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Topological multicritical point in the Toric Code and 3D gauge Higgs Models
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2California Institute of Technology, Pasadena, California 91125, USA

3 Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003, USA

(Dated: April 20, 2008)

We report a new type of multicritical point that arises from competition between the Higgs and
confinement transitions in a Z2 gauge system. The phase diagram of the 3d gauge Higgs model has
been obtained by Monte-Carlo simulation on large (up to 603) lattices. We find the transition lines
continue as 2nd-order until merging into a 1st-order line. These findings pose the question of an
effective field theory for a multicritical point involving noncommuting order parameters. A similar
phase diagram is predicted for the 2-dimensional quantum toric code model with two external fields,
hz and hx; this problem can be mapped onto an anisotropic 3D gauge Higgs model.

PACS numbers:

Introduction. Topological quantum phases and anyons
are well known in connection with the fractional quantum
Hall effect, but they are also expected to exist in frus-
trated magnets. It has long been proposed that a certain
class of resonating-valence-bond (RVB) [1] phases carries
Z2-charges and vortices and has a four-fold degenerate
ground state on a torus [2]. A qualitative understand-
ing of this phase can be obtained from a so-called toric

code model (TCM) [3]. The dimer model on the Kagome
lattice is mapped onto the TCM exactly [4] while some
other models [5, 6] belong to the same universality class.

The TCM is defined in terms of spin-1/2 degrees of
freedom located on the bonds of an arbitrary 2d lattice.
The Hamiltonian is as follows:

HTC = −Jx

∑

s

As − Jz

∑

p

Bp, (1)

where As =
∏

j∈s σx
j and Bp =

∏
j∈p σz

j are products of
spin operators (σα

j are the Pauli matrixes) on the bonds
incident to a lattice site s and on the boundary of a pla-
quette p, respectively. The ground state corresponds to
eigenvalues As = 1, Bp = 1 for all s and p. On a surface
of genus g, it is 4g-fold degenerate. Elementary excita-
tions are characterized by eigenvalues As = −1 (a Z2

charge on site s) and Bp = −1 (a Z2 vortex on plaquette
p); all excitations are gapped. Each type of quasiparticle
is bosonic, but due to nontrivial mutual braiding, they
must be jointly regarded as Abelian anyons.

The Hamiltonian (1) has special properties related to
its exact solvability: the two-point correlator vanishes
and the quasiparticles have flat dispersion. These fea-
tures do not survive a small generic perturbation, while
the topological character of the ground state and the any-
onic quasiparticle statistics are robust. Yet a sufficiently
strong field can polarize the spins, driving a transition
to the topologically trivial phase. Trebst at al [7] stud-
ied a perturbation of the form −h

∑
b σz

b and solved the
problem by reducing it to the 2d transverse-field Ising

model, which is mapped to an anisotropic 3d classical
Ising model. In this paper we consider a more general
Hamiltonian:

HQ = HTC − hx

∑

b

σx
b − hz

∑

b

σz
b , (2)

where b runs over the bonds of a square lattice and HTC is
given by Eq. (1). Note that the fields hx and hz induce
different types of phase transition. The term with hz

creates virtual pairs of Z2 charges, which condense when
the field strength exceeds a certain threshold. This phe-
nomenon may be described as a Higgs transition, or as
vortex confinement. By duality, the field hx causes the
condensation of vortices and charge confinement. The
competition of the two terms should result in an inter-
esting phase diagram, which is the subject of this paper.

We approach the problem by reducing the quantum
Hamiltonian to a classical anisotropic Z2 gauge Higgs
Hamiltonian on a three-dimensional cubic lattice; see
Eq. (5) below. We expect the phase diagram to be qual-
itatively similar to that for the isotropic case, i.e., model
M3,2 as defined by Wegner [8]. Monte-Carlo simulations
have been performed for the latter model because it is
more amenable to numerics. Some properties of the
phase diagram in the isotropic case were predicted by
Fradkin and Shenker [9]. In particular, the topological
phase is bounded by second-order lines corresponding to
charge condensation (for hx ≪ hz ∼ Jx, Jz) and vor-
tex condensation (for hz ≪ hx ∼ Jx, Jz), but the two
condensate phases are continuously connected. For the
quantum Hamiltonian (2), a connecting path is realized
by increasing hz so as to polarize the spins in the z di-
rection, rotating the field in the xz-plane, and decreasing
it again. However, the two phase transitions are clearly
different, therefore the corresponding lines cannot join
smoothly.

A previous numerical study involving 103 sites by
Jongeward, Stack, and Jayaprakash [10] showed the two
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lines merge into a first-order line that partially separates
the charge and vortex condensates, and suggested the
2nd-order lines might become 1st-order before merging.
As discussed below, our data for larger systems (up to
603 sites) do not confirm this conjecture. Thus, the
point where all three lines meet is likely to be a novel
type of multicritical point. Note that each of the 2nd-
order transitions can be characterized by an Ising-type
order parameter, i.e., the amplitude of the corresponding
condensate. The two parameters must somehow coexist
though they are incompatible at the classical level due
to the nontrivial braiding between charges and vortices.
(ie., the kinetic terms describing the charge and vortex
transport do not commute.)

The reduction to a classical problem. The Hamilto-
nian (2) is not gauge-invariant, but it can be mapped to a
Z2 gauge theory by introducing a dummy spin variable µs

(“matter field”) at every site, but only considering states
|Ψ〉 such that µx

s |Ψ〉 = |Ψ〉. This constraint is a proto-
type of the gauge-invariance condition, µx

sAs|Ψ〉 = |Ψ〉,
which says that flipping the spin on a site and all incident
bonds does not change the state. To turn one constraint
into the other, we apply the transformation:

σz
uv → µz

uσz
uvµz

v, σx
uv → σx

uv,

µz
s → µz

s, µx
s → µx

sAs,
(3)

where σuv belongs to the bond connecting sites u and v.
Then, the Hamiltonian becomes:

H = −Jx

∑

s

µx
s − Jz

∑

p

Bp − hx

∑

b

σx
b

−hz

∑

uv

µz
uσz

uvµz
v. (4)

Note that in the first term we have replaced As by µs

using the gauge-invariance condition, µx
sAs ≡ 1.

We now map this 2-d quantum Hamiltonian onto a
(2+1)-d classical one. The overall scheme is standard
[11], but some care should be taken to preserve the
gauge invariance. We let ∆τ = β/n, and approximate
the quantum partition function Z = Tr[exp(−βH)P ] by
Tr[exp(−∆τ Hx)P exp(−∆τ Hz)]

n, where P is the pro-
jector onto the gauge-invariant subspace and Hx, Hz are
the terms in the quantum Hamiltonian that depend on
σx

b , µx
s and σz

b , µz
s, respectively. This expression can be

written as a classical partition function on a cubic lat-
tice. The classical variables σb,t, µs,t = ±1, in each time
slice t, correspond to σz

b and µz
s respectively. But when

we change from 2d to 3d, new vertical bonds (along the
time direction) appear. The classical spins on the vertical
bonds between two time slices correspond to a choice of
term in the expansion of P =

∏
s

(
1
2 (1 + µx

sAs)
)
. Thus

we arrive at this classical Hamiltonian:

HC = −
∑

uv

λ
||,⊥
bondµuσuvµv −

∑

p

λ
||,⊥
pl

∏

j∈p

σj ; (5)

λ
||
bond = −

1

2
ln tanh J̃x − vertical bonds; (6a)

λ⊥
bond = h̃z − horizontal bonds; (6b)

λ
||
pl = −

1

2
ln tanh h̃x − vertical plaquettes; (6c)

λ⊥
pl = J̃z − horizontal plaquettes, (6d)

where J̃x = Jx∆τ , J̃z = Jz∆τ , h̃x = hx∆τ , h̃z = hz∆τ .
This model is an anisotropic generalization of the Z2

gauge Higgs model [9].
As a final step, we eliminate the redundancy by fixing

µs. This only changes the classical partition function by
a constant factor since Hamiltonian (5) can be written in
terms of the gauge-invariant variables Suv = µuσuvµv:

H̃C = −
∑

b

λ
||,⊥
bondSb −

∑

p

λ
||,⊥
pl

∏

j∈p

Sj. (7)

More detailed calculations show that the quantum and
classical partition functions are related by

Z =
(

1
2 sinh(2J̃x)

)k/2 (
1
2 sinh(2h̃x)

)m/2

Z̃C , (8)

where k and m are the number of vertical bonds and
plaquettes, respectively.

Of course, Eq. (8) holds only in the limit ∆τ → 0.
However, we take the liberty of parametrizing the general
classical Hamiltonian (7) by J̃x, J̃z, h̃x, h̃z, even though
the corresponding quantum problem may not be defined.
In the isotropic case, two parameters will suffice:

H̃C = −λbond

∑

b

Sb − λpl

∑

p

∏

j∈p

Sj , (9)

where λbond = h̃z, λpl = − 1
2 ln tanh h̃x. This model is

equivalent to the isotropic Z2 gauge Higgs model [9] and
in what follows we compute its phase diagram.

Phase diagram in the isotropic case. At λbond = 0 all
configurations, including ground states, have the same
degeneracy factor 22N . The actual physical variables
in this limit are plaquette numbers Np =

∏
j∈p Sj , and

the model itself is dual to the 3D classical Ising model
(Eq. (9) is also known as the 3D Ising gauge theory [8]).
Using high-accuracy results of Ref. [12] for the critical
point and the duality relation λpl = −1/2 ln tanh(J/T ),

where J is the Ising exchange coupling, we obtain λ
(c)
pl =

0.7614125.
At arbitrary values of λbond and λpl the model is self-

dual [13], i.e. it maps to itself under the coupling con-
stant transformation λbond,pl → −1/2 ln tanh(λpl,bond).
This means that the phase diagram has a symmetry, or
self-duality, line defined by λbond = −1/2 ln tanh(λpl).
Under the duality mapping (λbond = 0, λpl =
0.7614125) → (λbond = 0.221655, λpl = ∞), which gives
us two Ising-type critical points on the phase diagram.
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To calculate the rest of the phase diagram we per-
formed Monte Carlo simulations using standard single-
spin flip updates, supplemented by rare (once per N2 up-
dates) flips of all spins belonging to bonds cut by planes
oriented along any one of the crystal axes, or along any of
the diagonals to these axes. There are 9N possible planes
satisfying this condition, and we select any of them at
random. The plaquette energy (second term in (9)) is
conserved by this update. To determine the 2nd-order
critical lines, we employed a standard finite-size scaling
analysis of the specific heat Cv, for linear system sizes
N = 24, 36, 48, and 60 (ie., for 3N3 spins). First-order
critical points were identified and located using energy
distributions. These distributions are bi-modal (have two
maxima) for the first-order transitions and single-modal
otherwise. We thermalized our samples for up to 106 MC
sweeps (one sweep having 3N3 elementary updates). The
data were accumulated for ∼ 4 × 108 MC sweeps.

The resulting phase diagram is presented in Fig.1. The
first-order transition coinciding with the self-duality line
was observed for 0.2575(5) > λbond > 0.22635(5). Out-
side of this interval we saw no bi-modal structure in the
energy distribution for system sizes up to N = 60. The
inset of Fig.2 shows the evolution of the energy distri-
bution function along the self-dual line. Even when the
bi-modal structure is observed it is extremely weak, de-
veloping only for large N , and the distribution can be
sampled in the minimum without flat-histogram or sim-
ilar reweighting techniques.

0.65 0.70 0.75 0.80 0.85 0.90
0.00

0.10

0.20
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0.40
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self-duality line
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λpl

λbond

λpl

(I)(II)

(III)
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(2)

FIG. 1: (color online). The phase diagram of the Hamilto-
nian (9). Circles correspond to the second-order transitions
(open and filled symbols are related by the duality transfor-
mation). Filled squares describe the first-order self-dual tran-
sitions. Bold and dashed lines are used to guide an eye and
correspond to the 1st- and 2nd-order transitions, respectively.
The phases are: (I) - topological phase; (II) - topologically dis-
ordered phase; (III) - magnetically ordered phase. In inset (a)
we show the region where all phases meet each other. In inset
(b) we show three alternative ways of connecting the lines.

As noted above, these results conflict with previous

MC simulations in Ref. [10], who suggest the 1st-order
line splits into two 1st-order lines. The inset (a) of Fig.1
shows a closeup of the controversial region. Though we
were able to resolve critical points with an accuracy of at
least three digits, we observed no splitting of the self-dual
1st-order line into two 1st-order transitions. We also find
no evidence for tri-critical points on the Ising-type lines
as long as we can resolve two separate transitions. There
remains a tiny parameter range between the apparent
disappearance of the bi-modal distribution on the self-
dual line (this disappearance probably due to our limited
system size) and two resolved 2nd-order transitions.
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(1) Emax

(2)

along self-duality line

0.2274

λbond

FIG. 2: (color online). The distance between two maxima
in bi-modal energy distributions along the self-duality line for
N = 60 as a function of λbond. The inset shows examples of
the energy distributions at various values of λbond.

To probe the behavior in this tiny parameter range we
need a different approach. We therefore scanned energy
distributions at 30 points (N = 48) along the line perpen-
dicular to the self-duality line right in the questionable re-
gion (short solid line in the inset (a)). If the 1st-order line
were to split above the scan, the third maximum would
have to emerge in the energy distribution right between
the two maxima we observe on the self-dual line - imply-
ing that the energy maxima on the self-dual line could not
merge smoothly, and right below the split, three maxima
would have to be seen in the energy distribution. How-
ever all distributions along the scan were found to have
only one peak. It is also clear from the main part of
Fig.2 that on the self-duality line, the energy maxima
approach each other and merge continuously as λbond in-
creases. The curves presented in Fig.2 follow a power
law near the vanishing point, with corresponding critical
exponent ∼ 0.55.

We thus conclude that the split 1st-order scenario does
not work. Instead there are three possibilities. Either
all three lines merge at one point (case (1) in the in-
set (b), Fig.1); or the 1st-order line ends before or after

the point where two 2nd-order lines touch the self-dual
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line (cases (2) and (3) in the inset (b), Fig.1). Unfor-
tunately our data cannot distinguish between the alter-
natives because the 2nd-order lines seem to touch at ex-
tremely small (possibly zero) angle. Formally, option (2)
fits the data best. Theoretically, the last two scenarios
are less demanding since they fit the existing theory of
phase transitions (our data suggest that the 2nd-order
transitions cannot merge into a single smooth curve and
form a kink at the self-dual line). We are not aware of
any effective theory leading to the first scenario.

Phases. Using the two correspondence equations

h̃z = −
1

2
ln tanh(J̃x) = λbond; (10a)

J̃z = −
1

2
ln tanh(h̃x) = λpl, (10b)

we can reformulate the phase diagram Fig.1 in terms of
the renormalized parameters J̃x, J̃z, h̃x and h̃z of the
TCM. The resulting phase diagram in terms of the ex-
ternal fields is presented in Fig.3. Let us go through the
phases in this Figure.

0.00 0.10 0.20
0.00

0.10

0.20

hx

hz

self-duality line

(I) (III)

~

~

(II)

FIG. 3: (color online). The phase diagram Fig.1 in terms of

the renormalized external fields, h̃x = hx∆τ and h̃z = hz∆τ ,
of the model (2). The phases (I), (II) and (II) are the same
as in Fig.1.

The phase (I) corresponds to the topological phase of
the model (2) (the “free charge” phase of the isotropic
Z2 Higgs model (HM), [9]). In this phase the system
tends to have all Bp = 1 and As = 1 and a realization
of such a state is obviously not unique. The plaque-
ttes with Bp = −1 (magnetic vortices) and vertices with
As = −1 (electric charges) appear mainly in the vicin-
ity of the critical lines between the phases (I) and (II)
(vortices) and (I) and (III) (charges). The phase (III)
may be called “magnetically ordered” since the spins are
mostly polarized in the z-direction. However, 〈σz〉 also
has nonzero value everywhere in the phase diagram. The

true order parameter may be written as 〈µz〉 using the
gauge-symmetrized Hamiltonian (4). A non-zero value
of this parameter results in the confinement of magnetic
vortices (no free vortices) and the condensation of elec-
tric charges. In the HM this is the “Higgs” phase. The
phase (II) is characterized by a dual order parameter
related to 〈σx〉, which can be defined by rewriting the
Hamiltonian in different variables. Its nonzero value re-
sults in non-conservation of total magnetic “charge” and
condensation of magnetic vortices while electric charges
are confined (no free charges). This phase corresponds
to the “confinement” phase of the HM. The transition
between the phases (II) and (III) is accompanied by a
sharp change in the number of vortices and charges, cor-
responding to a “liquid-gas” type transition. The self-
duality symmetry reflects the symmetry between charges
and vortices.

Summary. The topological phase of the toric code
model (the “free charge” phase of the 3d gauge Higgs
model) remains stable in a rather wide range of fields
and breaks down via two Ising type transitions whose
critical lines meet with the 1st-order one corresponding
to a liquid-gas type transition. The 1st-order line either
meets with two 2nd-order lines in one multicritical point,
or terminates before or after the point where two 2nd-
order lines touch the self-duality line. The construction
of an effective field theory for this multicritical region is
an interesting open problem.

We thank E. Fradkin, B. Svistunov, S. Trebst, M.
Troyer, I. Affleck, and K. Shtengel for discussions. We
are also indebted to M. Berciu and J. Heyl whose research
clusters were used to perform our MC simulations.
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