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Optical lattices with a complex-valued tunneling term have become a standard way of studying gauge-field

physics with cold atoms. If the complex phase of the tunneling is made density dependent, such a system features

even a self-interacting or dynamical magnetic field. In this paper we study the scenario of a few bosons in either

a static or a dynamical gauge field by means of exact diagonalization. The topological structures are identified

computing their Chern number. Upon decreasing the atom-atom contact interaction, the effect of the dynamical

gauge field is enhanced, giving rise to a phase transition between two topologically nontrivial phases.

DOI: 10.1103/PhysRevA.93.033605

I. INTRODUCTION

The external motion of a particle can be coupled to

the dynamics of internal degrees of freedom via a gauge

potential. The simplest example of this mechanism is that

of an electrically charged particle moving in the presence of a

background magnetic field. The gauge field imprints a complex

U(1) phase onto the wave function of the particle. The synthetic

implementation of this mechanism in cold atomic systems has

been envisaged since the early days of quantum gases [1–7],

and has been realized successfully during recent years [8–13].

Current quantum simulations with artificial gauge potentials

are exploring the variety of interesting physics related to

background gauge fields: spin liquid phases [14], topological

phases evidenced by nonzero Chern numbers [15], or quantum

Hall phases with edge currents [16,17]. A long-term goal is the

simulation of quantum electromagnetism or chromodynamics,

that is, of models where matter interacts with dynamical fields,

as described in Refs. [18–22]. An intermediate step might be

the realization of simpler but nevertheless dynamical gauge

fields, engineering an occupation number-dependent tunneling

term [23–30].

In this article, we consider a specific dynamical gauge field

and apply exact diagonalization techniques to shed light on

the involved interplay between the atoms’ external degree of

freedom and the system’s U(1) gauge potential. The atoms

are confined to a two-dimensional optical lattice, where a

gauge field is present due to a density-dependent complex

phase of the tunneling parameter t . Deep in the Mott phase,

where density fluctuations are strongly suppressed, the gauge

potential is static. We follow the system’s evolution upon

decreasing the ratio U/t , where U parametrizes the strength

of the repulsive on-site interactions. For sufficiently weak

interactions, topological transitions, not present in the system

with a static gauge field, are found in the system with a

dynamical gauge potential.

In our study the system is assumed to be close to

filling one, where for large enough atom-atom interaction

the Mott insulating state provides a vacuumlike configuration.

In the strongly interacting regime, an extra particle on top

of the Mott insulator can be viewed as a single particle

in a static gauge potential with a fixed magnetic flux per

plaquette. This configuration therefore reproduces the physics

of the Harper-Hofstadter model [31]. Due to computational

limitations, our study addresses a 3 × 3 lattice with 4π/3 flux

per plaquette. Twisted periodic boundary conditions allow

for reducing finite-size effects. The low-energy subspace

is clearly divided into three gapped bands. Chern number

calculations demonstrate the nontrivial topological nature of

the bands. Since a hole in the Mott insulator does not feel any

gauge potential, the extra-particle configuration also captures

the behavior in a larger Mott insulator with a particle-hole

excitation. Upon decreasing the interaction, we find deviations

from this single-particle picture. For a dynamical gauge

potential we find that the ground state undergoes a topological

phase transition before it becomes topologically trivial in the

limit U → 0.

The article is organized as follows. First, in Sec. II, we

describe our theoretical tools, including the density-dependent

Hamiltonian we are considering. Then in Sec. III we present

results for the different band gaps found, comparing the case

of a dynamical field and the one of a static external field.

The characterization of the topological properties by means

of Chern numbers is presented in Sec. IV. In Sec. V a phase

diagram through a mean field approach is presented in order to

give an intuitive idea of the behavior of the system in the infinite

size case. Finally, in Sec. VI we provide a brief summary

and conclusions. In addition, Appendix includes the procedure

used to compute Chern numbers for the many-body bands to

characterize the topological phases.

II. THEORETICAL MODEL

Cold atoms in optical lattices are well described by a

Hubbard model combining nearest-neighbor hopping pro-

cesses and on-site interactions [32]. The effect of a (synthetic)

magnetic field is taken into account by a Peierls phase in

the hopping parameter. For instance, if b̂k,l (b̂
†
k,l) denotes the

annihilation (creation) of a particle at site (k,l), the hopping

term in a constant magnetic field with magnetic flux ϕ per
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FIG. 1. Brief rendition of the considered density-dependent

Hamiltonian. As an example we provide the phase acquired for

the single-particle case, ĤLandau, with ϕ = 2π/3. The solid lines

represent the tunneling terms; the dashed ones correspond to the

periodic boundary conditions considered.

plaquette is written in the Landau gauge as

ĤLandau = −t
∑

k,l

(eiϕl b̂
†
k,l b̂k+1,l + b̂

†
k,l b̂k,l+1 + H.c.). (1)

Here, t is a real-valued parameter associated with the kinetic

energy of the particles. We consider a two-dimensional system

of scalar bosons. Important quantities like the energy spectrum

of the Hamiltonian are gauge independent, that is, alternative

hopping Hamiltonians with complex phases along the x

direction or along both the x and y directions would lead

to the same results as long as the flux per plaquette remains

the same. A schematic representation of the hopping structure

is given in Fig. 1.

A possible implementation of Hamiltonians like ĤLandau

goes back to Ref. [2]. In this paper, we are interested in a

situation where the gauge field becomes dynamical, that is,

the complex phase factor should in some form depend on

the positions of the atoms. A simple dynamical gauge field

is obtained by letting the phase depend on the occupation

numbers,

Ĥdyn = − t
∑

k,l

(b̂
†
k,le

iϕl(n̂k,l+n̂k+1,l )b̂k+1,l + b̂
†
k,l b̂k,l+1 + H.c.).

(2)

The experimental implementation of density-dependent gauge

fields as those of Hamiltonian (2) can be done using similar

techniques as those recently discussed in Refs. [27,28].

Particular details of how to implement it fall beyond the scope

of the present article.

This choice of the density-dependent field is particularly

attractive as it has one specific limit in which the topological

properties of the system can be easily understood. Deep in

the Mott insulating phase, where the number operators n̂k,l

can be replaced by an integer number n, this Hamiltonian

reduces to the form of a ĤLandau. The amount of particle

number fluctuations and thereby the dynamical features of

the gauge potential are controlled by the interaction term,

Ĥint = U
2

∑

k,l n̂k,l(n̂k,l − 1). With this, the full Hamiltonian

reads

Ĥ = Ĥdyn + Ĥint. (3)

We will take an additional constraint on the Hilbert space,

stemming from the implementation scheme described in

Ref. [27], namely, the maximum occupancy per site will be

set to two bosons.

To clarify our discussion we will compare our results to

those obtained with an static field, that is,

Ĥst = ĤLandau + Ĥint. (4)

III. ENERGY GAPS

We have concentrated on the filling case around one by

means of exact diagonalization. We have focused on a 3 × 3

lattice at ϕ = 4π/3, and take the interaction strength U (in

units of t) as the main tuning parameter. As argued above,

this also controls the influence of the dynamical gauge field.

To gain meaningful results despite the small system size,

we apply twisted boundary conditions with twist angles θx

and θy . With this, the energy spectrum ǫi of the Hamiltonian

becomes a function of the twist angles, ǫi(θx,θy). Degeneracies

of different levels which would be lifted due to the finite system

size manifest themselves in crossings of bands ǫi(θx,θy).

Accordingly, we define the gap above a level ǫi as

�ǫi = min[ǫi+1(θx,θy) − ǫi(θx,θy)]. (5)

If �ǫi is zero, that is, if band i and band i + 1 have (at least)

one crossing, we consider these levels a degenerate manifold.

To check whether the manifold is separated from higher levels

by a gap, we then have to consider �ǫi . In general, the gap

above a k-fold manifold including the levels i, . . . ,i + k is

defined as

�i,i+k =
i+k−1
∑

j=i

�ǫj . (6)

A. Case of one excess particle

We start our analysis with the tunneling of a system with

one particle more than the number of sites. That is, in our

3 × 3 lattice we consider N = 10 bosons. On the strongly

interacting side, this is equivalent to having a single particle

on top of a fluctuating vacuum. For large U , fluctuations are

strongly suppressed, and the kinetic Hamiltonian (2) reduces

to the one of a particle in a static magnetic field, Eq. (1),

with flux 2ϕ. Accordingly, the physics of a single particle in a

magnetic field should describe the low-energy behavior of our

system. Indeed, no difference is seen between the shape of the

single-particle spectrum of the Hamiltonian (1) [Fig. 2(a)], and

the low-energy part of the many-body spectrum of Hamiltonian

(3) at large U [Fig. 2(e)]. In both cases, we find the energy

spectrum to be split into three gapped manifolds, each of them

consisting of three states. In the many-body system, a gapless

high-energy manifold lies above the third band.

Deviations from this structure appear when U is decreased;

see Figs. 2(b)–2(e) and Fig. 3. The dynamical mechanism is

the following. As U is decreased, the number of holon-doublon
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FIG. 2. Energy spectrum as a function of the twisted boundary conditions for several systems under Ĥst with a flux per plaquette ϕ = 2π/3

in a 3 × 3 lattice. Degenerated states forming bands have the same color. (a) Single-particle case. (b)–(e) Energies of the 10 lowest eigenstates

of the system with 10 particles for the interaction values: (b) U/t = 0, (c) U/t = 4, (d) U/t = 13, and (e) U/t = 20. ESs means excited states.

excitations increases, and the single-particle picture described

above is no longer valid. First, for U ≈ 15, the gap between

the third band and the high-energy manifold closes, as the first

doublon-holon excitations have the same energy as the third

single-particle state. Subsequently, at U ≈ 10, also the gap to

the second band is closed. These gap closings indicate phase

transitions in excited states. At U ≃ 2.25, also the gap to the

lowest band is closed. Thus, up to U ≃ 2.25 the ground-state

manifold has a topological structure similar to the case of a

single particle subjected to an external magnetic field of 2ϕ.

This value of U is a bit higher than the value at which we

found a gapless phase for the filling one case described below.

Thus, the main picture of a single particle on top of a Mott

insulating background is consistent.
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FIG. 3. Gap above each band [as defined in Eq. (6)] between

consecutive eigenstates of Ĥ as a function of the on-site interaction

parameter U . The system is a 3 × 3 lattice with 10 particles with

the parameter ϕ = 2π/3 and t = 1. We take into account the Hilbert

constraint to a maximum of two bosons per site. The three lowest

bands have degeneracy 3, and the labels correspond to the Chern

number of each band.

Remarkably, further lowering the value of the interaction

another threefold-degenerate gapped manifold appears for

0.67 � U � 2.25. Only for U � 0.67 the system enters in

a gapless phase. We note that for 0.67 � U � 2.25 the gap

is small, of the order of 10% of the involved energy scales.

It is a merit of the twisted boundary conditions that the

three lowest states are clearly identified as an adiabatically

connected manifold, separated from the other levels by a gap.

In fact, if we look at the system for a fixed value of θx and θy ,

or alternatively for open boundary conditions, the gap cannot

be distinguished from the energy splitting between states in the

degenerate manifold. The gap above a manifold as a function

of U is shown in Fig. 3. For U ≃ 0.67 the gap closes at

(θx,θy) ≃ (π,π ). The next closing, for U ≃ 2.25 appears close

to (θx,θy) ≃ (0,π ). This could diminish the prospects for an

experimental detection of this phase in the plane geometry,

but since an experiment would realize a much bigger system,

there is hope that finite-size degeneracy splitting would be

sufficiently small to identify the finite gap.

In Fig. 4, we contrast our findings to the scenario with

static magnetic field. As expected, at large U the differences

between Figs. 3 and 4 are minor. Also for a static magnetic

field, increasing U subsequently closes the gaps above the

third and the second band. However, the gap above the ground

state remains finite up to U ≃ 1 and, for U < 1, it vanishes.

To complement Fig. 3, the evolution of the gap between the

ground-state manifold and the next excited state for all the

values of θx and θy is given in Fig. 5.

B. Mott insulator

At precisely filling one, for nine particles on nine lattice

sites, see the upper panel of Fig. 6; we find a unique gapped

ground state for U � 2.1, which is connected to the Mott

insulator as an exact solution for U → ∞. This phase is trivial

in the sense that it corresponds to a vacuum, where deviations

from integer filling exist only as fluctuations. For U � 2.1,

we find a gapless phase, that is, despite the presence of the
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FIG. 4. Same description as in Fig. 3, but with the dynamical

gauge field replaced by an external magnetic field with a flux per

plaquette ϕ = 4π/3. That is, Ĥ(φ) → Ĥst(2φ).

dynamical gauge field, no topological structure protected by

an energy gap emerges in this scenario.

The first and second excited bands are three- and sixfold

degenerate, respectively. They are topologically nontrivial and

their Chern numbers are +1 and +4. These excited bands

coincide, in degeneracy and topology, with the lowest band

of the noninteracting systems with one and two particles

in the same lattice, as they are explained in Sec. IV A.

These excited bands can be understood as one and two

particle-hole excitations on the top of the Mott insulator, when

the particle feels an effective static magnetic field and the hole

does not.

C. Case of one hole

We also study the tunneling of a single hole. That is, in our

3 × 3 lattice we consider N = 8 bosons. The gap structure

we find is shown in Fig. 6(b). As expected, we find that
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FIG. 6. Energy gap [see Eq. (6)] between consecutive eigenstates

of Ĥ as a function of the on-site interaction parameter U . We take into

account the Hilbert constraint to a maximum of two bosons per site.

The upper and lower panels are for N = 9 and N = 8, respectively.

increasing the interaction up to U ≃ 10t , a gap opens between

the ninefold degenerate manifold, understood as one hole

moving in the Mott-insulating background, and the rest of
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FIG. 5. Energy difference (in units of t) between the third and fourth states in the spectrum of a system under Ĥ with 10 particles in a 3 × 3

lattice, signaling the gap between the ground-state manifold and next excited state. The different panels correspond to different values of U/t .

In all cases, ϕ = 2π/3 and t = 1.
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the states. The ground-state manifold is found to have a trivial

topological order.

IV. TOPOLOGICAL PHASES

In the previous section we have discussed the energy gaps

appearing for the case of one excess particle, the filling one,

and the one hole case. In the case of one excess particle, we

have found nontrivial topological structures. In the following

we present the Chern number obtained compared to the case

of an external field of flux 4π/3.

A. Single-particle and noninteracting cases

First, we calculate the Chern numbers of the single-particle

system described by ĤLandau, that is, of the bands shown in

Fig. 2(a). We obtain the values {1,−2,1}. In this case, the

calculation can either be done via Fourier transformation,

taking the parameters k1 and k2 to be components of the wave

vector [33], or with twisted boundary conditions, taking the

twist angles θx and θy as parameters k1 and k2 [34]. In the

latter case, the discretization of parameter space is arbitrary,

but we observe quick convergence of the Chern numbers to

fixed numbers upon refining the discretization.

The noninteracting case can be related to the single-particle

case although some caution should be exercised. For instance,

direct computation of the Chern number of the ground-state

manifold for N = 2, 3, and 4 particles in the 3 × 3 lattice

we consider gives c = 4,10, and 20, respectively. These can

be obtained by noting that due to the bosonic symmetry, we

have a combinatorial factor stemming from the number of

times the Fock basis covers the threefold degenerate band.

This can be evaluated giving

c
(N)
0 =

N

3

(

N + 3 − 1

N

)

c
(1)
0 = c

(1)
0

(

N + 2

3

)

, (7)

where c
(1)
0 is the single-particle Chern number of the GS

manifold, c
(1)
0 = 1.

B. Interacting many-body case

To calculate the Chern numbers of many-body states, we

exclusively resort to the twisted boundary conditions. For the

three gapped manifolds appearing at U � 15 (see Fig. 3),

we obtain the same Chern numbers as for the single-particle

bands: {1,−2,1}. These numbers remain constant for each

manifold until the closing of the corresponding gap. Upon

closing the gap, the second and the third bands simply merge

with the energy continuum, for which no Chern number can

be computed. This is easily understood as for large enough

interactions the many-body ground state is well described as

consisting on a Mott-insulating background plus one particle.

The lower band is given by the energy of the extra particle in

the presence of an external field with flux 4π/3. The closing

of the bands in the higher part of the spectrum comes from the

first particle-hole excitations which eventually degenerate with

excitations of the excess particle. This simple picture provides

a compelling explanation albeit the many-body state changes,

as shown in Fig. 7, the topology of the band does not change

for a broad range of U until the gap closes.
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FIG. 7. Squared coefficients of the ground state of the density-

dependent Ĥ for θx = θy = 0 in the Fock basis in lexicographical

order. A few notable states, one particle on top of a Mott insulator, are

marked. The three panels correspond to three values of the interaction,

U/t = 1,3, and 20. For these values, the Chern number of the ground-

state manifold is −1, +1, and, +1, respectively.

In contrast with the above, the gap closing of the ground

state at U ≈ 2.25 separates two gapped regions (see in partic-

ular the inset of Fig. 3). Interestingly, we find that upon closing

the band gap, the ground-state Chern number changes its sign

from 1 to −1. This demonstrates that a topological phase

transition between two distinct, but topologically nontrivial

phases is taking place. The second gap closing, at U ≈ 0.67,

merges the ground-state manifold with the energy continuum

which, in this sense, is a transition to a topologically trivial

(gapless) phase.

C. Static field case

Finally, we note also that the three gapped manifolds found

for a system with static magnetic field, with φ = 4π/3, are

characterized by the same Chern numbers {1,−2,1}, without

any transitions to distinct gapped phases. As seen in Fig. 4,

the arguments exposed above also apply to this case and

the picture of a single particle on top of a Mott insulator is

perfectly valid. The only relevant difference appears for low

interaction energies. In this case, the Mott insulating phase

seems to survive down to lower values of the interaction

as compared to the density-dependent case. Thus, density

dependence phases favor the existence of superfluid regimes

at larger interactions than in the static case. Also we find no

trace of the first excitation being a topological phase with

c1 = +1 in the region 2.25 � U � 0.67. In this case the limit

U = 0 can be understood from the single-particle calculation:

The ground states for N bosons are just arbitrary distributions

on the M = Ns/q states belonging to the lowest energy band

in a lattice with Ns sites at magnetic flux 2π/q. This leads

to a macroscopic ground-state degeneracy (of 63 states in
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our case with N = 10, Ns = 9, and q = 3), for which no

meaningful Chern number can be defined. Recent “Chern

number” measurements in noninteracting bosonic quantum

gases [15] consider the Hall drift for unique but gapless

many-body states, and define as a “Chern number” the average

over different states.

V. MEAN-FIELD PHASE DIAGRAM

In order to get a picture of the phase diagram, we

have adapted the mean-field calculation of Ref. [25] to the

Hamiltonians of interest. At first, we include a chemical

potential term −μ
∑

i,j n̂i,j . With the convenient substitutions

ĉi,j ≡ eiφjn̂i,j b̂i,j and d̂i,j ≡ e−iφjn̂i,j b̂i,j , the Hamiltonian in

Eq. (3) looks like

Ĥ =
∑

k,l

{

− t(d̂
†
k,l ĉk+1,l + b̂

†
k,l b̂k,l+1 + H.c.)

+ n̂k,l

[

(n̂k,l − 1)
U

2
− μ

]}

. (8)

At t = 0, all the sites are independent and the GS can

exactly be represented with a Gutzwiller ansatz,

|�0〉 =
Ns

⊗

k,l

|ψ〉k,l, |ψ〉k,l =
∞

∑

m=0

f
(m)
k,l |m〉k,l, (9)

where m is the number of particles in a site. Then, the

energy due to each site filled with m particles is ǫm =
U [ 1

2
(m − 1) − μ

U
]m, and the energy of adding and subtracting

one boson is

ǫm+1−ǫm = U

(

m −
μ

U

)

, ǫm−1 − ǫm = U

(

μ

U
− m + 1

)

,

(10)

respectively.

The MF is obtained by decoupling the hopping terms as

d̂
†
i,j ĉi+1,j ≈ α∗

3,j ĉi+1,j + α2,j d̂
†
i,j − α∗

3,jα2,j and b̂
†
i,j b̂i,j+1 ≈

α∗
1,j b̂i,j+1 + α1,j+1b̂

†
i,j − α∗

1,jα1,j+1, with the order parame-

ters α1,j ≡ 〈b̂i,j 〉, α2,j ≡ 〈ĉi,j 〉, and α3,j ≡ 〈d̂i,j 〉. Then, the

Hamiltonian in Eq. (8) becomes

Ĥ = − Nxt
∑

j

(α∗
3,jα2,j + α∗

1,jα1,j+1 + H.c.) +
∑

k,j

ĥk,j ,

(11)

with the local Hamiltonian,

ĥk,j ≡ n̂k,j [U (n̂k,j − 1)/2 − μ] − t T̂k,j , (12)

where T̂k,j ≡ α∗
3,j ĉk,j + α2,j d̂

†
k,j + α∗

1,j−1b̂k,j + α1,j+1b̂
†
k,j +

H.c. and Nx is the size of the system in the x direction.

The Hamiltonian ĥk,j has a trivial solution when αγ,j = 0,

γ = 1,2,3 since the particle number fluctuations vanish at the

Mott insulating phase.

When the kinetic term is negligible (t ≪ U ), the entire

system is described with the basis of states with m particles

per each site (k,j ), |m〉. The GS is determined by μ: It is

the local state |m〉 when m − 1 < μ < m. Since we want to

draw the Mott lobes, we include the single Fock state and

particle-hole excitations in that region of the diagram. Then,

since we search the boundaries close to the trivial solution,

|αγ,j | ≪ 1, the kinetic term can be treated perturbatively. Up

to first perturbation order, the local wave function |�〉 can be

written as |ψ (0)〉 + |ψ (1)〉, being |ψ (0)〉 = |m〉 and

|ψ (1)〉 = −t
∑

m′

〈m′|T̂k,j |m〉
ǫm′ − ǫm

|m′〉

=
t

U

√
m[α∗

3,je
iφj (m−1) + α∗

2,je
−iφj (m−1) + α∗

1,j−1 + α∗
1,j+1]

μ

U
− (m − 1)

|m − 1〉

+
t

U

√
m + 1[α3,je

−iφjm + α2,je
iφjm + α1,j−1 + α1,j+1]

m − μ

U

|m + 1〉. (13)

The first-order perturbation about the solution αγ,j = 0 is

convenient here, since the self-consistency equations define

a linear map αγ,j = �
γ ′,j ′

γ,j αγ ′,j ′ . Then, when the largest

eigenvalue of �, λ0, is larger than 1, the trivial solution is

no longer stable. So, the boundary is found to be at λ0 =
1. The self-consistency relations α1,j = 〈�|b̂k,j |�〉, α2,j =
〈�|ĉk,j |�〉, and α3,j = 〈�|d̂k,j |�〉 give

α1,j =
t

U
[A(α1,j−1 + α1,j+1) + fj (φ)α2,j + fj (−φ)α3,j ],

α2,j =
t

U
[fj (φ)(α1,j−1 + α1,j+1) + fj (2φ)α2,j + Aα3,j ],

α3,j =
t

U
[fj (−φ)(α1,j−1+α1,j+1)+Aα2,j+fj (−2φ)α3,j ],

(14)

with

fj (φ) ≡[A + B(e−iφj − 1)]e−iφjm,

A ≡
μ

U
+ 1

[

μ

U
− (m − 1)

][

m − μ

U

] , B ≡
m

μ

U
− (m − 1)

.

For the case of the static magnetic field, the corresponding

function f st
j (φ) reduces to Ae−iφj .

The Fock space populations of the GS of the system

(Fig. 7) have revealed its structure: The Fock states which
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FIG. 8. Phase boundary between the Mott insulator phase and the

superfluid phase for the external and dynamical magnetic fields and

the nonmagnetic case (α = 0) according to the Gutzwiller ansatz with

the MF approach in the first perturbation order in the hopping t .

have a particle on top of an MI in the same row are

equally populated. Then, we have tried an ansatz which is

translationally invariant along the x direction and have a

three-unit cell in the y direction. So, in Eq. (14), j = 1,2,3,

without periodic boundary conditions. Then, those relations

define a linear system of nine coupled linear equations,

being αγ,j the variables. Once the matrix of the system is

diagonalized as function of t , for a numeric value of U , μ

(and its corresponding integer m), the expression of λ0 is set

to 1, and then the equation is solved for t . Finally, the phase

boundary is obtained as a collection of points (μ,t).

We find the Mott lobes, shaped as usual in the MF approach

(see Fig. 8). The values of the boundary do not correspond to

the ones of the MF for the two-dimensional (2D) lattice, but

they are closer to the ones of the one-dimensional case (see

Ref. [35]). The structure of the GS state has revealed this

to be closely related to the fact that the magnetic fields are

in the Landau gauge. Our analysis also shows that the trial

state is slightly more robust upon decreasing hopping t/U

in the dynamic field case than in the static one. This finding

qualitatively agrees with our results for the gap separation in

the exact diagonalization analysis: As seen in Figs. 3 and 4,

the SF regime corresponds to the gapless phase at small U ,

which extends to U = 0.8 in the dynamic case, and U = 1.2

in the static case. For μ < 0, the boundaries of the dynamic

field case and the 2D nonmagnetic case coincide, as expected.

VI. SUMMARY AND CONCLUSIONS

We have studied topological properties of a bosonic quan-

tum gas with an experimentally feasible, synthetic dynamical

gauge field. The Mott insulating phase provides a trivial

vacuum, above which we study the one-particle excitations,

forming gapped energy bands. Decreasing the interactions, we

first observe transitions in the excited bands, from topologi-

cally nontrivial phases to gapless phases. In this respect, the

system behavior does not differ from the one of a system with

static magnetic field. A particular feature of the dynamic gauge

field is a topological transition in the ground state, in which

the sign of the Chern number is inverted. The fact that in our

proposal the length of the system in one dimension is very

small could be accomplished in a experimental setup using

synthetic dimensions.
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APPENDIX: EVALUATION OF THE CHERN NUMBER

The twisted boundary conditions are particularly useful

to characterize topological phases. They allow one to define

Chern numbers in an interacting many-body system [34]. Quite

generally, the Chern number is defined for the energy levels

n of a Hamiltonian H(k1,k2) = H(k1 + 2π,k2) = H(k1,k2 +
2π ), which periodically depends on two parameters k1 and k2

in the following way,

cn =
1

2π i

∫ 2π

0

dk1

∫ 2π

0

dk2 F
(n)
12 (k1,k2), (A1)

where the Berry connection A(n)
μ (k1,k2) (μ = 1,2) and the

associated strength F
(n)
12 (k1,k2) are given by

A(n)
μ (k1,k2) = 〈n(k1,k2)|∂μ|n(k1,k2)〉, (A2)

F
(n)
12 (k1,k2) = ∂1A

(n)
2 (k1,k2) − ∂2A

(n)
1 (k1,k2), (A3)

with |n(k1,k2)〉 being the nth normalized eigenvector.

Following the method of Fukui et al. [36], the Chern

numbers can conveniently be calculated by discretizing the

parameter space,

c̃n =
1

2π i

∑

k1

∑

k2

F̃
(n)
12 (k1,k2), (A4)

with the lattice field strength,

F̃
(n)
12 (k1,k2) = ln

[

U
(n)
1 (k1,k2) U

(n)
2 (k1+dk1,k2)

U
(n)
1 (k1,k2+dk2) U

(n)
2 (k1,k2)

]

,

−π < 1
i
F̃

(n)
12 (k1,k2) � π (A5)

being dkμ the resolution of each parameter and U (n)
μ the link

variables from the eigenstates of the nth band,

U (n)
μ ≡

〈n(k1,k2)|n(k1 + dk1δ1,μ,k2 + dk2δ2,μ)〉
|〈n(k1,k2)|n(k1 + dk1δ1,μ,k2 + dk2δ2,μ)〉|

. (A6)

A special case which is important for our purposes

concerns the Chern number of degenerate bands. Since the

eigenstates are not unique in the degenerate points, we
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cannot associate Chern numbers to individual states. For M

degenerate or quasidegenerate states, we consider the multiplet

ψ = (|n1〉 · · · |nM〉) to define a non-Abelian Berry connection

A = ψ†dψ , which is an M × M matrix-valued one form

associated with ψ . Then, we consider the overlap matrix,
[

u(n)
μ

]

ij
≡ 〈ni(k1,k2)|nj (k1 + dk1δ1,μ,k2 + dk2δ2,μ)〉, (A7)

in order to properly define the link variables,

U (n)
μ ≡

det
[

u(n)
μ

]

∣

∣ det
[

u
(n)
μ

]
∣

∣

. (A8)

Finally, the Chern number c̃ψ and field strength are calculated

using Eqs. (A4) and (A5).
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