen of
fractional Chern insulators in which features of the FQHE
arise in the absence of Landau levels [12–14]. In such sys-
tems, gaps [12–14] open at fractional fillings and are set by
the interaction strength. Such gaps seem to only arise in the
flat-band limit in which the � � U (orV ) � W , where � is
the noninteracting topological gap, U the interaction strength,
and W the bandwidth. Outside the flat-band limit, the study
on the interacting spinless system [15,16] reveals a fractional
Chern insulator driven by a strong nearest-neighbor interac-
tion. Hence, a key question arises: Outside the flat-band limit,
are there general cases of Mottness-driven topological phases
in a spinful system? Such cases would provide an analog of
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FIG. 1. Hopping vectors and parameters for the Haldane Hamil-
tonian. Because of the complexified hopping, t ′ in Eq. (3), there is a
net magnetic flux in each triangle, which cancels out when averaged
over the hexagon.

a Mott insulator driven by the strong correlations but with
topological signatures, for example a nonzero Chern number.

To achieve our goal of finding a topological Mott insula-
tor, we put interactions into the spinful Haldane model [1]
of Chern insulators. In so doing, we uncover an overlooked
phase at 1/4-filling, which is a Mott insulator with a gap set
by the nontrivial topology of the Haldane model. Prior work
revealing inter-relations between Mott physics and topology
employed perturbative methods on models with spin-orbit and
Hubbard-type interactions [17–19], numerical methods on the
spinless and spinful [20–23] Haldane-Hubbard model, models
with band-touching in 3-dimensions [18] and even bosonic
systems [24]. Our paper here is focused on making exact
statements regardless of filling. Just as topological insulation
can be thought of as a completion of band structure by the
inclusion of spin-orbit coupling, our paper here on topological
Mott insulation away from half-filling is a natural outgrowth
of putting interactions into the spinful Haldane model. Recall
the spinful Haldane model has two spin-degenerate bands sep-
arated by a topological gap. Hence, at half-filling the system is
an insulator. Now consider including interactions specifically
repulsive interactions between spin-up and -down electrons.
The singly and doubly occupied states in each band are no
longer degenerate. For sufficiently large interactions, the dou-
bly occupied bands will be pushed up to high energy whereas
the singly occupied states in both the lower and upper Haldane
bands will remain fixed in energy. The gap between them is
wholly set by topology. Each of these bands now just has half
the number of electrons relative to the noninteracting case. At
1/4-filling, the chemical potential lies in the gap between the
two singly occupied bands resulting in an insulator. Since it is
the interactions that pushed half of the states to high energy,
the resultant state is a topological Mott insulator.

We prove this physics by considering two models, one
local in momentum space as in the Hatsugai-Kohomoto (HK)
model [25] and the other local in position, the Hubbard inter-
action. While these interactions are extremes of one another,
they both share a key ingredient. Namely, they both break the
local-in-momentum space Z2 symmetry of a Fermi surface.

That is, electrons on a Fermi surface are invariant [26,27] to
an interchange of particles and holes for a single spin species:
cp↑ → c†

p↑. Here, c†
pσ (cpσ ) creates (annihilates) an electron

with momentum p and spin σ . Interactions, in general, do
not preserve this symmetry and hence the breaking of the Z2

symmetry is a tell-tale sign that interactions are the root cause
of the well-known phenomenon of particle-hole asymmetry
[28–32] in the particle-addition and removal spectrum widely
observed in correlated electron systems. To further buttress
our previous arguments [27] that breaking this symmetry es-
tablishes a fixed point and hence the nature of the interactions,
which accomplishes this is irrelevant, we show that essentially
the same results obtain for the Hubbard as well as the HK
models. We show explicitly that interactions induce a topo-
logically nontrivial Mott insulating phase at quarter filling in
the Haldane model for both the HK and Hubbard models that
can be understood with the simple picture presented in the
previous paragraph. The advantage of the HK model is that
all the calculations can be performed analytically. Our result
then constitutes the example of an exact demonstration of a
topological phase driven by interactions. From the DQMC
calculations with the Hubbard interaction, we are able to
show that ferromagnetic correlation obtains in the quarter- and
three-quarter-filled Haldane-Hubbard model.

II. EXACTLY SOLVABLE MODEL FOR INTERACTING
CHERN INSULATORS

For spinful electrons, the Haldane model [1] with the hop-
pings designated in Fig. 1 takes a simple form

H =
∑
k,σ

[(ε+,k − μ)n+,kσ + (ε−,k − μ)n−,kσ ], (1)

in momentum space. Here n±,kσ is the number of electrons in
the Haldane upper (+) and lower (−) bands respectively, μ is
the chemical potential and

ε±,k = h0(k) ±
√

h2
x (k) + h2

y (k) + h2
z (k) (2)

with

h0(k) = −2t ′ cos ψ

[
3∑

i=1

cos(k · vi )

]
,

hx(k) = −t

[
3∑

i=1

cos(k · ei )

]
,

hy(k) = −t

[
3∑

i=1

sin(k · ei )

]
,

hz(k) = M − 2t ′ sin ψ

[
3∑

i=1

sin(k · vi )

]
, (3)

represent the Haldane upper and lower bands. As depicted
in Fig. 1, t and t ′ stand for the first- and second-neighbor
hopping respectively, ei and vi are the bonding vectors for
nearest neighbors and next-nearest neighbors respectively, M
is the Semenoff [33] mass. The hopping parameters are shown
in Fig. 1. As is well known [1], the half-filled system is
a topological insulator with Chern number C = ±2 (due to
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FIG. 2. Band structure for the Haldane-HK model in Eq. (4) with t ′/t = 0.1, ψ = −π/2, M = 0 at zero temperature. � ≈ 1.04t is the
noninteracting topological gap. W+(−) ≈ 2.48t correspond to the bandwidth of the Haldane upper (lower) band. Different phases evolve as
the interaction strength increases: (a) 1/2-filled topological insulator for � > U > 0 (U/t = 0.2), (b) a metal for W− � U � � (U/t = 1.5),
(c) 1/4-filled Mott insulator with nonzero Chern number for W− + W+ + � � U � W− (U/t = 4), and (d) 1/4-filled insulator for U > W− +
W+ + � (U/t = 7). The blue (or orange) color represents Chern number C = −1(or 1). The meshed band consists of only doubly occupied
states, while the unmeshed band is singly occupied.

spin degeneracy) when |M| < 3
√

3|t ′ sin ψ | or a topologi-
cally trivial insulator with Chern number C = 0 when |M| >

3
√

3|t ′ sin ψ |. Consequently, the gap between the degener-
ate spinful Haldane upper and lower bands is set by � =
min(6

√
3|t ′ sin ψ |, 2) for small t ′. The existence of nontrivial

topology at half-filling is also shared with the model studied
by Pesin and Balents [17].

We now introduce interactions in the spirit of HK interac-
tion [25,27,34] leading to the Hamiltonian

H =
∑
k,σ

[(ε+,k − μ)n+,kσ + (ε−,k − μ)n−,kσ ]

+ U
∑

k

(n+,k↑n+,k↓ + n−,k↑n−,k↓), (4)

describing interacting electrons in the Haldane model. The
primary role played by the interaction is to lift the Z2 symme-
try of the noninteracting Fermi surfaces. What this effectively
does is introducing Mottness in the form of singly occupied
states below the chemical potential. It is a simplicity of the
HK model that such strong correlation is introduced without
mixing the original noninteracting eigenstates. As a result,
momentum k is still a good quantum number and the Green
function can be written down immediately [34] as

G±,kσ (iωn) ≡ −
∫ β

0
dτ 〈c±,kσ (τ )c†

±,kσ (0)〉eiωnτ ,

G±,kσ (iωn → ω) = 1 − 〈n±,kσ̄ 〉
ω + μ − ε±,k

+ 〈n±,kσ̄ 〉
ω + μ − (ε±,k + U )

.

(5)

From the Green function, we see immediately the effect of the
correlations. Each of the lower ε−,k and upper bands ε+,k will
now be split into a singly and doubly occupied subband. Since,
there is already a topological gap at half-filling, in the pres-
ence of interactions as the doubly occupied bands move up in
energy, the singly-occupied bands can never get closer than
�. Hence, at quarter-filling, a gap obtains and the nontrivial
topology of the Haldane bands persists. It is the emergence
of 1/4-filled Mott insulating states in a system that has a

topologically engineered gap at half-filling that is the principal
conclusion of this paper. To see how this state of affairs plays
out, we plot the band structure in Eq. (5). As an example, we
set t ′/t = 0.1, ψ = −π/2, M = 0 without loss of generality
so that the Haldane lower (upper) band has a Chern number
C = −1(+1) for each spin and hence the noninteracting half-
filled system is a topological insulator with Chern number
C = −2. We use W+(−) for the bandwidth of the Haldane
upper (lower) band and � for the Haldane gap. For this
parameter set, W+ = W− > �. Turning on U now results in
four different phases for different interaction strengths, all
of which are shown in Fig. 2. The blue and orange bands
carry Chern C = −1 and C = 1, respectively. The interaction
U only affects bands with the same color, making the blue
and orange bands split into a singly occupied lower subband
(unmeshed) and doubly occupied upper subband (meshed).
However, the energy separation between the two unmeshed
orange and blue bands remains fixed. This leads to a non-
trivial interplay between topology and interaction strength. In
Fig. 2(a) when U is small, the noninteracting band structure
is mostly intact, and the system is a topological insulator
at half-filling with Chern number C = −2. Increasing U to
W− � U � � as shown in Fig. 2(b) leads to a conductor with
no gap for any density other than in the empty or full band
limits. Increasing U further to W− + W− + � � U > W−
as shown in Fig. 2(c), so that the two unmeshed singly oc-
cupied bands have no overlap with their doubly occupied
same-color meshed partners, results in a gap opening at 1/4-
and 3/4-filling. While it is interactions that lead to a splitting
of the bands, it is topology that dictates the separation between
the two unlike-colored bands (meshed or otherwise). Conse-
quently, the gap at 1/4- and 3/4-filling is set by the Haldane
gap �. The Chern number in either case is C = −1 and,
hence, this strongly correlated nonmetallic state is actually a
topological Mott insulator. Note at quarter-filling, the system
consists of only singly occupied states as a result of strong
correlation. We will resort to a Hubbard interaction to settle
the nature of the spin correlations. Now consider increasing
U further so that U > W− + W− + �. While the situation for
1/4- and 3/4-filling remains qualitatively unchanged, a gap
opens at half-filling and the system at this density becomes a
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topologically trivial Mott insulator with only singly occupied
states and Chern number C = 0. Although the features might
change quantitatively in Figs. 2(b) and 2(c) for intermediate
values of U with a different parameter set (t ′, ψ, M ), Fig. 2(d)
is generally true for all parameters. This means when the
correlation is strong enough, the system becomes an insulator
at 1/4- and 3/4-filling with Chern number C = C0/2 where
C0 is the Chern number at half-filling without interaction,
and a topologically trivial insulator at half-filling with C = 0.
Consequently, from the Hamiltonian Eq. (4), we are able to
analytically describe the transition from a metal to a quarter-
filled topological Mott insulator should U be the dominant
energy scale. This constitutes the analytically solvable model
for the onset of topological phases in the presence of interac-
tions. While Eq. (4) is in the parameters (t ′, φ, M)-dependent
Haldane orbital basis, it is also possible to write down an
analytically solvable Hamiltonian in sublattice basis that con-
tains essentially the same physics for strong interaction (see
Appendix). Due to its simplicity, we refer to Eq. (4) as
the analytically solvable Hamiltonian for interacting Haldane
electrons. Note in the previous paper, topologically induced
interacting phases emerged only in the flat-band limit [13,14].
Figure 2 illustrates that no such constraint is necessary for the
1/4 or 3/4-filled topological insulating phases. As a final note,
it is worth pointing out that topological states in the 1/4- and
3/4-filling in the Kitaev-Hubbard models [35] exist already in
the noninteracting system and are impervious to interactions.
What is new here is that the interactions induce a topological
Mott insulator at 1/4- and 3/4-filling without affecting any
details of the topology.

III. NUMERICAL STUDY
ON HALDANE-HOFSTADTER-HUBBARD MODEL

It is natural to ask whether these conclusions persist in
the more traditional Haldane-Hubbard model in which the
interactions result in the mixing of the momentum states.
Previous numerical studies [20–23,36,37] on the Haldane-
Hubbard model focused mostly on the half-filling cases and
showed a transition from a Chern insulator to a topologically
trivial Mott insulator. However, the region away from half-
filling has rarely been explored. The deep question arises: do
the 1/4- and 3/4-filled insulating states still appear when the
interaction term mixes the orbitals that comprise the Haldane
topological bands? The interaction used previously preserves
the Haldane basis and hence, all it can do is to move the
doubly occupied states up, keeping the distance between the
singly occupied (unmeshed) sectors the same. What we want
to show here is that the same essential conclusion is true for
the Hubbard model.

The Hamiltonian for the Haldane-Hofstadter-Hubbard
model is

H = −
∑
ijσ

ti,j exp(iφi,j)c
†
iσ cjσ − μ

∑
i,σ

niσ

+ M
∑

iA,iB,σ

(
niAσ − niBσ

) + U
∑

i

(
ni↑ − 1

2

)(
ni↓ − 1

2

)
,

(6)

where ti,j represents the nearest-neighbor hopping t (set to 1
as the energy scale) and next-nearest-neighbor hopping t ′e±iψ ,
iA(B) means the lattice sites in the A (or B) sublattice, as shown
in Fig. 1. Throughout this study, we set the Haldane phase
ψ = −π/2 without loss of generality. Due to the presence
of an external uniform magnetic field, we use the Peierls
substitution [38] to introduce the phase through the flux
threading,

φi,j = 2π

�0

∫ rj

ri

A · dl, (7)

where φ0 = h/e represents the magnetic flux quantum and the
integration is over the straight line path from site i to j. Here
we apply an external magnetic field to measure the Chern
number of the incompressible states at high temperature. As
we will see, all the notable features are present (and stronger)
for the smallest fluxes, thereby minimizing the effect of the
external field, which computationally reduces the finite size
effects [39] at low temperature.

We use the DQMC method [40–42] to simulate this model
on an Nsite = 6×6×2 cluster. The factor of 2 accounts for
the two sublattices in the honeycomb lattice. The modified
periodic boundary conditions in Ref. [43] are adjusted for
the honeycomb lattice [39]. The flux quantization condition
�/�0 = n f /Nc (with n f an integer and Nc the number of unit
cells) needs to be fulfilled for a single-value wave function.
We choose the symmetric gauge A = (xŷ − yx̂)B/2 for this
calculation. Due to the Fermionic sign problem, we focus on
the inverse temperature β = 3/t and vary other parameters
t ′, M,U .

To analyze the phases that emerge, we study the charge
compressibility

χ = βχc = β

N

∑
i,j

[〈ninj〉 − 〈ni〉〈nj〉], (8)

in the presence of Hubbard interactions, where χc is the charge
correlation function as a function of external flux φ/φ0. The
green features in Fig. 3 occur at integers satisfying the Dio-
phantine equation

〈n〉 = r
φ

φ0
+ s, (9)

in which 〈n〉 = 〈Ne〉/Nc, 〈Ne〉 means the total number of elec-
trons, r is an integer given by the inverse slope of the straight
lines, and s is the offset given by the intercept. r defines
the Chern number. Limited by the sign problem (see Ap-
pendix), we work at relatively high temperature of β = 3/t .
Figures 3(a) and 3(b) show the results for the compressibility
of the noninteracting system. The green lines represent the
leading minima in the charge compressibility and hence the
intercept at vanishing flux represents the incompressible states
at zero field. Note if we were to lower the temperature, a
panoply of quantum Hall states would emerge, which are
not relevant to the study here as we are focused on the true
zero-field features. As expected in the noninteracting case, the
slope vanishes unless the complexified hopping t ′ �= 0. In both
cases, the green line interpolates to an incompressible state at
half-filling, 〈n〉 = 2. For t ′ = 0.2, M = 0, once strong inter-
actions are turned on, new insulating states indicated by the
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FIG. 3. Compressibility χ as a function of magnetic flux and
electron density in a Nsite = 6×6×2 cluster for panel [(a)–(d)]. The
parameters are [for (a), (c), and (e)] t ′/t = 0.2, M = 0 and [for (b),
(d), and (f)] t ′/t = 0, M = 1. The first and second rows are for the
noninteracting and interacting (U/t = 12) systems, respectively. The
third row shows the spin correlation at different interaction strengths
U . Panel (g) shows the compressibility at low density for various
cluster sizes Nsite = L×L×2 under different magnetic fluxes as la-
beled. Panel (h) presents the Chern number extracted at different
cluster sizes with error bars. The temperature for all cases is β = 3/t .

valleys labeled by red lines in Fig. 3(c) appear. They connect
to 〈n〉 = 1 and 〈n〉 = 3, that is, 1/4- and 3/4-filling at zero
field. The slope of the red lines gives a Chern number C =
−1, while at 1/2-filling, the vertical green line gives C = 0
for a topologically trivial Mott insulator. For t ′ = 0, M = 1,
strong correlation also introduce new insulating states at 1/4-
and 3/4-filling, but all the insulating states have vanishing
Chern numbers as evidenced by the three vertical lines in
Fig. 3(d).

We now show that the dips in the charge compressibility
are nontrivial because they are correlated with peaks in the
spin correlation,

χs =
∑
m,n,r

Sm,n(r) = 1

N

∑
m,n,r

∑
im,in

〈
Sz

im+rSz
in

〉
, (10)

where m, n = A, B and r represents the vector delineating the
unit cell, shown in Figs. 3(e) and 3(f). At 1/4- and 3/4-filling,
we see distinct peaks in the spin correlation indicating a possi-
ble tendency for ferromagnetic alignment. From Fig. 3(c), we
see that the slope of ridge is also −1 from 1/4- and 3/4-filling.
It indicates that the spin correlation has a peak exactly at
the same place where the compressibility has a valley, as a
distinct signature of topological Mott insulator. This cannot
be an accident as it persists for all parameters studied as
long as t ′ �= 0. When t ′ = 0, vertical lines obtain signaling a
vanishing of the Chern number. Strictly speaking, in Figs. 3(c)
and 3(e) for a large U , what we observe is the precursor of
the quarter-filled incompressible states at high temperature.
Slightly lower temperature can be reached only at low density
and high field (see Appendix), showing a more explicit dip
to support the red line in Fig. 3(c). Indeed as restricted by
the Fermion sign problem, we would not be able to access
the ground state directly at zero temperature to measure the
bulk insulating gap. However, from Figs. 3(a) and 3(c), we
have demonstrated that the noninteracting topological edge
states at half-filling evolve into the topological Mott edge
states at quarter-fillings when U becomes large. In Fig. 3(g),
the compressibility across different system sizes collapse at
least in the density region covering the leading quantum Hall
effect (red line) in Fig. 3(c). The collapsed curve exhibits
negligible finite-size effects, leading to the same Chern num-
ber across different system sizes, shown in Fig. 3(h), with
the error bar from the respective compressibility measure-
ment. Consequently, our simulations are representative of the
thermodynamic limit. The corroboration of the Chern index
in the HK model is significant because a priori, there is no
reason to expect an interacting model in which momenta are
mixed (the Haldane-Hubbard model) to have the same Chern
numbers when the mixing is absent as in the Haldane-HK
model. This tells us that the Chern number is independent of
the momentum mixing and as a consequence, the Haldane-HK
Hamiltonian Eq. (4) accurately describes the ground state of
the strongly interacting system. This provides clear evidence
that the 1/4 − filled interacting Haldane model is a topolog-
ical Mott insulator as demonstrated in Fig. 2(d). This is the
major point of this paper.

We next focus on the physics at the zero-field limit.
Figures 4(a) and 4(b) represent the charge correlation
χc = χ/β as a slice through Figs. 3(c) and 3(d) respectively
at zero flux, φ/φ0 = 0. We see clearly that as the Hubbard
interaction increases, the features outlined by the red line in
Fig. 3(c) turn into distinct dips for both t ′ �= 0 and for the
topologically trivial case, t ′ = 0. This trend is more sharply
apparent in Fig. 4(b), however. This state of affairs obtains
because the Hubbard interaction mixes the Haldane basis for
t ′ �= 0, M = 0 but not the sublattice states generated from
t ′ = 0, M �= 0. Nonetheless, in both cases the dips in the
charge compressibility, which decrease as the temperature is
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FIG. 4. Charge [(a),(b)] and spin [(c),(d)] correlation at zero ex-
ternal magnetic flux for varying interaction strength, U in a Nsite =
6×6×2 cluster. Panels (a)–(d) share the same legend. The parameters
are [for (a), (c), (e), and (g)] t ′/t = 0.2, M = 0 and [for (b), (d),
(f), and (h)] t ′/t = 0, M/t = 1. The third and fourth rows show the
real-space zero-frequency spin susceptibility pattern at 1/4-filling
〈n〉 = 1 from the perspective of the A and B sublattices, respectively.
The temperature is β = 3/t for all panels.

lowered, are consistent with incompressible states at 1/4- and
3/4-filling. These dips in the charge compressibility are cor-
respondent with peaks in the spin correlation as demonstrated
in Figs. 4(c) and 4(d). In both (c) and (d), as U increases,
a peak in spin correlation develops at 1/4-(or 3/4-)filling
where a dip appears in the compressibility (charge correla-
tion). As remarked earlier this cannot be an accident and
lends further credence to the existence of a phase transition
at 1/4-(or 3/4-)filling. Note although a peak also appears at
half filling for large U = 8, 12 in both panels, it turns into a
dip at lower temperature since the half-filled system becomes
antiferromagnetic (see Appendix). Finally, to detail the spatial
dependence of the spin correlation at 1/4-filling, we calculate

the real-space zero-frequency spin susceptibility

Sm,n(r, ω = 0) = 1

N

∑
im,in

∫ β

0

〈
Sz

im+r(τ )Sz
in

(0)
〉
dτ, (11)

which is more sensitive to short-range fluctuating order at high
temperature than the equal-time spin correlation in Eq. (10).
We plot Sm,A(r, ω = 0) and Sm,B(r, ω = 0) in Figs. 4(e) and
4(g) respectively for t ′ �= 0, M = 0 and Figs. 4(f) and 4(h)
respectively for t ′ = 0, M �= 0. The topologically nontrivial
case, Figs. 4(e) and 4(g), reveals ferromagnetic correlations
on both sublattices. Note that the ferromagnetic insulating
state at 1/4-filling is different from the quantum Hall ferro-
magnetic states in Ref. [39] although they both come with
an odd-integer Chern number and a peak on spin correlation
at q = 0. Here the ferromagnetic insulator appears at zero
field and the correlation decays with increasing flux, shown
in Fig. 4(a), while the quantum Hall ferromagnetic states in
Ref. [39] requires finite magnetic flux and vanishes as the
flux decreases. In the topologically trivial case, we first note
a distinct difference between Figs. 4(f) and 4(h), implying
a lifting of the sublattice degeneracy. While Fig. 4(f) shows
ferromagnetism, Fig. 4(h) exhibits something more akin to a
spin-density wave.

To investigate this possibility further, we focus on the cor-
relations in momentum space defined as

χs(q, ω = 0)

=
∑
m,n

Sm,n(q, ω = 0)

=
∑
m,n

∑
r

Sm,n(r, ω = 0) exp[−iq · (r + �rm,n)]. (12)

This is displayed in Fig. 5. Specifically, we present
SB,B(q, ω = 0) and χs(q, ω = 0) in the first and second rows,
respectively. Figures 5(a) and 5(c) show that regardless of
the sublattice, the spin correlations are peaked at q = 0 when
t ′ �= 0, M = 0. In Fig. 5(e) as t ′ increases, the ferromagnetic
(q = 0) spin correlation is enhanced, while the correlation
at the K point K = (0, 4π/3

√
3a) dies out. Consequently,

only q = 0 ferromagnetism survives in the ground state of the
1/4-filled state. This phenomenon is essentially the same for
3/4-filled state and as a consequence not shown. Alternatively,
in the topologically trivial case, we find that within sublattice
B, Fig. 5(b) indicates that the spin susceptibility is peaked at
the K point and the symmetry related points in the Brillouin
zone, while the other components SA,A, SA,B and SB,B have
a peak at q = 0 (not presented). After summing over all the
components, we see that χs(q, ω = 0) in Fig. 5(d) reveals that
the contributions at the K point and the center of the Brillouin
zone are essentially equal at this temperature, given the short
range in the color bar. Figure 5(f) shows that as M increases,
the difference of spin correlation between the origin and K
point becomes smaller, thereby showing no tendency for any
particular order.

IV. EXPERIMENTAL REALIZATIONS

Ultracold atom systems provide a natural venue to search
for topological Mott physics due to the high degree of control
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FIG. 5. Zero-frequency spin susceptibility at quarter-filling. The
first and second rows show the spin susceptibility pattern in momen-
tum space SB,B(q, ω = 0) within the B sublattice and χs(q, ω = 0)
summing over all sublattices for different parameter sets: (a) t ′/t =
0.2, M = 0 and (b) t ′/t = 0, M = 1. In the third row, panels (e) and
(f) contain the zero-frequency spin susceptibility at q = 0 and q = K
as a function of t ′ (fixed M = 0) and M (fixed t ′ = 0), respectively.
The other parameters are U/t = 12 and β = 3/t for all panels.

over microscopic parameters they afford. In particular, such
systems have been used to realize the noninteracting Hal-
dane Hamiltonian including with spin mixtures [44]. Given
the flexibility of this platform to effect fermionic interactions
with tunable strength [45,46], a realization of the interacting
Haldane model is in principle feasible. In addition, single
layers of AFe2(PO4)2 (A=Ba,Cs,K,La) have been shown [47]
to be described by the Haldane model. However, because
the spin bands are nondegenerate at the single-particle level,
a pseudospin degree of freedom would be required to re-
alize topological Mott physics, such as that offered by the
three single-layer planes in the bulk unit cell. Finally we
note that several moiré systems have been predicted [48,49]
and observed [50] to exhibit quantum anomalous Hall phases
that map onto the spinless Haldane model. Stacking of two
strongly interacting but electrically isolated copies of these
superlattices, e.g., by twist decoupling or using a hexagonal
boron nitride spacer whose thickness is small compared to
the screening length, could also generate an effective layer

pseudospin capable of supporting Mott physics in the topo-
logical bands.

V. PHYSICAL INTERPRETATION: 4 = 1 + 1 + 1 + 1 �= 2 + 2

While there have been studies of the 1/4-filled Haldane-
Hubbard model previously [51,52], none have disclosed both
the topology and Mottness of that insulator. That quarter fill-
ing is ideally suited for Mottness follows from the 2-band
nature of the spin-degenerate bands in the Haldane model.
Consider a nontopological system containing 2 atoms per
unit cell. The ground state is now a band insulator in which
the lower band is filled. If interactions are now added to
this system, a Mott insulator ensues in the lower band at
1/4-filling of the lower band. It is for this reason that it
matters not the form of the interactions, local-in momentum
space or local-in real space, neither of which destroys the
underlying topology of the Haldane bands. All that matters
is that 4 = 1 + 1 + 1 + 1. In a standard Mott insulator, the
spectral weight at each k-point is split over two bands, the
upper and lower Hubbard bands. In the topological Haldane
model, each k − state is split over two bands. In the absence
of interactions, each k − state can be doubly occupied with
no energy cost, giving rise to 4 = 2 + 2 When interactions
are included, the singly and doubly occupied bands now have
distinct energies as indicated by the 4 poles in the Green
function, hence the equation 4 = 1 + 1 + 1 + 1 �= 2 + 2. The
standard Mott picture consists just of two bands. Now, how-
ever, 4 bands exist each with equal spectral weight. The two
lowest singly-occupied bands (unmeshed blue and orange in
Fig. 2) remain singly occupied with a fixed energy separation
of the topological gap �. As a result, the 1/4-filled state is
gapped with nontrivial topological signature, C = −1. It is for
this reason that the Hubbard-Haldane model yields the same
results because Mott insulation in the presence of topology
(at least that in the Haldane model) necessarily gives rise to 4
nondegenerate energy bands. Since these bands are inherently
in momentum space, the Mott insulation is more easily under-
stood in momentum space rather than in real space. At work
here, as we have demonstrated [27] all interactions break the
local-in momentum space Z2 symmetry of a Fermi liquid. The
HK interaction is the simplest one that does this and hence
suffices to explain the origin of topological Mott insulation.
Undoubtedly, extensions of this paper beyond the Haldane
model exist. Nonetheless, this paper provides a general frame-
work for thinking about this new state of matter.
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APPENDIX A: HAMILTONIAN
WITH INTERACTION-INDEPENDENT BASIS

The analytically solvable Hamiltonian in Eq. (1) of the
main text provides a simple model for the interacting Hal-
dane electrons. However, the interaction term has a simple
form (leading to the simple solution) only in the basis that
diagonalizes the noninteracting Hamiltonian. This means that
the interaction term depends on the choice of t ′, ψ , and M.
The natural question is whether or not it is possible to write
the interaction term in a similarly simple form independent of
basis without surrendering the essential solution outlined in
the text. The answer is yes. We can write the Hamiltonian as

H =
∑
k,σ

[(ε+,k − μ)n+,kσ + (ε−,k − μ)n−,kσ ]

+ U ′ ∑
k

(n+,k↑ + n−,k↑)(n+,k↓ + n−,k↓). (A1)

The quantity n+,kσ + n−,kσ is a trace in the Haldane orbital
space and is therefore independent of the orbital basis, that
is, the interaction term is the same for all combinations of
t ′, ψ , and M. This Hamiltonian is also analytically solvable,
since the interaction does not mix the original noninteracting
eigenstates. We can write the Green function as

G±,kσ (iωn → ω)

= 〈(1 − n+,kσ̄ )(1 − n−,kσ̄ )〉
ω − ε±,k

+ 〈(1 − n+,kσ̄ )n−,kσ̄ 〉 + 〈(1 − n−,kσ̄ )n+,kσ̄ 〉
ω − (ε±,k + U ′)

+ 〈n+,kσ̄ n−,kσ̄ 〉
ω − (ε±,k + 2U ′)

= 〈(1 − n+,kσ̄ )(1 − n−,kσ̄ )〉
ω − ε±,k

+ 〈n+,kσ̄ 〉 + 〈n−,kσ̄ 〉 − 2〈n+,kσ̄ n−,kσ̄ 〉
ω − (ε±,k + U ′)

+ 〈n+,kσ̄ n−,kσ̄ 〉
ω − (ε±,k + 2U ′)

.

At zero temperature with a large enough U ′ (U ′ > W+ +
W− + �), for each k, the state with the same spin would be
filled up first to avoid the cost of interaction energy. After that,
the state with opposite spin would start to be filled with the
interaction energy cost of 2U ′. In this sense, the band structure
would be similar to that for the Hamiltonian in Eq. (1) of the
main text if U = 2U ′. Choosing the same example parameter
set t ′ = 0.1, ψ = −π/2 and M = 0 (W+ + W− + � = 6), we
plot the band structure in Fig. 6 (setting U ′ = 8). The system
is a topological Mott insulator at 1/4- (or 3/4-) filling and
a topologically trivial Mott insulator at 1/2-filling. The band
structure is almost the same as that in Fig. 2(d) of the main
text if U = 2U ′ = 16. The only difference is that in Fig. 6 for
Hamiltonian Eq. (A1), once the lowest band is filled up, the
states of the second lowest band are fixed with no degeneracy.
For each k, the state contains the same spin as that in the
lowest band with the same momentum. In Fig. 2(d) of the
main text, the degeneracy of the second lowest band remains

FIG. 6. Band structure for the generalized Haldane-HK model in
Eq. (A1) with t ′/t = 0.1, ψ = −π/2, M = 0, and U ′ = 8 > W+ +
W− + �. � = 6

√
3t ′ sin ψ is the noninteracting topological gap.

W+(−) correspond to the bandwidth of the Haldane upper (lower)
band. The blue (or orange) color represents Chern number C =
−1(or 1). The meshed band consists of only doubly occupied states,
while the unmeshed band is singly occupied.

with a full lowest band. In short, we construct a Hamiltonian
Eq. (A1) for interacting Haldane electrons independent of
basis and containing essentially the same physics as Eq. (1)
of the main text under strong correlation.

APPENDIX B: DETERMINANTAL QUANTUM
MONTE CARLO SIMULATION FOR THE

HALDANE-HUBBARD MODEL

The determinantal quantum Monte carlo (DQMC) simu-
lation conducted for Haldane-Hofstadter-Hubbard model is
similar to that for the single-band Hubbard model [40–42].
The only difference is the use of complex number for physical
quantities due to the complex second neighbor hopping and
the Peierls phase.

FIG. 7. Average DQMC sign as a function of density for t ′=0.2,

M = 0,U = 12, and β = 3 at zero magnetic flux.
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FIG. 8. The compressibility as a function of density for φ/φ0 =
16/36 at different inverse temperatures β = 3, 4, 5.

FIG. 9. Zero-frequency spin susceptibility at half-filling for the
topologically nontrivial case t ′ = 0.2, M = 0. The left and right
columns show the susceptibility at the temperature β = 3/t and β =
5/t , respectively. The first row features Sm,B(r, ω = 0) (m = A,B) in
real space. The second and third rows display SB,B(q, ω = 0) and
SA,B(q, ω = 0) in momentum space, respectively. The interaction
strength is U/t = 12 and the smallest magnetic flux φ/φ0 = 1/36
is applied for all panels.

FIG. 10. Zero-frequency spin susceptibility at half-filling for the
topologically trivial case t ′ = 0, M = 1. The left and right columns
show the susceptibility at the temperature β = 3/t and β = 5/t re-
spectively. The first row displays Sm,B(r, ω = 0) (m = A,B) in real
space. The second and third rows show SB,B(q, ω=0), SA,A(q, ω=0)
and SA,B(q, ω = 0) in momentum space, respectively. The interaction
strength is U/t = 12 and the smallest magnetic flux of φ/φ0 = 1/36
is applied for all panels.

DQMC suffers from a fermionic sign problem when turn-
ing on the Hubbard interaction in the Haldane-Hubbard
model. The Hubbard-Stratonovich transformation is not
SU(2) symmetric so that the half-filling has a better sign
problem. Generally, the average sign decays exponentially as
the interaction strength increases or temperature decreases,
leading to the exponential increase on the necessary number
of measurements to bring down the error bar. For this reason,
we are restricted at a relatively high temperature β = 3 while
working with a large U = 12. The average sign varies largely
along with the density, as shown in Fig. 7.
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We discretize the imaginary time β into L slides with
�τ = 0.1. We conduct 10 000 warmup sweeps and 200 000
measurement sweeps (10 measurements per sweep) at each
Markov chain. We scan the chemical potential from −10 to
10 (about 160 values) to obtain the density dependence of
physical quantities. Depending on the sign problem in Fig. 7
(little change under finite magnetic field), we use different
numbers of Markov chain to bring down the error bar. 40
Markov chains are for the worst case around 〈n〉 = 1.5, 2.5.
We use equal-time and unequal-time measurement to produce
Figs. 3 and 4(a)–4(d), and unequal-time measurement for
Figs. 4(e)–4(h) and 5, of the main text.

APPENDIX C: LOWER TEMPERATURE

The sign problem shown in Fig. 7 prevents us from getting
reliable results at lower temperature for all densities. How-
ever, under high field where the density is low but enough to
cover the interested region, we can carry out the calculation
to a lower temperature, as shown in Fig. 8. As temperature
decreases, the dip representing the anomalous quantum Hall
effect from 1/4-filling becomes clearer.

APPENDIX D: ANTIFERROMAGNETISM
IN THE HALF-FILLED SYSTEM

To explore the structure of spin correlation at half filling,
the middle peak of Figs. 4(c) and 4(d) in the main text, we
calculate the zero-frequency spin susceptibility in real and
momentum space,

Sm,n(r, ω = 0) = 1

N

∑
im,in

∫ β

0

〈
Sz

im+r(τ )Sz
in

(0)
〉
dτ, (D1)

Sm,n(q, ω = 0) =
∑
m,n

∑
r

Sm,n(r, ω = 0)

× exp[−iq · (r + �rm,n)]. (D2)

The results are shown in Fig. 9 for the topologically nontrivial
case (t ′ = 0.2, M = 0) and Fig. 10 for the topologically trivial
case (t ′ = 0, M = 1) at β = 3/t and β = 5/t . Note that the
smallest magnetic flux φ/φ0 = 1/36 is applied to reduce the
finite size effects at lower temperature, and hence the conclu-
sion can be extrapolated to zero field. In Fig. 9, the first row
features Sm,B(r, ω = 0) (m = A, B) indicating that antiferro-
magnetism develops as the temperature decreases. For strong
antiferromagnetism, the spin correlation should be ferromag-
netic in the intrasublattice components and antiferromagnetic
in the intersublattice components with the same amplitude.
Therefore, we show SB,B(q, ω = 0) and SA,B(q, ω = 0) in
the second and third rows, respectively. At β = 3/t , indeed
SB,B(q, ω = 0) is ferromagnetic and SA,B(q, ω = 0) is an-
tiferromagnetic. But the amplitude yields |SA,B(q = 0, ω =
0)| < |SB,B(q = 0, ω = 0)| leading to a residual q = 0 con-
tribution in the total spin correlation corresponding to the
middle peak in Fig. 3(c) in the main text. However, at a
lower temperature β = 5/t , the amplitude becomes compa-
rable |SA,B(q = 0, ω = 0)| ≈ |SB,B(q = 0, ω = 0)|, resulting
in a vanishing q = 0 component for the total spin cor-
rection, as expected for antiferromagnetism. The situation
is similar for the topologically trivial case in Fig. 10 ex-
cept that now we are comparing the amplitude |SA,B(q =
0, ω = 0) + SB,A(q = 0, ω = 0)| and |SA,A(q = 0, ω = 0) +
SB,B(q = 0, ω = 0)| due to the lifting of the sublattice degen-
eracy. Similarly, SA,B(q = 0, ω = 0)=SB,A(q = 0, ω = 0) for
symmetry reasons.
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