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Topological optical differentiator
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Optical computing holds significant promise of information processing with ultrahigh speed

and low power consumption. Recent developments in nanophotonic structures have gener-

ated renewed interests due to the prospects of performing analog optical computing with

compact devices. As one prominent example, spatial differentiation has been demonstrated

with nanophotonic structures and directly applied for edge detection in image processing.

However, broadband isotropic two-dimensional differentiation, which is required in most

imaging processing applications, has not been experimentally demonstrated yet. Here, we

establish a connection between two-dimensional optical spatial differentiation and a non-

trivial topological charge in the optical transfer function. Based on this connection, we

experimentally demonstrate an isotropic two-dimensional differentiation with a broad

spectral bandwidth, by using the simplest photonic device, i.e. a single unpatterned interface.

Our work indicates that exploiting concepts from topological photonics can lead to new

opportunities in optical computing.
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O
ptical computing, which exploits the propagation of light
for computing purposes, has been of interests for many
decades due to the potential of performing computation

at high speed and low power consumption1,2. In particular,
Fourier optics setups have been widely explored for performing
many of the computations that are useful for image processing3–6.
These setups, however, are generally rather bulky. In recent years,
there is a renewed interest in optical computing thanks to the
developments of on-chip silicon photonic circuits and nano-
photonic structures, which enable optical computing with devices
that are far more compact compared with their conventional
counterparts7–12.

A prominent example of optical computing is the spatial dif-
ferentiation operation, which is useful for edge detection in image
processing13. There have been substantial efforts in the past
several years on the theoretical design of various nanophotonic
structures for spatial differential operation in either one14–24 or
two dimensions25–28. Most of the experimental demonstrations,
however, are restricted to one-dimensional differentiation29–37.
There are two recent reports of two-dimensional differentiation
using a photonic crystal structure38 and a multilayer absorber39.
However, the photonic crystal differentiator does not provide an
isotropic operation, since doing so requires an elaborated design
of the structure25. Furthermore, both of the methods operate only
in a relatively narrow spectral bandwidth, since they both rely
upon the use of optical resonances.

In this paper, we show that some of the concepts in the field of
topological photonics can be applied in optical computing for the
purpose of achieving broadband isotropic two-dimensional dif-
ferentiation. To achieve two-dimensional differentiation, by the
definition of differential operator, the transfer function of the
device should exhibit an isolated zero in the wavevector space.
Since the transfer function is in general complex, such an isolated
zero should generically carry a topological charge40. Here we
show that such a topological charge of ±1 can be straightfor-
wardly achieved in a cross-polarization setup of reflection at a
dielectric interface. Moreover, an isotropic transfer function with
such a topological charge can be generated by adjusting experi-
mental parameters. As a result, we provide an experimental
realization of isotropic two-dimensional differentiation over a
broad spectral band based on mere reflection from a flat surface.
Different from the work which uses topological states for one-
dimensional transfer functions11, we directly construct a topo-
logical charge in two-dimensional transfer functions to engineer
the functionality of device.

Results
Theory. Our setup is based on reflecting an incident polarized
beam from a flat surface and subsequently analyzing the reflected
beam with a polarizer, as schematically shown in Fig. 1. We
define the beam profile in terms of coordinates x and y that are
perpendicular to the beam propagation direction, with axes x and
y being parallel and orthogonal to the plane of incidence,
respectively. For an incident (reflected) plane wave propagating
along the beam propagation direction, its electric field compo-
nents along the x (−x) and y directions correspond to the p and s
polarizations, respectively. In the paraxial regime, the incident
beam has the form einSin x; yð Þ, where a 2-vector ein in the x–y
plane describes the input polarization, and Sin x; yð Þ describes the
scalar electric field distribution on the plane perpendicular to the
beam propagation direction. By the spatial Fourier transform, the
incident field can be decomposed into spatial frequency compo-
nents through

Sin x; yð Þ ¼
Z Z

~Sinðkx; kyÞ expðikxxÞ expðikyyÞdkxdky; ð1Þ

where all wavevector components have the same polarization ein.
Because of the continuous condition of the tangential wavevector
along the interface, the incident spatial frequency component
with ðkx; kyÞ in the incident plane only generates the reflected

spatial frequency component with the same ðkx; kyÞ in the output

plane. At each ðkx; kyÞ, the reflected wave has an electric field

eErefðkx; kyÞ ¼ Rðkx; kyÞ � ein~Sinðkx; kyÞ; ð2Þ

where Rðkx; kyÞ is a 2 × 2 matrix. In general, the reflected waves

can have different polarizations at different wavevectors. The
reflected beam passes through a polarizer selecting an output
polarization eout, resulting in an output electric field
Eout ¼ eoutSout x; yð Þ, where Sout x; yð Þ is a scalar field that
describes the field distribution on the output plane, which is
perpendicular to the propagation direction of the reflected beam.
Here, we note that the coordinates x and y for Sin x; yð Þ and
Sout x; yð Þ are defined in the reference planes for the incident and
reflected beams, respectively. Similar to Eq. (1), we denote
~Soutðkx; kyÞ as the spatial Fourier spectrum of Sout x; yð Þ. The

entire reflection process is then described by
~Soutðkx; kyÞ ¼ rðkx; kyÞ~Sinðkx; kyÞ, where the scalar transfer func-

tion rðkx; kyÞ ¼ e
y
outRðkx; kyÞein. In this case, based on the

reflection-induced k-dependent polarization variation, our setup
performs nonlocal spatial filtering.

In order to achieve edge detection, we require that

Sout x; yð Þ ¼ D̂Sin x; yð Þ, where D̂ is a differential operator. For

example, D̂ can be a Laplacian38, D̂ ¼ ∂
2
x þ ∂

2
y , corresponding to a

transfer function rðkx; kyÞ ¼ k2x þ k2y in the wavevector space.

However, a wide variety of other differential operators can also be
used for edge detection purposes. By definition, in order to
achieve differential operations, the transfer functions has to have
rðkx ¼ 0; ky ¼ 0Þ ¼ 0. (Here kx= ky= 0 corresponds to the

direction of the beam propagation, with an incident angle θ0.)
In our setup, one can straightforwardly achieve rðkx ¼ 0; ky ¼
0Þ ¼ 0 by choosing the appropriate input and output polariza-
tions such that

e
y
outRðkx ¼ 0; ky ¼ 0Þein ¼ 0: ð3Þ

x

y

ein

x

y

Fig. 1 Schematic of the experimental setup, where an incident beam with

polarization ein is reflected by an interface, and then passes through a

polarizer which selects a linear polarization with an orientation angle γ.

This setup performs an isotropic two-dimensional spatial differentiation,

and can generate an output beam with an orbital angular momentum of ±1

with an input Gaussian beam. x and y are the beam profile coordinates for

the incident and reflected light, which share the same origin on the

interface.
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Below we refer to the condition of Eq. (3) as the cross-
polarization condition. When this condition is satisfied, the
transfer function in the vicinity of kx= ky= 0 has the generic
form (Here, we use similar notations following those in ref. 34, see
detailed derivation in the Supplementary Note 1.):

rðkx; kyÞ ¼ Cxkx þ Cyky; ð4Þ

as can be obtained from Taylor expansion of rðkx; kyÞ to its first-

order terms near kx= ky= 0. Since rðkx; kyÞ is a complex scalar

field, every loop c in the kx− ky space is associated with a winding
number l ¼ 1

2πi

H
c
dr
r
, which can only take integer values. l ≠ 0

implies that the loop c encloses at least one zero of rðkx; kyÞ.
Therefore, for every isolated zero of rðkx; kyÞ, one can define its

topological charge as the winding number of a loop that encloses
only this particular zero. Since the winding number is an integer,
it is topologically invariant. Any small continuous deformation of
the system cannot change the topological charge of the zero.
Suppose Cy/Cx= Aeiφ, where A∈ R and φ 2 0; π½ Þ, the zero of
rðkx; kyÞ has a topological charge l ¼ sgnðAφÞ.

Moreover, in order to achieve two-dimensional isotropic
differentiation, the transfer function must have a rotationally
invariant magnitude, and hence the coefficients Cx and Cy have to
satisfy

Cy

Cx

¼ ±i: ð5Þ

The transfer function then corresponds to a differential operator

D̂ ¼ Cxð�i∂x ± ∂yÞ: ð6Þ

For a given input distribution Sin x; yð Þ, this operator results in the
following output intensity distribution:

Iout x; yð Þ / ∂Sin
∂x

����
����
2

þ ∂Sin
∂y

����
����
2

� ∇Sinj j2: ð7Þ

Thus, this operator nonlocally calculates the squared gradient
magnitude of the incident field and can be employed for isotropic
edge detection in 2D images. We note that with Eq. (5), the
transfer function has the form r(kx, ky)∝ e±iϑ, where
tan ϑ ¼ ky=kx , which shows that the zero of r(kx, ky) has a

topological charge of ±1. In contrast, the topologically trivial case,
where Cx and Cy have the same phases, does not support the
rotationally invariant response and can only perform one-
dimensional differentiation along certain orientation34. There-
fore, there is a connection between the topological charge of the
transfer function, and the operation of edge detection. This
connection has not been previously recognized. All previous
works14–39 on spatial differentiation utilize a transfer function
that has no topological charge.

For ease of experimental implementation, we choose the output
polarization to be a linear polarization with a normalized electric

field �sin γ; cos γð ÞT , as schematically shown in Fig. 1. Based on
Eq. (3), the corresponding incident polarization ein can be
determined as

ein ¼ N
rs0 cos γ

�rp0 sin γ

 !
: ð8Þ

Here, rp0 and rs0 are the Fresnel reflection coefficients for p- and
s-polarized plane waves at incident angle θ0, respectively, while

N ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jrs0 cos γj2 þ jrp0 sin γj2

q
is a normalization factor. Cx

and Cy can thus be calculated as (see derivation in the

Supplementary Note 1)

Cx ¼ N
sin γ cos γ

k0
rs0

∂rp

∂θ
� rp0

∂rs
∂θ

� �
; ð9aÞ

Cy ¼ �N
cot θ0
k0

ðrp0sin2γþ rs0cos
2γÞðrp0 þ rs0Þ; ð9bÞ

where ∂rp sð Þ=∂θ is the first-order derivative of the Fresnel

reflection coefficient for p(s)-polarized plane wave with respect
to the incident angle (θ) at θ0. To achieve an isotropic
differentiation operation, for a given reflector, we combine Eqs.
(9a) and (9b) with Eq. (5) to determine the required γ and θ0.
Once these two parameters are determined, the input polarization
is determined using Eq. (8). In this way, we can determine the
parameters required for an isotropic edge detection.

We note that in order to achieve a nontrivial topological charge
in rðkx; kyÞ, rp and rs cannot be both real, since in this case Cx and

Cy are also real numbers as can be seen in Eqs. (9a) and (9b). The
nontrivial topological charge can be achieved with a wide variety
of reflectors, for example lossy metallic reflectors, using photonic
band gap effects, or using total internal reflection at a dielectric
interface, since in all these cases rp and rs are complex with
different phases. At a dielectric interface, below the critical angle
of total internal reflection, the partial reflection on a dielectric
interface cannot exhibit the topological charge in most cases since
both rp and rs are real, except if one of the Fresnel reflection
coefficients is zero which occurs at the Brewster angle where
rp0= 0. In this case, the cross-polarization condition [Eq. (3)] can

be satisfied with an arbitrary input polarization ein ¼ ðexin; e
y
inÞ

T
.

By setting γ= π/2, Eqs. (9a) and (9b) then become

Cx ¼
1

k0

∂rp

∂θ
exin; ð10aÞ

Cy ¼
cot θ0
k0

rs0e
y
in: ð10bÞ

With either a circular or an elliptical input polarization, rðkx; kyÞ
exhibits a nontrivial topological charge and enables two-
dimensional differentiation, which, however, is anisotropic in
most cases. Also, Eq. (5), which is required for isotropic
differentiation, can be achieved with a correct choice of the
input polarization. In this paper, we experimentally demonstrate
isotropic edge detection by operating either with the total internal
reflection (Fig. 2a) or at the Brewster angle (Fig. 2h).

Measurement of the transfer functions and topological charges.
For the total internal reflection configuration, light beam is
incident from the glass side of an air-glass interface onto the base
of a prism. Based on Eqs. (5), (9a) and (9b), and using light at the
wavelength of 532 nm, we determine the angle of incidence θ0=
70.24∘. In this case, we use an isosceles prism with 70.24∘ base
angles (Fig. 2a) and send in light from air through the lateral side
at normal incidence, such that the Goos-Hänchen and Imbert-
Fedorov effects during the transmission can be neglected41.
Specifically, we launch a Gaussian light beam from a laser at 532
nm through a linear polarizer and a subsequent quarter-wave
plate to shape the input polarization, and select the output
polarization with a second linear polarizer. Then, we acquire the
magnitude squared of the output spatial spectrum by performing
optical Fourier transform on the reflected light, which is mea-
sured by a CMOS camera (see setups in the Supplementary
Note 2). By normalizing the magnitude of the output spatial
spectrum with that of the incident one, we obtain the magnitude
of the transfer function, i.e. jrðkx; kyÞj.
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Figure 2b, c are the measured magnitudes of the transfer
functions. Specifically, Fig. 2b is measured with the output
polarizer orientation γ=−π/4 and the input polarization

ein ¼ ðrs0; rp0ÞT=
ffiffiffi
2

p
, as determined using Eqs. (5), (9a) and

(9b) for the case of Cy/Cx=−i. Figure 2c is measured with output
polarization orientation γ=+π/4 and incident polarization

ein ¼ ðrs0;�rp0ÞT=
ffiffiffi
2

p
, corresponding to the case of Cy/Cx=+i

in Eqs. (9a) and (9b). In both Fig. 2b, c, the measured magnitudes

of transfer functions are isotropic in the kx–ky plane, and exhibit
isolated zeros at kx= ky= 0.

To demonstrate the topological charges associated with the
isolated zeros, based on the setup for measuring the transfer
functions, we use an additional divergent reference beam to
interfere with the output beam (see setups in the Supplementary
Note 2). Corresponding to the cases shown in Fig. 2b, c,
respectively, the measured interference patterns in Fig. 2f, g
indeed show spiral fringes. The clockwise (Fig. 2f) and

Fig. 2 Measured magnitudes of transfer functions and corresponding topological charges. a Schematic of the total internal reflection setup with θ0=

70.24∘. b, c Measured magnitudes of transfer functions, as a function of transverse wavevectors, using the setup in (a) with γ=−π/4 and γ=+π/4,

respectively. The corresponding incident polarizations are shown as the insets. d, e The scatter plots are the data on the dashed lines in (b, c), respectively,

and the lines are the corresponding calculated magnitudes of transfer functions. k in the horizontal axes is the magnitude of the wavevector. f, g The

interference fringe patterns of an output beam with a divergent beam corresponding to (b, c), respectively. The insets show the topological charges.

h Schematic of the setup for operating at the Brewster angle with θ0= 56.64∘ and γ= π/2. i, j Measured magnitudes of transfer functions, as a function of

transverse wavevectors, using the setup in (h) with the input polarizations shown as the insets. k, l The scatter plots are the data on the dashed lines in

(i, j), respectively, and the lines are the corresponding calculated magnitudes of transfer functions. k in the horizontal axes is the magnitude of the

wavevector. m, n The interference fringe patterns of an output beam with a divergent beam corresponding to (i, j), respectively. The insets show the

topological charges.
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counterclockwise (Fig. 2g) rotating directions of the spiral fringes
indicate the opposite topological charges of l=−1 and l=+1,
respectively.

As a quantitative evaluation of the isotropic behavior, we plot
the jrðkx; kyÞj along the kx= 0 and ky= 0 lines as a function of

wavevector in Fig. 2d, e, corresponding to Fig. 2b, c, respectively.
jrðkx; kyÞj shows linear dependency as a function of magnitude of

the wavevector, in agreement with Eq. (4). Moreover, the slopes of
jrðkx; kyÞj along the two lines agree with each other, as well as with

the theoretical results as calculated using Eqs. (9a) and (9b).
Figure 2i–n show the results when we operate at the Brewster

angle. Figure 2h shows the schematic of the setup, where light is
incident from the air side onto the air-glass interface. We set γ=
π/2 and choose the input polarizations based on Eqs. (5),
(10a) and (10b) for both cases of Cy/Cx=−i and Cy/Cx=+i.
Similar to the total internal reflection case, the magnitudes of the
resulting transfer functions are isotropic in the kx–ky plane with
the isolated zeros at kx= ky= 0 (Fig. 2i–l). There are topological
charges associated with the isolated zeros, as evidenced by the
spiral interference patterns shown in Fig. 2m, n. The results in
Fig. 2 indicate that we can indeed achieve the transfer function of
Eq. (4), using either total internal reflection or by operating at the
Brewster angle.

Demonstration of isotropic differentiation and edge detection.
We now experimentally demonstrate isotropic spatial differ-
entiation using the transfer functions in Fig. 2. We focus on the
cases with topological charges of −1. The effects from the cases
with topological charges of +1 are similar. The transfer functions
with topological charge −1 are shown in Fig. 2b when we use total
internal reflection, and in Fig. 2i when we operate at the Brewster
angle. Mathematically, the transfer functions should correspond to
the differential operator in Eq. (6) with a minus sign.

We first consider the scenario where the input, as shown in
Fig. 3a, d, are Gaussian beams. The operator in Eq. (6) with a
minus sign, operating on a Gaussian beam, should produce a
beam with an orbital angular momentum of −1, which possesses

a donut-shaped intensity profile. We indeed observe such
intensity profiles in the output beams, when we either use total
internal reflection (Fig. 3b) or operate at the Brewster angle
(Fig. 3e). In Fig. 3c, we show the intensity plots of the output
beam as a function of position, along various directions that pass
through the center of beam, for the case where we use total
internal reflection. These plots strongly overlap with one another,
indicating the isotropic differentiation. Similar isotropic behavior
can be seen when we operate at the Brewster angle (Fig. 3f). For
comparison, we also calculated and plot the ideal squared
gradient magnitude of a Gaussian beam in both Fig. 3c, f. The
experimental results coincide well with the calculated ones,
indicating a great performance of the differentiation.

We now demonstrate the isotropic edge enhancement by
directly incorporating our setup as part of an imaging system.
Different from the Laplacians38,39, the proposed first-order
differentiator is able to directly detect edges in images without
the need for subsequent zero-crossing detection. Here we focus
on the case where we use total internal reflection. The results
from operating at the Brewster angle are very similar and not
shown here. We first send a collimated laser beam through a
binary mask and then use an imaging system to image the mask
onto a CMOS camera (Fig. 4a). Figure 4b shows the input image
of a Stanford logo, when we use a laser at the wavelength of 532
nm. Since our differentiator works as a nonlocal filter, it can be
placed at any position in the object or image space. As shown in
Fig. 4a, we incorporate the differentiator in the imaging system
and thus have the input image differentiated (see details in the
Supplementary Note 3). The corresponding output image is
shown in Fig. 4c. We see that the output image consists of only
the edges, and all edges appear in the image with similar
magnitudes independent of their orientations. The image here
provides a clear demonstration of the isotropic edge enhance-
ment. Since we propose our design in the paraxial regime, it has a
finite spatial bandwidth, which means it cannot resolve edges that
are too close. In Fig. 4d, we show the output image when the
input one consists of an array of full circles with gradually
reducing diameters. The output image consists of circumferences

Fig. 3 Spatial differentiation on an input Gaussian beam and generation of orbital angular momentum. a Incident Gaussian beam using the total internal

reflection setup shown in Fig. 2a. b Measured output beam, corresponding to the transfer function in Fig. 2b. c Profiles of the output beam along different

directions. The dotted lines correspond to the data on the same-color dashed lines in (b), and the solid line is the ideal result, as calculated by using Eq. (6)

to operate on an input Gaussian beam. d–f Same as (a-c), except for that we operate at the Brewster angle in a setup as shown in Fig. 2h. In e the used

transfer function is the one shown in Fig. 2i.
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corresponding to the boundaries of the circles (see details in
Supplementary Note 3). The intensity on the circular edges is
quite uniform, which again points to the isotropic nature of the
differentiation operation. The edges are clearly visible even for an
input full circle with a diameter as small as 5 μm. Thus, the ability
of the differentiation operation to resolve close edges here should
be sufficient for most image processing applications.

In contrast to all previous works on using nanophotonic
structures for spatial differentiation, in our scheme, the zero of
the transfer function carries a topological charge. Hence the
presence of zero cannot be removed by small perturbations. The

only mechanisms to eliminate a zero are to merge two zeros with
opposite charges so that they annihilate each other, or to move an
isolated zero outside the light cone so that it becomes inaccessible
from free space. As long as the isolated zero persists within the
light cone, 2D differentiation can be achieved by aligning the
incident wavevector with the wavevector at which the transfer
function r vanishes. Therefore, there is a certain level of
robustness of our device with respect to parameter variations.
The level of robustness is defined by the strength of system
variations that is required to eliminate a zero through the
mechanisms mentioned above. We note that the robustness of the

Fig. 4 Demonstration of isotropic edge detection at different wavelengths. a Experimental setups for edge detection when using total internal reflection.

L1 and L2, lenses; P1 and P2, linear polarizers; QWP, quarter-wave plate. b Incident image of Stanford logo with the illumination wavelength of 532 nm.

c Measured image corresponding to (b) using setup shown in (a). d Resolution test results, corresponding to an input image consisting of an array of full

circles with gradually reducing diameters. e–g Same as (b-d), except that we operate at the wavelength of 632.8 nm. h, i Numerically calculated

magnitudes and phases of the simulated transfer function at the wavelength of 410 nm, respectively. j, k Same as (h, i), except that we operate at the

wavelength of 820 nm. The white bars correspond to a length of 200 μm. d in (d, g) denotes the diameters of incident full circle patterns in μm.
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zero in the transfer function is a topological effect that does not
require the system to have any symmetry.

Moreover, a highly important characteristic is that with the
same experimental parameters, the differentiator can operate over
a broad spectral band. Here the broadband nature also arises
from the fact that the refractive index of glass does not vary
significantly as a function of frequency. As an illustration of the
broad spectral bandwidth, for the total internal reflection case, in
Fig. 4h, i, we numerically calculate and show the magnitude and
phase of the transfer function, respectively, at the wavelength of
410 nm. And in Fig. 4j, k, we show the same at the wavelength of
820 nm. In these plots, except the wavelengths, all other operating
conditions, including the angle of incidence, the polarization of
the incident light, and the orientation of the output polarizer, are
kept the same. In spite of a change of factor 2 in operating
frequencies, the normalized transfer functions in the two cases are
very similar to each other. Here the small difference between the
two arises from the small differences in the refractive index of
glass at these two wavelengths. We note that the transfer
functions at different wavelengths have different slopes with
respect to kx and ky, thus the strength of the differentiation result
is wavelength-dependent. Such wavelength dependency, however,
can be easily calibrated in multispectral applications.

The above discussion indicates that this device can operate
over a broad spectral band. As a direct illustration, Fig. 4e–g show
the experimental results as Fig. 4b–d, except that we now use a
laser at the wavelength of 632.8 nm, which has a red color. We
observe near-identical performances at these two wavelengths.
The operating spectral bandwidth here far exceeds all previous
works on using photonic structures for two-dimensional spatial
differentiation.

Discussion
In conclusion, we have established a connection between two-
dimensional optical spatial differentiation and a nontrivial
topological charge in the optical transfer function. Based on this
connection, we experimentally demonstrate broadband isotropic
two-dimensional differentiation, by generating a nonzero topo-
logical charge with a cross-polarization setup of light reflection at
an unpatterned interface. The nontrivial topological charge plays
an essential role for the two-dimensional operation, since the
topologically trivial case can only perform one-dimensional
directional differentiation. We note that although we choose a
linear output polarization for the ease of experiment, circular or
elliptical output polarizations can also be used for the isotropic
differentiation, and there is no longer the restriction of using total
internal reflection or operating at the Brewster angle in these
cases. We anticipate that similar setup can be used to generate
nontrivial topological charges for other configurations of photo-
nic structures. Moreover, it should be possible to use photonic
structures in such setup to generally engineer nonlocal responses
for other computational tasks. For example, higher-order differ-
entiation may be achieved by generating multiple topological
charges in the transfer function. We anticipate that exploitation
of optical transfer functions with different nontrivial topological
charge configurations can lead to new opportunities in achieving
general and robust optical computing.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.
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