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The topological ordering of the network structure in vitreous GexSe1−x was investigated
across most of the glass-forming region (0≤ x≤0.4) by using high-resolution neutron
diffraction to measure the Bhatia-Thornton number-number partial structure factor. This
approach gives access to the composition dependence of the mean coordination number
n̄ and correlation lengths associated with the network ordering. The thermal properties of
the samples were also measured by using temperature-modulated differential scanning
calorimetry. The results do not point to a structural origin of the so-called intermediate
phase, which in our work is indicated for the composition range 0.175(8)≤ x≤0.235(8)
by a vanishingly small non-reversing enthalpy near the glass transition. Themidpoint of this
range coincides with the mean-field expectation of a floppy-to-rigid transition at x=0.20.
The composition dependence of the liquid viscosity, as taken from the literature, was also
investigated to look for a dynamical origin of the intermediate phase, using theMauro-Yue-
Ellison-Gupta-Allan (MYEGA) model to estimate the viscosity at the liquidus temperature.
The evidence points to a maximum in the viscosity at the liquidus temperature, and a
minimum in the fragility index, for the range 0.20≤ x≤0.22. The utility of the intermediate
phase as a predictor of the material properties in network glass-forming systems is
discussed.

Keywords: chalcogenide glass, neutron diffraction, viscosity, fragility index, intermediate phase, material
properties

1. INTRODUCTION

The structural disorder associated with covalently bonded network-forming glassy materials gives
rise to a diversity of material properties, which leads to the importance of glass in multiple technolo-
gies (Cusack, 1987; Elliott, 1990; Feltz, 1993). It is possible to predict many of the structure-related
properties of these materials by using constraint-counting theory, where the constraints originate
from the bond-stretching and bond-bending interatomic forces associated with the covalent bonds
of network-forming motifs (Phillips, 1979; Thorpe, 1983). As the type and proportion of network-
forming motifs is altered, the network topology will respond accordingly. Hence, the connectivity
and properties of covalently bonded network-forming glasses can be manipulated systematically by
altering their composition.

On the basis of mean-field constraint-counting theory, a network is predicted to undergo the
transition from an elastically floppy to a stressed-rigid state when the mean number of Lagrangian
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bonding constraints per atomNc is equal to three, i.e., the number
of degrees of freedom per atom in three dimensions. Floppy
phases are under-constrained (Nc < 3), and stressed-rigid phases
are over-constrained (Nc > 3). For a system in which all of the
bond-stretching and bond-bending constraints are intact and
there are no dangling bonds, the transition at Nc = 3 corresponds
to a mean coordination number n̄ = 2.40 where the network
is isostatically rigid and stress free (Phillips, 1979; Thorpe, 1983).
If the network can self-organize and thereby lower the free energy
at the temperature of its formation by the incorporation of
structural configurations that minimize the occurrence of over-
constrained regions, then it is postulated that two transitions can
appear (Thorpe et al., 2000). In this case, the floppy and stressed-
rigid phases are separated by a composition range known as the
intermediate phase where the network is isostatically rigid and
stress free. The compositional width of this phase is thought to
be related to structural variability, i.e., the ability of a network to
incorporate a range of structural motifs (Sartbaeva et al., 2007;
Massobrio et al., 2009). In temperature-modulated differential
scanning calorimetry (TMDSC) experiments, the existence of a
stress-free intermediate-phase is inferred from the non-reversing
part of the measured enthalpy ∆Hnr, which takes a value close to
zero near the glass transition temperature Tg (Wang et al., 2000;
Boolchand et al., 2001b). The structural motifs of the interme-
diate phase are expected to yield Nc = 3 such that the network
is optimally constrained to avoid stress. GexSe1−x (0≤ x≤ 1)
is a prototypical covalently bonded network-forming system for
which the intermediate phase spans a wide composition window,
usually reported as 0.20 . x . 0.26 (Boolchand et al., 2001a,
2007; Bhosle et al., 2012b).

The first objective of this article is to search for a structural
origin of the intermediate phase by performing a set of neutron
diffraction experiments on vitreous GexSe1−x across the glass-
forming region 0≤ x≤ 0.43 (Azoulay et al., 1975). The exper-
iments used samples containing Ge and Se of natural isotopic
abundance, for which the coherent neutron scattering lengths
take similar values, i.e., bGe = 8.185(20) fm and bSe = 7.970(9) fm
(Sears, 1992). In consequence, the Bhatia and Thornton (1970)
number-number partial structure factor SNN(q) is measured to an
excellent level of approximation, where q denotes the magnitude
of the scattering vector (Salmon, 2007a). This function and its
Fourier transform, the number-number partial pair-distribution
function gNN(r), do not distinguish between the chemical species
that occupy the atomic sites in a glass-forming network structure,
and therefore yield important information on the topological
ordering (Salmon, 1992; Salmon and Liu, 1994; Petri et al., 1999).
For example, themean coordination number n̄ is obtained directly
from gNN(r). In addition, the peak positions and widths in SNN(q)
describe the atomic ordering in a glass network on different length
scales (Salmon, 1994; Salmon et al., 2005; Zeidler and Salmon,
2016). One of these length scales is associated with an intermedi-
ate range, and manifests itself by the appearance of a first sharp
diffraction peak (FSDP) in SNN(q) at qFSDP, where qFSDPrnn ≃
2.2 − 2.8 for glassy GexSe1−x and rnn is the nearest-neighbor
bond distance. Another length scale is associated with ordering
on an extended range, and manifests itself by the appearance of
a principal peak in SNN(q) at qPP, where qPPrnn ≃ 4.5 − 4.8 for

glassy GexSe1−x. A competition between the ordering on these
two length scales for different classes of binary glass-formingmelts
influences their relative fragility (Salmon et al., 2006; Salmon,
2007b; Salmon and Zeidler, 2013). The present neutron diffrac-
tion work complements previous investigations on the structure
of intermediate phase glasses using neutron diffraction (Ramesh
Rao et al., 1998), X-ray diffraction (Wang et al., 2004; Sharma et al.,
2005), anomalous X-ray diffraction (Hosokawa et al., 2003, 2011);
or a combination of high-energy X-ray diffraction and extended
X-ray absorption fine structure (EXAFS) spectroscopy (Shatnawi
et al., 2008).

The second objective of this article is to investigate the viscos-
ity at the liquidus temperature in theGexSe1−x systemby using the
Mauro-Yue-Ellison-Gupta-Allan (MYEGA) model (Mauro et al.,
2009) to search for a dynamical signature of the intermediate
phase. For a given composition, the equilibrium liquid will have
more thermal energy than the supercooled liquid, which should
give a greater opportunity for reorganization of the network struc-
ture. The self-organization that occurs on quenching to form
a stress-free intermediate-phase glass should therefore manifest
itself in the dynamics of the liquid state at the liquidus temperature
TL, and the temperature-dependent viscosity η(T) is an important
measure of the dynamics for a glass-forming material.

The article is organized as follows. The essential neutron
diffraction theory is outlined in Section 2. The experimental
method is described in Section 3 and the neutron diffraction
results are given in Section 4. The composition dependence of the
viscosity and fragility index is described in Section 5. The results
are discussed in Section 6, where the composition dependence of
the glass structure is considered, along with the utility of the inter-
mediate phase as a predictor of material properties. Conclusions
are drawn in Section 7.

2. THEORY

The total structure factormeasured in a neutron diffraction exper-
iment on glassy GexSe1−x is given by (Fischer et al., 2006)

S(q) =
1

⟨b⟩2
[

x2b2GeSGeGe(q) + 2x(1 − x)bGebSeSGeSe(q)

+(1 − x)2b2SeSSeSe(q)
]

, (1)

where Sαβ(q) is the partial structure factor for chemical species α
and β, and ⟨b⟩ = xbGe +(1− x)bSe is the mean coherent neutron
scattering length. The close similarity between the bGe and bSe
values for Ge and Se of natural isotopic abundance means that
S(q) ≃ SNN(q) to an excellent level of approximation (Salmon,
2007a), where SNN(q) is given by equation (1) if bGe = bSe. The
total pair-distribution function g(r) follows from the Fourier
transform relation

g(r) − 1 =
1

2π2ρr

∫

∞

0
dq q [S(q) − 1]M(q)sin(qr), (2)

where ρ is the atomic number density. The measurement window
of a diffractometer is limited to a maximum scattering vector qmax
such thatM(q≤ qmax)= 1,M(q> qmax)= 0.
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If qmax is sufficiently large that the effect of M(q) can be
neglected, the overall mean coordination number for the spatial
range r1 ≤ r≤ r2 follows from the expression

n̄ = 4πρ

∫ r2

r1
dr r2g(r)

=
1

⟨b⟩2
[

xbGe
(

bGen̄GeGe + bSen̄SeGe
)

+ (1 − x)bSe
(

bSen̄SeSe + bGen̄GeSe
)]

,

(3)

where n̄β
α is the mean coordination number of chemical species

β about chemical species α for the range r1 ≤ r≤ r2. In the case
when bGe = bSe, equation (3) reduces to the expression

n̄ = 4πρ

∫ r2

r1
dr r2gNN(r) = x

(

n̄GeGe + n̄SeGe
)

+(1−x)
(

n̄SeSe + n̄GeSe
)

.

(4)
Then, on the basis of the “8-N” rule in which the Ge and Se
atoms are fourfold and twofold coordinated, respectively, such
that n̄Ge ≡ n̄GeGe + n̄SeGe = 4 and n̄Se ≡ n̄SeSe + n̄GeSe = 2, it follows
that

n̄ = 2(1 + x). (5)

The coordination numbers n̄β
α can be calculated on the basis of

a chemically ordered network (CON) or randomcovalent network
(RCN) model, both of which satisfy the “8-N” rule (Salmon,
2007a). In the CON, Ge–Se bonds are favored such that only
Ge–Se and Se–Se bonds are allowed for x< 1/3 whereas only
Ge–Se and Ge–Ge bonds are allowed for x> 1/3. The associated
coordination numbers are n̄SeGe = 4, n̄SeSe = 2(1 − 3x)/(1 − x)
and n̄GeGe = 0 for x< 1/3; n̄SeGe = 2(1 − x)/x, n̄SeSe = 0 and n̄GeGe =
2(3x − 1)/x for x> 1/3; or n̄SeGe = 4 with n̄GeGe = n̄SeSe = 0 at the
stoichiometric composition x= 1/3. In the RCN, there is a purely
statistical distribution of bond types giving n̄SeGe = 4(1−x)/(1+x),
n̄SeSe = 2(1 − x)/(1 + x) and n̄GeGe = 8x/(1 + x). Hence, provided
the “8-N” rule holds for the GexSe1−x system, n̄ will follow from
equation (5) if an experiment is performed on a sample for which
bGe = bSe, or n̄ can be calculated from either the CON or RCN
model by using equation (3) if an experiment is performed on a
sample for which bGe ̸= bSe.

3. EXPERIMENTAL METHOD

3.1. Glass Synthesis and Characterization
ElementalGe (99.999%,AlphaAesar) and Se powders (99.999+%,
Sigma-Aldrich), with the desired mass ratio, were loaded into a
silica ampoule of 5mm inner diameter and 1mm wall thickness
that had been etched using a 48wt% solution of hydrofluoric acid,
rinsed using water then acetone, and baked dry under vacuum at
800°C for 3 h. The ampoule was loaded in a high-purity argon-
filled glove box, isolated using a Young’s tap, and then transferred
to a vacuum linewhere it was sealed under a pressure of 10−5 Torr.
The sealed ampoule was placed in a rocking furnace, which was
heated at a rate of 2°Cmin−1 from ambient to a temperature of
975°C, dwelling for 1 h each at temperatures of 221, 685, and
938°C, i.e., near to the melting and boiling points of Se, and the
melting point of Ge, respectively. The highest temperature was
maintained for 47 h before the rocking motion was stopped, and

the furnacewas placed vertically for 1 h to let themelt collect at the
bottom of the ampoule. The furnace was then cooled at a rate of
2°Cmin−1 to a temperature 100°C above the liquidus temperature
TL (Figure 1), where the sample was left to equilibrate for 4 h,
and the ampoule was dropped into an ice/water mixture. The
sample (of mass ∼ 3.6 g) was broken out of the ampoule inside
an argon-filled glove box and transferred into a vanadium con-
tainer of outer diameter 7mm and wall thickness 0.1mm ready
for the diffraction experiment. Glassy samples prepared in this
way showed no indication of Ge-O or Se-O impurity bands in
the measured infrared transmission spectra, e.g., in the region
around 735–781 cm−1 (Savage and Nielsen, 1965). A sample of
glassy GeSe4, as prepared by using an almost identical procedure
but with only 10 h of rocking, was investigated by both energy
dispersive X-ray spectroscopy (EDS) and Raman spectroscopy,
and was found to be homogeneous on a submicron to centimeter
length scale (Pierre Lucas, private communication).

The density of each sample was measured using a Quan-
tachrome MICRO-ULTRAPYC 1200e pycnometer operated with
helium gas. The results are compared to those obtained fromother
measurements in Figure 2. The comparison shows that systemat-
ically smaller densities were obtained in the work by Bhosle et al.
(2012b). In the latter, agreement is claimed with themolar volume
Vm values given by Mahadevan et al. (1995), but the latter were
incorrectly copied from the work of Feltz et al. (1983). As shown
in Figure 3, the molar volumes measured by Feltz et al. (1983)

FIGURE 1 | The dependence of the liquidus temperature TL for the GexSe1−x

system on the composition x and mean coordination number n̄ = 2(1 + x).
The data point for Se is a mean of the values reported by Berkes and Myers
(1971), Johnson et al. (1986), Morgant and Legendre (1986), Ota and Kunugi
(1973), and Stølen et al. (1999). The other data points were taken from
Dembovskii et al. (1965), Ipser et al. (1982), Mikolaichuk and Moroz (1986),
Quenez and Khodadad (1969), Ross and Bourgon (1969), and Stølen et al.
(1999). The solid (black) curve gives a least-squares fit of the measured data
sets to an inverse polynomial function. The pairs of vertical dashed (black) or
chained (red) lines, and associated horizonal arrows, mark compositions for
which ∆Hnr ≃ 0 as found in the present work or in the work of Boolchand
et al. (2001a), respectively.
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FIGURE 2 | The dependence of the mass density at room temperature ρmass for the GexSe1−x system on the composition x and mean coordination number
n̄ = 2(1 + x). The results from the present work at ≃22°C are compared to those taken from Andonov (1982), Avetikyan and Baidakov (1972), Azoulay et al. (1975),
Bhosle et al. (2012b), Borisova (1981), Feltz et al. (1983), Feltz and Lippmann (1973), Guin et al. (2002b), Hafiz et al. (1993), Ito et al. (1988), Loehman et al. (1972),
Ota et al. (1978), Senapati and Varshneya (1995), Sreeram et al. (1991b), and Yang et al. (2013). The solid (black) curves are drawn as guides for the eye. The pairs of
vertical dashed (black) or chained (red) lines, and associated horizonal arrows, mark compositions for which ∆Hnr ≃ 0 as found in the present work or in the work of
Boolchand et al. (2001a), respectively.

are not in quantitative agreement with the work of Bhosle et al.
(2012b). Nevertheless, the data sets of Bhosle et al. (2012b), Feltz
et al. (1983), Ota et al. (1978), and Yang et al. (2013) point to a
minimum value of Vm in the interval 0.20 . x . 0.25 (Bhageria
et al., 2014). The present results show a shallowminimum around
x= 0.19(4) corresponding to Vm = 17.95(5) cm3 mol−1.

The glass transition temperature Tg was measured by using a
TA InstrumentsQ200Differential ScanningCalorimeter operated
in a TMDSCmode. Each scan comprised a temperature increasing
and a temperature decreasing part, both performed at a rate of
3°Cmin−1 and temperature modulation of 1°C per 100 s. The
maximum temperature was set to give complete coverage of the
glass-transition region whilst avoiding crystallization. The Tg val-
ues taken from the onset of the glass transition as manifested in
the total heat flow measured during the temperature increasing
part of a scan are plotted in Figure 4. The results are in the range
of values previously reported for glasses in the GexSe1−x system.
In addition, in order to make a like-for-like comparison with the
glass transition temperatures reported by Boolchand and cowork-
ers fromTMDSC experiments (Feng et al., 1997; Boolchand, 2000;
Boolchand and Bresser, 2000; Wang et al., 2005; Bhosle et al.,
2012a,b), a value Tg1 was taken from the midpoint of the glass-
transition region for the reversing heat-flow in the temperature
increasing part of a scan, and a value Tg2 was also taken from the
midpoint of the glass-transition region for the reversing heat-flow

in the temperature decreasing part of a scan, and the mean
value Tg,rev = (Tg1 + Tg2)/2 was taken. The results for Tg,rev
from the present work are in agreement with those previously
obtained by Boolchand and coworkers, as shown by the inset to
Figure 4.

The non-reversing enthalpy∆Hnr was obtained from the same
TMDSC scans used to obtain Tg,rev by following the procedure
described by Chen et al. (2010b), which includes a frequency
correction. Independent measurements were made on several
samples from each composition that had been aged at room tem-
perature for a minimum of 37 days, and the mean and standard
deviation were taken to find ∆Hnr and its error. The results give
∆Hnr ≃ 0, which is the defining characteristic of the interme-
diate phase, for the composition range 0.175(8)≤ x≤ 0.235(8)
(Figure 5). This composition range compares to previously
reported “reversibility windows” of 0.225≤ x≤ 0.230 (Feng
et al., 1997), 0.20(1)≤ x≤ 0.26(1) (Boolchand et al., 2001a), or
0.195(5)≤ x≤ 0.260(5) (Bhosle et al., 2012b) for the GexSe1−x
system. The composition range found in the present work is there-
fore shifted to lower x, and its mid-range value of x= 0.205(8)
is in agreement, within the experimental error, with the expec-
tation from mean-field constraint-counting theory of a rigid to
floppy transition in the GexSe1−x system at x= 0.20 where n̄ =
2.40 (Thorpe, 1983). The activation energy for enthalpy relax-
ation EA, as measured by differential scanning calorimetry (DSC)
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FIGURE 3 | The dependence of the molar volume at room temperature Vm for
the GexSe1−x system on the composition x and mean coordination number
n̄ = 2(1 + x). The results from the present work are compared to those
taken from Avetikyan and Baidakov (1972), Bhosle et al. (2012b), Feltz et al.
(1983), Ota et al. (1978), and Yang et al. (2013). Data points are also given for
the “dry” samples prepared by Bhosle et al. (2012a). The pairs of vertical
dashed (black) or chained (red) lines, and associated horizonal arrows, mark
compositions for which ∆Hnr ≃ 0 as found in the present work or in the work
of Boolchand et al. (2001a), respectively.

experiments that employed different cooling rates (Lucas et al.,
2009), also shows a minimum around x= 0.20 (Figure 5).

3.2. Neutron Diffraction Experiments
The neutron diffraction experiments were performed at room
temperature (≃25°C) using the GEM (Hannon, 2005) and SAN-
DALS (Soper, 1991) diffractometers at the ISIS pulsed neutron
source. Diffraction patterns were measured for each sample in a
vanadium container, the empty container, the empty instrument,
and a vanadium rod of diameter 8.37(1) mm for normalization
purposes. Each diffraction pattern was built up from the intensi-
tiesmeasured for different detector groups, where these intensities
were saved at regular intervals in order to test the diffractome-
ter stability. The data sets were analyzed detector-by-detector
using the GUDRUN analysis software (Soper, 2011). Inelasticity
corrections were performed using the procedure described by
Howe et al. (1989). The compositions x= 0, 0.100, 0.150, 0.175,
0.200, 0.230, 0.251, 0.260, 0.279, 0.302, 0.333, and 0.400 were
investigated using GEM; the compositions x= 0, 0.191, 0.210,
0.218, 0.230, 0.235, and 0.269 were investigated using SANDALS.
The uncertainty on these sample compositions ∆x=± 0.001.

4. NEUTRON DIFFRACTION RESULTS

4.1. Reciprocal-Space Properties
The measured total structure factors S(q) ≃ SNN (q) for the
GexSe1−x glasses are shown in Figure 6. For the x= 0 and
x= 0.230 compositions, that were investigated using both GEM

and SANDALS, the measured functions are in agreement within
the experimental error. For glassy Se, S(q) has a small shoulder
on the low-q side of the principal peak at qPP = 1.91(2) Å−1,
which develops into an FSDP with increasing Ge content. The
height of the FSDP is largest at the stoichiometric composition
x= 1/3 where its position qFSDP = 0.985(10) Å−1. According to
Fourier transform theory, a sharp peak of width ∆qi at a position
qi in S(q) ≃ SNN (q) is associated with real-space ordering of
periodicity 2π/qi and correlation length 2π/∆qi (Salmon, 1994).
Indeed, the real-space periodicity associated with these features
is directly observable for several network-forming glasses, includ-
ing Ge0.333Se0.667 (Salmon, 1994, 2006; Salmon et al., 2005, 2006).
The composition dependence of the periodicity and correlation
length associatedwith each of the first three peaks in themeasured
S(q) functions is shown in Figures 7 and 8, respectively. The full-
width at half-maximum of a peak ∆qi was measured relative to a
linear baseline drawn between points (usuallyminima) deemed to
mark the start and end of a peak (Salmon, 1994). The parameters
obtained from the GEM and SANDALS diffractometers are in
agreement within the experimental error. The results do not show
any notable feature that can be associated specifically with an
intermediate phase, although there is a change in the correlation
length associated with the FSDP at x ≃ 0.26. The composition
dependence of the periodicity 2π/qFSDP as obtained from other
diffraction experiments is also shown in Figure 7. A shoulder at
x ≃ 0.23, as reported in the X-ray diffraction work of Sharma
et al. (2005), is not found in any of the other data sets.

4.2. Real-Space Properties
The measured total pair-distribution functions g(r) ≃ gNN(r)
are shown in Figure 9. The large qmax values accessed by the
neutron diffractometers ensure that M(q) has a minimal effect
on S(q) (equation (2)), so the g(r) functions do not show associ-
ated Fourier transform artifacts. The mean coordination number
n̄ for each glass composition was therefore obtained by direct
integration of the first peak in g(r) (equation (3)), i.e., there was
no need to apply a fitting procedure in order to account for the
effect of a finite qmax value (Petri et al., 2000; Salmon and Petri,
2003). The composition dependence of the measured n̄ values
is shown in Figure 10, where the results are compared to those
obtained from the EXAFS experiments of Zhou et al. (1991) and
the first-principles molecular dynamics simulations of Inam et al.
(2007). The predictions of the “8-N” rule are also given, where
the curves for the CON and RCN models take into account the
small mismatch between the coherent neutron scattering lengths
of Ge and Se of natural isotopic abundance (Section 2). The
results show that n̄ increases monotonically with x and, within the
experimental error, the values are in accordance with the “8-N”
rule. They do not show any notable feature that can be associated
specifically with the intermediate phase, such as a deviation from
the “8-N” rule as reported by Inam et al. (2007).

5. VISCOSITY AND FRAGILITY INDEX

As motivated in Section 1, the composition dependence of η(TL)
may reveal a dynamical signature of the intermediate phase. To
investigate this possibility, theMYEGAmodel (Mauro et al., 2009)
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FIGURE 4 | The dependence of the glass transition temperature Tg for the GexSe1−x system, as measured using a variety of methods, on the composition x and
mean coordination number n̄ = 2(1 + x). The results obtained from the total heat flow in the present work are compared to the results obtained by Avetikyan and
Baidakov (1972), Awasthi and Sampath (2002), Azoulay et al. (1975), Bhosle et al. (2012a,b), Boolchand (2000), Boolchand and Bresser (2000), Bureau et al. (2003),
Dembovskii et al. (1965), Feltz and Lippmann (1973), Feltz et al. (1983), Feng et al. (1997), Gueguen et al. (2011), Guin et al. (2002a), Gulbiten et al. (2013), Lucas
et al. (2003), Nemilov (1964), Ota et al. (1978), Sarrach et al. (1976), Senapati and Varshneya (1996), Sharma et al. (2005), Sreeram et al. (1991a), Svoboda and
Málek (2015), Wagner et al. (1997), Wang et al. (2005), Yang et al. (2013), and Zhao et al. (2013). The inset shows solely the results for Tg,rev as obtained in the
present work and in the work of Boolchand and coworkers (Feng et al., 1997; Boolchand, 2000; Boolchand and Bresser, 2000; Wang et al., 2005; Bhosle et al.,
2012a,b)—see Section 3.1 for details. The solid (red) curve in the main panel gives a least-squares fit of the measured data sets to a fourth-order polynomial at
x . 0.32 and to a Lorentzian function at larger x values. The solid (blue) curve in the inset gives a similar least-squares fit to the measured Tg,rev values.

for the viscosity at absolute temperature T was adopted where, for
a given composition x,

log10η(T) = log10η∞ +
(

12 − log10η∞

) Tg

T

× exp
[(

mvisc

12 − log10η∞

− 1
) (

Tg

T − 1
)]

. (6)

Here, log10η∞ is the logarithm of the high-temperature viscosity,
Tg is the glass transition temperature (in absolute units) corres-
ponding to η(Tg)= 1012 Pa s, andmvisc ≡ dlog10η/d(Tg/T)|T=Tg

is the fragility index. The model was used to fit the measured
viscosity data for Se (Cukierman and Uhlmann, 1973; Koštál
and Málek, 2010; Gueguen et al., 2011), Ge0.10Se0.90 (Nemilov,
1964; Senapati and Varshneya, 1996; Gueguen et al., 2011),
Ge0.20Se0.80 (Nemilov, 1964; Gueguen et al., 2011), andGe0.25Se0.75

(Nemilov, 1964; Senapati and Varshneya, 1996; Gueguen et al.,
2011) where two or more of the data sets are self-consistent,
and the measured viscosity data for Ge0.30Se0.70 (Gueguen et al.,
2011) where only one data set is available. For a given com-
position, the logarithm of the high-temperature viscosity was
treated as either a fitting parameter or a fixed parameter set
at log10[η∞(Pa s)]=− 2.93 (Zheng et al., 2011). The fits corre-
sponding to log10[η∞(Pa s)]=− 2.93 are shown inFigure 11, and
give values of Tg and mvisc (Figure 12) that are within the spread
of values reported in the literature from viscosity measurements
(Table 1).

The measured data sets shown in Figure 12 give a spread in
values for the composition dependence of the fragility index. For
example, a least-squares parabolic fit to the mvisc values of Sena-
pati and Varshneya (1996) leads to a minimum at x= 0.196(2),
whereas a similar fit to all of the mvisc data points leads to a
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FIGURE 5 | The dependence of the measured non-reversing enthalpy ∆Hnr

for the GexSe1−x system on the composition x and mean coordination
number n̄ = 2(1 + x). The results from the present work [solid (black)
squares � with vertical error bars] are compared to those of Feng et al. (1997)
[open (red) circles ◦]; Boolchand et al. (2007) [solid (red) circles •]; and
Bhosle et al. (2012b) where the samples were investigated as prepared [solid
(blue) triangle N], after aging for two weeks at room temperature [solid (green)
diamonds �], or after aging for two weeks at 240°C [open (green) diamonds
⋄]. The pairs of vertical dashed (black) or chained (red) lines, and associated
horizonal arrows, mark compositions for which ∆Hnr ≃ 0 as found in the
present work (0.175≤ x≤0.235) or in the work of Boolchand et al. (2001a)
(0.20≤ x≤0.26), respectively. Also shown is the composition dependence of
the activation energy for enthalpy relaxation EA as measured in the DSC
experiments of Lucas et al. (2009) [open (black) squares �].

minimum at x= 0.223(2), consistent with the value x= 0.225
previously reported by Stølen et al. (2002). The mDSC values of
Gunasekera et al. (2013) are smaller than other values of the
fragility index and, for several intermediate phase compositions,
are even smaller than the fragility index of silica mvisc ≃ 21,
where the latter was obtained by applying the MYEGA model
to the viscosity data listed by Doremus (2002). A large disparity
betweenmvisc andmDSC is, however, unexpected for strong glass-
forming systems: the approximation mvisc ≃ mDSC is expected
to become less accurate with increasing fragility because of the
use of an Arrhenius approximation in DSC work, where themDSC
values are often smaller than their mvisc counterparts (Zheng
et al., 2017). As discussed by Svoboda and Málek (2015), the
smallmDSC values of Gunasekera et al. (2013) may originate from
the exploration of a narrow range of relaxation times in their
TMDSC experiments. There may also be an issue in interpreting
the imaginary part of the heat capacity signal C′′

P from TMDSC
experiments, which is used to extract mDSC, when it cannot be
represented by a single Gaussian function, e.g., when there are
two relaxation channels that originate from different structural
motifs (Yang et al., 2012; Gulbiten, 2014). A shift in the Gunasek-
era et al. (2013) mDSC values to better match the fragility index
of glassy Ge0.10Se0.90 found in the work by Svoboda and Málek
(2015) leads to results that are more consistent with the mDSC
values of 23(2)–27(2) measured for Ge0.22Se0.78 by Li et al. (2017),
and better match the measured composition dependence of mvisc
(Figure 12). In comparison, themDSC values of Zhao et al. (2013)

FIGURE 6 | The composition dependence of the measured total structure
factors S(q) ≃ SNN(q) for the GexSe1−x system. The GEM and SANDALS
data sets are shown by the solid dark (black) and solid light (red) curves with
vertical error bars, respectively, where the line thickness is greater than the
size of the error bars at most q values. The curves for x>0 have been
displaced vertically for clarity of presentation.

are larger than expected from the other experimental work, and
take minimal values for the range 0.22 . x . 0.23.

Figure 13 shows the composition dependence of the ratio of
absolute temperatures Tg/TL, where the composition dependence
of TL was taken from a least-squares fit to the data shown in
Figure 1 and the composition dependence of Tg was taken from
a least-squares fit to the full set of data points shown in Figure 4.
These Tg values originate predominantly from DSC experiments
(with a few results from dilatometry, indentation and viscosity
experiments), and were used as an approximation to the viscosity
derived values on account of the sparsity of viscosity measure-
ments for the GexSe1−x system. At compositions for which both
glass transition temperatures are available (Table 1), a discrepancy
.10°C is indicated, corresponding to a fractional uncertainty of
.5% on the absolute values of Tg. In order to examine the effect
on Tg/TL of an uncertainty on Tg, this ratio was also calculated
after making a least-squares fit to the Tg,rev values shown in the
inset to Figure 4.

The composition dependence of log10η(TL) as predicted by
the MYEGA model with log10[η∞(Pa s)]=− 2.93 is shown in
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FIGURE 7 | The dependence of the periodicity 2π/qi associated with the
FSDP, principal peak (PP) and third peak in S(q) on the composition x and
mean coordination number n̄ = 2(1 + x). The results from the present
neutron diffraction (ND) work were obtained using either the GEM or
SANDALS diffractometer. In the case of the FSDP, these results are
compared to those obtained from the ND and high energy X-ray diffraction
(XRD) work of Bychkov et al. (2005); the high energy XRD work of Shatnawi
et al. (2008); the ND work of Ramesh Rao et al. (1998); the XRD work of
Sharma et al. (2005) and Wang et al. (2004); and the anomalous X-ray
scattering work of Hosokawa (2001) and Hosokawa et al. (2003). The pairs of
vertical dashed (black) or chained (red) lines, and associated horizonal arrows,
mark compositions for which ∆Hnr ≃ 0 as found in the present work or in the
work of Boolchand et al. (2001a), respectively.

Figure 14, where the ratio Tg/TL was taken from Figure 13 and
several different scenarios were investigated for the composition
dependence of mvisc (Figure 12). A maximum in log10η(TL)
occurs at (i) x= 0.21(1) if mvisc is taken from a fit to all of the
viscosity derived data, or (ii) x= 0.21(1) if mvisc is estimated by
shifting the mDSC values of Gunasekera et al. (2013) and com-
bining them with the Svoboda and Málek (2015) mDSC values.
A maximum in log10η(TL) occurs at (iii) x= 0.22(1) if mvisc is
estimated from the unshifted mDSC values of Gunasekera et al.
(2013), but the calculated viscosities are several orders of magni-
tude larger than expected from viscosity measurements (see also
Figure 11). A maximum in log10η(TL) occurs at (iv) m= 0.20(1)
if mvisc is estimated from the mDSC values of Zhao et al. (2013),
but in this case the calculated viscosities are significantly smaller
than expected from viscosity measurements. A maximum in

FIGURE 8 | The dependence of the correlation length 2π/∆qi associated
with the FSDP, principal peak (PP) and third peak in S(q) on the composition x
and mean coordination number n̄ = 2(1 + x). The results were obtained
using either the GEM or SANDALS diffractometer. The pairs of vertical dashed
(black) or chained (red) lines, and associated horizonal arrows, mark
compositions for which ∆Hnr ≃ 0 as found in the present work or in the work
of Boolchand et al. (2001a), respectively.

log10η(TL) at x∼ 0.2 is also indicated if mvisc is taken from the
fitted values listed in Table 1, but disappears if the composition
dependence ofmvisc is taken from Senapati and Varshneya (1996).

Recently, Yildirim et al. (2016a,b) used first-principles molec-
ular dynamics simulations to investigate the dynamics of liq-
uid GexSe1−x. By applying the Stokes-Einstein relation to the
calculated Ge self-diffusion coefficients, a maximum in the vis-
cosity was found at x ≃ 0.22 for the 777°C isotherm, which
accompanies a maximum in the structural relaxation time for
the α-relaxation regime of the intermediate scattering function
at q= 2.1Å−1. Temperature dependent constraint counting the-
ory, when combined with molecular-dynamics-based constraint-
counting algorithms, led to a minimum in the fragility index at
this composition. A minimum in the composition dependence of
the fragility index at x ≃ 0.2 was also found by fitting the high-
temperature viscosity data derived from first-principlesmolecular
dynamics simulations to the MYEGA model with the logarithm
of the high temperature viscosity set at log10[η∞(Pa s)]=−4
(Yildirim et al., 2016b). The majority of extracted mvisc values
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FIGURE 9 | The composition dependence of the measured total
pair-distribution function g(r) ≃ gNN(r) for the GexSe1−x system, as
obtained by Fourier transforming the spline fitted S(q) functions shown in
Figure 6 with qmax set at a node in S(q) at ≃32Å−1. The GEM and
SANDALS data sets are shown by the dark solid (black) and light solid (red)
curves, respectively. The Fourier transform artifacts at r values smaller than
the distance of closest approach between two atoms are shown by broken
curves oscillating about the g(r→0)= 0 limit. The curves for x>0 have been
displaced vertically for clarity of presentation.

are, however, significantly larger than expected from experiment
(Figure 12).

6. DISCUSSION

6.1. Glass Structure and Properties
As shown by the inset to Figure 4, the Tg,rev results of the
present work are, within the experimental error, the same as those
previously measured by Boolchand and coworkers. As shown in
Figure 5, the composition range of the intermediate phase found
in the present work, 0.175(8)≤ x≤ 0.235(8), is centered on the
mean-field expectation of a floppy-to-rigid transition at x= 0.20
(Thorpe, 1983), and is therefore shifted to smaller x values as
compared to the work of Boolchand and coworkers. As shown
in Figure 2, the composition dependence of the density found
in the present work is different to that reported by Bhosle
et al. (2012b), and more closely matches that measured by other
authors.

FIGURE 10 | The composition dependence of the mean coordination number
n̄ for the GexSe1−x system. The neutron diffraction results from GEM and
SANDALS are compared to the EXAFS results of Zhou et al. (1991) and to
the first-principles molecular dynamics results of Inam et al. (2007). The
expectations of the “8-N” rule are also given, where the curves were
calculated (i) for glassy samples for which bGe =bSe (see equation (5)), or (ii)
for the expectations of the CON and RCN models, taking into account a small
mismatch between the values of bGe and bSe for the measured samples (see
equation (3)). The pairs of vertical dashed (black) or chained (red) lines, and
associated horizonal arrows, mark compositions for which ∆Hnr ≃ 0 as
found in the present work or in the work of Boolchand et al. (2001a),
respectively.

FIGURE 11 | The dependence of log10[η(Pa s)] on the ratio of absolute
temperatures Tg/T. The solid curves show fits of the MYEGA model to the
measured viscosity data shown by the symbols for Se (Cukierman and
Uhlmann, 1973; Koštál and Málek, 2010; Gueguen et al., 2011), Ge0.10Se0.90
(Nemilov, 1964; Senapati and Varshneya, 1996; Gueguen et al., 2011),
Ge0.20Se0.80 (Nemilov, 1964; Gueguen et al., 2011), Ge0.25Se0.75 (Nemilov,
1964; Senapati and Varshneya, 1996; Gueguen et al., 2011), or Ge0.30Se0.70
(Gueguen et al., 2011), where the logarithm of the high-temperature viscosity
was treated as a fixed parameter set at log10[η∞(Pa s)]=−2.93 (Zheng
et al., 2011). The broken (red) curve shows the prediction at x=0.20 of the
MYEGA model if the fragility index mvisc is equated to mDSC = 17.7 as found
in the TMDSC measurements of Gunasekera et al. (2013) (see Figure 12).
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FIGURE 12 | The dependence of the fragility index mvisc or mDSC for the
GexSe1−x system on the composition x and mean coordination number
n̄ = 2(1 + x). The data points are from the viscosity measurements of
Senapati and Varshneya (1996) [solid (red) squares �], Gueguen et al. (2011)
[solid (blue) triangles N] and Svoboda and Málek (2015) [solid (black) circles
•], or from fits to viscosity data using the MYEGA model with the logarithm of
the high-temperature viscosity treated as either a fitting parameter [solid
(magenta) stars ⋆] or a fixed parameter set at log10[η∞(Pas)]=−2.93 [solid
(cyan) stars ⋆]. Least-squares parabolic fits are shown for (i) all of these
viscosity derived data points [solid (black) curve] and (ii) solely the mvisc values
of Senapati and Varshneya (1996) [broken (red) curve]. The mvisc values
estimated from the molecular dynamics work of Yildirim et al. (2016b) are
given by the open (red) diamonds ⋄. Also shown are the mDSC values from
Gunasekera et al. (2013) as measured [open (black) squares �] or after
shifting by 10 units [open (black) triangles △]; Svoboda and Málek (2015)
[open (green) triangles △]; Li et al. (2017) for samples prepared at x= 0.22
using short and long sample reaction times of 34 h [open (blue) downward
triangle ▽] versus 192 h [solid (blue) downward triangle H]; and Zhao et al.
(2013) [solid (green) diamonds �]. The pairs of vertical dashed (black) or
chained (red) lines, and associated horizonal arrows, mark compositions for
which ∆Hnr ≃ 0 as found in the present work or in the work of Boolchand
et al. (2001a), respectively.

Bhosle et al. (2012a,b) report a water-induced increase of
density that accompanies a decrease in Tg,rev for glasses in the
GexSe1−x system. In this way, an attempt was made to ratio-
nalize the low density values found in their work as compared
to previous investigations (Figure 2). At a given composition,
the density measured in the present work is also greater than
reported by Bhosle et al. (2012a,b), but the Tg,rev values are the
same, e.g., 174(2)°C at x= 0.19 for our sample versus 172(2)°C
at x= 0.19 for the (dry) sample of Bhosle et al. (2012a). Also,
the infrared spectra for samples made using our procedure do
not indicate any water contamination (Section 3.1). Hence, it
is difficult to reconcile the large discrepancy in the compo-
sition dependence of the glass density between Bhosle et al.
(2012b) and previous work (Figure 2) with the presence of water
contamination.

In the present work, the absence of a jump in the composition
dependence of ∆Hnr at the boundaries of the intermediate

TABLE 1 | The fragility index mvisc and glass transition temperature Tg,visc corre-
sponding to a viscosity η(Tg,visc)= 1012 Pa s.

x mvisc Tg,visc (°C) mvisc

(literature)
Tg,visc

(literature)(°C)
Tg,DSC (°C)

0 54 26 47–64a,c,d 28–45a,c,d 32(1)
0.10 43 89 37–38a,c 83–95a,b,c 86(4)
0.20 31 158 30–32a,c 154–157a,b,c 161(1)
0.25 32 219 27–29a,c 214–219a,b,c 227(1)
0.30 30 306 26a 307a 314(2)

The results obtained by fitting viscosity data to the MYEGA model with
log10 [η∞

(Pa s)]=−2.93 (Figure 11) are compared to values of mvisc and Tg,visc
taken from the literature. Also listed are the values of the glass transition temperature
Tg,DSC taken from the onset of the glass transition in the total heat flow measured in the
TMDSC experiments of the present work (Figure 4).
aGueguen et al. (2011).
bNemilov (1964).
cSenapati and Varshneya (1996).
dSvoboda and Málek (2015).

FIGURE 13 | The dependence of the ratio of absolute temperatures Tg/TL for
the GexSe1−x system on the composition x and mean coordination number
n̄ = 2(1 + x). The TL values were taken from the least-squares fit to the
experimental data shown in Figure 1, and the glass transition values were
taken from the least-squares fit to either (i) all of the measured Tg values
shown in the main panel of Figure 4 or (ii) solely the Tg,rev values shown in the
inset to Figure 4. The resultant Tg/TL versus x curves are shown by the solid
(black) and broken (red) curves, respectively. The pairs of vertical dashed
(black) or chained (red) lines, and associated horizonal arrows, mark
compositions for which ∆Hnr ≃ 0 as found in the present work or in the
work of Boolchand et al. (2001a), respectively.

phase (Figure 5) might be attributed to inhomogeneous glass
that originates from the allocation of insufficient time to fully
react Ge and Se in the liquid state before quenching to form
a glass (Bhosle et al., 2012b). However, GexSe1−x glasses
made by using an almost identical rocking-furnace procedure
show no evidence of sample heterogeneity (Section 3.1). In
the work of Gunasekera et al. (2013), a small fragility index
mDSC = 14.8(5) for Ge0.22Se0.78 (Figure 12) might be attributed to
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the preparation of homogeneous glass after a long reaction time
of 144–216 h for samples of mass 2 g. However, systematically
larger values of mDSC = 23(2) and mDSC = 27(2) are reported
for Ge0.22Se0.78 samples of similar mass (∼1.5 g) prepared using
short versus long reaction times of 34 and 192 h, respectively
(Li et al., 2017).

The neutron diffraction results of the present work do not show
any obvious structural signature of the intermediate phase. For
example, they do not support a deviation from the “8-N” rule
as reported by Inam et al. (2007) from first-principles molec-
ular dynamics simulations, or a shoulder in the composition
dependence of the periodicity 2π/qFSDP as reported by Sharma
et al. (2005) from X-ray diffraction experiments. This absence of
a structural signature is consistent with the high-energy X-ray
diffraction and EXAFS spectroscopy work of Shatnawi et al.
(2008), who investigated samples for which ∆Hnr ≃ 0 for the
range 0.20 . x . 0.25.

It is conceivable that a structural signature of the intermediate
phase does not manifest itself at the pair-correlation function
level, as accessed by diffraction experiments (Fischer et al.,
2006). Modeling methods can, however, access information on
higher-body correlation functions, and Micoulaut et al. (2013)
used first-principles molecular dynamics to investigate the struc-
ture of several GexSe1−x glasses with compositions spanning the
intermediate phase. Although a compelling structural signature
of the intermediate phase was not found, constraint-counting
algorithms show that broken bond-bending constraints are asso-
ciated with the stressed-rigid phases at x= 1/3 and x= 0.40. As
shown by Chen et al. (2010a), the electronic structure of a glass
may offer evidence of a structural origin for the intermediate
phase. By combining first-principles molecular dynamics simula-
tions with the results obtained from X-ray absorption near-edge
structure (XANES) experiments made at the K-edge of both Ge
and Se, it was suggested that the intermediate phase for GexSe1−x
glasses corresponds to a composition range in which there is
interplay between regions that are either Se-rich or populated by
clustered Ge(Se4)1/2 tetrahedra.

6.2. Comment on the Utility of the
Intermediate Phase
The defining feature of the intermediate phase is a composition
rangewhere∆Hnr ≃ 0. The physical interpretation of this param-
eter is debated (Schawe, 1995; Reading, 1997), with Boolchand
and coworkers attributing it to the enthalpy of relaxation at Tg
(Bhosle et al., 2012a). It is conjectured that glasses within the
intermediate phase are stable in the sense that, for different aging
times at room temperature, there is no alteration to the total
enthalpy change∆Htot = ∆Hr+∆Hnr across the glass transition:
the reversing part ∆Hr does not alter and, unlike the floppy
and stressed-rigid phases, the non-reversing part ∆Hnr remains
vanishingly small (Boolchand et al., 2002; Bhosle et al., 2012b).

By contrast, the change in specific heat capacity Cp across the
glass transition, as determined from the total enthalpy change
measured in DSC experiments, has been used to monitor the
effect on Ge0.10Se0.90 and Ge0.20Se0.80 glass fibers of aging at
room temperature for periods of up to 58months (King, 2011).

The results show that glasses within the intermediate phase do
relax, although the magnitude of change is markedly smaller
for x= 0.20 as compared to x= 0.10. Some of this difference in
response may originate from a difference in fictive temperatures:
The glass fibers were quenched quickly from the melt and corre-
spond to a high fictive temperature, whereas the samples of, e.g.,
Bhosle et al. (2012b) were temperature cycled above Tg during
a TMDSC experiment before aging at room temperature, and
therefore correspond to a low fictive temperature. Some of this
difference in response may also originate from the size of the
interval between Tg and the annealing temperature Ta, where the
former increaseswith x (Figure 4). Zhao et al. (2013) looked at this
issue by employing DSC to monitor the change in total enthalpy
for bulk samples ofmelt-quenched glassyGexSe1−x (0≤ x≤ 0.23)
annealed for 1 h at Tg. The samples were subsequently aged for
different durations of time with Ta set at a fixed interval below
Tg. All of the samples showed the same aging characteristics,
including those associated with intermediate phase compositions,
with an aging rate and kinetics that depend on the interval
Tg −Ta. A Raman spectroscopy investigation of Ge0.20Se0.80, in
which a glass equilibrated at Tg = 160°C was subsequently aged
at 120°C for a time period ranging from 6 to 240 h, showed
structural relaxation with a characteristic timescale of ∼40 h dur-
ing which there is a conversion from edge-sharing to corner-
sharing Ge(Se4)1/2 tetrahedral units (Edwards and Sen, 2011). A
conversion from edge-sharing to corner-sharing tetrahedral units
was also observed byKing (2011) in herRaman spectroscopywork
on the aging of Ge0.10Se0.90 and Ge0.20Se0.80 glass fibers at room
temperature.

Recently, mDSC values smaller than the fragility index of silica
have been reported for glasses within the intermediate phase win-
dow, leading to the notion of “super-strong” liquids (Gunasekera
et al., 2013). This feature has been attributed to a slow homog-
enization of the melt when GexSe1−x glasses are prepared via a
heating procedure in which elemental Ge and Se pieces are melted
in a stationary vertically-mounted silica-ampoule, i.e., when a
rocking furnace is not employed (Gunasekera et al., 2013; Bhage-
ria et al., 2014). However, as discussed in Section 5, the numerical
values for mDSC reported by Gunasekera et al. (2013) lead to a
temperature dependence of the viscosity that is notably different
to that expected fromviscositymeasurements (Figure 11), leading
to log10η(TL) values that are significantly larger than expected
(Figure 14).

Lastly, it would be helpful if advocates of the intermediate
phase could develop a method for predicting its occurrence and
composition range for different classes of network glass-forming
systems, and the concomitant effect on thematerial properties. For
example, GexSe1−x and AsxSe1−x are prototypical chalcogenide
glass-forming systems that feature different network topologies.
In the case of GexSe1−x, the intermediate phase window incorpo-
rates the composition x= 0.20 for which a rigid to floppy tran-
sition is expected on the basis of mean-field constraint counting
theory, a minimum in the molar volume is reported for the inter-
mediate phase window (Bhosle et al., 2012b; Bhageria et al., 2014),
and the fragility index takes a minimum within this window at
around x= 0.22 (Section 5). In the case of AsxSe1−x, however, the
intermediate phase window of 0.291(1)≤ x≤ 0.37(1) (Georgiev
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FIGURE 14 | The dependence of log10η(TL ) for the GexSe1−x system, as calculated using the MYEGA model with log10[η∞(Pa s)]=−2.93, on the composition x
and mean coordination number n̄ = 2(1 + x). The solid (black) squares correspond to the fitted data sets shown in Figure 11 where the associated mvisc values are
listed in Table 1. The solid (black) and solid (red) curves show the results obtained by taking mvisc from the solid (black) curve in Figure 12 and Tg/TL from either the
solid (black) or broken (red) curve in Figure 13, respectively. The broken (black) and broken (red) curves show the results obtained by taking mvisc from the broken
(red) curve in Figure 12 and Tg/TL from either the solid (black) or broken (red) curve in Figure 13, respectively. The chained (blue) and dotted (blue) curves show the
results obtained by taking Tg/TL from the broken (red) curve in Figure 13 and by assuming that mvisc ≃ mDSC, with mDSC either (i) taken from the results of
Gunasekera et al. (2013) or (ii) obtained by combining the results of Svoboda and Málek (2015) with the shifted results of Gunasekera et al. (2013) (see Figure 12),
respectively. The chained (green) curve shows the results obtained by taking Tg/TL from the solid (black) curve in Figure 13 and by assuming that mvisc ≃ mDSC,
with mDSC taken from the results of Zhao et al. (2013). The pairs of vertical dashed (black) or chained (red) lines, and associated horizonal arrows, mark compositions
for which ∆Hnr ≃ 0 as found in the present work or in the work of Boolchand et al. (2001a), respectively.

et al., 2000) or 0.20< x< 0.37 (Ravindren et al., 2014) does not
incorporate themean-field composition of x= 0.40 for a floppy to
rigid transition, a minimum in the molar volumemay (Ravindren
et al., 2014) or may not occur within this composition range
(e.g., Feltz et al., 1983 report a minimum at x= 0.40), and a min-
imum in the fragility index mvisc occurs at x ≃ 0.27 (Musgraves
et al., 2011).

7. CONCLUSION

The structure of vitreous GexSe1−x across the glass-forming
region was measured by using neutron diffraction. No clear-
cut evidence could be found for a structural origin of the
intermediate phase, which extends over the composition range
0.175(8)≤ x≤ 0.235(8) as found from the non-reversing enthalpy
measured using TMDSC. The dynamical properties of the
GexSe1−x system were also probed by using the MYEGA model
for the viscosity. Much of the available evidence points to a mini-
mum in the fragility index, and a maximum in the viscosity at the

liquidus temperature, that occur in the range 0.20≤ x≤ 0.22. This
range incorporates the composition x= 0.20 at which a floppy-to-
rigid transition is expected from mean-field constraint-counting
theory, in contrast to the AsxSe1−x system where a minimum
in the fragility index occurs at x ≃ 0.27 but a floppy-to-rigid
transition is expected frommean-field constraint-counting theory
at x= 0.40. In order to establish the extent to which these findings
are related to the expectations of mean-field constraint-counting
theory, or to a special range of compositions associated with the
intermediate phase, it would be beneficial to make a systematic
and more complete investigation on the composition dependence
of η(T) for the GexSe1−x and other chalcogenide network glass-
forming systems.
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