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1 Introduction

Deriving knowledge from large and complex data sets is a fundamental problem in modern science.
All aspects of this problem need to be addressed by the mathematical and computational sciences.
There are various different aspects to the problem, including devising methods for (a) storing
massive amounts of data, (b) efficiently managing it, and (c) developing understanding of the data
set. The last decade has seen a great deal of development of powerful computing infrastructure,
as well as methodologies for managing and querying large databases in a distributed fashion. In
this paper, we will be discussing one approach to (c) above, that is to the problem of generating
knowledge and understanding about large and complex data sets.

Much of mathematics can be characterized as the construction of methods for organizing infinite
sets into understandable representations. Euclidean spaces are organized using the notions of
vector spaces and affine spaces, which allows one to organize the (infinite) underlying sets into
understandable objects which can readily be manipulated, and which can be used to construct new
objects from old in systematic ways. Similarly, the notion of an algebraic variety allows one to
work effectively with the zero sets of sets of polynomials in many variables. The notion of shape is
similarly encoded by the notion of a metric space, a set equipped with a distance function satisfying



three simple axioms. This abstract notion permits one to study not only ordinary notions of shape
in two and three dimensions, but also higher dimensional analogues, as well as objects like the
p-adic integers, which are not immediately recognized as being geometric in character. Thus, the
notion of a metric serves as a useful organizing principle for mathematical objects. The approach
we will describe demonstrates that the notion of metric spaces acts as an organizing principle for
finite but large data sets as well.

Topology is one of the branches of mathematics which studies properties of shape. The point of
view on the study of shape which is particular to topology can be described in terms of three points.

1. The properties of shape studied by topology are independent of any particular coordinate
representation of the shape in question, and instead depends only on the pairwise distances
between the points making up the shape.

2. Topological properties of shape are deformation invariant, i.e. they do not change if the shape
is stretched or compressed. They would of course change if non-continuous transformations
are applied, “tearing” the space.

3. Topology constructs compressed representations of shapes, which retain many interesting and
useful qualitative features while ignoring some fine detail.

Topology deals with shape in two distinct ways. The first is by building compressed combinatorial
representations of shapes, via processes such as triangulation. Of course some information about
the shape is lost in this discretization, such as fine scale curvature information, but as in the
example above, the rough overall structure is preserved in passing from the circle to the hexagon.
The second method is by attempting to measure shape, or aspects of shape. This is done via
homological signatures, which permit a kind of count of occurrences of patterns within the shape.
The adaptation of these signatures to the study of point cloud data is the subject of this paper.

The intuitive idea behind algebraic topology is that one should try to distinguish or perhaps even
characterize spaces by the occurrences of patterns within a space. Consider the example of an
annulus, in which one could say that a characteristic pattern is the presence of a loop in the space,
surrounding the removed disc in the middle. One could say intuitively that the count of loops in
an annulus is one, in that there is “essentially” only one loop in the space, characterized by the
fact that it winds around the central removed disc. It is not so easy to make mathematical sense
of this observation, for reasons made clear in the figure below.



The presence of essentially one loop is something which a priori is difficult to quantify, since in fact
there is an uncountable infinity of actual loops which have the same behavior, i.e. they wind around
the hole once. In order to resolve this difficulty, and formalize the notion that there is essentially
only one loop, one is forced to perform some abstract constructions involving equivalence relations
to obtain a sensible way of counting the number of loops. The idea is that one must regard many
different loops as equivalent, in order to get a count of the occurrences not of each individual loop,
but rather of a whole class of equivalent loops. This step is what is responsible for much of the
abstraction which is introduced into the subject. Once that layer of abstraction has been built,
it provides a way to detect the presence of geometric patterns of certain types. The general idea
of a pattern is of course a diffuse one, with many different meanings in many different contexts.
In the geometric context, we define patterns as maps from a template space, such as a circle, into
the space. A large part of the subject concerns the process of reducing the abstract constructions
described above to much more concrete mathematical constructions, involving row and column
operations on matrices. The goals of the present paper are the following.

e To introduce the pattern detection signatures which come up in algebraic topology, and to
simultaneously develop the matrix methods which make them into computable and usable
invariants for various geometric problems, particularly in the domain of point clouds or finite
metric spaces. We hope that the introduction of the relevant matrix algorithms will begin to
bridge the gap between topology as practiced “by hand”, and the computational world. We
will describe the standard methods of homology, which attach a list of non-negative integers
(called the Betti numbers) to any topological space, and also the adaptation of homology to
a tool for the study of point clouds. This adaptation is called persistent homology.

e To introduce the mathematics surrounding the collection of persistence barcodes or persistence
diagrams, which are the values taken by the persistent homology constructions. Unlike the
Betti numbers, which are integer valued, persistent homology takes its values in multisets of
intervals on the real line. As such, they have a mix of continuous and discrete structure. The
study of these spaces from various points of view, so as to be able to make them maximally
useful in various problem domains, is one of the most important research directions within
applied topology.

e To describe various examples of applications of persistent homology to various problem do-
mains. There are two distinct directions of application, one being the study of homological
invariants of data one individual data sets, and the other is the use of homological invariants
in the study of databases where the data points themselves have geometric structure. In



this case, the barcode space can act as the home for a kind on non-linear indexing for such
databases.

The author is very grateful for many helpful conversations with many people, including R. Adler,
A. Bak, A. Blumberg, E. Carlsson, J. Carlsson, F. Chazal, J. Curry, V. de Silva, P. Diaconis, H.
Edelsbrunner, R. Ghrist, L. Guibas, J. Harer, S. Holmes, M. Lesnick, A. Levine, P. Lum, B. Mann,
F. Mémoli, K. Mischaikow, D. Morozov, S. Mukherjee, J. Perea, R. Rabadan, H. Sexton, P. Skraba,
G. Singh, R. van de Weijgaert, M. Vejdemo-Johansson, S. Weinberger, and A. Zomorodian.

2 Topology

2.1 History

The paper [31] is usually cited as the first paper in topology. In it, Euler studies the so-called
“Bridges of Konigsberg” problem.

The question that was asked about the bridges was whether or not it was possible to traverse
all the bridges exactly once, and return to one’s starting point. Euler answered this question by
recognizing that this was a question about paths in an associated network, see below. In fact, the
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question only depends on certain properties of the paths, independent of the rates at which the
paths are traversed. His result concerned the properties of an infinite class of paths, or of a certain



type of pattern in the network. Euler also derived Fuler’s polyhedral formula relating the number
of vertices, edges, and faces in polyhedra ([32], [33]). The subject developed in a sporadic fashion
over the next century and a half, including work of Vandermonde on knot theory [72], the proof
of the Gauss-Bonnet theorem (never published by Gauss, but with a special case proved in [9]),
the first book in the subject by J. Listing [50], and the work of B. Riemann identifying the notion
of a manifold [63]. In 1895, H. Poincare published the seminal paper [62], in which the notions of
homology and fundamental group were introduced, with motivation from celestial mechanics. The
subject then developed at a greatly accelerated pace throughout the 20" century. The first paper
in persistent homology was published by V. Robins [64], and the subject of applying topological
methodologies to finite metric spaces has been developing rapidly since that time.

2.2 Equivalence relations

A (binary) relation on a set X is a subset of C X x X. We will often denote relations by ~, and
write x ~ 2’ to indicate that (x,2’) is in the relation.

Definition 2.1 A relation ~ on a set X is an equivalence relation if the following three conditions

hold.

1. x~x foralzeX.
2. x ~ 2" if and only if ¥’ ~ x.

3. x~a and x' ~ 2" implies v ~ 2.

By the equivalence class of x € X, denoted by [x], we will mean the set
{2'| @ ~ '}

The sets [x] for all x € X form a a partition of the set X. If ~ is any binary relation on a set
X, then by the equivalence relation generated by ~ (or the transitive closure of ~) we will mean
the equivalence relation ~' defined by the condition that xog ~" 1 if and only if there is a positive
integer n and a sequence of elements xg, x', ..., x;, so that i = xo, ), = x1, and xj ~ x| for all
0<i<n-—1.

For a set X and an equivalence relation ~ on X, we will denote the set of equivalence classes under
~ by X/ ~, and refer to it as the quotient of X with respect to ~. There are several important
special cases of this definition. The first is the quotient of a vector space by a subspace. Let V be
a vector space over a field k, and let W C V be a subspace. We define an equivalence relation ~yy
on V by setting v ~y v’ if and only if v — v € W. It is easy to verify that ~y is an equivalence
relation. We can form the quotient V/ ~y, and one observes that V/ ~y is itself naturally a
vector space over k, with the addition and scalar multiplication rules satisfying [v] + [v/] = [v 4 ']
and k[v] = [kv]. In this special case, we will denote V/ ~y by V/W, and refer to it as the quotient
space of V by W. Although the quotient is an apparently abstract concept, it can be described
explicitly in a couple of ways.



Proposition 2.1 Suppose that we have a basis B of a vector space V', and B’ C B is a subset. If
W is the subspace of V' spanned by B’, then the quotient V/W has the elements {[b]|b ¢ b'} as a
basis, so the dimension of V/W is #(B) — #(B'). More generally, if W' is a complement to W in
V, so that W+ W' =V, and WNW' = {0}, then the composite

W —v24vw

is a bijective linear transformation, so the dimension of V/W is equal to the dimension of W',
where p is the map which assigns to v € V its equivalence class [v] under ~yy.

There is also a matrix interpretation. Let V and W be vector spaces with ordered bases, and let
f:V — W be a linear transformation, with matrix A(f) associated to the given bases. The image
of f is a subspace of W, and we write 6(f) for the quotient space W/im(f).

Proposition 2.2 Let g: V —V and h : W — W be invertible linear transformations. Then 0(f)
is isomorphic to O(hfg). It follows that if we have the matriz equation A(f") = A(h)A(f)A(g),
then O(f') is isomorphic to 6(hfg).

Proof: This follows from the elementary observation that w ~;,, ) w’ if and only if

h(w) ~im(np) h(w')
O

Proposition 2.3 Let W be the vector space k™ for some n, and suppose that we are given an
m xXn matrix A with entries in a field k. A can be regarded as a linear transformation from V = k"
to W, and the span of the columns in this matrixz is the image of the transformation A. Then if
we apply any row or column operation (permuting rows/columns, multiplying a row/column by a
non-zero element of k, or adding a multiple of one row/column to another) to obtain a matriz A,

then 0(A) is isomorphic to 6(A').

Remark 2.1 Note that for any matrix A over a field, one can apply row and column operations
to bring it to the form
I, 0O
6 0]

where n is the rank of A. In this case, dimension of the quotient is readily computed using
Proposition 2.1.

The second special case is that of the orbit set of a group action. If G is a group, and we have an
action of G on a set X, then the action defines an equivalence relation ~¢g on X by x ~¢ 2’ if there
isa g € G so that gz = /. This is readily seen to be an equivalence relation, and the equivalence
classes are called the orbits of the action.



Finally, consider the case of a topological space X equipped with an equivalence relation R. Then
the quotient set X/R is equipped with a topology by declaring that a set U C X/R is open if and
only if 771(U) is an open set in X, where 7 : X — X/R is the map which assigns to each z € X
its equivalence class [x].

2.3 Homotopy

The fundamental idea of algebraic topology is that one should develop methods for counting the
occurrences of geometric patterns in a topological space in order to distinguish it from other spaces,
or to suggest similarities between different spaces. A simple example of this notion is given by the
picture below.

In examining these two spaces, we see that the left hand space contains a single loop, while the
second one contains two distinct loops. Thus, a count of loops is an interesting quantity to consider,
from an intuitive point of view. However, it appears difficult to make precise mathematics out of
this intuition. It is reasonably easy to make sense of what one means by a loop in a space X,
i.e. a continuous map f : S' — X. So in this case, the pattern associated to a loop is the circle
itself, and an occurrence of the pattern is a continuous map from the circle S' to X. However,
there are almost always infinitely many loops in a space. For example, any loop can always be
reparametrized by precomposing with any self homeomorphism of the circle. Another difficulty,
though, is the situation illustrated by the following subset of the plane.

The interesting feature is the hole in the center, and both the loops (as well as an infinity of others)
capture that feature, in the sense that they “go around” the hole. This makes for an even larger



set of loops, and the idea here is to create a kind of count which captures the feature using the
presence of loops around it, rather than producing an infinity of loops. The key insight to be had
here is that the idea of counting occurrences of patterns directly is unworkable, but that counting
equivalence classes of occurrences of patterns under an equivalence relation is workable.

Definition 2.2 Given two maps f,g : X — Y of topological spaces, we say f and g are homotopic,
and write f ~ g, if there is a continuous map H : X x [0,1] — Y so that H(z,0) = f(x) and
H(z,1) = g(z) for all x € X. The relationship of being homotopic is an equivalence relation.
When there are fized basepoints xg € X and yo € Y, we speak of based maps as maps f: X —Y
for which f(xo) = yo, and of based homotopies as homotopies H(xo,t) = yo for all t. Based
homotopy is also an equivalence relation on the set of based maps from X to Y.

Remark: The fact that one most choose equivalence classes of occurrences of a pattern in order
to obtain a workable theory is the fundamental observation in the subject. It is responsible for the
power of the method, and on the other hand for the technical complexity of the subject.

The set of homotopy classes of continuous maps from a space X to a space Y is a more discrete
invariant, which gives a high level description of the set of maps from X to Y. When X is the
n-sphere S™, one can in a natural way impose the structure of a group on the set of equivalence
classes of based maps from S™ to Y. The resulting group is denoted by 7, (Y, yp). Applied to the
example above, with a single obstacle in the plane, this group 7 is a single copy of the integers with
addition as the operation. The integer assigned to a given loop is the so-called winding number of
the loop, which counts how many times the loop wraps around the obstacle, with orientation taken
into account as a sign.

The black loop has winding number 42, and the white loop has winding number -1. If there were
two obstacles, m; would be a free non-commutative group on 2 generators, and similarly n generators
with n obstacles. If we had a three dimensional region, with a single ball shaped obstacle, then
would be trivial, but w3 would be identified with a copy of the integers, the invariant integer given
by a higher dimensional version of the winding number. The groups 7, (Y, o) are referred to as
the homotopy groups of a space Y. They serve as a form of pattern recognition for the space, in
that they detect occurrences of the pattern corresponding to the n-spheres. The homotopy groups
allow one to distinguish between spaces, as follows.



Definition 2.3 Two topological spaces X and Y are said to be homotopy equivalent if there are
continuous maps f : X =Y and g: Y — X so that gf and fg are homotopic to the identity maps
on X and Y, respectively. There is the corresponding notion for based maps and based homotopies.

Remark 2.2 We note that this is simply a “softened” version of the usual notion of isomorphism,
where the composites are required to be equal to the corresponding identity maps. Of course,
spaces which are actually homeomorphic are always homotopy equivalent.

It is now possible to prove the following.

Proposition 2.4 Suppose that two spaces X andY are based homotopy equivalent, with base points
xo and yo as base points. Then all their homotopy groups m,(X, x¢) and 7, (Y, yo) are isomorphic.

This result often allows us to conclude that two spaces are not homotopy equivalent, and a fortiori
not homeomorphic. For example, m2(S52,0) is isomorphic to the group of integers, while 72 (R2,0)
is isomorphic to the trivial group, and we may conclude that they are not homotopy equivalent.

Although they are easy to define, and are conceptually very attractive, it turns out that homotopy
groups of spaces are very difficult to compute. There is another kind of invariant, called homology,
which instead of being easy to define and difficult to compute, is difficult to define and easy to
compute.

2.4 Homology

Homology was initially defined not for topological spaces directly, but rather for spaces described
in a very particular way, namely as simplicial complexes. This description is very combinatorial,
and it turns out that (a) not every space can be described as a simplicial complex and (b) each
space can be described as a simplicial complex in many different ways. In the early development
of the subject, the apparent dependence of the homology calculation on the simplicial complex
structure was a serious problem, and was the subject of a great deal of research. These problems
were eventually resolved by Eilenberg, who showed that there is a way to extend the definition of
homology groups to all spaces, and in such a way that the result depends only on the space itself,
and not on any particular structures as a simplicial complex. Eilenberg’s solution was, however,
extremely infinite in nature, and is not amenable to direct computation. Calculations of homology
for simplicial complexes remains the best method for explicit calculation. Because most spaces of
interest are either explicitly simplicial complexes or homotopy equivalent to such, it turns out that
simplicial calculation is sufficient for most situations.

Let S = {zg,z1,...,2,} denote a subset of a Euclidean space R*. We say S is in general position
if it is not contained in any affine hyperplane of R¥ of dimension less than n. When S is in general
position, we define the simplez spanned by S to be the convex hull ¢ = ¢(S) of S in R¥. The
points z; are called wvertices, and the simplices o(7T") spanned by non-empty subsets of 7' C S are
called faces of o By a (finite) simplicial complez, we will mean a finite collection X of simplices in
a Euclidean space so that the following conditions hold.
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1. For any simplex o of X, all faces of ¢ are also contained in X

2. For any two simplices ¢ and 7 of X', the intersection o N 7 is a simplex, which is a face of
both ¢ and 7.

We note that any simplicial complex determines a combinatorial object consisting of subsets of the
full vertex set of the complex, motivating the following definition.

Definition 2.4 By an abstract simplicial complex X, we will mean a pair X = (V(X),X(X)),
where V(X)) is a finite set called the vertices of X, and where ¥(X) is a subset (called the simplices)
of the collection of all non-empty subsets of V(X), satisfying the conditions that if o € ¥(X), and
0 #71 Co, then T € X(X). Simplices consisting of exactly two vertices are called edges.

We note that a simplicial complex X determines an abstract simplicial complex whose vertex set
V(X) is the set of all vertices of all simplices of X', and where a subset of V(X) is in the collection
of simplices X(X') if and only if the set is the set of vertices of some simplex of X. What is
true but less obvious is that the abstract simplicial complex determines the underlying space of
the simplicial complex up to homeomorphism. Indeed, given any abstract simplicial complex X,
we may associate to it a space |X|, the geometric realization of X, and what is true is that for
any simplicial complex, it is homeomorphic to the geometric realization of its associated abstract
simplicial complex. Further, given two abstract simplicial complexes X and Y, a map of abstract
simplicial complezes f from X to Y is a map of sets fiy : V(X) — V(YY) so that for any simplex
o € X(X), the subset fi/(0) € ¥y. The geometric realization construction is functorial, in the sense
that any map f : X — Y of abstract simplicial complexes induces a continuous map |f| : | X| — |Y],
so that |feg| = |f|e|g|] and |idx| = idx|. By a triangulation of a space Z, we will mean a
homeomorphism from the realization of an abstract simplicial complex with Z. A space can in
general be triangulated in many different ways.

It turns out that it is very easy to describe the set of connected components of a simplicial complex
in terms of its associated abstract simplicial complex. Let X be a simplicial complex, and X its
associated abstract simplicial complex.

Proposition 2.5 Let R be the equivalence relation on V(X) generated by the binary relation R’
on V(X) given by
R = {(v,v"){v,v'} is a simplex of X}

The the connected components of X are in bijective correspondence with the quotient V(X)/R.

We now consider the following very simple example of an abstract simplicial complex, denoted by
wW.

11



Figure 1: The simplicial complex W

The list of simplices in the corresponding simplicial complex is now

{{A} B} {C}HAD}YAE}Y{A B}, {A,C} {B, C}{D, E}}

The geometric realization of this complex has two connected components, namely the triangle ABC
and the interval DE. Our first goal is to describe the computation of the number of connected
components using linear algebraic methods.

Definition 2.5 Let k be a field, and let S be a finite set. Then by the free k-vector space on
the set S, we will mean the vector space Vi(S) of k valued functions on S, with the vector space
operations given by pointwise sum and scalar multiplication. Vi(S) has a basis By(S) identified
with S, consisting of the characteristic functions s defined by os(s') =1 if &' = s and ps(s’) =0
if s #s'. In particular, the dimension of Vi(S) is #(S). If f : S — T is a map of sets, then there
is an associated linear transformation Vi(f) : Vi(S) — Vi(T), defined on an element ¢ : S — k of
Vi(S) by the formula

{s|f(s)=t}

Note that a basis element s is carried under Vi(f) to a basis element Di(s)-

We next suppose that we are given a finite set X, with a binary relation R C X x X. We define a
subspace Vi (R) C Vj(X) to be the subspace spanned by the set

{2 — pul(z,2") € R}
The following is now easy to show.

Proposition 2.6 There is an isomorphism of k-vector spaces

Vie(X)/Vi(R) = Vi(X/R)
Moreover, the composite Vi(X) — Vi(X)/Vi(R) — Vi(X/R) is the linear transformation induced
by the projection X — X/R.

12



For simplicity, we will now assume that the field &k is the field with two elements {0,1}, with
14+1=0,s01=—1. We associate to the simplicial complex W shown in Figure 1 above a matrix

denoted by 01, given by
AB AC BC DE

o =

HO QW
S OO ==
SO = O =
OO~ = O
=0 O O

The columns are in correspondence with the edges of the complex, and the rows are in correspon-
dence with the vertices. The entries are determined by incidence of a vertex with an edge, i.e. it
is = 1 if the vertex is contained in the edge, and is = 0 if not. Examining the columns, and noting
that v — v’ = v + v/ because of our choice of field, we see that they are exactly the elements

{v —'|v and v’ span an edge in W}

We now have the following consequence of Proposition 2.5.

Proposition 2.7 Let mo(|W|) denote the set of connected components of |W|, and let vo(W) denote
the set of vertices of W. Then the vector space Vi(mo(|W|)) is isomorphic to the quotient space
of Vi(vg(W)) by the column space Col(01) of 1. Moreover, there is a natural choice of basis for
Vie(mo(W)) consisting of equivalence classes of vertices.

In particular, the number of connected components is equal to the dimension of Vi (vo(W))/Col(01),
which by Proposition 2.3 is equal to #(vo(W)) — rank(9;). This linear algebraic interpretation of
the number of connected components suggests that we try to interpret the nullity of 0 as well as
the rank.

We see easily that the rank of 9y is 3, and consequently (by the rank nullity theorem) that the
nullity of 0; is 4 — rank(d;) = 1. Inspection shows that a basis for the null space consists of the
element

pYaB t+wac +¥BC

If we permit ourselves to think of the sums as unions, this linear combination corresponds to the
union of the edges AB, AC', and BC. This union is a cycle of length three in the complex W shown
in Figure 1. It is a useful exercise to make similar computations for other graphs, in particular
n-cycles for numbers > 3, to convince oneself that the the nullity is in each case the number of
cycles in the graph, suitably interpreted. To understand the interpretation, consider the following
complex.

13



AB AC BD BE CD DE
Al 1 1 0 0 0 0
B| 1 0 1 1 0 0
E C| 0 1 0 0 1 0
D| 0 0 1 0 1 1
El O 0 0 1 0 1

Figure 3: A complex with a 2-simplex added

Figure 2: The complex X

We can see that there are two obvious cycles, AB+BD+ DC+ AC and BE+ ED+ DB, represented

by the elements of the null space (1 = pap + ¢Bp + Ycp + vac and (2 = YBE + YED + YDB-
However, there is another cycle given by

AB+ BE +ED+ DC +CA (2-1)

Note, however, that the sum {7 + (5 is equal to the element

wAB +¥BE + YED + YDC + woa

which is the element of the null space of 9; corresponding to the cycle in (2-1) above. The cycles
actually correspond to the elements of vector space, and can therefore be added and multiplied by
scalars. This give an extremely useful way of organizing the cycles. In particular, one can construct
a basis of the cycles, instead of counting them all individually.

Next, consider the complex below, with its corresponding 0y matrix. The shading reflects the fact
that there is now a 2-simplex, namely {B,E,D}.

As in the complex X in Figure 2 above, we have the two loops ABDC and BED. In this case,
though, the loop BDE is filled in by a simplex, and the loop ABEDC can be deformed in the space
to the loop ABDC by traversing the 2-simplex. So by analogy with the discussion of homotopy in
Section 2.3, we should construct our formalism in such a way that the two distinct cycles become
equal. More importantly, though, we are interested in constructing vector spaces which in the

14



end should depend only on the underlying space, not on the particular triangulation, i.e. on the
particular way in which it is described as a simplicial complex.

Figure 4: Two triangulations of the same space

In Figure 4 above, we see the same space expressed as a simplicial complex in two different ways.
If we construct 0; as above, we find that the null space of 9; has dimension 12 in the case of the
left hand complex, and dimension 20 in the case of the right hand complex. It is therefore clear
that to have a meaningful measure of the number of loops, independent of the particular simplicial
complex structure, we will need to modify or augment the linear algebra we have so far introduced.

To motivate the construction, consider the complex X in Figure 3 above. In addition to the vertices
and edges, we now have a two simplex, whose boundary is the cycle BED. The corresponding linear
combination

P{B,E}Y T P{E.D} T Y©{B,D}

in Vi(01(Z)) is the difference between the linear combinations

Y{A,B} T P{B.EY T ¢{E,D} T P{D,C} T P{C A}

and
P{A,B} T ¥P{B,D} T P{D,C} T P{C A}

again recalling that differences and sums are the same thing in our field k. The key idea is that we
form the quotient of the null space of 0; by the element

P{B,E} T P{E,D} T Y{B,D}

which will be called a boundary because it is derived from the boundary of the simplex {B, E, D}.
This discussion now leads to the following construction attached to an abstract simplicial complex,
which includes all the higher dimensional simplices.

We let X be a simplicial complex, and as above let 3;(X) denote the set of i-dimensional simplices,
i.e. those simplices which as subsets of the vertex set V(X) have cardinality ¢ + 1. We define
matrices 0; whose columns are in one to one correspondence with ¥;(X), and whose rows are in
one to one correspondence with the ¥,_1(X), by declaring that the entry in the row corresponding
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to an (i — 1)-simplex 7 and in the column corresponding to an i-simplex 7" is = 1 if 7 C 7/ as sets of
vertices, and is = 0 otherwise. This definition is consistent with the matrices we have constructed
in the special cases above. There is now a key observation relating the matrices 9; and 0;_1.

Proposition 2.8 The matriz product 0;_1 - 0; is equal to the zero matrix.

Proof: The rows of 9;_1 - 0; are in one to one correspondence with ¥; _o(X), and its columns are
in one to one correspondence with 3;(X). It is easy to see that the entry in the row corresponding
to an (i — 2)-simplex 7 and in the column corresponding to an i-simplex 7/ is equal to the number
of elements 7 of ¥;_1(X) which satisfy 7 C 7 C 7/. This number is either 0, in case 7 ¢ 7/, or 2, in
the case 7 C 7. Both numbers are zero in the field k. O

The matrices J; can be regarded as the matrices attached to linear transformations from Vj(2;(X))
to Vi(X;—1(X), relative to the standard bases of Vj(X;(X)). Abusing notation, we will denote the
matrices and the transformations by 9;. What we now have is a diagram

0i—1

V(1 (X)) T VX)) 25 VRS (X)) 25 25 Vi(51(0) 5 Vi(S0(X))

in which each composite of two consecutive linear transformations is identically zero. This obser-
vation now suggests the following definition.

Definition 2.6 By a chain complex C, over a field k, we will mean a choice of k-vector space C;
for every i > 0, together with linear transformations 0; : C; — C;_1 for all i, so that 0;—1-9; =0
for all i.

We now extract information as follows. For every ¢, we define two subpsaces B; and Z; of C;. Z; is
defined as the null space of 9;, and B; is defined as the image of 0;4+1. By Proposition 2.8 above,
it follows that B; C Z;, and we define H;(C,) to be the quotient space Z;/B;. One can check that
in the case of the complex in Figure 3 above, H; turns out to be a one dimensional vector space
over k, with o ap + ¥Bp + Ypo + Yca as an element in Z; whose image in Z;/Bj is a non-trivial
element, therefore a basis for Hi. These vector spaces, applied to the chain complex associated
with a simplicial complex, will be called the homology groups of the complex.

We now describe the linear algebra which is carried out to compute the homology groups, and
in particular their dimension. That is, we want to interpret the computation of the homology
groups of a complex in terms of row and column operations. The row and column operations will
be multiplication of a single row (column) by a non-zero element of k, adding a multiple of one
row (column) to another, and transposing a pair of rows (columns). We recall Remark 2.1, which
asserts that given a matrix A over a field k, one may perform both row and column operations of
the type described above to obtain a matrix A having the normal form

I, 0
0 0
where n is the rank of A. A is uniquely determined by A.
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In order to study homology, we will instead need to study the normal forms of pairs of matrices
(A, B) with A- B =0.

Proposition 2.9 Let
vSvAw
be linear transformations, so that A-B =0. Let F : U - U, G:V -V, and H: W — W be

invertible linear transformations. Then we have HAG™! - GBF = 0, and there is an isomorphism
of vector spaces

N(A)/im(B) =2 N(HAG™ ") /im(GBF)

Proof: Entirely analogous to Proposition 2.2. U

The matrix version now uses the following set of admissible operations on such a pair. They will
be the following.

1. An arbitrary row operation on A
2. An arbitrary column operation on B

3. Perform a column operation on A and a row operation on B simultaneously, with the opera-
tions related as follows. If the column operation on A is multiplication of the i-th column by
a non-zero constant z, then the row operation on B is multiplication of the i-th row by 1.
If the column operation on A is the transposition of two columns, then the row operation on
B is the transposition of the corresponding rows of B. Finally, if the column operation on A
is the addition of = times the i-th column to the j-th column, then the row operation on B

is the subtraction of X times the i-th row to the j-th row.

Notice that performing any of these operations to a pair (A, B) to obtain a pair (A’, B’), then
(A’, B') also satisfies A’ - B = 0. We now have the following counterpart of Proposition 2.3 above.

Proposition 2.10 Given a pair (A, B), with A- B = 0, we can perform operations of the type
described above to obtain a pair (A', B'), with

Here, if there are k,l and m columns in the leftmost, middle, and rightmost blocks of columns of
A respectively (and consequently k,l and m rows in the top, middle, and bottom blocks of rows of
B, respectively), then the dimension of the homology is . The pair (A', B') is uniquely determined
by the pair (A, B).

Proof: We first perform arbitrary row and column operations to A (making sure to apply the
corresponding row operations to B whenever a column operation is applied to A), to obtain a pair
(A’, B') of the form
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Ly 00 11 B Bis

0 0 0|,| By By By

0 00 B, B, Bi,

for some k. Because of the condition A’ - B', it is clear that Bj; = B}, = Bj3 = 0. We can now
perform row and column operations on the matrix B’, which is of the form

0 0 0
By Bjy By
By Bsy B

We perform only row operations involving the last [ +m rows, since the upper k rows are identically
zero. Each such row operation has a corresponding column operation on the matrix A’ which affect
only the rightmost | + m columns, and therefore has no effect. Performing these operations is
equivalent to performing arbitrary row and column operations to the matrix

/ / /
BQl BQQ 323
/ / /
B31 BS2 B33

which we denote by B’. We can therefore perform operations (which have no effect on A’) so as to
put B’ into the form

In 0
0 0]

and then transpositions of rows and columns so as to put it in the form

[0 0
0 I,

That this representation is unique is clear from the fact that k and m are the ranks of the matrices
A and B, respectively, and this completes the proof. O

2.5 Functoriality

We have defined vector spaces associated to simplicial complexes, and in Section 2.3, groups
(X, o) associated to a space X with base point xg, and sets mo(X). The most important
property of these constructions is that they are able to reflect the behavior of maps between sim-
plicial complexes and continuous maps between topological spaces. This property is referred to
as fiunctoriality. In the case of mo(X), this is simply the statement that given a continuous map
f: X =Y, there is an associated map of sets mo(f) : mo(X) — mo(Y), since any two points which
are connected by a path in X (and are therefore in the same path component) map under f to
a points in Y which are connected by a path. The path in Y is simply the image of the path in
X. Informally, this is just the statement that “components map to components”. More generally,
given a continuous map f : X — Y, with f(zg) = yo, there is an induced homomorphism of groups
Tn(f) + (X, 20) — 7 (Y, yo) which is defined by carrying the equivalence class of ¢ : S — Y
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to the equivalence class of f- ¢ : S®™ — Y. It is easily shown that this is well defined. Similarly,
for any map of abstract simplicial complexes f : X — Y, there is an induced linear transformation
H,(f): Hy(X) — Hp(Y). It is obtained by showing the following.

1. There are linear transformations Vi (2, (f)) : Vi(Xn(X)) — Vi(E,(Y)), which carry the basis
elements ¢ to the basis elements ¢ ().

2. The homomorphisms 9; respect the maps Vi (X, (f)) in the sense that the diagrams

Vi (Zn(f)
Vi (20 (X)) —5% Vi(Za(Y)
On On
Vi (Zn(f)

Vi(En-1(X))

Vie(En-1(Y))

commute.
3. It follows from (2) above that V,, (X, (f)) carries Z,(X) into Z,(Y) and B, (X) into B,(Y).
4. It follows from (3) above that there is an induced homomorphism

Ho(X) = Zo(X)/Ba(X) =Y 2, (¥)/Ba(Y) = Hy(Y)

Remark: Functoriality of algebraic invariants in topology is one of its fundamental tools. We will
see below that it is what permits us to define sensible homological invariants of finite metric spaces
or point clouds.

2.6 Extending from complexes to spaces

As we have defined it, homology applies to simplicial complexes. This means that when one is
given a topological space X, say defined as the set of solutions of a set of equations, there is
not yet a natural definition of the homology groups of X, without constructing a triangulation
of X. Even if one can construct a triangulation, it is not clear why a different triangulation
wouldn’t give a different answer. The problem of extending homology spaces without a given
triangulation was studied intensively in the early 1900’s, and was resolved by S. Eilenberg [30].
He defined homology groups H,(X) (called the singular homology groups) for any space X by
constructing a chain complex of infinite-dimensional vector spaces (a basis of C),(X) is given by
the set of all continuous maps A™ — X)) whose homology agrees with the simplicially constructed
homology for any triangulation of X. The homology groups constructed with these complexes
are functorial for any continuous map f : X — Y, by which we mean that there is a linear
transformation H,(f) : Ho(X) — Hy,(Y) associated to f. An additional important property is
homotopy invariance, which asserts that if two maps f,g : X — Y are homotopic (see Definition
2.2), then the linear transformations H,(f) and H,(g) are equal. This is a powerful property, and
it allows direct calculations of homology in some cases. We say a topological space X is contractible
if idx is homotopic to a constant maps.
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Example: R" is contractible, because we have the homotopy H (v,t) = (1 — t)v gives a homotopy
from idg» to the constant map with value 0.

Proposition 2.11 If X is a contractible space, then H,(X) = {0} for all n > 0.

Proof: By the homotopy property and functoriality, the identify transformation on H,(X) is equal
to the composite H,(X) — Hy,(xg) — H,(X), where xp € X is a point so that f is homotopic to
the constant map with value . But it is easy to check directly that Hy,(z¢) = {0}, and it now
follows that every element in H,(X) is = 0. O

Remark 2.3 The singular homology groups are of course impossible to compute directly, since
in particular they involve linear algebra on vector spaces of uncountable dimension. This means
when one wishes to compute homology, one must either construct a triangulation or use other
computational techniques, called excision and long exact sequences which have been developed for
this purpose. The important point in the definition is that it gives well-defined groups for any
space, which behave functorially for continuous maps.

2.7 Making homology more sensitive

It is useful to ask how sensitive a measure homology is of the shape of a simplicial complex, but
considering a simple shape recognition task, namely the recognition of printed letters.

We begin with the first three letters of the alphabet, and find that H; succeeds at distinguishing
between them. However, after this initial success, we see that every other letter has the same first
Betti number as one of these three.

/81 - O {C7E’F7G7H7I7J7K7L7M7N7S7T7U7V’W7X7Y7Z}
ﬂl =1 {AvDaOaPanR}
Br=2 {B}

Homology can be refined to discriminate more finely between the letters. To understand how this
works, we digress a bit to discuss how an analogous problem in manifold topology is approached.

20



In Section 2.6, we saw that the homology groups H;(R™) vanish for all ¢ > 0. What this means is
that homology is unable to distinguish between R™ and R™ when m # n. From the point of view of
a topologist who is interested in distinguishing different manifolds from each other, this means that
homology is in some ways a relatively weak invariant. This failure can be addressed by computing
homology on “auxiliary” or “derived” spaces”, constructed using various geometric constructions.

1. Removing a point : While the homology groups of R™ vanish, the homology groups of
R™ — {0} do not. To see this, we observe that we have the inclusion i : $"~1 < R™ — {0}
as well as the map r : R® — {0} — S™~! defined by r(v) = f/||[v||. r-i is equal to the
identity map for S"~!, and the other composite i - 7 is homotopic to the identity map of
R™ — {0} via the straight line homotopy H(v,t) = (1 —t)i - r + tidgn_0y. The existence of
this homotopy shows that the map H;(r) is an isomorphism. It is injective because, given
any x € H;(R" —{0}), x = H;(i - r)(x) = H;(¢) - Hi(r)(z), so Hi(r)(xz) # 0. It is surjective
because for any y € H;(S" 1), y = H;(r-i)(y) = H;(r)H;(i)(y), which exhibits y as the image
of H;(i)(y). Because it is easy to show that R™ — {v} is homeomorphic to R™ — {0}, can
detect the difference between R™ and R™, with m # n, by recognizing that the homology of
the result of removing a single point from the two spaces are different, since homology detects
the difference between spheres of different dimensions.

2. One-point compactification: For any space X, one may construct its one-point compact-
ification, by adjoining a single point co to X, and declaring that neighborhoods of co are
exactly the complements of compact subsets of X together with co. The image below is the

o0

0

one point compactification of the real line. Note that although the real line is contractible
and therefore has vanishing homology, its one-point compactification is homeomorphic to the
circles, and has non-vanishing H;.

3. Removing singular points: Consider the space given by the crossing of two lines. This

21



space is also contractible, as one can easily see by retracting each line segment onto the crossing
point A. On the other hand, we recognize that its shape has features which distinguish it from
an interval or a circle, and might want to detect that homologically. If we remove the singular
point A, we will find that the space remaining breaks up into four distinct components, which
can be detected by Hy.

To think through how we might apply these ideas to the problem of distinguishing between letters,
let us define an end of a space X to be a point x € X so that there is a neighborhood N of x which
is homeomorphic to [0, 1), and so that the homeomorphism carries z to 0.

(d) 2 ends (e) no ends (f) 4 ends

In this case, the auxiliary or derived space is the set of ends of the space, ¢(X), and we can
compute its zero-dimensional homology Hy, to get the Betti number 3. We now obtain the
following partition of the set of letters.

ﬁl = 0, 50(2()()) =0 None

B1 =0, Bo(e(X)) =1 None

B =0, Bo(e(X))=2|{C,G,I,J,L,M,N,S,UV,W,Z}
p1=0, /BO(Q(X)):?’ {E7F7T7Y}

B1=0, Bo(e(X)) =4 {H,K,X}

Bi=1, Bo(e(X)) =0 {D,0}

Pr1=0, Bo(e(X)) =1 {Pr,Q}

BL =0, Bo(e(X)) =2 {A R}

B1 =2, Bo(e(X) =0 {B}

We have obtained improved discrimination in this way. Removing singular points and computing
Bo produces further resolution on the letters. For further discussion on this kind of analysis, see
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[15]. If one uses homology on suitably constructed auxiliary spaces, one can obtain classification
criteria for many interesting problems in shape discrimination.

3 Shape of data

3.1 Motivation

The main goal of this paper is to extend the homological methods described in Section 2.4 to
obtain similar methods applicable to finite metric spaces. The methods that we describe have been
developed in [64], [29], and [75]. There is of course a naive extension which regards a finite metric
space as a topological space in the usual way, but this method always produces a space with the
points in the finite metric space as the points, and with the discrete topology. In other words,
it contains no information about shape. What we would like to do is to produce a tool which is
capable, for example, of recognizing that the metric space represented by

NHICEEY

Figure 5: A “statistical circle”

contains the pattern of a loop. The set of points, as a topological space, is discrete, but we are
able visually to infer that it appears to be sampled from some kind of circular geometry. What
will be shown in this section is that it is possible to develop just such a tool. To motivate this
construction, we will look at a commonly used statistical methodology.

3.2 Single linkage clustering

The very simplest aspect of the shape of a geometric object is its number of connected components.
Statisticians have thought a great deal about what the counterpart to connected components should
be for point cloud data, under the heading of clustering (see [41], [47]). One scheme for clustering
proceeds as follows. We suppose we are given a finite metric space with points X = {x1,...,z,},
and given pairwise distances. For every non-negative threshhold R, we may form the relation ~p
on the set X by the criterion

x ~pg ' if and only if d(z,2’) < R
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We let ~r denote the equivalence relation generated by ~gr. The set of equivalence classes under
~p now give a partition of X, which can be thought of as a candidate for the connected components
in X. So for each threshold R, we obtain a partition of X. One can now ask which choice of R is
the “right” one. This is an ill-defined question, although there are interesting heuristics. Another
approach is to observe that there is compatibility across changes in R, in that if R < R’, then
the partition associated to R’ is coarser than the partition associated to R, as is indicated in the
diagram below.

Figure 6: Single linkage hierarchical clustering

The diagram indicates the change in clustering as the threshhold is altered, and shows the increasing
coarseness as R increases. What was recognized by statisticians is that there is a single profile,
called a dendrogram, which encodes the clusterings at all the thresholds simultaneously. Here is a
diagram for a dendrogram which is associated to the situation given above.

Figure 7: Dendrogram

The result is a tree (a simplicial complex with no loops) T" together with a reference map from 7" to
the non-negative real line. This tree can be viewed all at once. The clustering at a given threshhold
R is given by drawing a horizontal line at level R across the tree, and the clusters correspond to
the points of intersection. In the above picture, the reference map is the height function above the
T-axis.

There is another way to interpret the dendrogram, less visually but formally identical. For each
threshhold R, we will let Xz denote the set of equivalence classes for the equivalence relation ~g.

24



Because the partition only coarsens as R increases, there is a map of sets Xp — Xp/ whenever
R < R/, which assigns to each cluster at level R the (unique) cluster at level R’ in which it is
included. This construction is sufficiently useful that we will give it a name.

Definition 3.1 By a persistent set, we will mean a family of sets {Xr}rer together with set maps
cpgl : Xp — Xp for all R < R, so that cpg;/gag = Lpg/ for all R < R' < R". More generally,
for any kind of objects, such as simplicial complexes, vector spaces, topological spaces, etc. we may
speak of a persistent object as a family of such objects parametrized by R, together with maps (maps
of simplicial complezes, linear transformations, continuous maps, etc.) from the object parametrized
by r to the one parametrized by r' whenever r < r’, with the same compatibilities mentioned above.

To each persistent set, there is an associated dendrogram and vice versa. There is a reformulation of
the dendrogram (hence persistent set) associated to a finite metric space using topological notions
which will make much clearer the development of methods of defining higher dimensional homology
for finite metric spaces.

Definition 3.2 Given any finite metric space X and non-negative real number R, we construct an
abstract simplicial complex VR(X, R), called the Vietoris-Rips complex of X, by letting its vertex
set be the underlying set of X, and declaring that any subset {xo,...,xn} of X is a simplex of
VR(X,R) if and only if

d(zi,z;) <R foralli,j € {0,...,n}

We note that whenever R < R', there is an inclusion VR(X, R) — VR(X, R'), because the vertex
sets of the two abstract complexes are the same, and that any simplex of VR(X, R) is also a simplex
of V(X, R). It follows that we obtain maps

[VR(X,R)| = [VR(X, R')|

as well. In short, the family of Vietoris-Rips complexes {V R(X, R)}rer forms a persistent simpli-
ctal complez.

The point of this definition is that given any finite metric space X, we may define the set mo(|V R(X, R)|)
of connected components of |VR(X, R)|, and due to the functoriality of the construction mg, we
obtain a persistent set {mo(|V R(X, R)|)}r. This persistent set can easily be seen to be identical to
the persistent set obtained above. The point is that it is induced by a map of topological spaces,
which will point the way to defining homological shape invariants of finite metric spaces.

3.3 Persistence

The value of the Vietoris-Rips construction is that for each threshhold, we are able to construct a
simplicial complex and therefore a topological space, rather than just a partitioning or clustering
of the finite metric space. We have the following example.
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The underlying metric space consists of six points, and is pictured on the left. The lower bar
is the threshhold parameter R, and on the right we have a picture of the Vietoris-Rips complex
associated to this metric space and this threshhold. The metric space visually looks like it might
be sampled from a loop, and we note that the Vietoris-Rips complex contains a loop. This suggests
that we should use Vietoris-Rips complexes as representations of the shape of finite metric spaces.
Of course, the Vietoris-Rips complex is dependent on the choice of threshhold, with the Vietoris-
Rips complex consisting of six discrete points when R is smaller, and it becomes a full simplex
(which does not admit a non-trivial loop) when R is larger than the diameter of the original metric
space. This suggests that we would need to find the “right” value of R to capture the shape.
However, there is no obvious heuristic for making this choice. The situation is entirely analogous
to the situation arising in single linkage clustering, described in the previous section. There, it
was possible to construct a profile, the dendrogram, which provided a simple representation of
the behavior of the clustering for all values of the threshhold parameter R at once. We will now
show that there is a similar profile which allows us to study higher dimensional homology of the
Vietoris-Rips complexes at all threshhold values at once.

Figure 8: Increasing family of Vietoris-Rips complexes

In the example above, we show the Vietoris-Rips complexes for increasing values of R, and we
observe that we have the inclusions of complexes for smaller values of R into the complexes for
larger values. We now recall the functoriality of homology from Section 2.5, and fix a non-negative
integer 7. By applying H; to the family {V R(X, R)}recr, we obtain a family {H;(VR(X, R))}rer
of vector spaces parametrized by the real line, and the functoriality of H; allows us the give this
family the structure of a persistent vector space. This persistent vector space contains within it the
information about the homology of all the Vietoris-Rips complexes for every threshold parameter
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R, as well as the behavior of the linear transformations induced by the inclusion maps from one
Vietoris-Rips complex to another. The question for us now is whether or not there is a simple
visual or conceptual representation of the persistent vector space, like the dendrogram for the case
of the persistent sets coming out of single linkage clustering. There is such representation, and in
order to present it we will need to introduce a bit of algebra.

3.4 The algebra of persistence vector spaces

We first define persistence vector spaces.

Definition 3.3 Let k be any field. Then by a persistence vector space over k, we will mean a family
of k-vector spaces {Vi}rejo,4+00), together with linear transformations Ly (r,r") : Vi — Vi whenever
r < 7', so that Ly(r',r") - Ly(r,r") = Ly (r,r") for all v < 1" < r”. A linear transformation
f of persistence vector spaces over k from {V,} to {W,} is a family of linear transformations
fr: Voo = W,., so that for all v < ', all the diagrams

L !

V. Ly(rr) Vi
fV' fr/
Ly (r,r")

w, X W

commute in the sense that
fr’ ° Lv(T‘, 7,/) - Lw(T, 7,/) ° f?“

A linear transformation is an isomorphism if it admits a two sided inverse. A sub-persistence vector
space of {V,.} is a choice of k-subspaces U, C V., for all r € [0,400), so that Ly (r,r")(U,) C Uy
forallr < o' If f : {V.} — {W,} is a linear transformation, then the image of f, denoted by
im(f), is the sub-persistence vector space {im(f,)}.

The notion of a quotient space also extends to persistence vector spaces. If {U,} C {V,} is a sub-
persistence vector space, then we can form the persistence vector space {V,./U,}, where Ly (r,1")
is the linear transformation from V,. /U, to V,+ /U, given by sending the equivalence class [v] to the
equivalence class [Ly (r, ") (v)] for any v € V.

We will also want to extend the notion of the free vector space on a set. Let X be any set,
equipped with a function p : X — [0,4+00). We will refer to such a pair (X, p) as an R, -filtered
set. Then by the free persistence vector space on the pair (X, p), we will mean the persistence
vector space {W;}, with W, C V;(X) equal to the k-linear span of the set X[r] C X defined by
X|[r] = {z € X|p(z) < r}. Note that X[r] C X[r'] when r <1/, so there is an inclusion W, C W,..
The following is a simple observation.

Proposition 3.1 A linear combination ) a,x € Vi,(X) lies in W, if and only if a; =0 for all x
with p(x) > r.
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We will write {Vi(X, p),} for this persistence vector space. We say a persistence vector space is
free if it is isomorphic to one of the form Vi (X, p) for some (X, p), and we say it is finitely generated
if X can be taken to be finite.

Definition 3.4 A persistence vector space is finitely presented if it is isomorphic to a persistence
vector space of the form {W,}/im(f) for some linear transformation f : {V;.} — {W,} between
finitely generated free persistence vector spaces {V;} and {W,}.

The choice of a basis for vector spaces V and W allows us to represent linear transformations from V'
to W by matrices. We will now show that there is a similar representation for linear transformations
between free persistence vector spaces. For any pair (X,Y’) of finite sets and field k, an (X,Y)-
matriz is an array [ag,] of elements of az, of k. We write r(x) for the row corresponding to z € X,
and ¢(y) for the column corresponding to y. For any finitely generated free persistence vector
space {V.} = {Vi(X, p)-}, we observe that Vi(X,p), = Vi(X) for r sufficiently large, since X is
finite. Therefore, for any linear transformation f : {Vi(Y,0),} — {Vi(X, p),} of finitely generated
free persistence vector spaces, f gives a linear transformation fo : Vi(Y) — Vi(X) between finite
dimensional vector spaces over k, and using the bases {¢;}zex of Vi(X) and {py}ycy of Vi(Y)
determines an (X, Y)-matrix A(f) = [aq,] with entries in k. Note that in order to obtain our usual
notion of matrix as a rectangular array, one is required to impose total orderings on X and Y, but
all the matrix manipulations we will perform will not require them.

Proposition 3.2 The (X,Y)-matriz A(f) has the property that a,, = 0 whenever p(z) > o(y).
Any (X,Y)-matriz A satisfying these conditions uniquely determines a linear transformation of
persistence vector spaces

fa i AVe(Y,0)r} = {Ve(X, p)r}

and the correspondences f — A(f) and A — fa are inverses to each other.

Proof: The basis vector y lies in Vi (Y, 0),(,). On the other hand,

fley) = Z Uy Pz

zeX

By Proposition 3.1, on the other hand, » v dzyp, only lies in Vi (X, p)g(y) if all coefficients az,y,
for p(z) > o(y), are zero. O

When we are given a pair of R, -filtered finite sets (X, p) and (Y, o), we will call an (X, Y')-matrix
satisfying the conditions of Proposition 3.2 (p, 0)-adapted.

Suppose now that we are given (X, p) and (Y, o), with p and o both [0, +00) valued functions on
X and Y, respectively. Then any matrix A = [as,| satisfying the conditions of Proposition 3.2
determines a persistence vector space via the correspondence

6 .
A —= Vi(Y,0)/im(fa)
We have the following facts about this construction.
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Proposition 3.3 For any A as described above, 0(A) is a finitely presented persistence vector
space. Moreover, any finitely presented persistence vector space is isomorphic to one of the form
0(A) for some such matriz A.

Proof: Direct from the correspondence between matrices and linear transformations given in
Proposition 3.2. ]

Proposition 3.4 Let (X, p) be an Ry -filtered set. Then, under the matiriz/linear transformation
correspondence, the automorphisms of Vi, (X, p) are identified with the group of all invertible (p, p)-
adapted (X, X )-matrices.

We now have the following sufficient criterion for 6(A) to be equal to 6(A’), entirely analogous to
Proposition 2.3.

Proposition 3.5 Let (X, p) and (Y,0) be Ry filtered sets, and let A be a (p,o)-adapted (X,Y)-
matriz. Let B and C be (p, p)- (respectively (o,0)-) adapted (X, X)- (respectively (Y,Y)-) matrices.
Then BAC is also (p,o)-adapted, and the persistence vector space 6(A) is isomorphic to §(BAC).

We will use this result to classify up to isomorphism all finitely presented persistence vector spaces.
We begin by defining a persistence vector space P(a,b) for every pair (a,b), where a € Ry, b €
Ry U{+o0}, and a < b, with the obvious interpretation when b = +o0o. P(a,b) is defined by
P(a,b), = k for r € [a,b), P(a,b) = {0} when r ¢ [a,b), and where L(r,7’) = id; whenever
r,r’ € [a,b). This definition can be interpreted in the obvious way when b = +00. We note that
P(a,b) is finitely presented. For, in the case where b is finite, let (X, p) and (Y, o) denote R, -
filtered sets (X, p) and (Y, o), with the underlying sets consisting of single elements x and y, and
with p(z) = a and o(y) = b. Then the (1 x 1) (X,Y)-matrix matrix [1] is (p, o)-adapted since
a < b, and it is clear that P(a,b) is isomorphic to §([1]). When b = +o00, P(a,b) is isomorphic to
the persistence vector space Vi (X, p), and can therefore be written as 6(0), where 0 denotes the
zero linear transformation from the persistence vector space {0}.

Proposition 3.6 FEvery finitely presented persistence vector space over k is isomorphic to a finite
direct sum of the form
P(ay,b1) @ P(ag,b2) @ --- @ P(ap,by) (3-2)

for some choices a; € [0,4+0), b; € [0,400], and a; < b; for all i.

Proof: It is clear that a (p,o) adapted (X,Y)-matrix A which has the property that every row
and column has at most one non-zero element, which is equal to 1, has the property that 0(A) is of
the form described in the Proposition. For if we let {(x1,v1), (x2,¥y2), .-, (Zn,yn)} be all the pairs
(xi,v;) so that ag, ,, = 1, then there is a decomposition

0(A) = @P(p(fvi),a(yi)) e @ Pll),+oo)

acEX—{xl,...,xn}
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So, it suffices to construct matrices B and C' which are (p, p)-adapted (respectively (o, o)-adapted)
(X, X)- (respectively (Y,Y)-) matrices, so that BAC is of has the property that every row and
column has at most one non-zero element, and so that that element is = 1. To see that we can do
this, we adapt the row and column operation approach to this setting. The (p, o)-adapted row and
column operations consist of all possible multiplications of a row or column by a non-zero element of
k, all possible additions of a multiple of r(z) to r(z’) when p(z) > p(2’), and all possible additions
of a multiple of ¢(y) to ¢(y’) when o(y) > o(y’'). We claim that by performing (p, o)-adapted row
and column operations we can arrive at a matrix with at most one non-zero entry in each row and
column. To see this, first find a y which maximizes o(y) over the set of all y with ¢(y) # 0. Next,
find an  which maximizes p(z) over the set of all « for which the entry a;, # 0. Because of the
way z is chosen, we are free to add multiples of r(x) to all the other rows so as to “zero out” ¢(y)
except in the xy-entry. Because of the way y is chosen, we can add multiples of ¢(y) to zero out r(x)
except in the xy-slot, without affecting ¢(y). The result is a matrix in which the unique non-zero
element in both r(z) and c(y) is azy. By multiplying r(x) by 1/as,, we can make the zy-entry in
the transformed matrix = 1. By deleting r(z) and c(y), we obtain a (X — {z},Y — {y})-matrix
which is (o, 0’)-adapted, where p’ and ¢’ are the restrictions of p and o to X — {z} and Y — {y},
respectively. We can now apply the process inductively to this matrix. Each of the row and column
operations required can be interpreted as row and columns on the original matrix, and will have no
effect on r(z) or ¢(y). The result is that by iterating this procedure, we will eventually arrive at a
matrix with only zero entries, and it is clear that the transformed matrix has at most one non-zero
element in each row and column. The result now follows by Proposition 3.5 O

We will also establish that any two decompositions of the form (3-2) above for a given persistence
vector space are essentially unique.

Proposition 3.7 Suppose that {V,.} is a finitely presented persistence vector space over k, and that
we have two decompositions

{Vi} = €D Plai,bi) and {V;} = P Ple;,dj)
icl jeJ
where I and J are finite sets. Then #(I) = #(J), and the set of pairs (a;,b;) occurring, with
multiplicities, is the identical to the set of pairs (cj,d;) occurring.

Proof: We let ap,;, and ¢, denote the smallest value of a; and c¢;, respectively. ap, can be
characterized intrinsically as min{r|V, # 0}, and it follows that ain = Cmin. Next, let by, denote
min{b;|a; = amin}, and make the corresponding definition for dpin. bmin is also defined intrinsically
as min{r'|N(L(r,r")) # 0}, where N denotes null space, s0 bpin = dmin as well. This means that
P(amin,bmin) appears in both decompositions. For each decomposition, we consider the sum of
all the occurrences of the summand P(amin, bmin). They are both sub-persistence vector spaces of
{V;-}, and can in fact be characterized intrinsically as the sub-persistence vector space {W, }, where
W, is the null space of the linear transformation

L(r,b)|[Im(L(a,r))

Im(L(a,r)) Vi

It now follows that the number of summands of the form P(ain, bmin) in the two decompositions
are the same, and further that they correspond isomorphically under the decompositions. Letting
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I’ denote the subset of I obtained by removing all 7 so that a; = amin and b; = byin, and define
J' correspondingly. We can now form the quotient of {V,.} by {W,}, and observe that we obtain
identifications
(ViAW } = P Plai, bi) and {V,}/{W,} = P P(c;, d;)
il jeJ’
By an induction on the number of summands in the decompositions, we obtain the result. ]

We observe that there is an algorithm analogous to the one constructed in Proposition 2.10 for
computing the homology, in this case using adapted row and column operations in place of arbitrary
operations. This algorithm then produces a presentation for persistent homology.

The isomorphism classes of finitely presented persistence vector spaces are in one to one correspon-
dence with finite subsets (with multiplicity) of the set {(a, b)|a € [0,400),b € [0, +00], and a < b}.
Such sets can be represented visually in two distinct ways, one as families of intervals on the non-
negative real lines, and the other as a collection of points in the subset {(z,y)|z > 0 and y > z}
of the first quadrant in the (z,y)-plane. In the second case, one must place points with b = +oc0
above the whole diagram in a horizontal line indicating infinity. The first representation is called
a barcode, and the second a persistence diagram. We will use and refer to these representations
interchangeably.

(]
([
+ e
ﬁ ? 1 1 1 1 { 1 1 1 1
(a) Bar Code (b) Persistence Diagram

Figure 9: Two methods for representing persistent vector spaces

We now have a solution to the problem posed in Section 3.1. We now may associate to any finite
metric space a persistence barcode or persistence diagram. What has now happened is the the
Betti numbers have been replaced by the barcodes. The way to reconcile these two notions is that,
roughly speaking, the persistence barcodes often consist of some “short” intervals and some “long”
intervals. The short intervals are typically considered noisy, and the long ones are considered to
correspond to larger scale geometric features, which one would expect would have a correspondence
with the features of a space from which the metric space is sampled.
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".'.:.'.'.'.- * X
(a) “Statistical circle” (b) Barcode and persis-
tence diagram representa-

tions

The figure above shows the persistence barcode and persistence diagram for one-dimensional ho-
mology associated to the sampled version of a circle. The barcode reflects the fact that the first
Betti number is equal to 1 by the fact that it possesses a single long interval, and multiple shorter
ones.

Remark 3.1 Not all barcodes display this kind of dichotomous behavior between short and long.
This reflects the fact that the metric space might not be representing a simple topological object
at a single scale, but rather a multiscale object of interest in its own right. In addition, we will
see in the next section that we will devise a number of different methods for generating barcodes,
which will reflect more subtle aspects of the shape of the data set.

Remark 3.2 It is clear from the descriptions given above that the complexity of the persistent
homology calculations is the same as that for Gaussian elimination, i.e. n? for an nxn matrix. What
this means is that calculating directly will be extremely expensive. There are several approaches
to mitigating this problem.

1. The a- and witness complexes, described in Section 3.6 below, allow one to compute with
much smaller complexes, based either on an embedding in a low dimensional Euclidean space
in the case of the a-complex and on a chosen set of landmarks in the case of the witness
complex. Both are very practical options, and the same algorithms described above apply to
that situation as well.

2. There are also methods for simplifying and drastically reducing the size of the Vietoris-Rips
complex, described in [76].

3. When we are given a space X with a finite covering by sets {U, }aca, there is a construction
known as the Mayer-Vietoris blowup and a corresponding computational device known as the
Mayer-Vietoris spectral sequence which permits the parallelization of the homology compu-
tation into calculations of much smaller complex. See [42] for a discussion of the case of a
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covering by two sets (the Mayer-Vietoris long exact sequence) and [65], §4, for the general
case. It proceeds by performing the individual calculations, and then provides a reconstruc-
tion step. This procedure has been adapted to the persistent homology situation in [49].

Remark 3.3 There are a number of software packages which compute homology and persistent
homology. To name a few, there are CHOMP (http://chomp.rutgers.edu/), Javaplex (https://code.
google.com/p/javaplex/), and Dionysus (http://www.mrzv.org/software/dionysus/).

Remark 3.4 There are a number of theorems which produce theoretical guarantees for the com-
putation of homology via various complexes. The so-called Nerve theorem, which follows directly
from the construction in [65], §4, gives sufficient conditions for a much smaller construction based
on a covering of the space to compute the homology accurately. In [58], conditions are given which
show that with high confidence, a construction based on e-balls around a finite sample from a
submanifold of Euclidean space computes homology of the submanifold accurately.

3.5 Making persistent homology more sensitive: functional persistence

Applying persistent homology naively to many data sets will often produce trivial barcodes, with
no long intervals in their barcodes. The reason for this is that data sets often have a central core,
to which everything is connected. In the data set below, we see that there is a central core and
apparently three “flares” emanating from it.

Figure 10: from http://macromarketmusings.blogspot.com/2007_09_01_archive.html

Roughly, this is a “T” or “Y” shape, and we would not expect to capture that aspect of its
shape with homological methods, since these spaces are contractible, and therefore have vanishing
homology. Similarly, if we are looking at a data set lying along a plane in a high-dimensional space,
we would not expect to be able to detect that fact with homology, since a plane is also contractible.
In Section 2.7, we were able to adapt topological methods to make them more sensitive by studying
auxiliary spaces such as spaces of ends, one-point compactifications, and the results of removing
points of various types. In this section, we will see how to similarly adapt persistent homology so
as to be able to capture phenomena of this type.
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In first introducing persistent homology, we attached to each finite metric space an increasing family
of Vietoris-Rips complexes {VR(X,r)},, and computed persistent homology using them. There is
another method of constructing increasing families of simplicial complexes.

Definition 3.5 (Functional persistence) Let X be a finite metric space, and let f: X — R be
non-negative real valued function. Let us also select a positive real number p. Then by the f-filtered
simplicial complex with scale p, we will mean the increasing family of simplicial complexes

{VR(f7([0, R)), p)}r

This construction will have persistence bar codes of its own, which reflect topological properties
of the sublevel sets of f. We will call this method of producing persistence diagrams functional
persistence.

Remark 3.5 Of course, it is not clear how to choose R in general. Often inspection of a data set
can suggest the right scale, so that one can obtain useful information. In general, though, it would
be much better to be able to construct two-dimensional profiles which encode both the function
values and the scale at the same time.

One very interesting family of functions to study this way is the class of functions measuring the
degree of centrality, or data depth, of a data point. For example, consider the family of functions
ep given by
ep(w) = Y d(z, ')
z’'eX

One can also define the p = co version by setting e (x) = max,exd(z,z'). Clearly points which
are informally closer to the center of X will have lower values of each of these e,’s, and points in the
“periphery” will have larger values. We will use these function values in order to study persistent
analogues of the “ends” which were used for refining ordinary homology in Section 2.7, but we will
want to introduce the larger values before the smaller values of the function. For this reason, we
will replace e, by the function €, given by

max
é ( ) _ ep - ep(x)
P T emaz _ pmin
P P
where €"*" and e)"" are the maximum and minimum values taken by the function e, on X. The

function é, takes values on [0, 1], and attains both both 0 and 1. We will then consider the increasing
family of complexes

{VR(&; ([0, R]), p)} R

and their persistence barcodes for a couple of examples.

Example 3.1 The data set below is shade by values of é,, with light shading corresponding to low
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values of é,, and dark shading to high values. For a small value of R, the sublevel set of ¢, would
look as follows.

and so the zero-dimensional bar code would be of the form

Example 3.2 This data set is also shaded by values of é,. A sublevel set of ¢, for a small value

of R would be
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Since this point cloud is roughly circular, the one-dimensional bar code would look like

In both cases, the behavior of the set of points “far from the center” measures an interesting aspect
of the shape of a data set, in the one case a set of clusters and in the other a circle.

3.6 Other constructions of complexes

In Section 3.3, we constructed the Vietoris-Rips complex associated to any metric space. While
useful, this construction is often too large to compute with effectively. There are two constructions
of complexes which get around this problem, which are often used in place of the Vietoris-Rips
complex, which we describe in this section.

The a-complex: This construction is performed on a metric space X which is a subspace of a
metric space Y. Typically Y is a Euclidean space RY, and most often N is small, i.e. = 2,3, or 4.
For any point = € X, we define the Voronoi cell of z, denoted by V(x), by

V(z) ={y € Y|d(x,y) < d(z',y) for all 2’ € X}

The collection of all Voronoi cells for a finite subset of Euclidean space is called its Voronoi diagram.
A picture of part of a Voronoi diagram in R? is shown below.

For each z € X, we also denote by B¢(x) the set {y € Y|d(z,y) < €}. By the a-cell of x € V(z)
with scale parameter €, we will mean the set A.(z) = B¢(x) N V(z). The a-complex with scale
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parameter € of a subset € X, denoted by a.(X) will be the abstract simplicial complex with
vertex set X, and where the set {zo, ..., 2t} spans a k-simplex if and only if

An example might look as follows.

We observe that it follows immediately from the definition that if € < €, then there is an inclusion
ae(X) — ag(X), and therefore that for any j, we obtain a persistence vector space

{Hj(oe(X))}e

This construction is typically much smaller than the Vietoris-Rips complex, even though it has the
same vertex set, namely X. The number of simplices included will in general be much smaller.
Generically, in fact, all simplices will be of dimension < N, if the set is embedded in RY. The
a-complex is typically computed using algorithms for computing the Voronoi diagram for X as a
subset of RV, These algorithms rapidly become intractable as N increases, which means that the
complex can generally be applied only when the point set is included in a low dimensional Euclidean
space, or when the embedding in a Euclidean space can be modified to a low dimensional embedding
via dimensionality reduction techniques. The a-complex is discussed in detail in [74].

The witness complex: A second construction which yields smaller complexes is the witness
complex (see [24]) in its various forms. The idea here is to use a version of the Voronoi diagram
on the data set X itself, rather than on a space in which X is embedded. The vertex set of the
complex constructed is smaller than X, consisting of a set of landmark points within X. What this
means is that one many select the size of complex with which one is willing to work.

Definition 3.6 Let X be any metric space, and suppose we are given a finite set L of points in
X, called the landmark set, and a parameter ¢ > 0. For every point x € X, we let m, denote
the distance from this point to the set L, i.e. the minimum distance from x to any point in the
landmark set. Then we define the strong witness complex attached to this data to be the complex
Wi(X, L, €) whose vertex set is L, and where a collection {ly,...,lx} spans a k-simplex if and only
if there is a point v € X (the witness) so that d(z,l;) < mg + € for all i. We can also consider
the version of this complex in which the 1-simplices are identical to those of W (X, L, €), but where
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the family {lo, ..., Ik} spans a k-simplex if and only if all the pairs (1;,1;) are 1-simplices. We will
denote this complex by Wy p.

There is a modified version of this construction, which is quite useful, called the weak witness
construction. Suppose we are given a metric space X, and a set of points £L C X. Let A =
{lo,...,lx} denote a finite subset of £. We say a point = € X is a weak witness for A if d(x,l) >
d(z,l;) for all i and all [ € A. Given e, we will also say that x is an e-weak witness for A i
d(x,l) + e >d(z,1;) for all i and all [ ¢ A.

—

Definition 3.7 Let X, L, and € be as above. By the weak witness complex W" (X, L, €) for the
given data we will mean the complex whose vertex set is L, and for which a family A = {lo, ..., l}
spans a k-simplex if and only if A and all its faces admit e-weak witnesses. This complex clearly
also has a version in which a k-simplex is included as a simplex if and only if all its 1-faces are,
and this version is denoted by W\7p.

One verifies directly from the definition that whenever 0 < ¢ < ¢/, we then have an inclusion
WS (X, L,e) = WX, L,€)
and therefore that after applying homology, we obtain a persistence vector space { Hi,(W*(X, L, €)) }.

The same applies to the variant constructions Wy, W%, and Wi7p.

Remark 3.6 The point of introducing the complexes W3, and Wi/ is that they require much
less memory, since all the information is contained in the 0- and 1-simplices.

3.7 Zig-zag persistence

Persistence objects (sets, vector spaces, etc.) is defined by a collection of objects parametrized by
the non-negative real line together with morphisms from the objects with parameter value r to
objects with parameter value 7/, whenever r < r’. If we restrict the persistence object to the lattice
of non-negative integers, we can view a persistence object as a diagram

Xo—- X1 Xo—> =2 X, >+

of objects X, and morphisms X,, — X,, 1 for all n > 0. We can informally state that a persistence
object restricted to the integers is equivalent to a diagram of objects having the shape

o >0 >0 >0 >0 >
0 1 2 3 4
where the nodes are objects (sets, vector spaces, simplicial complexes, ...), and the arrows indi-

cating a morphism from one object to another. As such, it is an infinite quiver diagram [25]. Any
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directed graph I' is called a quiver, and a representation of I' over a field k£ is an assignment of a
k-vector space V,, to each vertex of I' and a k-linear transformation L, : V,, — V,, for every edge e
from v to w. We will also refer to a representation of I' as a diagram of shape I'. One could also
consider diagrams with shape given below.

®
v
[ ]
7 3
[ ]
‘ﬂ'
4

[ ]
v

Precisely, this corresponds to a family of objects parametrized by the non-negative integers, with
a morphism from X; — X;1; when ¢ is even, and a morphism X;;; — X; when ¢ is odd. We will
call such a diagram of k-vector spaces, where k is a field, a zig-zag persistence vector space. Zig-zag
vector spaces arise in a number of ways.

Example 3.3 Consider a very large finite metric space X, so large that we do not expect to be
able to compute its persistent homology using a Vietoris-Rips complex. We might instead try
to form many smaller samples {S;} from X, and attempt to understand how consistent these
calculations are. We note that given such a family of samples, we may fix a threshold parameter
R and construct VR(S;, R) for all i. To attempt to assess the consistency of the computations
which arise out of these complex, we can form the unions S; U S;+1 and note that we have inclusion
maps S; — S; U Si41 and S;11 — S; U S;y1. These maps induce maps on the Vietoris-Rips
complexes, and by applying homology to the Vietoris-Rips complexes, we obtain k-vector spaces
Vi = Hj(VR(S;,R)) and V11 = H;(VR(S; U Sj+1,R). The inclusion maps now mean that we
obtain a diagram of the form

Vo= Vo1 Vi—=Vipge Vo= Vo34 V3 —---

On an intuitive level, consistency between the calculations is measured by the existence of classes
z; € V; and x;41 € Vi1 so that the images of z; and x;41 in V; ;41 are the same non-zero class, and
more generally for sequences of classes {z;}, with z; € V;, so that for all i, the images of z; and
Zi1 in Vi ;41 are equal to the same non-zero element.

Example 3.4 Given a simplicial complex X and a simplicial map from X to the non-negative real
line, triangulated allowing the vertex set of be the n on-negative integers, and the edges to be the
closed intervals [n,n + 1], we can form the subcomplexes f~!([n,n + 1]), as well as f~1(n). We
have a diagram

FHO) = f7H0,1]) = F7HM) = L) = fTH@) = 8D - f ) =

A scheme which could compute homology only of complexes based at the nodes of this diagram,
and which could extract the homology of the entire complex from these calculations, would permit
the parallelization of homology computations into smaller pieces. This is of course very desirable.

Example 3.5 In the discussion of the witness complex, we selected a set of landmarks £ from a
metric space X, and computed certain complexes W (X, L, €), for which there were various variants.
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We suppress the superscripts s and w, as well as the other labels, since the construction works for
all values of them. In general, it is difficult to assess how accurately the persistent homology of X
is captured by the witness complex. One piece of evidence for accuracy would be a method which
assesses how consistent different choices of landmarks are. In order to do this, one can construct
a bivariate version of the witness complex which takes as input a pair of landmark sets (L1, L2),
denoted by W (X, (L1, L2), €), which maps to each of the complexes W (X, L1, ¢€) and W (X, La,€) in
a natural was. Given a collection of landmark sets £;, one obtains a diagram of witness complexes

W(X,El,E) < W(X, (El,ﬁz),e) — W(X, [,2, 6) < W(X, (£2,E3),6) — W(X, £3,€) <

After applying homology, one can again ask for consistent families as in Example 3.3 above.

It now turns out that there is a classification theorem for zig-zag persistence vector spaces over a
field k£ analogous to that for ordinary persistence.

Definition 3.8 A zig-zag persistence k-vector space V. is called cyclic if there are integers m < n
so that Vi = k form <i <mn, V; ={0} if i < m ori > n, and the homomorphisms V; — Vi1 or
Vit1 — Vi are all equal to the identity homomorphism on k whenever m < i <i+4+1 <mn.

An example is the following.

(0} 5 k& kS |k {0} > {0}« -

Each cyclic persistence vector space is indecomposable, in that it cannot be expressed as a direct
sum of diagrams. Note that the cyclic zig-zag persistence vector space are parametrized by intervals
[m,n] with integral endpoints. We write V[m,n| for the cyclic k vector space which is non-zero
exactly for the integers in [m,n|. We have the following analogue of Theorem 3.6.

Theorem 3.1 We say a zig-zag persistence k-vector space V. is of finite type if (a) each vector
space V; is finite dimensional and (b) V; = {0} for sufficiently large i. Then, for any zig-zag
persistence k-vector space V. of finite type, there is an isomorphism

V.= @ Vimg, ng). (3-3)

for some choices of pairs of integers (mj,n;). Furthermore, the decomposition 3-8 above is unique
up to a reordering of the summands.

The content of this Theorem is that there is a barcode description of the isomorphism classes of
zig-zag persistence vector spaces, just like that for ordinary persistence vectors spaces, except that
the intervals in the barcodes are constrained to be integers. This theorem was first proved by P.
Gabriel in [37], and is discussed from the point of view of computational issues in [13]. This result
can now be applied to Examples 3.3 and 3.5 above. The presence of long bars in the barcode
decomposition says that there are elements which are consistent across all the vector spaces in the
interval determined by the bar. For Example 3.4 above, the zig-zag construction can be used to
give a very efficient and parallelizable method for computing the homology of the entire complex.
These ideas are discussed in [13] and [14].
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4 Structures on spaces of barcodes

4.1 Metrics on barcode spaces

We have now associated to any finite metric space a family of persistence bar codes, or persistence
diagrams. One important property to understand is the degree to which the bar code changes when
we have small (in a suitable sense) changes in the data. In order even formulate the answer to such
a question, we will need to define what is meant by small changes in the bar code. In order to do
this, we will define the bottleneck distance between bar codes. For any pair of intervals I = [z1, y1]
and J = [x2, y2], we will define A(Z,J) to be the [*°-distance between the two, regarded as ordered
pairs in R?, i.e. max(|z2 — 21, |y2 — y1]). For a given interval I = [z,y], we also define A\(I) to
be 5%, A(I) is the [*°-distance to the closest interval of the form [z, 2] to I. Given two families
J = {la}aca and J = {Jg}gep of intervals, for finite sets A and B, and any bijection 6 from a
subset A’ C A to B’ C B, we will define the penalty of 6, P(6), to be

P(0) = maz(mazeea (A(la, Jo(a))), mazae a—a(A(a)), mazpe p—pr (A(Jb)))
and then define the bottleneck distance do(J,J) to be
mingP(0)
where the min is over all possible bijections from subsets of A to subsets of B. This is easily verified

to be a distance function on the set of bar codes.

Remark 4.1 d. is actually the p = oo version of a family of metrics d,, called the Wasserstein
metrics. The metric d, is defined via a penalty function P, defined by

Po(0) = Y Allas Jo)” + D A"+ Y AL

acA’ acA-A’ beB—B’

and we set dp(J,J) = (mz'ngPp(O))%.

We now have a notion of what it means for bar codes to be close. There is also a notion of what
it means for two compact metric spaces to be close, given by the Gromov-Hausdorff distance, first
defined in [11]. It is defined as follows. Let Z be any metric space, and let X and Y be two compact
subsets of Z. The the Hausdorff distance between X and Y, d” (X,Y), is defined to be the quantity

max{maxxeXminyEYdZ (SU, y), maxyEYminxeXdZ (SU, y)}

Given any two compact metric spaces X and Y, we consider the family Z(X,Y") of all simultaneous
isometric embeddings of X and Y. An element of Z(X,Y) is a triple (Z,ix, iy ), where Z is a metric
space and ix and iy are isometric embeddings of X and Y, respectively, into Z. The Gromov-
Hausdorff distance of X and Y is now defined to be the infimum over Z(X,Y) of d (im(ix), im(iy)).
It is known to give a metric on the collection of all compact metric spaces. It is also know to be
computationally very intractable. In [19], the following is proved.
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Theorem 4.1 Fiz a non-negative integer i, let F denote the metric space of all finite metric spaces,
and let B denote the set of all persistence barcodes. Let By, : F — B be the function which assigns to
each finite metric space its k-dimensional homology barcode. Then By is distance non-increasing.

This result is interesting not only because it gives some guarantees on how certain changes in the
data affect the result, but it also provides an easily computed lower bound on the Gromov-Hausdorff
distance in a great deal of generality.

There are also stability results for functional persistence, or rather, an analogue of functional
persistence. In Definition 3.5, we defined functional persistence based on a function on the points of
a metric space, or equivalently on the vertices of its Vietoris-Rips complex. For any topological space
X and continuous real valued function f : X — R, one can also define associated persistence vector
spaces {H;(f~'((—o0,7])}, which are very close analogues to the simplicial complex construction
described above. In fact, a real-valued function on the vertex set of a simplicial complex can be
extended in a natural way to a continuous function on the geometric realization of the simplicial
complex, using a weighted sum of values of the function on the vertices based on the barycentric
coordinates of the point. The idea will be that small changes in the function should yield only small
changes in the associated persistence barcode. The results we will describe appear in [21] and [22].

To state the results, we will need some definitions. Let X be a topological space, and let f : X — R
be a real valued function on X. For every non-negative integer k, a € R, and € € (0, 400), we have
the induced map

J = Jkae: Hk(f_l(—oo,a —€]) — Hk(f_l(—oo,a—i— €])

We say a is a homological critical value of f if there is k so that ji 4 ¢ fails to be an isomorphism for
all sufficiently small e. Further, we say the function f is tame if it has a finite number of homological
critical values and the homology groups Hy(f~'(—o0,a]) are finite dimensional for all k¥ € N and
a € R. This condition holds, for example, in the case of Morse functions on closed manifolds (see
[55]) and for piecewise linear functions on finite simplicial complexes, so the result we will state is
quite generally applicable. The following theorem is proved in [21].

Theorem 4.2 Let X be any space which is homeomorphic to a simplicial complex, and suppose
f,g: X = R are continuous tame functions. Then the persistence vector spaces { Hy(f~1((—o0, 7))}~
and {Hy. (g7 ((—o0, 7))}, are finitely presented, and therefore admit barcode descriptions for each
k € N, which we denote by Brf and Brg. Moreover, for any k, we have that

doo(ﬁkfw@kg) < Hf_gHoo

There is also a stability result for the Wasserstein distances d,,, with p finite, in the presence of a
a Lipschitz property for the functions, proved in [22].

4.2 Coordinatizing barcode space

Another way to describe infinite sets is via the theory of algebraic varieties, i.e. as the set of
solutions to a set of equations, either over the real numbers, the complex numbers, or some other
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field. When this is possible, it gives a very compact description of a large or infinite set. The
method also produces a ring of functions on the set, by restricting the polynomials functions to it.
Functions are useful in studying any set by machine learning and other methods. We will discuss
the possibilities for producing a coordinatized model of the set of all bar codes.

Let us consider first the set B,, of all bar codes containing exactly n intervals or “bars”. Each of the
intervals is determined by two coordinates, the left hand endpoint z and the right hand endpoint y.
If we have n intervals, we have 2n coordinates {z1,y1,...,Zn, yn}. The trouble is that the barcode
space does not take into account the ordering of the intervals, so it isn’t possible to assign a value
to the i-th coordinate itself. To understand how to get around this problem, we discuss a familiar
situation from invariant theory.

We consider R™ and let 3, be the group of permutations of the set {1,...,n}. We also consider the
ring of polynomial functions A, = R[zy,...,x,] on R”. We will describe how to coordinatize the
set of orbits (as defined in Section 2.2) R"/3,,, i.e. the “set of unordered n-tuples of real numbers”,
or equivalently the collection of multisets of size n. If f is a polynomial function on R", it may be
treated as a function on the set of orbits if it has the property that f(o¥) = f(v) for all o € 3,
and ¥ € R™. The group ¥, acts on the ring A,, and an element f € A, is a function on the orbit
set R"/%,, if and only if it is fixed under all permutations o € ¥,,. The set of all fixed functions
(denoted by A>») is a ring in its own right, and it turns out that it has a very simple description.

Proposition 4.1 The ring ATEL” is isomorphic to the ring of polynomials Rlo1,09,...,0,], where
o; denotes the i-th elementary symmetric function given by

g $Slx82 . e xsi

51,825..4,54

where the sum is over all i-tuples of distinct elements of {1,...,n}.

We now have coordinates which describe the set R/Y,,. The analogous construction for the set 98,
would be to form the subring of R[x1,y1, . .., Zpn, yn] fixed under the action of ¥,, which permutes the
x;’s among themselves and the y;’s among themselves and obtain a coordinatization this way. This
does give a ring of functions, but it is not a pure polynomial ring but has relations, or syzygies. A
full discussion of this situation is given in [23]. To give an idea of what this means, we first observe
that the elementary symmetric functions o;(Z) and o;(y) are definitely invariant, and generate a
full polynomial subring of the ring of functions. Let us restrict to the case n = 2. Then there is
another function & = (z1y; +22y2), which cannot be expressed in terms of the elementary symmetric
functions applied to & and ¢. It turns out that there is now an algebraic relation

& — 01(B)o1(§)E + 01(Z)*02(¥) + 02(D)o1(§)* — 4oa(F)oa(if) = 0

which after consideration shows that there is no algebraic coordinatization by the 4-dimensional
affine space but rather by a subset of a higher dimensional space cut out by one or more algebraic
equations. Nevertheless, one is able to express 28, as the points of an algebraic variety in this way.

What we would really like to do is to coordinatize the collection of all the sets 93, as a variety, in
an appropriate sense . One could consider the disjoint union [[,, B, but we would rather disregard
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intervals of length zero in a systematic way, since they correspond to features which are born and
die at the same time, and hence do not have any actual persistence. This suggests that we define a
set B as follows. We let ~ denote the equivalence relation on [, B, generated by equivalences

{lz1,01]s (2292l - [0, ynl} ~ {21, 1], 22, 92), - - (01, yn—a ]}

whenever x,, = y,,. We then define the infinite bar code set B, to be the quotient
[T/~
n

The question we now pose is whether this infinite set can also be coordinatized, again in a suitable
sense. To see how this can be done, we consider two simpler examples of coordinatization.

Example 4.1 We let ,, denote the set R"/%,,, and we let 2o, denote
[T/~

where ~ is the equivalence relation given by declaring that (z1,...,2,) ~ (y1,...,¥m) if and only
there are sets S € {1,...,n} and T' C {1,...,m} satisfying the following properties.

l. z,=0andyy =0forallse Sandt €T
2. We have n — #(S5) = m — #(T'), and call this common number k.

3. The unordered k-tuples obtained by deleting the elements corresponding to S and T from
(x1,...,zy) and (y1,...,Ym) respectively, are identical.

There are natural maps from 2, to 2., and the maps are injective on points. We therefore have
an increasing system
Ay = Ay > Az — - -

which corresponds to a system of ring homomorphisms
R[O’l] — R[O’l, 0'2] — R[O’l, 09, 0'3] — -

where the homomorphism R[oy,...,0,41] = Rlo1,...,0y] is defined by o; — o; for 1 < i < n, and
On+1 — 0.

Associated to such a system is its limit, which is itself a ring. We will not go into detail on this, but
refer to the book [52] for background material on limits and their dual construction, a colimit. In
this case, the construction produces a ring of functions which can be described as follows. Let M
denote the set of all monomials in the infinite set {01, 09,...,0n,...}, and let M,, C M denote the
subset of monomials which involve only {o1,...,0,}. Then inverse limit ring is identified with the
set of all infinite sums > 1, 7up so that the sums » -\ rup are all finite. So, for instance, the
infinite sum ) o, is an element of this ring. Elements in this ring certainly define functions on
Ao, because the functions oy vanish on 2, whenever n < N. We will regard the functions o; as
coordinates on 2, with the understanding that for any point = € ., the vector (o1 (x), o2(x),...)
has the property that only finitely many coordinates are non-zero.
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In the example above, taking the quotient by the equivalence relation ~ did not create complicated
rings, as each of the rings Rloy,09,...,0,] is a pure polynomial ring in n variables. In general,
though, taking quotients by equivalence relations can create rings which are not pure polynomial,
and in some cases not even finitely generated as algebras.

Example 4.2 Consider the plane X = R?, and consider the equivalence relation ~ defined by
declaring that (x,0) ~ (2/,0) for all z,2’. This relation “collapses” the entire z-axis to a point,
while leaving the rest of the set unchanged. The question is whether or not R?/ ~ can be described
as an algebraic variety. As in the case of the ring of invariants of a group action giving a variety
structure on an orbit set, in this case we will ask which polynomial functions f on R have the
property that f(x) = f(2’) whenever x ~ a’. This means that we are asking for the polynomials f
in two variables so that f(z,0) = f(2/,0) for all z,2’. A quick calculation shows that this ring of
functions consists of all polynomials in x and y so that the linear term in x is zero. So, a basis for
it is the set of monomials {x'y’|i >0 == j > 0}. This is a ring which is easy to understand, but
it is not a finitely generated algebra. It is generated by the elements 6; = z'y together with the
element y, and they satisfy the relations 67 = yfa;. We can then obtain a description of R?/ ~ as
the set of points in R® = {(y,0y,60s,...)[6? = yba; for all i > 0}. Note that in this case infinitely
many coordinates will typically be non-zero for a given (x,y).

The image of B,, — B, which we denote by B/ , can be described as the set obtained from 9B,, by
taking the quotient by an equivalence relation ~,, defined as follows. Given two multisets of intervals
(with n intervals) S = {[z1, y1], [x2, 2], . - -, [Tn, yn|} and S" = {[z], V1], (25, ¥5], - - -, (2], yl,]}, we say
that S ~,, S’ if there are subsets I, I’ C {1,...,n}, so that x; = y; for all i € I, and 2, = 3, for all
i' € I', and so that the multisets S — {[z;, z;]|7 € I} and T —{[},, «,]|i" € I'} are identical multisets
of intervals. This means that 9B/, can be expressed as the quotient of 9B,, by an equivalence relation,
similar to that described in Example 4.2. It corresponds to a ring A(8]), which is in general not
finitely generated. However, we consider the increasing sequence of sets

B — By — VL — ...
and a corresponding system of ring homomorphisms
A(BY) «— A(BY) «— A(B) «— -

as in Example 4.1. This system also has an limit, which we’ll denote by A(B ), and which can be
described as follows. Let A denote the set of all monomials in a set of variables {7;;|1 <,0 < j},
and let N, C N denote the subset of monomials in {7;;|1 <4 < k,j > 0}. Then the ring A(B)
is identified with the set of all infinite sums ) .\, r, v which have the property that all the sums
Zue N, T are finite sums. The variables 7;; correspond to functions on ‘B, which can be described
as follows. It will suffice to described 7;; on B,,, i.e. on an unordered n-tuple of intervals. To do
this, we first define a function Ti/j on the set of ordered n-tuples on intervals by

Y1+ 21 ) j

2

Tyl [Tn, yn]) = (1 —21) - (v — 2)(

To obtain 7;; we simply symmetrize by writing



So, for example, 719 applied to an unordered n-tuple of interval is the sum of the lengths of the
intervals, T is the second elementary symmetric function in the lengths, and 7; is the sum over
all the intervals of the product of the length of the interval with the j-th power of its midpoint.

4.3 Multidimensional persistence

One of the problems which frequently comes up in persistent homological calculations is that the
presence of a few outliers can mask structure. The example below is suggestive.

Note that the main structure is a sampling from a loop, but that there are a number of outliers lying
in the interior of the loop. The homology of the complexes built from this data set will not strongly
reflect the loop, because the short connections between among the outliers and between the outliers
and the points on the actual loop will quickly fill in a disc. In order to remedy this, we would have
to find a principled way to remove the outliers in the interior. A measure of density would have
this effect, because the outliers by many measures of density would have much lower density than
the points on the loop itself. So, if one selected, say, the 90% densest points by a density measure,
one would effectively be choosing the loop itself. However, this choice of threshhold is arbitrary,
S0 just as we chose to maintain a profile of homology groups over all threshold values for the scale
parameter, we might attempt to create such a profile for values of density.

Another problem with persistent homology has already been made apparent in Section 3.5, where we
constructed the increasing family of simplicial complexes {V R(f~*([0, R]), p}r for a non-negative
real valued function f on our data set, and for a fized choice of our scale parameter p. These
complexes allowed us to study topological features of the data sets which are not captured by the
direct application of persistent homology, but using them requires us make a choice of the scale
parameter. There is no universal or natural choice of p, so it would be very desirable to be able to
track both R and p simultaneously.

These considerations motivate the following definition. We let Ry = [0, 4+00), and we define a
partial order on R’} by declaring that (ri,...,7,) < (rf,...,ry,) if and only if r; < 7} for all
1 <1< n.

Definition 4.1 By an n-persistence vector space over a field k, we will mean a family of k-vector
spaces {Vig}rern together with linear transformations L(7,7) : Vz — V@ whenever ¥ < 7, so that

L(#,7") - L(7,7) = L(7,7")
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whenever ¥ < 7 < 7. There are obvious notions of linear transformations and isomorphisms of

n-persistence vector spaces.

We might hope that there is a compact representation of the isomorphism classes of n-persistence
vector spaces analogous to the barcode or persistence diagram representations available in 1-
persistence, equivalently the ordinary persistence we have already discussed. It turns out, though,
that this is not possible, for the following reason. As was observed in [75], ordinary persistence
vector spaces have much in common with the classification of graded modules over the graded ring
Ek[t]. Indeed, if we restrict the domain of the scale parameter r in ordinary persistence to the integer
lattice Z C R, then the classification of such restricted persistence vector spaces is identical to
the classification of graded k[t]-modules. Similarly, it is shown in [17] that the isomorphism classes
of n-persistence vector spaces with the parameter set restricted to Z is identical to the classifi-
cation of n-graded modules over the n-graded ring kl[ti,...,t,]. It is well understood in algebraic
geometry that the classification of modules over polynomial rings in more than one variable is fun-
damentally different from the one variable case. In particular, for graded one variable polynomial
rings, the parametrization of the set of isomorphism classes is independent of the underlying field &,
whereas this does not hold for multigraded polynomial rings in more than one variable. In fact, the
classification for more than one variable usually involves spaces of structures, rather than discrete
sets. What these problems suggest is that we should drop the idea of dealing with a complete
classification of the isomorphism classes of n-persistence vector spaces, and instead develop useful
invariants which we expect will measure useful and interesting properties of n-persistence vector
spaces.

One approach to finding invariants is via the functions defined in Section 4.2. It turns out that
some of them can be interpreted in ways which do not depend on obtaining an explicit bar code rep-
resentation. For any finitely presented persistence vector space {V; },, we can define two functions
attached to V, Ay : Ry — Ry and py : R2 — Ry, We set

Ay (r) = dim(V;)
and

pv (r,r’") = rank(L(r,7"))

Example 4.3 We consider the function 719 from Section 4.2, which is given by > . (y; — ;). It is
easy to check that the equation

7'10(3517?/1,-'-,$nayn) = AV(T)dT
Ry

holds for finite barcodes.

Example 4.4 One can also show that

1 1
5(7120 —2my) = 5 Z(yi —x)? = //Ri pv (r,r")drdr’

%
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Example 4.5 We also have
T11 :/ T’Av(T)dT'
R4

None of the integrals involve the explicit barcode decomposition, but depend only on the informa-
tion concerning the dimensions of the spaces V;. and the ranks of the linear transformations L(r, r’).
The value of this is that Ay and py have direct counterparts in the n-persistence situations, and
integrating them (this time over R’} and R%r”, respectively) yield analogues of at least these in-
variants in the multidimensional situation. The study of invariants of multidimensional persistence
vector spaces is ongoing research.

4.4 Distributions on 8.,

We have seen that one can use persistence barcodes to obtain invariants of finite metric spaces which
mimic homological invariants for ordinary topological spaces. For finite metric spaces obtained by
sampling, one can hope to perform inference on the barcode invariant. For example, if one sees a
barcode with a bar which one perceives as “long”, how can one determine if such a long bar could
have occurred by chance. More generally, how can one use barcodes to reject a null hypothesis that
the sample was obtained from a fixed distribution or family of distributions? In order to perform
such inference, one will need to develop a theory of probability measures on B+, and [54] some
important first steps in this direction are taken. We summarize their work.

The set B is a topological space by equipping it with the quotient topology (see Section 2.2)
under the map

13- - B

where each B, is topologized using the quotient topology for R*" — R?"/%,, and where ], B,
is topologized by declaring that a set in [[,, B, is open if and only if its intersection with B, is
open for each n. In Section 4.1, metrics d,, with the possiblity of p = oo, were introduced on B..
The goal of the work in [54] is to study the possibility of defining expectations and variances, in
the Fréchet sense (see [35], [36]), on the metric spaces (B, d,). One obstacle to realizing this goal
is the fact that the metric space (B, dp) is not complete. In order to deal with this problem, the
authors of [54] construct completions B, of (B, d,). We will first enlarge the set B, to include
countable multisets of intervals {I,},c4 where A is a countable set. For a fixed p, the underlying
set of B, will be the set of all {I,},ca for which

> " Ala) < 400 (4-4)

a€A

It is now clear by inspection that the distance d, extends naturally to a metric dp on ‘B, via
the same formula as in Section metricbarcode, but where the sum may be infinite, but is always
convergent due to the condition (4-4). We now have the following.

Theorem 4.3 ([54]) The metric space (%p, a?p) is complete and separable.
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The goal of [54] is now to construct means and variances on %p. In general metric spaces X there
is no notion of a single point valued mean, but the mean will actually be a subset of X. Here is
the definition of Fréchet means and variances, paraphrased from [54].

Definition 4.2 Let X be a metric space, B(X) its Borel o-algebra, and let P be a probability mea-
sure on (X, B(X)), and suppose that P has a finite second moment, i.e. that [y d(z,z')*dP (') < oo
for all x € X. Then by the Fréchet variance of P we will mean

Varp = infuex|Fo(e) = [ diwa’ap(s)
X
and the set

Ep = {z|Fp(z) = Varp}

will be called the Fréchet expectation or the Fréchet mean of P.

As stated, Ep always exists as a set, but it may be empty or contain more than one point. There
are results on the non-emptyness and the uniqueness of Fréchet means for manifolds [45],[46]. What
is proved in [54] is an existence result for the case X = B,

Theorem 4.4 Let P be a probability measure on (%p,dp), and suppose that P has finite second
moment and compact support. Then Ep # ().

In [69], this existence theorem is made algorithmic, but for a somewhat different choice of metric
and metric space. by the L? Wasserstein metric on B, we mean the analogue of dy for the choice
of penalty function

A2(10) = (21— 22)” + (y1 — 92)°

The resulting metric space is simpler to work with computationally, and all the existence results
from [54] are also shown to hold in [69].

Another approach concerns the notion of distances between measures on metric spaces, and devel-
oped in [8] and [20]. One useful choice is the so-called Lévy-Prohorov metric.

Definition 4.3 Given a metric space (X,dx), we define the Lévy-Prohorov metric mx on the set
P(X) of probability measures on the measurable space X, with its o-algebra of Borel sets B(X), by

wx(u,v) = infle > 0|u(A) < v(A°) + € and v(A) < u(A) + € for all A € B(X)}

where A€ denotes the e-neighborhood of A, i.e. the union of all balls of radius € about points of A.
This metric is defined for all metric spaces, and is known to induce the topology of weak convergence
of measures on P(X) when X is a “Polish space”, i.e a separable complete metric space.

By a metric measure space (X,dx,px), we will mean a metric space (X,dx) together with a
probability measure px on the o-algebra of Borel sets associated to the metric dx. In [38], an
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analogue to the Gromov-Hausdorff metric is defined on the collection of compact metric measure
spaces. Given two metric measure spaces X = (X,dx,ux) and Y = (Y,dy, uy), the Gromov-
Prohorov distance between X and ) is defined in [38] to be

dapr(X,Y) = inf  7(za,)((0x)stix, (@y)spty)
(@Xv‘PY’Z)

where as in the definition of the Gromov-Hausdorff metric, (¢x, gy, Z) varies over all pairs of
isometric embeddings px : X — Z and ¢y : Y — Z of X and Y into a compact metric space Z.

The distributions on B, of interest in [8] are those which are obtained by sampling n points in X,
according to the probability measure px, and computing persistent homology in a fixed dimension
k to obtain persistence barcodes. The idea is that each one is a kind of finite approximation to
the the metric measure space, and the result shows that the differences between these measures
is controlled by the Gromov-Prohorov distance between the actual metric spaces. More precisely,
given a metric measure space (X, dx, j1x ), they construct probability measures ®} = ®}(X, dx, p1x)
on the completed barcode spaces B, described above, via the formula

DX, dx, px) = (Bre)«(p)

where (5 denotes the k-dimensional barcode, and (—). denotes the push forward measure to %p.
This formula makes sense because (a) [ is a continuous map of metric spaces by Theorem 4.1 and
(b) both spaces are given the structure of measurable spaces via the Borel o-algebras. The main
theorem of [8] is now the following.

Theorem 4.5 ([8], Theorem 5.2) Let (X,dx,ux) and (Y,dy,puy) be compact metric measure
spaces. Then we have the following inequality relating the Prohorov and Gromov-Prohorov metrics:

dPT(q)Z(Xy dx, MX)? q)?I;L(}/v dy, ,UY)) < ndGPT((Xv dx, MX)7 (Yv dy, ,uY))
This estimate permits one to prove the following convergence result.
Corollary 4.1 ([8], Corollary 5.5) Let S; C Sy C --- C --- be a sequence of randomly drawn
samples from (X,dx,ux). We regard S; as a metric measure space using the subspace metric and
the empirical measure. Then ®}(S;) converges in probability to 7 (X, dx, px).
Remark 4.2 One could formulate similar results in other contexts. For example, a very interesting
object of study would be to study the distributions obtained by choosing instead various landmark

sets in a witness complex. This would then give an assessment of how well the space is represented
by witness complexes of a fixed size.

5 Organizing data sets

5.1 Natural image patches

In this section, we will describe the homological analysis of a particular data set coming out of
neuroscience and image processing. The data set was constructed by A. Lee, K. Pedersen, and D.
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Mumford in [48], and the analysis was done in [16]. We first discuss the data set. It consists of
images from a black and white digital camera. Each such image can be thought of as a pizel vector
in a space whose dimension is the number of pixels used in the camera, and where the coordinate
for a given pixel is a gray scale value, which we will think of as a continuous variable, but which
in fact takes integer values between 0 and 255. The “metaproblem” proposed by D.. Mumford
was to understand in some sense the structure of the set of all images that might actually occur
in taking images, versus the set of all possible pixel vectors. The usual topological method of
trying to understand a space makes little sense here, due to the extremely high dimensionality of
the space of images. Mumford and his collaborators A. Lee and K. Pedersen decided instead to
study the statistics of small (3 x 3) patches within a large database of images taken by two Dutch
neuroscientists around Groningen in the Netherlands [73].

Each such patch was taken as a vector in R?, with one gray scale value for each of the nine pixels.
One preliminary observation is that most images contain large solid regions, and therefore that
patches which are constant or nearly constant will dominate the statistics of the set of patches. For
this reason, Mumford et al decided to study only high contrast patches, i.e. patches {x;;}1<ii<3 so
that a certain positive definite quadratic form on the vector of differences {z;; — p} is large, where
f is the mean value of the values x;;. The quadratic form is called the D-norm, and is a rescaling
of the standard Euclidean form in a way which reflects the placement of the pixels in the 3 x 3
array. They then constructed a data set of 4 x 10° high contrast patches, by which they mean
patches whose D-norm lies in the top 20% values which occur. They then proceeded to perform
the following transformations to this data set.

1. For any vector & = {x;;}i; let p(Z) denoted the mean of the entries z;;. Replace each vector
Z by & = & — pu(Z). This is done so as to understand the structure of the patch independent
of the absolute values of the gray scale values.

2. Replace each vector Z’ by ﬁ. This is done so as to understand the patch structure
independently of the absolute value of the contrast in the patch.

We now have a data set M consisting of 4 x 10% points lying on a 7-dimensional ellipsoid E7 within
an 8-dimensional subspace of R?. This is the data set we will study.

The first inclination is to apply persistent homology directly. Unfortunately, it turns out that M
fills out the full E7, which would mean that were we to carry out the calculation, we would expect to
find the homology of E7. This would be unsurprising, and would not yield useful insights about M.
One can observe, though, that the density suitably measured varies a great deal within M. This
means that we can threshold by density, and obtain a data set consisting of the most frequently
appearing patches, or motifs, in M. Such information would clearly be useful, for example, in
constructing compression schemes. The analysis in [16] uses a very simple proxy for density, called
co-density. The co-density with parameter k on a finite metric space, denoted by px(x), is defined
by
pr(z) = {d(z,2")| where 2’ is the k-th nearest neighbor to x}

Note that pj varies inversely with actual density, and also that the parameter k plays a role similar
to the choice of variance in a Gaussian kernel density estimator. The size of the parameter k
determines whether the density is computed more or less locally, i.e. using smaller or larger balls
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around a point z. For a data set X, we will denote by X (k,p), where k is a positive integer and
p is a percentage, the set of points z for which the value of pi(z) is among the top p% of the
values occurring in X. Below are the zero- and one-dimensional persistence barcodes occurring for
X (300, 30), where X is a set of size 5 x 10* sampled at random from M.

Bett,

005 01 015 02 025 03 035 04 045

Battl,

L|'.I 005 01 015 02 025 43 035 04 045

Note that the zero-dimensional barcode shows a single long bar indicating that the space is well
approximated by a connected space. The one-dimensional barcode also has a single long bar,
indicating that it might very well be modeled by a circle. This is indeed the case, as the following
circular coordinatization of the patches suggests.

What it demonstrates is the most high density patches, according to psgg, consists of the discrete
versions of linear functions in two variables. This is not so surprising, but is convincing that the
method works. One could then ask what happens when we use a more local density proxy, i.e. a
smaller value of k. Below is the result for X (15,30), where X is again a subsample from M of size
5 x 10%.

Batti

Betti,




In this case, we again have a single long line in the zero-dimensional barcode, indicating connected-
ness, but the one-dimensional barcode has 5 long bars, suggesting that 1 for this data set should
be 5. We note that we obtain the same pattern, with 5 long bars in the 7 barcode for different
subsamples, so it appears to be recognizing a real feature of the data set.

l][]
I
[.El

Note that the “north” and “south” points on the left secondary circle are identical with the north
and south points on the primary circle, and the east and west points of the right hand secondary
circle are identical with the east and west points on the primary circle. This suggests that the space
be identified with a collection of three circles, one labelled “primary” and the other two labelled
“secondary”, with two points in each of the secondary circles identified with two points in the
primary circle, and with no overlap between the two secondary circles. This gives us the following
idealized pictures.

(a) Three circle model (b) Three circle model deformed

The right hand model is obtained by stretching and moving the secondary circles. In the right
hand version, it is clear that §; = 5, since there are five independent loops.

One can now ask whether there is a natural two-dimensional object into which the data fits, and
in such a way that the three circle model naturally fits into it as well. In this case, because we are
trying to obtain a two-dimensional geometry, we are actually forced to use the full data set M,
rather than a subsample. We also have to choose the k-parameter so that the density estimator is
even more localized. Here are the persistence barcodes in dimensions 0,1, and 2 in this case.
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005 01 015 02 025 03 05 04 045

D0 005 01 015 02 025 03 035 04 045

g s
0

0 005 01 015 02 025 03 035

The top barcode suggests the space is connected. Note that in the 1- and 2-dimensional barcodes,
there is an interval of significant length (roughly from .15 to .30) in which there are two bars in the
1-dimensional barcode and a single line in the 2-dimensional barcode, suggesting that for that range
of values of the scale parameter we have a complex with 51 = 2 and By = 1, with Fy coefficients.
There is a classification of all compact 2-dimensional manifolds [56], Ch. 12, from which one can
deduce that the only two possible such manifolds are the torus and the Klein bottle, shown below.

(c) torus (d) Klein bottle

A calculation for the field Fg distinguishes between these two, and the persistent homology calcu-
lations shows that the Klein bottle is the correct choice. The mod 3 Betti numbers of the torus are

(1,2,1) and for the Klein bottle they are (1,1,0).

It is interesting to explore how the three circle model might fit inside the Klein bottle. In order to
do this, we will need a model of it more suitable for computation. One way of doing this is via an
identification space model, which can be pictured as shown below.
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Figure 11: Identification space model for the Klein bottle

The points labelled P, @, R, and S are identified with other points labelled P, Q, R, and S respec-
tively. This means we are taking the quotient topology as in Section 2.2 of the relation in which
all the equivalence classes have either just one element (when the point is in the interior of the
rectangle) or exactly two elements, when they are on the boundary of the disc. In this case, points
along the horizontal boundary lines are identified with their counterparts on the opposite line, and
the points along the vertical boundary lines are identified with the points they correspond to when
one performs a reflection of the opposite segment. Given this model, we can see how the 3-circle
model fits inside this space.

R S
> >
P T Q
<— SECONDARY __,, |
A PR'MARICIRCLE A CIRCLES A /
Q P
> R > S
(a) Primary circle in Klein bottle (b) Secondary circles in Klein bottle
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Here is a schematic describing how the high contrast patches are parametrized by the Klein bottle.

i = N
1 T ]
s leg &
W A
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Figure 12: Parameterization of high contrast patches by Klein bottle

Note that the parametrization respects the equivalence relation, in that patches on the boundary
are identical to the corresponding patches on the opposite segment.

Having this kind of description of the geometric structure of the data set can be useful in a number
of ways.

1. Platonic model: We have studied discretizations of patches obtained by sampling on 3x
grids. But we could also ask what fully continuous model might be consistent with our
understanding of M. We will do this by considering the intensity function of the patch as a
quadratic polynomial of degree two, in two variables, on the unit square. We may describe a
subspace of the set of all quadratic polynomials in two variables (which have six parameters,
1 constant, two linear, and three quadratic coefficients) by the following requirements.

e [ f =0, where D denotes the unit square.

o pff=1
e The function f is of the form f(Z) = ¢(A(Z)), where ¢ is a single variable quadratic
polynomial, and where ) is a linear functional on the plane.

The first two conditions are analogous to the requirements that the mean intensity be zero
and the contrast is one, which were imposed on the data set in [48]. They cut out a subset
which is a four-dimensional ellipsoid S* in R®. The final condition, which is non-linear, cuts
out a two dimensional subspace of S* which is homeomorphic to the Klein bottle, as can be
readily verified.

2. Compression schemes: An understanding of what the frequently occurring data points are
in a data set is often an important part of any compression scheme. For example, the wedgelet
compression scheme (see [26]) use the information that the primary circle in our description
consists of frequently occurring patches to obtain an interesting compression scheme. In [53],
a scheme based on the Klein bottle is constructed, outperforms wedgelets on some particular
images. The rate distortion curve is given below, where the Klein bottle compression scheme
is the upper curve, and the lower curves are two different versions of the wedgelet scheme.
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Figure 13: Rate distortion curve for Klein bottle-based compression

3. Texture recognition: In many image processing situations, one is interested in recognizing
not only large scale features, but properties which are more related to the texture of regions of
the image. For example, in studying textures, one expects to deal instead with the statistics
of small features within the patch. One approach to this problem is studied in [60]. The idea
is that one should should study all high contrast patches occurring inside a (larger) texture
patch statistically, with the hope that the statistics would tell the difference between textures.
One way to understand the statistics is to locate, for each high contrast patch, the closest
point on the Klein bottle to that patch. If one carries out this process, one obtains a large
collection of points on the Klein bottle. One can then generate a probability density function
on the Klein bottle by smoothing. Since the Klein bottle has a very simple geometry (it has
the torus as a two-fold covering space), one can perform Fourier analysis on the probability
density function, to obtain coordinates which are the Fourier coefficients. It turns out that
these coefficients are able to distinguish textures in various databases quite effectively, close to
state of the art. The advantage of this method is that the effect of rotation on an image gives
an easy transformation on the Klein bottle, namely translation in the horizontal direction in
the identification space model in Figure 5.1 above. The standard approach to this problem
is to identify a finite set of patches (the codebook), and to compute dot products of a given
patch with each of them, giving a distribution function on a finite set. The key observation
here we can deal with infinite codebooks if the codebook is equipped with a useful geometry,
as the Klein bottle is. Actual finiteness can be replaced by finiteness of description.

5.2 Databases of compounds

In the previous section, we have seen that persistent homology can be a useful tool for understanding
the overall structure of a complex data set. In this section, we will discuss how persistence barcodes
can instead be applied to the individual elements, or data points, in databases where these elements
themselves carry a geometric structure.

Databases of organic compounds are of fundamental importance in many biomedical applications.
They are, for example, the main object of study in the area of drug discovery. The possibility
of developing methods for interrogating them, and in particular to determine which compounds
are functionally similar to which other compounds rapidly and simply, is something which should
be explored. One approach to this problem is to somehow assign metric structures to sets of
compounds, One difficulty is that sets of compounds do not fit neatly into standard formats for
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data, such as spreadsheets. The data which specifies a particular compound consists of position
coordinates for the atoms which it comprises, as well as information about bonds between the atoms.
Since different compounds consist of different numbers of atoms as well as different numbers of
bonds, there is no simple vector description with a fixed number of coordinates which can describe
a set of compounds. In addition, the description is not unique, since a molecule could be rotated
to produce different coordinates for the atoms. There is a standard method for encoding the
structures of compounds, referred to as simplified molecular-input line-entry system, or SMILES.
In this system, the compounds are represented as a list of symbols encoding the atoms, as well
as other annotation symbols which permit the reconstruction of the compound. Three problems
with this representation are that (a) there is not always a unique SMILES representation of a given
molecule, (b) the conversion from SMILES to a 3D representation can be ambiguous, and (c) the
structure is such that there is no obvious way of assigning a distance function or similarity score
to a pair of SMILES structures. A. Bak and M. Lerner ([5]) have described a method for assigning
distance functions to sets of compounds which circumvents these difficulties. We now describe their
approach.

Any compound can be described as a finite collection of atoms with positions in three dimensional
Euclidean space, together with a collection of bonds connecting the atoms, and the lengths of the
bonds. There are now two ways to assign a metric space structure to the set of atoms.

1. The three dimensional Euclidean distance between atoms

2. By regarding the bonds as the edges in a weighted graph with the weight being the bond
length, we may define an edge-path metric where the distance between two atoms « and
is the minimum over all k£ and all sequences ag, a1, ..., for which each pair (a;, ajt1) is
connected by a bond, of the sum

Z Ao, iyr)
(2

where A(a;, a;+1) denotes the length of the bond connecting «; and o y1.

A key observation concerning these metrics is that it is that they are independent of rotations of the
molecules. In [5], various persistence barcodes are constructed, some using geometric constructions
as in Section 3.6, others using functional persistence (see Definition 3.5) based on various functions
on the set of atoms of the molecule. The geometric constructions are of two types, namely the
Vietoris-Rips complex constructed in Definition 3.2, and the a-complex defined in Section 3.6. The
a-complex is based on the embedding of the set of atoms in three-dimensional Euclidean space.
The fact that the atoms are embedded in a low-dimensional Euclidean space is what makes the
a-complex construction tractable. The collection of functions on the set of atoms used for the
functional persistence barcodes are as follows.

1. The centrality function é(z), defined in Section 3.5
2. The atomic mass of the atom

3. The partial charge of the atom
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In the case of the functional persistence barcodes, a choice of the scale must be made. The choices
made in [5] are a finite set of small multiples of the carbon-carbon bond length within the molecule.
Given these choices, persistence barcodes are now constructed in dimensions 0,1,2, and 3. Let us
index the set of choices of barcodes under consideration by 8 € B, where B is an indexing set.
Then for each 3, one assigns the bottleneck distance or Wasserstein metric with p = 2, and label it
dg for that particular complex construction. Attached to the set B, one can then assign a weighted

family of metrics
= 1
dh = () agd3)?

to any selection of non-negative real valued vectors @ = {ag}g.

Bak and Lerner study a particular class of compounds called dihydrofolate reductase- (or DFHR-)
inhibitors. These are compounds that inhibit the functioning of dihydrofolate reductase in the
biosynthesis of purines, thymidylate, and other important amino acids. The synthesis which is
associated with DFHR is important in the development of cancer, and therefore inhibiting its
functioning is a useful property in the management of cancer. DFHR inhibition is the basis for
Methotrexate, which is the first historical example of structure-based drug design applied to cancer.
The idea in [5] is now to develop a database of drugs which might have some likelihood of being
a DFHR inhibitor. To develop this database, they first observed that one necessary property of a
DFHR inhibitor is that it should contain at least one aromatic group and one hydrophobic portion.
The necessity of this criterion comes from the observation that all known DFHR inhibitors have
this property. They then constructed a database of 3D conformations, extracted from commercial
or open-source databases, or in some cases constructed by hand. There are large databases for
which this has already been done, and relatively standard ways of doing this (one method is
ZINC, http://zinc.docking.org/, [44]). For other molecules that didn’t have a three-dimensional
structures, they used a tool called OMEGA to generate conformations, and used the lowest energy
conformation. Inhibitors in species other than humans were used. The compounds were combined
into a single dataset with 4000 compounds. They then worked with an optimization scheme to
perform “metric learning” to find the best values of @, in selecting the metric. This optimization
scheme was based on an objective function defined for the so-called dbscan clustering. The metric
selected was the one optimizing this objective function. The metric they constructed produced
very good localization of the actual DFHR inhibitors within the larger database of putative DFHR
inhibitors. Below is an image of the data set constructed using the “Mapper” methodology (see
[12], [66], [57], [51]).
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What it shows is that the DFHR inhibitors exist as four separate very localized groups. Under-
standing this grouping is interesting, but it means that one can now test a new compound to see
where it belongs in the image network, by selecting the point in the existing data set which is closest
to the new point. It will therefore act as a mechanism for rejecting out of hand many compounds,
which then do not have to be tested in the laboratory.

Bak and Lerner also used the algebraic functions defined in Section 4.2 to provide coordinates
which can be used as input to more sophisticated machine learning methods. It was applied to the
problem of classifying DFHR inhibitor vs. non-inhibitor status based only on the barcode.

5.3 Viral evolution

The phylogenetic tree has become the standard model to capture the evolution of species since
Darwin. A single tree, The Tree of Life, contains all species, alive and extinct, into a single structure.
The revolution in genomic technologies in the last 20 years has led to an explosion of data and
methods developed to infer tree structure on sets of sequences ([34],[28]). This phylogenetic model
strictly models clonal evolution, when genetic material is obtained from a single lineage of ancestors.
In this case mutations can occur and then be transmitted via replication of the genomic material
from a single parent to the offspring. It is known that there are numerous other mechanisms for the
transfer of genetic material from one organism to another, where the organisms may even belong
to different species. Recombination of genomic material is common in many species. But examples
across species are pervasive in nature, as hybrids in plants, horizontal gene transfer in bacteria,
fusions of genomes as happened with mitochondria and chloroplasts. It has been argued in [27] that
trees do not adequately model the full range of possible mechanisms for transfer of genetic material,
thereby producing conflicting results in the reconstruction of the Tree of Life. It turns out that all
trees have vanishing homology groups, and that therefore homological methods might be used to
provide evidence for the presence of horizontal evolutionary events within a collection of sequences,
or in their genetic history. This idea was proposed in [18] where a dictionary between algebraic
topology and evolutionary concepts was outlined. The power of homology to study genomic data
was shown with examples coming from viral evolution.
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The data sets consist of genetic sequences, which are sequences from a four element alphabet given
by {A,G,C,T}, corresponding to the nucleotides adenine, guanine, cytosine, and thymine. One
natural metric on the set of such sequences is the Hamming distance, which assigns to a pair of
sequences {x;}; and {y;};, with x;,y; € {A,G,C, T}, the number of values of i for which x; # y;.
Equivalently, one can describe the Hamming distance as the minimal number of substitutions which
have to be made in one sequence to obtain the other. There are many variants on this distance
which takes into account the rates at which the various substitutions take place and assigns different
numbers to each possible substitution. Several variations of these distances were studied in [18],
with similar results. The Nei-Tamura results were displayed. At this point we may apply the
persistent homology techniques to such finite metric spaces, and obtain persistence barcodes.

Since what we are trying to do is to distinguish some of these metric spaces from trees, it is
important to understand the behavior of persistent homology of spaces which are somehow “tree-
like”. Let I denote a weighted graph, i.e. triple (V(T'), E(T"), fr), where V(T') is a finite set, E(I")
is a subset of the collection of two element subsets of V(I'), and where fr : E(I') — (0, +00) is a
weighting function on the edges. By an edge-path in I', we will mean a sequence {vg,v1,...,v,} of
elements v; € V(I') so that for every 0 < i < n — 1, we have that {v;,v;+1} is an element of E(T).
For any edge path ¢ = {vg, v1,...,v,}, the length of ¢, denoted by A(e), is given by

n—1
Ae) = frfvi,vin})
i=0
The distance between any two vertices v and v of ', dp(v, '), is given by
dr(v,v") = mine\(e)

where the minimum is taken over all edge-paths ¢ = {vg,...,v,} with the property that vg = v
and v, = v'. We’ll denote the metric space (V(T'),dr) by 9%(T"). We now have the following result
concerning the positive dimensional persistent barcodes of a metric space ().

Proposition 5.1 Let I' be any weighted graph, and assume that the underlying undirected graph
is a tree, i.e. admits no cycles. Then the persistence barcodes 3;(IM(T")) are all trivial, i.e. are the
empty multiset of bars, whenever i > 0.

Remark 5.1 This result uses in an essential way the result proved in [10] that a metric space is
of the form M(T) if and only if it satisfies the so-called four point condition, which asserts that a
finite metric space (X, d) is of the form 9(I") for some weighted tree if and only if the condition

d(z,y) + d(z,t) < max(d(z,z) + d(y,t),d(z,t) + d(y, z))

for all quadruples of elements z,y, z,t € X.

The effect of this result is that one can determine that a finite metric space is not tree-like, or
is isometric to a finite subset of a space of the form 9(I"). This statement alone is not useful in
studying data, since there will be no “exactly tree-like” metric spaces occurring to the presence of
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noise. However, we have Theorem 4.1, which shows us that if a finite metric space is approximately
a tree-like metric space, i.e. close to a tree-like metric space in the Gromov-Hausdorff metric, then
its higher-dimensional barcodes will be close to the empty barcode in the bottleneck distance. This
means that all the intervals contained in the barcode are of small length.

In [18], persistent homology in dimensions 1 and 2 analysis was applied to data sets arising in viral
evolution, using the Vietoris-Rips and witness complex defined in Section 3.6. A summary of the
results of [18] are as follows. See [18] for details.

1. The type of exchange of genomic material can be catalogued by the topology of the ge-
nomic data. In the case of strict clonal evolution, all information is captured by the zero
dimensional homology. Segmented viruses, viruses whose genomic information is encoded in
different ” chromosomes” or segments, undergo reassortments: the generation of novel viruses
with combinations of segments from the different parental strains. This phenomenon is the
source of most of the reported influenza pandemics in humans (H2N2 pandemic in 1957 and
H3N2 in 1968), where a novel viral strain is generated by reassorting segments of different
parental strains infecting different hosts. A data set of sequences arising in avian influenza
was studied from this point of view. When each distinct segments was studied, there was no
higher dimensional behavior. However, the metric space produced by using the concatenated
sequences did produce significant one-dimensional homology, which would preclude phylogeny
as a complete explanation. Other viruses, as HIV, the cause of AIDS, undergo recombination
where the genome of the offspring is a mosaic of the genome of the parents. Circulating
recombinant forms (CRFs) are examples of HIV viruses with complex recombinant patterns.
Persistent homology shows higher dimensional homology groups capturing some of the com-
plex recombinant structures.

2. Estimating of rate and scale of horizontal evolution. By performing persistent homolog-
ical calculations on simulations, it was observed that a lower bound for the recombina-
tion/reassortment rate was obtained by studying the counts of the number of bars in the
corresponding bar code. By analyzing the numbers of these events it was possible to as-
sess the evolutionary pressures that link different pieces of genomic material together. For
instance, when analyzing the homology of avian influenza A, it was shown that several seg-
ments, containing the genes that encode the polymerases, are more likely to co-segregate
together, possibly indicating that natural selection does not allowed all combinations to be
equally fit.

3. Higher dimensional homology generators capture genomic exchange. In cases where higher
dimensional homology was observed, a representative cycle for a given feature (or bar) was
obtained. Such a cycle is a linear combination of pairs of landmark points in the case of
one-dimensional homology, of triples of landmark point in the case of two-dimensional ho-
mology, etc.. The cycle then gives a list of data points which occur, and this list was studied.
In the cases studied, these occurrences were consistent with the known horizontal transfer
mechanisms in these situations. It should be pointed out that the representative cycle was
chosen directly from the algorithms used to compute the persistent homology, and no effort
was made to find the minimal cycle, i.e. one with the smallest number of summands in the
formal sum. Choosing the minimal cycle would be expected to give even more focused out-
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comes. One might also attempt to reconcile the findings of homology with results obtained
via the mapping methods introduced in [66].

4. Explicit examples were studied: the triple reassortant avian virus that led to the outbreak in
China in March 2013, the rate of reassortment of influenza A viruses infecting different hosts
(humans, swine and birds), HIV recombination, and many other viruses including dengue,
hepatitis C virus, West Nile virus and rabies.

5.4 Time series

Time series are a very interesting class of data, where for a discrete variable ¢t we have a point x; in
a metric space (X, d). Usually X is a Euclidean space R". Given such a time series and a positive
integer [, we can construct a data set out of the time series {z;}; as follows. Let T;({x+}+) denote
the set of all fragments (x,,2¢,,,,...,2,,) for every possible initial time ¢;. From the distance
function d on X, we can define a a distance function dr on ¥;({x:}+) by the formula

s=l

dT(($ti7 Ltipqy--- 7$ti+l)? (:Utj y Ltjpqs - ’xthrz)) = (Z d(l‘tﬂré‘a :I"tj+3)2)
s=0

ol

To give an idea of how this works, We consider a time series given by
xy = sin(te)

where € is a very small threshold. If [ = 0, then the data set we obtain is just the range of the
function sin restricted to the set of multiples of the threshold e. If € is sufficiently small, it will
roughly fill out the interval [—1, 1], the range of the sin function. On the other hand, if [ = 1, then

s

the data points are pairs (sin(te), sin((t 4 1)e)). A sketch of this data set in the case where e = 7
looks as follows.

It is easy to check, using trigonometric identities, that this set is a discrete set of points lying on
the ellipse

V2 1
x2—7xy+y2=f

The fact that this data set contains a loop reflects the fact that the function sin is periodic. If we
performed the same construction for a time series of the form x; = te, we would instead obtain a set
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of points sampled from the line with equation y = x + €. This set has no loops, which reflects the
fact that the linear function f(x) = ze is not periodic. These observations suggest the possibility
that computing the one-dimensional persistent homology groups of the metric spaces %;({z:}+)
could be a strategy for detecting periodic behavior of a given function. This method is proposed
in [61], and some of its properties are explored. We summarize the results of [61].

For any real valued function f on the real line, we will define the sliding window embedding attached
to f and with parameters M € N and 7 € (0, +00), denoted by SWyy - f(t), by

SWaf(t) = (f(8), fF(t +7),..., f(t + MT))

SWar,f is an RM*1valued function on R. By choosing a finite set of points T' € [0, L], we obtain
a point cloud attached to the function f, which we denote by € = &(f, M, 7,T). It is the persistent
homology of €, using the Vietoris-Rips complex, which will reflect periodic behavior. To formulate
the main result of [61], we make some definitions. For any L? function on the circle S, we let
Sy f denote its N-th Fourier truncation, i.e. the linear combinations of sin(nt) and cos(nt), for
n < N, occurring in the Fourier decomposition for f. For any finite set 7 C S, we can then apply
the sliding window embedding for Sy f, based on M and 7, and restrict it to T, to obtain a point
cloud in (M +1)-dimensional Euclidean space Y = Y (f,T, N, M, ). We then apply a process which
mean-centers every data point in Y, and then normalizes it to lie on the unit sphere in RM*1. That
is, for each data point z = (xg,x1,...,2p) we first transform it to a vector & = (Zo,Z1,...,2n),

where ]
S v 1(;%')

Finally, we form z* = £/||Z||. We will denote the point cloud which has been transformed in this way
by Y (f, T, N, M, 7). We next assume the function f is L-periodic on S, so that f(z+ 2%) = f(z).
We then set

27
L(2N +1)

It is then shown in [61] that the limit of the sequence dgmY (f,T, N,2N,Ty) exists as a point
dgmeo(f, T, w) in the completed barcode space B, based on the bottleneck distance, defined in
Section 4.4, where dgm denotes the operation which assigns to a point cloud its one-dimensional
persistence diagram, or barcode, and where w = 2. For any barcode 8 = {(z1,41), .- ., (Tn,yn)} in
B, we define its mazimal persistence, denoted by mp(3) by the equation mp(3) = max;(y; — ;).
It is easy to check that mp extends to a function on Boo. It is also proved in [61] that one may
take a limit over families of subsets Ts C S, where T} is d-dense in the sense that every point in
S is within a distance § of some point in Tj, and where § — 0, to obtain a limit dgma(f,w). One

of the principal results of [61] is the following.

TN =

Theorem 5.1 Let f be an L-periodic continuous function on S*, so that f(0) = 0 and ||f]|2 = 1,
and suppose that the persistence diagram is computed for homology with coefficients in Q. The we
have that

mp(dgmeo(f,w)) > 2v2maznen|f(n)]
where f(n) is given by f(n) = %an—%bn ifn>0,= %a_,ﬁ—%b_n isn <0, and = ag if n =0, where
ap and by, denote the coefficients of cos(nt) and sin(nt), respectively, in the Fourier expansion of

f-
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This is a very interesting relationship, and these observations are used as a basis for a test for
periodicity based on persistence barcodes of the point clouds constructed from the function f. In
[61], comparisons are made with more conventional methods for detecting periodicity, with favorable
results.

5.5 Structure of the cosmic web

A very interesting object of study in cosmology and astrophysics is the distribution of stars, galaxies,
and other structures. Far from being uniform, it exhibits very intricate local structure, as indicated
by the images below.

(a) 2Mass redshift survey (b) Goddard

(c) ESO and IAC

The image in the upper left is from [43], the one in the upper right is from NASA’s Goddard Space
Flight Center, and the lower image is due to the European Southern Observatory and Instituto de
Astrofisica de Canarias. Galaxies and mass exist in a wispy weblike spatial arrangement consisting
of dens compact clusters, connected by elongated filaments, and sheetlike walls, which surround
large near-empty void regions. See [6] for a discussion of the relevant cosmology. To understand
this kind of “three dimensional texture”, one can attempt to study it as a topological problem. It
is usually formulated via an assumption that the presence of matter is obtained by sampling from
a density function p defined on three-dimensional space. p would itself be a complicated object,
given the complexity of the resulting sampling. The first recognition that topological methods
could be useful in this setting occurred in [39] and [40]. The idea was that one should study the
level sets of p from a topological point of view. These level sets are two dimensional surfaces, for
which there is a natural integer invariant called the genus, which is defined as one half of its first
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Betti number. In [39] and [40], the genus of the level surfaces was considered as a useful numerical
invariant of this situation. Note that the genus differs from the Euler characteristic, defined below,
by a constant. Another family of spaces one could study is the excursion sets at various levels
r, defined at p~!([r, +00)). It was recognized in [67] and [68] that persistent homology gives a
method which allows one to track topological behavior of excursion sets as the thresholds for these
excursion sets decrease.

In order to develop theory, and to understand the appearance of observed results, one can assume
that p is itself a random function, or random field, obtained under some stochastic process. The
idea is that one could attempt to understand expected values for the Betti numbers of the excursion
sets of random fields. Random fields have been studied in great detail in [2] and [3]. A case of
particular interest is that of a Gaussian random field, in which the assumption is made that the
distribution assumed by the values of the random field at any particular point or any finite family
of points in the domain is Gaussian. Gaussian fields in a cosmological context are of key importance
because of the following facts.

1. The primordial universe was to a great precision a spatial Gaussian random field, which was
observationally shown by numerous cosmic microwave background experiments such as COBE
[7], WMAP [70], and more recently Planck [1].

2. There is also a fundamental physical reason to expect that all primordial structure is nearly
completely Gaussian. This concerns the generation of primordial density perturbations during
the early inflationary phase of the universe (at t ~ 10736 seconds after the Big Bang), during
which quantum fluctuations were blown up to macroscopic proportions.

3. A more technical mathematical reason why Gaussian fluctuations are expected is is the central
limit theorem. Given the fact that the fluctuations at each scale are independently distributed,
it would naturally give rise to a Gaussian field.

This assumption permits one to understand many properties of the random field, including some
topological ones.

There is another useful integer valued summary of the homology of any finite dimensional space
called the Euler characteristic of the space. It is defined to be the alternating sum

X(X) =D (—1)'8:(X)
i
Note that there is an Euler characteristic for each different field of coefficients. The Euler charac-

teristic is a very useful invariant due to the fact that it is so readily computable, as is demonstrated
in the following result.

Proposition 5.2 Let X be any finite simplicial complex. Then x(X) is equal to the alternating

> (-1ii(X)

where 0;(X) denotes the number of i-dimensional simplices in the complex X .
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What this means is that the Euler characteristic can be computed directly by counting simplices,
without performing any linear algebra. The price one pays is, of course, that much information
about the actual homology is lost.

Example 5.1 Let S™ denote the n-sphere. Then x(S™) = 0 if n is odd, and = 2 if n is even.
So, while the Betti numbers can distinguish between all spheres, the Euler characteristic can only
determine the parity of the dimension of the sphere.

It turns out that for many Gaussian random fields, Adler and Taylor (in [3]) show that it is possible
to determine the distribution of the statistic given by the Euler characteristic of the excursion sets,
in terms of certain parameters defining the random field. These beautiful results are described in
detail in [3]. An important case (when the Gaussian field is characterized by its power spectrum)
was obtained in the cosmological literature (see [6] and [40]). What this suggests is the possibility
that one can begin to evaluate models for the stochastic processes from which the distribution in
the cosmic web is generated, provided one can develop sufficient theory to do so.

More recently, it has been shown in [59] and [71] that the Betti numbers of Gaussian random fields
carry strictly more information concerning the random field than the Euler characteristic alone.
Specifically, it is found that an invariant of the Gaussian field called the slope of the power spectrum
affects the shape of the curves of the Betti numbers (as the threshold r changes), while the shape
of the curve of Euler characteristics is independent of it.

Persistent homology has also been studied in this way. In [4], the analogue of the Euler characteristic
for persistent homology has been defined, and studied for Gaussian random fields. The analogue
of the Fuler characteristic for persistent homology is defined as follows. For a fixed barcode § =
{(x1,y1),-- -, (Tn,yn)}, we define
T(B) =D (yi — )
7

and then define the analogue of the Euler characteristic, xP*"® by the formula

XPTHX) = ) (=)' (Bi(X)

i

where (;(X) denotes the i-dimensional persistence barcode for X. This quantity has the same
properties which make the Euler characteristic highly computable, and in [4] a result is proved
which computes xP¢"® for Gaussian random fields.

Finally, in [71], a different topological approach is taken to analyze the topology at various scales
of a set of discrete points in two or three dimensional space. The points are to be thought of
as individual stars, or perhaps galaxies, and the idea is to construct the a-complex (see Section
3.6) associated to them at various scales. This method is used in [71] to study the Betti numbers
produced by various stochastic process models, including some which are explicitly proposed for
cosmological problems. In addition, they point out that persistent homology is applicable to this
family of complexes, and will likely be applied in future investigations.
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