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Topological phase transition induced by gain and loss in a photonic Chern insulator
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We present a design of a non-Hermitian photonic Chern insulator whose band topology can be tuned via
gain and loss. It is found that, by continuously varying the gain and loss parameter, a topological phase
transition can take place in the photonic crystal, accompanied by the closing and reopening of a Dirac cone. We
demonstrate this phenomenon through numerical simulations of the bulk and the edge dispersions, and steady
field distributions excited by a point source. Our results show the possibility of non-Hermitian control over band
topology in a Chern insulator setting and may find applications in active topological photonic devices.
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Inspired by the discovery of topological materials in
condensed-matter systems [1,2], studies on photonic topo-
logical phases have grown rapidly in the past decade [3–5].
Starting from the implementation of photonic Chern in-
sulators in gyromagnetic photonic crystals [6,7], various
topological phases have been realized in photonic systems,
such as analogs of quantum spin Hall insulators [8–12], valley
photonic crystals [13–17], photonic Floquet topological insu-
lators [18–21], and photonic Weyl crystals [22–24].

Apart from the developments in constructing various clas-
sic topological phases, considerable effort has also been
devoted to studying the effects of non-Hermiticity on band
topology in photonic systems [25–30], where non-Hermiticity
can naturally arise due to gain and/or loss. There are mainly
two reasons that motivate the studies on non-Hermitian
topological photonic systems. First, non-Hermiticity funda-
mentally enriches band topology, leading to intriguing physics
such as new topological classifications [31,32] and point-gap
topology [33]. Various branches of new topological physics
can be explored in the context of photonics. Secondly, in-
troducing non-Hermiticity to topological photonics has the
potential to lead to useful applications, including the recently
invented topological lasers [34].

While most earlier efforts focused on the interplay between
non-Hermiticity and topological boundary modes [25,27],
many recent studies investigated how non-Hermiticity can
drive a topological phase transition in photonic systems
[30,35–39]. In point-gapped systems, a topological phase
transition can easily happen by simply tuning the non-
Hermitian parameters such as anisotropy in the hoppings
[30,39]. In line-gapped systems, studies have also shown that
it is possible to achieve topological phase transitions that
are solely driven by non-Hermitian parameters [35–38,40–
42]. Such a non-Hermitian steering of topological phases is
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promising for active and reconfigurable topological photonic
devices. However, most studies on non-Hermiticity-induced
topological phase transition in line-gapped systems are based
on obstructed atomic insulators [35–37]. Only a few exam-
ples of non-Hermiticity-induced topological phase transition
between Chern insulators and trivial insulators have been pro-
posed. These examples are all based on tight-binding models
[40–42] or ideal transfer matrix models [38], while a realistic
photonic model for such a transition is still lacking.

In this work, we report a topological phase transition driven
by gain and loss in a non-Hermitian gyromagnetic photonic
crystal. Our design is based on a photonic honeycomb lattice
comprised of gyromagnetic rods with gain and loss. Through
finite-element simulations, we found that the continuously
varying gain and loss parameter can lead to the closing and
the reopening of the bulk Dirac cone, associated with a topo-
logical phase switching between a Chern insulator phase with
chiral edge modes and a trivial gapped phase. Such a topo-
logical phase transition process is verified numerically by
simulations of both edge dispersions and field distributions
under a point source excitation at the edge. The proposed
phenomenon is ready to be tested in the microwave regime.

As illustrated in Fig. 1, we consider a two-dimensional
photonic crystal consisting of gyromagnetic rods arranged in
a honeycomb lattice. Under a static external magnetic field in
the out-of-plane direction, the relative permeability of the rods
is assumed to take the tensor form as follows:

μ =
⎡
⎣

0.95 0.93i 0
−0.93i 0.95 0

0 0 1

⎤
⎦. (1)

In addition, the relative permittivities of the red and the
blue rods are set to be ε+ = 15 + iγ and ε− = 15 − iγ , re-
spectively, where the parameter γ hereby controls the gain
and loss in each rod. The rods have diameters of either d1

or d2, as shown in Fig. 1. Throughout this work, we fix
their values to be d1 = 0.462a and d2 = 0.338a, respectively,
where a = 17.5 mm. The unit cell is denoted by the dashed
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FIG. 1. Design of the 2D non-Hermitian photonic crystal with
on-site gain and loss. The red and blue rods are made of gyro-
magnetic materials with relative permittivity ε+ = 15 + iγ and ε− =
15 − iγ , respectively. Here, γ is a positive real number that controls
the gain and loss in each rod. The dashed rectangle denotes the unit
cell, whereas a1 = [a, 0] and a2 = [0, a

√
3] are the lattice vectors.

The remaining parameters are the lattice constant a = 17.5 mm and
the diameters of the rods d1 = 0.462a and d2 = 0.338a.

rectangle in Fig. 1, with the lattice vectors being a1 = [a, 0]
and a2 = [0, a

√
3]. We note that such a lattice configuration is

similar to a recently proposed non-Hermitian Haldane model
that exhibits topological phase transition driven by gain and
loss [42]. In the following, we study the line-gap topology of
the transverse magnetic bands of this photonic crystal through

finite-element simulations in the commercial software Comsol
Multiphysics.

In the absence of gain and loss, i.e., γ = 0, the above
photonic crystal consisting of gyromagnetic rods is known to
exhibit the photonic Chern insulator phase [6,7]. Under the
present parameters of the system, a nontrivial band gap with
gap Chern number −1 is found between the second and the
third bands around 4.68 GHz [see Fig. 2(a)]. Note that, in the
non-Hermitian regime, the Chern number can still be defined
via a biorthogonal basis [43,44]. Since both time-reversal
symmetry and inversion symmetry are broken (due to the
external magnetic field and the unequal diameters of the rods,
respectively), an unpaired massive Dirac cone is observed [see
Fig. 2(e) for the bulk dispersion around the Dirac cone]. In the
Hermitian case, the topological phase is determined by the
relative strength between the time-reversal symmetry break-
ing and the inversion symmetry breaking. Thus a topological
phase transition can be driven by tuning the external magnetic
field or the diameters of the rods. During the transition, the
unpaired massive Dirac cone will first close and then reopen.
Similar topological phase transitions are commonly found in
the systems with competition between time-reversal symme-
try breaking and inversion symmetry breaking [45–48]. In the
following, we show that the non-Hermitian parameter γ can
also drive a topological phase transition besides the Hermitian
parameters.

Figures 2(a)–2(d) show the calculated bulk band diagrams
along the ky = 0 line with increasing value of the gain and
loss parameter γ . As can be seen, the bulk band gap first
closes and then reopens as γ increases from 0 to 3.9 (see
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FIG. 2. Plots of bulk band diagrams against the non-Hermitian parameter γ . The first row [panels (a) to (d)] shows the bulk band structures
of different γ at ky = 0 with band gaps shaded in yellow. From (a) to (d), the sizes of the band gap are 0.1 GHz, 0.06 GHz, 0 GHz, and 0.1 GHz.
The second row [panels (e) to (h)] shows the corresponding bulk band structures near the Dirac cone, where the band gap closes at γ = 3.05.
The eigenfrequencies f are in units of GHz and the color scale in each panel indicates the imaginary part of the eigenfrequencies.
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FIG. 3. Plots of edge dispersions against the non-Hermitian pa-
rameter γ . Each panel is obtained by computing the eigenfrequencies
of a supercell with periodic boundary condition along x direction and
20 unit cells along y direction. The top and bottom edges are covered
by perfect electric conductors. The eigenfrequencies f are in units of
GHz and the color scale in each panel indicates the imaginary part of
the eigenfrequencies.

the yellow region in the band gap window). By inspecting the
dispersions near the Dirac cone region [see Figs. 2(e)–2(h)],
it can be observed that this process is accompanied by the
closing and reopening of the Dirac cone. Notably, during the
transition, the eigenfrequencies around the Dirac cone remain
almost real (the imaginary part of the eigenfrequencies is neg-
ligibly small), while the complex spectra are only observed at
frequencies far from the band gap. This in turn indicates that
the band gap closing and reopening process is similar to those
driven by Hermitian parameters in Hermitian systems.

In order to investigate whether the bulk band gap closing
and reopening correspond to a topological phase transition,
we compute the edge dispersions for the same set of γ .
Specifically, we consider a supercell with periodic boundary
condition along x direction and 20 unit cells along y direction.
The top and bottom edges are covered by perfect electric
conductors to avoid the leakage of the edge modes.

As shown in Fig. 3(a), the edge dispersion γ = 0 exhibits
two purely real bands that span the band gap. These two bands
are indeed the chiral edge modes that are localized at the top
and bottom edges. When γ increases to 2.2 [see Fig. 3(b)],
the spectrum looks similar to the Hermitian case, with the
band gap of the bulk Dirac cone becoming smaller. Both of
the chiral edge modes still remain, but they acquire nonzero
imaginary eigenfrequencies due to the gain and loss at the
edges. When γ = 3.05, as depicted in Fig. 3(c), the bulk spec-
trum becomes gapless, which is consistent with the band gap
closing predicted by the bulk band diagrams [see Figs. 2(c)
and 2(g)]. By further increasing γ to 3.9, the band gap opens
again. In this case, however, there are no in-gap modes [see
Fig. 3(c)], indicating this as a trivial insulator phase. Thus, by
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FIG. 4. Simulated out-of-plane electric field (|Ez|) distributions
in finite photonic lattices with different values of γ . Panels (a) to
(d) represent the field distributions with γ = 0, 2.2, 3.05, and 3.9,
respectively. The cyan star in each panel denotes the point source
operating at 4.68 GHz. The right boundary is chosen as a perfect
electric conductor, while the three remaining boundaries are set as
scattering boundaries. Chiral edge modes are observed at γ = 0 and
2.2 (topological phase), whereas electric field decays rapidly away
from the source when γ = 3.05 (transition point) and 3.9 (trivial
phase).

tuning the non-Hermitian parameter γ , we can indeed switch
on or off the chiral edge modes and realize a topological phase
transition.

To further visualize the topological phase transition above,
we simulate the field distributions excited by a point source
for the same set of γ as in Figs. 2 and 3. We consider a
finite lattice comprised of 30 × 20 unit cells along x and y
directions, respectively. The right boundary is covered by a
perfect electric conductor, whereas the remaining boundaries
are set to be scattering boundaries. A point source operating
at 4.68 GHz (in the middle of the band gap) is placed at the
right edge, as labeled as the cyan star in each panel of Fig. 4.

Before the topological phase transition takes place, the uni-
directional propagation of the chiral edge modes is observed
as shown in Figs. 4(a) and 4(b). At the transition point, the
unidirectional propagation disappears and the fields are con-
fined around the source due to the low density of states around
the Dirac point frequency [see Fig. 4(c)]. When γ = 3.9, the
source operates at the frequency in the trivial band gap where
the density of states vanishes. Consequently, the excited fields
become more confined to the source as illustrated in Fig. 4(d).
These simulations again verify the existence of topological
phase transition in the system when the non-Hermitian param-
eter γ is tuned.

It is noteworthy that, in the simulation above, the chiral
edge modes are chosen to be excited at the armchair edge,
i.e., the vertical edge for a clearer demonstration since the
gain and loss are balanced along this edge. However, at other
types of edges including the zigzag edge, the chiral edge
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modes can be amplified or attenuated according to the local
gain and loss profile at the specific edge. This gives rise to
the possibilities of non-Hermitian control over the chiral edge
modes in addition to mere switching on or off the chiral
edge modes. Furthermore, when considering a finite lattice
with all boundaries covered by perfect electric conductors, the
amplifying and decaying chiral edge modes can lead to the
non-Hermitian skin effect [49–51].

To conclude, we have realized a topological phase transi-
tion via on-site gain and loss in a photonic Chern insulator.
The Hermitian limit of our design has been proven practically
feasible in many previous microwave experiments [7,48,52].
The non-Hermitian components in our proposal can be im-

plemented in a lossy medium with additional loss applied to
certain sites, i.e., on-site gain is not necessary [25]. Towards
higher frequencies, similar topological phase transition may
be observed in laser-written optical waveguide systems, where
tunable on-site loss can be realized through small breaks
in the waveguides [53]. It is also possible for the proposed
phenomenon to be realized in an active system where recon-
figurable control of the chiral edge modes and topological
lasing can be explored.

This work is supported by Singapore Ministry of Education
Academic Research Fund Tier 3 under Grant No. MOE2016-
T3-1-006.
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