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Abstract: We study the effects of Coulomb repulsive interactions on a Majorana Benalcazar–Bernevig–
Huges (MBBH) model. The MBBH model belongs to the class of second-order topological super-
conductors (HOTSC2), featuring robust Majorana corner modes. We consider an interacting strip
of four chains of length L and perform a density matrix renormalization group (DMRG) numerical
simulation based on a tensor-network approach. Study of the non-local fermionic correlations and the
degenerate entanglement spectrum indicates that the topological phases are robust in the presence of
interactions, even in the strongly interacting regime.

Keywords: second-order topological superconductivity; Majorana fermions; generalized Kitaev
models; Coulomb repulsive interactions

1. Introduction

In recent years, higher-order topological superconductors (HOTSCs) have attracted
significant interest and have been investigated in depth as novel platforms to realize
topological superconductivity [1–5]. Aside from their theoretical interest, such systems
are potentially relevant for applications; in particular, devices based on two-dimensional
HOTSCs hosting Majorana corner states have been proposed to implement braiding dy-
namics [6–8] and quantum gates for quantum computation [9–12]. HOTSCs have surface
states that propagate along one-dimensional lines (hinges) or are localized at some points
(corners) on the surface. In particular, for such systems, m-dimensional Majorana corner
states can be realized in d-dimensional superconductors, with m ≤ d− 2.

In Ref. [13], we introduced a model of second-order topological superconductor
(HOTSC2) based on Majorana fermions (Mfs) operators. The model is the equivalent of the
Benalcazar–Bernevig–Hughes (BBH) model [? ] for Dirac fermions. In the Majorana BBH
model (MBBH), C4 symmetry and reflection symmetries ensure robustness of the corner
states. In fact, the model belongs to the trivial two-dimensional BDI class satisfying time-
reversal, particle–hole and chiral symmetries [15]. Moreover, the crystalline symmetries
ensure a quantized two-dimensional Zak phase [17? ,18]. When written in terms of Dirac
fermions, the MBBH model is also equivalent to a model of Kitaev chains coupled by a
staggered pairing coupling.

On the other hand, one of the main challenges in the study of quantum matter concerns
the robustness of topological phases and topological superconductivity in the presence of
interactions. The question was addressed by considering the effect of Coulomb repulsive
interactions [19–21] and/or by developing a number-conserving theory [22] in order to go
beyond the BCS approximation. In particular, some recent studies investigated the physical
properties of HOTSCs when Coulomb interactions are taken into account [23,24].
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The mean-field approximation offers a “cartoon” description of the topological phases
within the single-particle approximation. On the other hand, adding interactions removes
the single-particle approximation and opens the way to the investigation of more realistic
settings. Thus motivated, in the present work, by means of a density matrix renormal-
ization group (DMRG) numerical analysis, we consider the effects of repulsive Coulomb
interactions on a specific version of the MBBH model, namely an interacting strip with
four chains.

The strip setting is particularly interesting because it realizes the minimal model able
to characterize the crossover from a 1D to a 2D system. It can thus be reduced to an effective
one-dimensional lattice that is a suitable lattice for simulations with DMRG technique
implemented by matrix product states (MPS) and, on the other hand, it can shed light on
the topological robustness expected when one considers fully two-dimensional geometries.

The results of our careful analysis suggest that the quasi one-dimensional system
supports two robust zero energy fermionic modes localized at the two edges of the strip
and robust, even in the limit of strong interactions. Although the topology of the system
is intrinsically two-dimensional, the quasi one-dimensional case provides signatures of
the robustness of the topological regime against repulsive interactions. In particular, these
robust fermionic modes are expected to split into corner Majorana modes for a fully
two-dimensional square lattice system with length L equal to the width N. The twofold
degenerate entanglement spectrum, reported in Section 3.2, is a further possible signature
of topological order. A complete proof of such a robustness requires to test the system in
the fully 2D geometry using three tensor networks, and we expect to accomplish this task
in the near future.

Despite being characterized by a specific set of parameters, our system could be real-
ized within the framework of network models [25–28], instead of traditional condensed mat-
ter setups. The experimental implementation of the former was successfully realized using
meta-materials platforms, as optical fibers and coupled ring
resonators [29–31]. A theoretical proposal of network models has already been intro-
duced to describe some condensed matter systems made of chiral Majorana modes [25] or
to describe physical phenomena, such as the quantum Hall effect [32]. Network models
enable a large degree of control on the parameters subject to various constraints, including
particle–hole symmetry. In fact, network models with particle–hole symmetric spectra were
already probed in recent experiments [33,34].

The paper is organized as follows. In Section 2, we review the main properties of the
mean-field MBBH model introduced in Ref. [13]. In Section 3, we study the particular case
of an interacting four-chain strip; in Section 3.1, we discuss the analytical operations needed
to transform the strip into an effective one-dimensional system and to perform the DMRG
simulations with MPSs. In Section 3.2, we discuss the main numerical results. We track the
fermionic correlations along the strip geometry, and we study the trend of the entanglement
spectrum from the perturbative to the strongly interacting regime. Conclusions are drawn
in Section 4. Appendix A contains details on the matrix product operator (MPO) tensors
built for our model.

2. Majorana BBH Model

In this section, we briefly discuss the main topological properties of the BBH model.
This provides the appropriate starting point before treating the case of the interacting
four-chain strip. Following Ref. [13], we consider a system of Majorana fermions with
staggered couplings (w, v) confined in a two-dimensional lattice and described by the
Hamiltonian:

H0 =
i
2

[
w

L,N

∑
m,l=1

am,lbm,l + v
L−1,N

∑
m,l=1

bm,lam+1,l + w
N−1,2

∑
l=1

L

∑
m=1

(
bm,lbm,l+1 − am,lam,l+1

)

+ v
N−1,2

∑
l=2

L

∑
m=1

(
bm,lbm,l+1 − am,lam,l+1

)]
.

(1)
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am,l and bm,l are the Majorana operators belonging to a complex fermion operator
cm,l = (am,l + ibm,l)/2. L and N are, respectively, the length and the width of the sys-
tem, and m and l are the lattice sites. The synthetic π flux per plaquette gives rise to the
staggered couplings via the Peierls substitution [18].

A scheme of the lattice is reported in Figure 1a, where the translational invariant unit
cell is indicated by the blue square plaquette surrounding the Majorana operators a and b
of Equation (1), which, on the other hand, are represented by two circles of different colors.
When Mfs operators are expressed in terms of fermion operators, the model reduces to
Kitaev chains coupled by a staggered pairing coupling:

H′0 =
L,N

∑
m,l=1

µc†
m,lcm,l +

L−1,N

∑
m,l=1

(tc†
m,lcm+1,l + ∆cm,lcm+1,l + h.c.)

+
L,N−1

∑
m,l=1

(∆1cm,lcm,l+1 + h.c),

(2)

with µ = w, t = ∆ = −v/2 and ∆1:

∆1 =

{
−iw, l = odd
−iv, l = even.

(3)

The system belongs to the second-order topological superconductors (HOTSC2) class,
featuring corner Majorana states [13]. The simultaneous presence of crystalline symmetries
and standard symmetries (C, P , T ) is essential to ensure the realization of second-order
topological superconductivity. Indeed, the system satisfies chiral (C), particle–hole (P) and
time-reversal (T ) symmetries, belonging to the trivial two-dimensional BDI class of the
ten-fold classification [15]. Nonetheless, robust corner Majorana modes still appear because
of the C4 symmetry, i.e., a rotation of θ = π/2 exchanging x → y, y → −x and reflection
symmetries mx, my, corresponding, respectively, to x → −x, y→ −y.

The phase diagram can be obtained by projection of the 2D Zak phase [17,18], which
is quantized as P = (1/2, 1/2) in the topological phase and vanishes in the trivial phase
(P = (0, 0)). On the other hand, the Berry connection vanishes. The phase diagram is
reported in Figure 1b, where the green and red colors correspond respectively to the
topological and the trivial regimes. The band structure along the crystallographic path
MΓXM, in the first Brillouin zone, features topological phase transition points. Indeed,
the spectrum closes when |w| = |v|, while it remains gapped both in the trivial and
nontrivial phases when |w| 6= |v| (see Figure 1c,d). In the topological regime, the zero-
energy Majorana modes are localized at the four corners of the strip geometry and decay
exponentially inside the bulk, as shown in Figure 1e.



Condens. Matter 2022, 7, 26 4 of 13

Figure 1. (a) Lattice geometry in the Majorana basis. Blue and grey circles denote, respectively, a and
b species of Majorana fermions associated with a complex fermionic mode. The square plaquette
identifies the translational invariant unit cell, while w and v are, respectively, the intracell and intercell
couplings. A dashed line indicates a negative coupling. (b) Topological phase diagram of the BBH
model in the parameter space v, w. Green and red regions identify the topological and trivial phases,
respectively. Panel (c) shows the spectrum along the MXΓM path in the Brillouin zone at the phase
transition point w = v = 1 and panel (d) shows the spectrum in a trivial (topological) phase w = 2,
v = 1 (w = 1, v = 2). In panel (e), we show the square modulus of the lowest four energy modes
corresponding to a gap closing point (w = 0.2, v = 1).

3. Strip of Four Interacting Chains

In order to go beyond the mean field treatment, we add repulsive Coulomb
interactions to the MBBH model with the aim of gaining insight on how the interactions
affect the stability of the topological phases, which is still an open problem despite intense
investigations [23,35–37].

Here, we restrict our analysis to a quasi one-dimensional limit consisting of N = 4
chains of length L. From a computational point of view, the DMRG method [39? ]
works at its best when applied to one-dimensional many-body systems associated to
gapped Hamiltonians with short-range interactions. For this reason, the simplified limit
of four interacting chains analyzed by DMRG techniques based on a tensor-network
approach [40–42] reduces the computational efforts and increases the power of the numeri-
cal algorithms. The strip limit is expected to shed light on the topological properties of the
fully two-dimensional Majorana BBH model, which realizes the thermodynamic limit of
our strip (N = 2, L).
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3.1. Analytical Results

We include a local repulsive interaction of strength U > 0 to the Hamiltonian in
Equation (2), H = H′0 + HI , where

H′0 =
L,4

∑
m,l=1

µc†
m,lcm,l +

L−1,4

∑
m,l=1

(tc†
m,lcm+1,l + ∆cm,lcm+1,l + h.c.) +

L,3

∑
m,l=1

(∆1cm,lcm,l+1 + h.c)

HI =
L−1,4

∑
m,l=1

U(nm,lnm+1,l),

(4)

with nm,l = c†
m,lcm,l . The efficiency of the DMRG algorithm with MPSs for one-dimensional

systems [41] stems from the internal structure of the MPSs state [42]. Therefore, we
transform the strip geometry of four chains with L sites into a single chain made of 4L sites,
as shown pictorially in Figure 2a. Introducing a single fermionic species cj (c†

j ) and defining
a “curvilinear abscissa” which maps the inter-chain interaction terms into nearest-neighbor
interaction terms and the intra-chain interaction terms into fourth-neighbour interaction
terms, see Figure 2b, the Hamiltonian in Equation (4) reads

H =
4L

∑
j=1

µc†
j cj +

4L−4

∑
j=1

(tc†
j cj+4 + ∆cjcj+4 + h.c.)+

4L−1

∑
j=1

(∆1cjcj+1 + h.c) +
4L−4

∑
j=1

U(njnj+4).

(5)

As fermionic operators of different sites anti-commute, lattice fermionic fields are nonlocal,
and it is therefore impossible for such fields to determine a local matrix representation,
i.e., a representation in which matrices representing the fermions commute when belonging
to different lattice sites. The correct on-site mapping is provided by the Jordan–Wigner
transformation, a highly non-local mapping between fermionic operators and spin 1/2
operators that is a particular case of the general Klein transformation in quantum field
theory [43]. On each site, an empty fermionic occupation is mapped into an up spin and an
occupied one into a down spin. The nonlocal part of this mapping is the so-called Jordan–
Wigner string and fixes the (anti)commutation relation between sites by counting the
parity of overturned sites to the left of the spin on which it is applied. This transformation
explicitly breaks the translational invariance of the model by singling out a particular site
as the origin for each lattice string:

cj = e−iπ ∑
j−1
l=1 c†

l cl σ+
j

c†
j = σ−j eiπ ∑

j−1
l=1 c†

l cl

nj =
1−σz

j
2 ,

(6)

where the aforementioned string parity of the overturned sites is e−iπ ∑
j−1
l=1 c†

l cl . The operators
σ
(+,−)
j = (σx

j ± iσy
j )/2 are the well-known combination of Pauli matrices, and the last

relation in Equation (6) allows to express the parity operator of the fermionic site j as
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e−iπc†
j cj = σz

j . Using the algebra of the spin-1/2 operators and imposing commutation of
the Pauli matrices defined on different lattice sites, it is straightforward to show that

cjcj+1 = −σ+
j σ+

j+1

c†
j cj+4 = σ−j

( j+3

∏
l=j+1

σz
l

)
σ+

j+4

cjcj+4 = −σ+
j

( j+3

∏
l=j+1

σz
l

)
σ+

j+4 .

(7)

The Hamiltonian Equation (5) in terms of spin-1/2 operators becomes

H =
4L

∑
j=1

µnj +
4L−4

∑
j=1

(tσ−j σz
j+1σz

j+2σz
j+3σ+

j+4 − ∆σ+
j σz

j+1σz
j+2σz

j+3σ+
j+4 + h.c.)+

4L−1

∑
j=1

(∆1σ+
j σ+

j+1 + h.c) +
4L−4

∑
j=1

Unjnj+4 .

(8)

We see that in Equation (8), there appear explicitly the parity strings between sites that are
not nearest neighbors; these strings encode the non-local character of the mapping.

Figure 2. (a) Strip of four chains: the black and red links represent respectively the intrachain and
interchain couplings, while the double yellow arrow schematizes the interactions. The numbers inside
the circles are the new ordering of the fermionic sites introduced by the mapping to the “curvilinear
abscissa” (schematized by the dark blue curve line). (b) One-dimensional model obtained by the
mapping. The interchain coupling is promoted to a coupling between nearest neighboring sites, while
the intrachain couplings couple fourth-neighboring sites. In both panels, the red links representing
∆1 correspond to an alternate continuous and dashed line in order to take into account its staggered
value (see Equation (3)).

Equation (8) can be represented as a matrix product operator (MPO), i.e., as a site-by-
site decomposition of the Hamiltonian into the product of matrices containing operators
that act only on one site:

H = ∑
{w},{σ},{σ′}

Mσ′1,σ1
w1 Mσ′1,σ1

w1,w2 . . . Mσ′L ,σL
wL−1

∣∣∣σ′1σ
′
2 . . . σ

′
L

〉〈
σLσL−1 . . . σ1

∣∣∣ , (9)

with M
σ
′
k ,σk

wk−1,wk a fourth rank tensor. The physical indices (σ
′
k, σk = 1, 2) depend on the

dimension of the single-site Hilbert spaces, while the tensor indices (wk−1, wk = 1, . . . , 14)
depend on the structure of Hamiltonian in Equation (8).
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Not all sites have square MPOs. Indeed, the first and last tensors (Mσ
′
1,σ1

w1 , Mσ
′
L ,σL

wL−1 )
are of rank three and are crucial to reproduce the full Hamiltonian, Equation (8). The
analytic expressions of local tensors, the corresponding graph representations of the tensor
structure, and other technical details are reported and discussed in Appendix A.

Once the MPO structure of the Hamiltonian is obtained, simulations with the DMRG
code are performed. The results of the numerical simulations and the emerging physical
properties are discussed in the following subsection.

3.2. Numerical Results

Topological phases are usually identified according to the following criteria: (i) evi-
dence of degenerate ground states with different parities, (ii) evidence of nonlocal fermionic
correlations between the edges, (iii) a degenerate entanglement spectrum [20,22]. Here, we
focus on properties (ii) and (iii).

We consider a strip of length L = 48, width N = 4, and set the parameters of the
model at the point of exact topological degeneracy, w = 0.1 and v = 1, in the phase diagram
reported in Figure 1b.

In Figure 3, we report the non-local fermion correlations as computed on the many-
body ground state |GS〉. We use the shorthand notation <c†

m,lcm′ ,l′> in place of
〈GS|c†

m,lcm′ ,l′ |GS〉. In Figure 3a,b, we report, respectively, <c†
1,1c1,l> and <c†

L,4cL,l> which are
the fermionic correlations along the short dimension of the strip, while Figure 3c–f show,
respectively, the correlations of the four corners along the length L of the strip: <c†

1,1cm,1>,
<c†

L,1cm,1>, <c†
1,4cm,4>, and <c†

L,4cm,4>. Here, l = 1, 2, 3, 4 is the chain index while m = 1, . . . ,
L denotes the site index. We also draw a comparison between three cases corresponding to
three different values of the interaction strength (U = 0.25, 0.5, 1) and the non-interacting
case U = 0.

The presence of robust fermionic modes localized at the edge of the strip is clearly
visible in Figure 3. In particular, in Figure 3a, the correlations attain finite values at corners
(1, 1)–(1, 4) and in Figure 3b, at corners (L, 1)–(L, 4), for all the three reported values of the
interaction strength. The correlations vanish elsewhere in the strip geometry. Moreover,
Figure 3c–f shows that the fermionic correlations rapidly decay to zero when one of the four
corners of the strip is fixed and the site index m is increased from 1 to L. The aforementioned
analysis suggests that, for increasing the width of the strip N � 4, these fermionic modes
are expected to split into corner Majorana modes, correlating at the corners (1, 1)–(1, N)
and (L, 1)–(L, N).

Let us now discuss the behavior of the entanglement spectrum. Denote by
|Ψ〉 = ∑D

α=1 λα|φα〉A|φα〉B the many-body ground state with respect to some bipartition
of the system with λα real numbers and D = d4L the Hilbert space dimension. Here d
denotes the dimension of the single-site Hilbert space, and the set of real eigenvalues
{λα}D

α=1 forms the entanglement spectrum. In the DMRG procedure, this expression can
be replaced by |Ψ〉 = ∑m

α=1 λα|φα〉A|φα〉B, with the entanglement spectrum reducing to
{λα}m

α=1, and the dimension D replaced by a fixed bond dimension m. In Figures 3 and 4,
the bond dimension is fixed at the value m = 200.

In the topological phase, the entanglement spectrum is expected to be two-fold de-
generate with respect to the parity sector, this feature being a precursor of the zero energy
Majorana edge states. Indeed, the presence of the Majorana edge states implies the oc-
cupation of nonlocal fermionic modes, allowing such degeneracy with respect to parity.
Figure 4a–c reports the behavior of the entanglement spectrum as a function of the eigen-
value index α for three different values of the interaction strength U. All panels show a
degenerate entanglement spectrum, a typical signature of an ordered phase.

Summing up, the findings reported in Figures 3 and 4 show that Coulomb repulsive
interactions do not affect significantly the topological phases of the model, featuring
robust edge fermionic modes and a degenerate entanglement spectrum also in the strongly
interacting regime.



Condens. Matter 2022, 7, 26 8 of 13

Figure 3. Fermionic correlations as a function of the interaction strength U (in unit of the hopping v)〈
c†

1,1

∣∣∣c1,l

〉
panel (a),

〈
c†

L,4

∣∣∣cL,l

〉
panel (b),

〈
c†

1,1

∣∣∣cm,1

〉
panel (c),

〈
c†

L,1

∣∣∣cm,1

〉
panel (d),

〈
c†

1,4

∣∣∣cm,4

〉
panel (e) and

〈
c†

L,4

∣∣∣cm,4

〉
panel (f), where l = 1, 2, 3, 4 is the chain index and m = 1, . . . , 48 the site

index. The insets show the exponential penetration of fermionic correlations in logaritmic scale.
The model parameters have been fixed as L = 48, N = 4, w = 0.1 and v = 1. The bond dimension of
the DMRG procedure has been fixed as m = 200.

Figure 4. Entanglement spectrum for three different values of the interaction strength: U = 0.25 panel
(a), U = 0.5 panel (b) and U = 1 panel (c). The two different parity sectors have been highlighted
by the red and blue colors. The model parameters are fixed as L = 48, N = 4, w = 0.1 and v = 1.
The bond dimension of the DMRG procedure is fixed as m = 200. α is the eigenvalue index (λα).
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4. Conclusions

We analyzed the effect of nearest-neighbor Coulomb repulsive interactions on a Majo-
rana BBH model restricted to a strip of N = 4 chains of length L with interactions along the
chains. The simulations, performed using a DMRG procedure, provide some interesting
insights on the robustness of topological phases against repulsive interactions. In particular,
we observed robust fermionic modes localized at the edges of the strip, together with a
degenerate entanglement spectrum. Both observations point at the existence of a robust
topological order, persistent even in the regime of strong interactions.

These results can be considered preliminary to the investigation of the robustness
of Majorana corner states in an interacting two-dimensional MBBH model, which can be
simulated by a tree tensor network approach in the limit of large lattices.

In order to discriminate unambiguously the topological order from other types of
order, we will need to go beyond the entanglement spectrum, since the latter does not
discriminate between different types of order, e.g., topological order and orders associ-
ated to spontaneous symmetry breaking. We will thus need to consider entanglement
measures able to quantify the nonlocal correlations between the edges and, in particular,
the long-distance topological entanglement between corner Majorana modes. In fact, such
a measure, the topological squashed entanglement, exists and was recently introduced
and successfully applied [44] to the unambiguous characterization of topological order in
some basic models of topological superconductivity, including the Kitaev chain, the two-leg
Kitaev ladder [45], and the Kitaev tie [46]. We plan to report in the near future the results
of a similar investigation along the same lines for the interacting Majorana BBH model.
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Appendix A. Matrix Product Operator

As discussed in the main text, the Hamiltonian of Equation (8) can be seen as a tensor
with N covariant and N contravariant indices and can be factorized into a contracted prod-
uct of smaller tensors, each carrying one of the original contravariant and covariant indices,
as well as “bond indices” connecting to the neighboring factor tensors (see Equation (9)).
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In some interesting cases, symmetries can also be implemented in the tensors, yielding
a two-fold benefit: they provide a substantial computational speed-up, and they allow for
the precise targeting of symmetry sectors [41]. Our model conserves the parity Z2, and we
thus write the MPOs by targeting the parity sectors. The analytical expressions for all the
MPOs when j = 2, . . . L− 1 are

M =

01 02 03 04 05 06 11 12 13 14 15 16 17 18



01 I n 0 0 0 µn σ+ 0 0 0 σ− 0 0 0
02 0 0 I 0 0 0 0 0 0 0 0 0 0 0
03 0 0 0 I 0 0 0 0 0 0 0 0 0 0
04 0 0 0 0 I 0 0 0 0 0 0 0 0 0
05 0 0 0 0 0 Un 0 0 0 0 0 0 0 0
06 0 0 0 0 0 I 0 0 0 0 0 0 0 0
11 0 0 0 0 0 ∆1σ+ 0 σz 0 0 0 0 0 0
12 0 0 0 0 0 0 0 0 σz 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 σz 0 0 0 0
14 0 0 0 0 A+ 0 0 0 0 0 0 0 0
15 0 0 0 0 0 ∆∗1σ− 0 0 0 0 0 σz 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 σz 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 σz

18 0 0 0 0 0 A− 0 0 0 0 0 0 0 0

(A1)

with A+ = tσ− − ∆σ+, A− = tσ+ − ∆σ−, I is the identity operator, and where we group
the Pauli matrices by parity sector. The result is a block matrix with the superscripts and
side-scripts labeling the different parity sectors (blue and red symbols).

Every tensor M, due to an excessively complex structure is usually visualized in
terms of a graph [47,48] describing the expressions of the matrix. Indeed, in our graph
in Figure A1, the numbers associated with the knots are the parity sectors which can
possibly change depending on the action of the specific Pauli operator (corresponding to a
colored line).

Different colored lines are used to identify nearest-, next-to-nearest-, third-, and fourth-
neighboring interaction terms. The subscripts identify the degeneracy of the corresponding
parity sectors, while pairs of numerical indices identify the position of an element of the
MPO matrix, whose value is given by the appropriate coupling and Pauli operator.
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Figure A1. Structure of the graph describing the MPO in Equation (A1). The numbers are the parities
of the graph knots, the subscripts count the degeneracy of such parities, and the lines represent
the action of the Pauli operators with the properly assigned couplings. A pair of numbers identifies
the position of a block matrix element in the MPO, whose value is given by the appropriate Pauli
operator, associated with a colored line. Different colors of the lines refer to nearest-, next-to-nearest-,
third-, and fourth-neighboring interaction terms. The symbol I stands for the identity operator.
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