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Abstract The field of topological photonic crystals has
attracted growing interest since the inception of optical
analog of quantum Hall effect proposed in 2008. Photonic
band structures embraced topological phases of matter,
have spawned a novel platform for studying topological
phase transitions and designing topological optical
devices. Here, we present a brief review of topological
photonic crystals based on different material platforms,
including all-dielectric systems, metallic materials, optical
resonators, coupled waveguide systems, and other plat-
forms. Furthermore, this review summarizes recent pro-
gress on topological photonic crystals, such as higher-
order topological photonic crystals, non-Hermitian photo-
nic crystals, and nonlinear photonic crystals. These studies
indicate that topological photonic crystals as versatile
platforms have enormous potential applications in maneu-
vering the flow of light.

Keywords topological photonic crystals, topological
phase transitions, non-Hermitian photonics, higher-order
topological photonic crystals

1 Introduction

A deep understanding of the physical properties of
materials is fundamental in many of the essential break-
throughs in science and technology. Over the past few
decades, topological photonic crystals have opened a new
frontier to optical propagation and manipulation. Various
physical mechanisms and optical phenomena have been
explored due to topological properties of band structures in
photonic crystals, which greatly promote the development
of this field.
Photonic crystals are periodic optical structures that

modulate the motion of photons, in which the periodic
dielectric material is the analogous of atoms or molecules
in conventional crystals. It was first proposed in 1987 by
Yablonovitch [1] and John [2], afterwards, its properties
such as forbidden bang gap [3,4] and negative refraction
[5,6] have been studied extensively. In another aspect, the
concepts of topological phases of matter can be traced back
to the integer quantum Hall effect (IQHE) discovered in
1980. In the IQHE [7], a two-dimensional (2D) electron
gas exhibits quantized Hall conductance, which is a
function of the magnitude of magnetic fields and equals
to the integer multiple of e2=h. In 1982, Thouless et al.
[8,9] proposed that the quantized Hall conductance is
characterized by a nonzero topological invariant (the
Chern number or Thouless, Kohmoto, Nightingale, and
Nijs (TKNN) number) of this system. After that, Kane and
Mele [10–13] discovered a new class of topological phases
of matter known as the quantum spin Hall effect (QSHE) in
2005. In this system, the Chern number is zero while the
wave function is classified by a nonzero binary topological
invariant under time-reversal symmetry (TRS). Since then,
many different kinds of topological phases of matter have
been extensively investigated under various symmetries.
Parallel to the development of condensed matter

physics, Haldane and Raghu [14,15] realized that topolo-
gical phases are in fact a ubiquitous phenomenon of waves
in the periodic medium, and they predicted that topologi-
cally protected boundary states will exist in the 2D periodic
structure of magneto-optical elements. In the next year
(2009), the idea was experimentally proved by using the
2D magneto-optical photonic crystal [16]. A clear
nontrivial band structure was indeed found in this system,
corresponding to a unidirectional topological edge state.
However, the limited magneto-optical response calls for
large magnetic fields, which is not conducive to the system
integration. In 2011, Hafezi et al. considered the
pseudospin degree of freedom of photons and found the
quantum spin Hall effect of the optical system [17–24],
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where the TRS is maintained and artificial magnetic fields
act on each pseudospin. Later, Fang et al. [25–34] provided
another idea (Floquet topological insulators), where the
dynamic modulation generates an effective time-indepen-
dent Hamiltonian with broken TRS in 2012. Since then, a
lot of research endeavors have been put in unravelling
novel band structures and optical phenomena in topologi-
cal photonic crystals, such as valley photonic crystals
[23,35,36] and 3D topological insulators [37,38]. In
addition, the topological properties of band structures
also involve the band degeneracies which can be regarded
as gapless materials (i.e., semimetals) in photonics such as
Dirac semimetals [39–41], Weyl semimetals [42,43] and
nodal line semimetals [44,45], which show the great
potential to reveal physical properties and control the
transport of surface states [42,43,46] (e.g., Fermi arc and
negative refraction).
Most recently, there has been a great activity in various

aspects of topological photonic crystals such as nonlinear
systems [26,47–60], non-Hermitian systems [61–82], and
higher-order topological systems [83–98]. This is because
the study of topological phases of traditional photonic
crystal systems is closely related to the development of
condensed matter physics. Researchers have begun to
study the topological photonic crystals from the point of
view of rich physical properties of photons. Utilizing
unique photonic effects, the study of topological photonic
crystals will greatly improve the optical applications and
enrich the content of topological physics.
In this review, we classify topological photonic crystals

by material platforms and summarize some novel concepts
such as higher-order topological photonic crystals,
machine learnings, and topological Fano resonances for
the first time. We focus on the developments of topological
photonic crystals, the material platforms, and the corre-
sponding topological properties. The content is divided
into five sections including an introduction in Section 1.
The basic concepts of photonic systems and topological
phase transitions are discussed in Section 2. Section 3
introduces the photonic crystals of various material
platforms and their topological phases while novel
achievements of topological photonic crystals in recent
times are highlighted in Section 4. In the last section,

we summarize the review and discuss the outlook for this
field.

2 Basic concepts

In this section, the general concepts of photonic systems
and topological phases of matter are formulated. This
section is divided into two parts. We briefly review the
features of photonic systems for topological photonic
crystals in the first part. Then in the second part, the
topological phase transitions of matter are discussed in
more details.

2.1 Photonic systems

The development of topological phases raises from the
electric conducting experiment in condensed matter. A
significant difference between electronic systems and
photonic systems is that the former is fermionic, while
the latter is bosonic. The major prominent difference
between them is illustrated in Fig. 1. As can be seen, they
possess different TRS operators: Tf = i�yK for electrons T2

f

= – 1 and Tb = �zK for photons T2
b = 1, where �y and �z are

the Pauli matrixes, K is the complex conjugation operator.
In addition, due to the Pauli exclusion principle, the
noninteracting fermions fill all the states below the Fermi
level with only one particle per state at low temperatures,
and all higher energy states remain empty. However, the
presence of losses and the modulation of propagation make
it different in photonic systems, so that the ground states of
whole systems are trivial vacuum states that maintaining
and generating the photon in a state of interesting
topological features requires injecting light from the
external source.
On the other hand, nonlinear effects give rise to many

important physical attributes in photonic systems. The
standard nonlinear optical processes are semiclassically
described by Maxwell’s equations, which include the
nonlinear terms raising from nonlinear dielectric polariza-
tion. The dielectric polarization can be written in the form
[99–101]

Fig. 1 Direct analogy between electrons (fermionic) and photons (bosonic) systems
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P ¼ ε0ðχ
ð1Þ
⋅E þ χð2Þ : EE þ χð3ÞM EEE þ :::Þ: (1)

Here, ε0 is the dielectric constant of vacuum, and χð1Þ,

χð2Þ, χð3Þ correspond to linear, second-order and third-order
susceptibility, respectively. The linear susceptibility is
expressed as the usual refractive index. The second-order
susceptibility is expressed as second harmonic generation
[102–105], parametric down-conversion processes [106–
110], etc. The third-order susceptibility leads to third
harmonic generation [111–115], four-wave mixing pro-
cesses [116–119] and nonlinear refractive index

[47,120,121]. As the simplest properties of χð3Þ, the
nonlinear refractive index is defined by

~n ¼ n0 þ ~n2jEj
2: (2)

Here, n0 is the linear refractive index and ~n2 is related to

χð3Þ, the nonlinear refractive index depends on the intensity
of light. Most of the topological phase transitions

witnessed are inspired by χð2Þ or χð3Þ terms in nonlinear
photonic crystals. In the quantitative point of view, the
nonlinear effects of common materials lead to very weak
interactions for single photons, therefore it can be

described by the mean-field approach. For χð3Þ terms, this

means hÊ
y
ðrÞ,ÊðrÞ,ÊðrÞi ffihÊ

y
ðrÞihÊðrÞihÊðrÞi, here EðrÞ

=hÊðrÞi. In this approach, the imaginary part of χð3Þ and ~n2
can also be included in their motion. For strong
nonlinearities, main research aims to set up such strongly
interacting systems. An effective mechanism is that
polaritons in coherently driven atomic gases can be
controlled by the electromagnetically induced transpar-
ency (EIT) in Rydberg states (Rydberg polaritons or circle-
QED) [56,122].

2.2 Topological phase transitions of matter

The first influential experimental observation of topologi-
cal phase transitions is the QHE in electron gas systems.
Shortly afterwards, the quantization of the Hall conduc-
tance was identified with the topological phase of bands in
momentum space by Thouless, Kohmoto, Nightingale, and
Nijs (TKNN) [8,9]. The topological properties of a band
depend in part on the eigenvalues EnðkÞ, but also on the
eigenvectors φn,kðrÞ as a function of k. This geometric
phase of eigenvectors is called Pancharatnam-Berry phase
[123,124]. The specific expression is defined in the
following.

gn ¼ # AnðkÞ⋅dk, (3)

where the Berry connection is defined as AnðkÞ ¼
hφn,k jrk jφn,ki and the integral for a given closed path
leads to a gauge-invariant variable. AnðkÞ can also form a
gauge Berry curvature ΩnðkÞ ¼ rk �AnðkÞ. It is worth
noting that the Berry curvature is continuously defined

over the whole Brillouin zone and the phase of
eigenvectors cannot always to be continuous. So a
topological invariant (Chern number) is defined as the
integral.

Cn ¼
1

2π
!

BZ
d2kΩn kð Þ: (4)

According to Stokes’ theorem, the nonzero Chern
number implies that the eigenvector and Berry connection
cannot be continuously defined. With the noninteracting
linear response, the Hall conductance of the two-dimen-
sional insulator is

�xy ¼ –

e2

h

X

n
Cn: (5)

Here, the Chern numbers are summed over the n

occupied bands, which leads to quantized conductance in
units of e2=h. However, the TRS is broken in these models
so far, which means the Berry curvature violates Ωnð – kÞ
= –ΩnðkÞ for nondegenerate bands. For degenerate bands,
a similar argument also establishes that there is no Chern
bands can be found in 2D systems with TRS. After this, the
quantum spin Hall system was proposed by Kane andMele
in 2005 [10]. This system consists of two copies of the
Chern topological insulators, and the magnetic fields
acting on two opposite spins, where spin up Cup is opposite
to spin down Cdown. Since the magnetic fields are opposite
for two spins, the TRS is preserved and the sum of Chern
numbers is zero. Thus it is also called the ℤ2 topological
insulator, which takes topological invariants (Cup=down mod
2) of either 0 (trivial) or 1 (nontrivial). Analogous to
quantum spin Hall insulators in the electron gas, the
polarization degree of freedom can be constructed as
pseudospins in photonic systems. In general, the topolo-
gical properties of band structures not only depend on
global topological invariants (e.g., global Chern number)
over the Brillouin zone [16,125], but also are influenced by
local topological invariants (e.g., valley Chern number
whose sign is opposite for K and K# points of the Brillouin
zone, but the Chern number for the whole band is still zero)
[23,36]. Both of them possess backscattering-immune
edge states to some extent but protected by different
topological features [16,35].
Topological gapless systems with degenerate points (i.e.,

Dirac or Weyl points) or lines (i.e., nodal lines) are
protected by specific symmetries, and are topologically
stable in momentum space. For Dirac semimetals, the most
prominent feature is the non-trivial Berry phase �π, which
means their eigenvectors are transported adiabatically on a
closed loop around Dirac points [39–41]. By integrating
the Berry curvature in a 2D surface enclosing a Weyl point,
the topological properties of each Weyl points can be
associated with a nonzero topological invariant (�1) in
Weyl semimetals. The emergence of this system requires
breaking at least one symmetry between P and T , and
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Fig. 2 (a) Gyromagnetic photonic crystal used in experiments. The blue rods indicate the gyromagnetic material and 0.2T magnetic field
is applied along the z direction; (b) top view of actual waveguides; (c), (e) unidirectional and non-reciprocal propagation; (d) robust
propagation against backscattering; (f) reciprocal transmission measured using the bulk photonic crystal and the projected dispersion
including bulk and edge states; (g) non-reciprocal transmission via chiral edge states. Reproduced from Ref. [16]
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is reflected in the topologically surface states in 3D
systems [42,43,126–128]. In 3D nodal line semimetals,
nodal lines are proven to be protected by PT symmetry
with Berry phase π (ℤ2 charge), similar to 2D Dirac cones
[129]. Surface states of this system are protected by T and
screw rotation symmetry and carry non-trivial Chern
numbers.

3 Various photonic crystal platforms

After having a basic understanding of photonic systems
and topological phase transitions of matter, the present
section is focused on the topological photonic crystals with
different material platforms. Starting from the all-dielectric
photonic crystal, this section also moves to photonic
crystals containing metal structures, optical resonator
lattices and photonic crystals of coupled waveguide
systems and finally, other proposals.

3.1 All-dielectric photonic crystals

Since there are no additional losses and advantages for
structural integration, all-dielectric photonic crystals
provide a unified platform for studying topological
phase. The QHE of electromagnetic wave system was
first confirmed experimentally by Wang et al. in 2009 [16].
The sample is made up of 2D magneto-optical photonic
crystals and is measured in the microwave domain as
shown in Fig. 2. The unidirectionally propagating edge
states can be found in the bandgap, and the gap Chern
number Cgap = 1. In 2015, Skirlo et al. performed
microwave measurements in the edge and bulk of
ferromagnetic photonic crystals, and large Chern numbers
Cgap = 2, 3, 4 are present in the experiment [125], which
further the understanding of the QHE effect in photonic
systems.
Quantum spin Hall effects for all-dielectric photonic

crystals can also be realized in two classical ways. One
way is to design a photonic crystal structure with
crystalline symmetries. Wu and Hu [21] first proposed
this method in the honeycomb lattice in 2015. Figures 3(a),
3(b) and 3(c) show the structural design and numerical
simulation. The dielectric rods are arranged in the
honeycomb lattice and formed the two-sites unit cell,
which results in the Dirac dispersion at K and K# points. If
we consider the hexagonal area as the unit cell, the band
folding translates the Dirac points to the Γ point which
leads to a doubly degenerate Dirac cone. The px and py
characters are presented for the lower doubly degenerate
bands, while the upper two bands presented dxy and dx2 – y2

symmetries. Using symmetric and antisymmetric modes
combination, the pseudospin basis can be constructed as
p�, d� and the bands possess nonzero pseudospin Chern
numbers. Generally, Maxwell’s equation represents the

bosonic systems (T2
b = 1), however an antiunitary operator

can be constructed in this system, T2 =ðKTÞ2 = – 1 whereK
represent the parity of p (π=2 rotation) and d (π=4 rotation).
Another way is to construct a photonic crystal using

bianisotropic metamaterials [19,37,132,133]. The unique
advantage of this material is the enhanced flexibility for the
effective dielectric permittivity ε, magnetic permeability �,
and magnetoelectric coupling χ. This idea was first
proposed by Khanikaev et al. in 2013, and the electric
and magnetic response can be written in the form [19]

D

B

 !

¼
ε iχ1

– iχ2 �

 !

E

H

 !

: (6)

The key theoretical insight stems from the condition
ε=�, so that the TE and TM polarized modes have the
same wavenumbers k and ðE,HÞ↕ ↓ð –H ,EÞ. For a given k,
the φþ

k
can be transformed into φ –

– k by a symmetry
operation D, a similar way as the TRS of electron’s spin,
here D2 = –1. Then, the magneto-electric coupling χ

generates a strong spin-orbit coupling of pseudospins.
When χ1 ¼ χ2≠0, the doubly degenerate Dirac points are
gapped out and this topological property is protected by D.
Such quantum spin Hall effects of photonic systems have
been observed in microwave frequencies by Chen et al. in
2014 [132]. After this, three-dimensional (3D) bianiso-
tropic photonic crystals also have been proposed by
Slobozhanyuk et al. in 2017 [37], as shown in Figs. 3(d),
3(e) and 3(f).
Topological photonic crystals that exhibit quantum

valley Hall effects may offer great application aspects in
optical communications [35,134] and integrated optical
devices [134], even though corresponding edge states may
not robust against all kinds of spatial disorders. Quantum
valley Hall effects arise from two Dirac points at K and K#

points in a graphene-like lattice. The Dirac Hamiltonian at
two inequivalent points express as HD =��Dð�xδkxþ
�yδkyÞ � g�z, here δk = k –K is the reciprocal vector, �D
and �x,y,z denote the group velocity and three Pauli
matrices, and g denotes the inversion asymmetric between
two sublattices. For g≠0, nonzero valley Chern numbers
with opposite signs appear at K and K# respectively
(although the global Chern number for the band always
being zeros). Valley edge states exist at the interface
between two different structures with opposite signs g and
–g. In 2017, Chen et al. proposed the idea of all-dielectric
photonic crystals realizing valley Hall effects [135], the
corresponding experiment was confirmed later [136]. In
2019, Shalaev et al. achieved the valley topological
transport based on silicon photonic crystals at telecommu-
nication wavelengths [134]. Since band structures and
projected dispersions can be controlled below the air
dispersion, the valley Hall effects achieved in slabs may
find applications in optical telecommunications devices.
In parallel to the above investigations, topological
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phases in gapless photonic crystals represent another
important set of systems, characterized by Weyl points and
nodal lines [126–128,130,131]. In three dimensions, Weyl
points have a unique linear dispersion, which is in contrast
to the Dirac points in 2D periodic systems. The Weyl
Hamiltonian can be described by the following form

HðkÞ ¼ vxkx�x þ vyky�y þ vzkz�z: (7)

Here, k ¼ ðkx,ky,kzÞ refers the three dimensional
momentum space, and �i are the group velocities.
When either P symmetry or T symmetry is broken, the

nonzero Berry curvature is generated at Weyl points and
causes the Chern number of �1. In addition to the
degeneracy of the points, the degeneracy of the lines is also
important in 3D systems. Such nodal lines can exist in PT

symmetry with Berry phase π. The nodal systems that have
been proposed so far include nodal rings, nodal links,
nodal chains, and nodal knots. In 2013, a gyroid photonic

crystal [130] is proposed to construct Weyl points and
nodal lines by Lu et al, as shown in Fig. 4(a). Afterward,
this idea is realized in the microwave frequencies [126].
Since then, several other similar ideas and experiments
have come into light [127,128,131] (e.g., Fig. 4(b)).

3.2 Metallic photonic crystals

Usually, the metal acts as a wall to prevent waves from
escaping in the direction other than the periodic structure.
However, as a material, metals can also be applied in
photonic crystals. Metal as a component of photonic
crystals is mainly based on two properties. The first one is
that the metal in the long-wavelength range can be
regarded as a perfect electric conductor (PEC), such as
microwave frequencies [22,137–139]. The other is to study
the plasma characteristics using the Drude model, and the
permittivity can be written as [140–143]

Fig. 3 (a) Schematic diagram of triangular photonic crystals; (b) projected dispersion of 2D topological photonic crystals;
(c) electromagnetic field distributions (Ez) in different pseudospins; (d) schematics of the vertical domain composed of bianisotropic
metacrystal; (e) band structures of two kinds of unit cells in (d); (f) dispersion relation of surface states with kjj and k? directions.

Reproduced from Refs. [21,37]
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εr ωð Þ ¼ 1 –
ω2
p

ωðωþ igÞ
: (8)

Here, ω2
p = nee

2=mε0 is the plasma frequency, ne is the
number density of electrons and m means their effective
mass. g is the damping rate of plasma. In 2016, a simple
structure was designed to achieve the quantum spin Hall

effect of photonic crystals by Cheng et al. [22], considering
the PEC properties of metals. Figures 5(a) and 5(b) show
details of design and experimentation, carefully adjust the
degeneracy of two pairs of Dirac cones for TE and TM
modes, the pseudospin states are introduced to form a
switch of topological edge states. In addition, Yang et al.
reported a 3D topological photonic crystal [38] consisting

Fig. 4 (a) BCC unit cell of gyroid photonic crystals and corresponding Brillouin zone; (b) band structures of nodal lines with two air
spheres on two gyroids; (c) schematic of metallic inclusion which includes the saddle shape, and helicoid surface states; (d) Brillouin zone
of metallic inclusions and the band structures with Weyl points (rad/blue points). Reproduced from Refs. [130,131]
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of metallic split-ring resonators (SRRs) in 2019. With the
strong magneto-electric coupling, 3D Dirac points (with 4-
fold degeneracy) tuned to breaking, and Dirac cone surface
states have been observed experimentally at microwave
frequencies. Valley Hall effects can also be realized in
metal systems. In 2017, Wu et al. experimentally realized a
valley Hall transport (surface plasmon) of edge states in the
microwave regime [36]. Gao et al. experimentally demon-
strated two pairs of robust kink states in valley photonic
crystals by suspending a metallic tripod in a C6 lattice
[144]. The system of spoof surface plasmon polaritons
with quantum valley Hall effects is also a good platform to
create analogs of electrons [36]. In addition, the metal
based on the Drude model is applied to study plasma
topological edge states and gapless topological phases
[140,142], and so on. As shown in Figs. 5(c) and 5(d), the
nodal lines are observed in cut-wire metacrystals by Gao et
al. [143] when the plasma dispersion of metal is
introduced. Until recently, the photonic crystals based on
metal are extensively studied due to their strong capabil-
ities of the electromagnetic wave manipulation [22,137–
143,145].

3.3 Optical resonator lattices

Optical resonators have a degree of freedom of transmis-
sion in two directions which can be equivalently described
to a system with 1=2 pseudospins. Due to the existence of
two spins, the topological edge states are propagated in two
opposite directions, which can be analogous to the
quantum spin Hall effect. Optical resonators are usually
described by tight binding models due to their coupling
mechanism. For coupled-resonator optical waveguides
(CROW) containing two sites in a unit structure (as
shown in Fig. 6(a)), the Hamiltonian of the optical tight
binding model can be expressed as [17]

H ¼ – κðΣ�,x,yâ
y
�xþ1,yâ�x,ye

– i2π�y� þ ây�x,yâ�xþ1,ye
i2π�y�

þâ
y
�x,yþ1â�x,y þ ây�x,yâ�x,yþ1Þ: (9)

Here, κ is the mode coupling rate of optical resonators,

ây�x,y is the creation operator and â�x,y is the annihilation
operator of photons at the site of the position ðx,yÞ and the
whole system has two opposite pseudospins � ¼ �1.
Chiral edge states also appear at the corresponding
boundaries and are robust to the defects as shown in Fig.
6(b). The arrangement of the CROW changes when a
single unit is consist of four site resonators [146] as shown
in Fig. 6(d). Figure 6(c) shows that the topological edge
states are insensitive to defects through the experimental
platform of Fig. 6(a). Recent research shows that these
optical resonators can also be used for the measurement of
topological invariants [147], topological lasers [148,149]
and non-Hermitian systems [65,150].

3.4 Coupled waveguide systems

A waveguide coupled along the direction of propagation
ðzÞ can be considered as a paraxial propagation system.
One of the most common representative structures is
depicted in Fig. 7(a), which is fabricated by the
femtosecond laser writing method. Normally, the propaga-
tion of the paraxial light is described by [27]

i∂zψ x,y,zð Þ

¼ –

1

2k0
r2ψ x,y,zð Þ –

k0Δnðx,y,zÞ

n0
ψ x,y,zð Þ: (10)

Here, ψ is the envelope function of the electric field and
k0 ¼ 2πn0=l is the wavenumber of the ambient medium.
Δn is the difference between the ambient medium and the
waveguide medium. When waveguides become helical
along the direction of propagation, the center of the
waveguides changes on different cross sections. The
positions translate into xh ¼ xþ RcosðΩzÞ, yh ¼ yþ
RsinðΩzÞ and zh ¼ z, here Ω ¼ 2π=Z (Z is the period). In
this case, the evolution of the light in helical waveguides
transforms as [27]

i∂zhψh ¼ –

1

2k0
ðrh þ iAðzhÞÞ

2ψh –
k0R

2Ω2

2
ψh

–

k0Δnðxh,yhÞ

n0
ψh: (11)

Here, A = k0RΩ½sinðΩzhÞ,cosðΩzhÞ,0� corresponds to a
vector potential associated with the electric field of circular
polarization. Band structures of Floquet edge states can be
adjusted by R as seen in Fig. 7(b). It can also be seen from
Figs. 7(c) and 7(d) that the topological edge states can still
be transmitted with defects on the boundary.
There is another way to introduce equivalent time

modulation. As shown in Fig. 7(e), four kinds of coupling
J1,2,3,4 appear periodically in the direction of propagation
[30,31]. Similar to the helical waveguides, such a coupling
produces chirality to form a Floquet Chern insulator. The
propagation of edge states is shown in Fig. 7(f) for the
emergence of chiral modes. Until now, optical coupling
waveguide platforms are still widely used to study various
physical problems, such as single-photon (or two-photon)
transmission at topological edge states [151,152], non-
Hermitian waveguides [66,72,77], etc.

3.5 Other proposals

In addition to the coupling mechanisms mentioned above,
various new platforms for implementing coupling in
photonic systems are being constantly explored. A typical
example is a 2D array of monolithic distributed Bragg
reflector (DBR) cavities [18], which is proposed by
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Fig. 5 (a) Arrangement of metallic rods and put into the parallel plate waveguide with different topology characteristics, and the
corresponding band structures; (b) schematic plot of the topological switch and the transmission performance with switch operation;
(c) schematic of metacrystals with copper cut-wire and their band structures; (d) band structures at kz ¼ 0  ð2π=aÞ and kz ¼ 0:1  ð2π=aÞ
planes, and the measured result with the Fourier transform. Reproduced from Refs. [22,143]
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Umucalılar and Carusotto in 2011. The cavities on sites
contain an oblique mirror and are surrounded by DBR,
while phase elements are placed between two cavities as
shown in Figs. 8(a) and 8(b). This oblique mirror is used to
lift the degeneracy of circularly polarized states ��. After
the photons circle around the four cavities, the additional
geometric phase is generated which is similar to the
CROW.
Another type of proposal is based on the combination of

novel material systems and classical photonic crystals. In
particular, recently, some materials (e.g., graphene) have
been demonstrated with many intriguing photonic proper-
ties such as optical absorption, nonlinear effect, plasma
characteristics which enhance the integration of photonic

crystals. Figure 8(c) shows the absorption properties of
graphene in photonic crystals [153], which has the
potential to introduce a non-Hermitian effect into tradi-
tional photonic crystals. Figures 8(d) and 8(e) show the
light-matter interaction in graphene coupled to photonic
crystals [154], which essentially reflects the advantages of
having a composite system.

4 Exciting recent advances of photonic
crystals

In recent times, the research prospects of topological
photonic crystals continue to grow at a considerable rate.

Fig. 6 (a) Two coupled resonators descripted by Hamiltonian with spin freedom and the 2D array of resonators; (b) edge states in
different spins and the transmission in the presence of disorder perturbation; (c) experimental set-up for the measurement; (d) unit coupled
resonators including four link and four site resonators, and the scanning electron microscope image (SEM) of the resonant array;
(e) topological edge states that propagating around the defect in the experiment and simulation. Reproduced from Refs. [17,146]
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Fig. 7 (a) Schematics of the helical waveguides comprising the honeycomb lattice; (b) projected dispersion of straight waveguides
(R ¼ 0  μm) and helical waveguides (R ¼ 8  μm); (c) microscope image of the photonic waveguide array; (d) light propagation at different
distance, z means the length of distances; (e) four different bonds existed in the lattice with coupling constants J1,2,3,4 and the sketch to
achieve it; (f) experiment measured with chiral edge states along different paths. Reproduced from Refs. [27,31]
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The synergy between optical and topological properties
has unveiled the development of various new topics. In this
section, we introduce the higher-order topological photo-
nic crystal and nonlinear effects in photonic crystals, and
non-Hermitian systems. Finally, other proposals are
discussed in photonic crystals, such as topological
insulator lasers, machine learnings for topological photo-
nics, and Fano resonances.

4.1 Higher-order topological photonic crystals

The edge states without backscattering are the key feature
of topological photonic insulators. Typically, the topolo-

gical photonic insulators with n dimensions have the
edge states of n – 1 dimensions. Recent investigation
indicates that some topological insulators have gapped
states of n – 1, n – 2, n –m – 1 dimensions while the
last edge states are n –m dimensional. Hence we call
them mth-order topological photonic insulator [84–87,
91–97]. A second-order topological photonic is shown
in Fig. 9(a), along similar lines of a 2D Su-Schrieffer-
Heeger (SSH) model [155,156], this structure consists of
two kinds of coupling which are achieved by adjusting
the distance of column [94,95]. According to the tight
binding model, the Hamiltonian of this system can be
expressed as

Fig. 8 (a) 2D square lattices made of DBR cavities and connected by phase elements; (b) transmission spectrum (blue line) of two
cavities in (a) and the phase in two cavities (red dashed line); (c) schematic of a graphene layer combined with photonic crystals, and their
absorption; (d) photonic crystals integrated with graphene. Their optical image of microscope and SEM image; (e) fundamental resonant
mode of three-hole defect cavities. Reproduced from Refs. [18,153,154]
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where, h34 = h12 = ta þ tbexpðikxaÞ, h24 = h13 = ta þ tb
expð – ikyaÞ, ta and tb correspond to the internal coupling
and the coupling between units, a is the lattice constant.
Figure 9(b) shows the process of opening-closing-opening
of the band structure. Here, a 2D Zak phase can be
proposed to describe this system.

Pi ¼ –

1

ð2πÞ2
!

BZ
d2kTr Âi�, i ¼ x,y:

�

(13)

Here, ÂiðkÞ ¼ ihψmðkÞj∂ki jψnðkÞi, and m, n refer to the
eigenvectors of the mth, nth bands. For trivial case, the
Zak phase P ¼ ðPx,PyÞ ¼ ð0,0Þ, and nontrivial case
P ¼ ð1=2,1=2Þ. Figures 9(c), 9(d) and 9(e) show the real
structure and the eigenvalues of bulk, edge, and corner
states. Simulation and experiment show that this system
not only has 1D edge states but also 0D corner states as
seen in Figs. 9(f) and 9(g), which reveals the potential of
higher-order topological insulators for dimensional manip-
ulation of topological phenomena. More extensive
research is also being carried out in microwave quadruple
insulator [91], photonic crystal nanocavity [96], breathing
kagome and pyrochlore lattice [84,87].

4.2 Photonic crystals with nonlinear effects

Unlike previous linear systems described by Maxwell’s
equation in linear dielectric and magnetic permittivity,
novel features of a topological system with nonlinear
photonic effects such as Kerr nonlinear effects and strong
photonic interactions [26,47–60], are highlighted in this
part. When the SSH chain model introduces nonlinear
effects such as the Kerr-like nonlinear effect as shown in
Fig. 10(a), the nonlinear Schrödinger equation can be
written as [54]

i
ψn

dt
¼ Ωψn þ Km nð Þψn – 1 þ Kp nð Þψnþ1: (14)

Here Ω ¼ ðω0,v;  v,ω0Þ and ω0,v signifies the on-site
resonance frequency and coupling coefficients of the interior
of a unit cell. KmðnÞ=½0,  k0 þ αðja1,nj

2 þ ja2,n – 1j
2Þ;0,0�

and KpðnÞ=½0,0;  k0 þ αðja1,nþ1j
2 þ ja2,nj

2Þ,0� where k0 is
the linear term (k0>0) and α is the Kerr-like coefficient
(α³0). Figure 10(b) shows the gapped band structure of
trivial case with winding numberW ¼ 0, when the intensity
I ¼ 0. Figures 10(c) and 10(d) show the change of band
structure and winding number with intensity, which
confirms the fact that the intensity-dependent nonlinear
effects can lead to topological phase transitions.

Using the interplay of particle interactions, external
fields, and spatial symmetries, the rotation of photons in
one direction indicates the breaking of TRS [56] as shown
in Figs. 10(e) and 10(f). Noninteracting photons rotate like
single photons and the direction is determined by synthetic
magnetic fields. For strong photonic interactions, the path
of photon vacancies appears in the opposite direction. In
addition, topological aspects of nonlinear photonic crystals
are constantly being explored such as nonlinear Floquet
systems [26,55], nonlinear control of edge states [59] and
interacting Harper–Hofstadter model [57].

4.3 Non-Hermitian photonic crystals

Photonic crystals with gain and loss have known to possess
exotic non-Hermitian topological effects, both fundamen-
tally and in respective their applications. The bulk-
boundary correspondence [70] and symmetries (especially
PT symmetry) [73] are the two of the most active lines in
non-Hermitian systems. The unique features imposed by
non-Hermiticity is the exceptional point (EP). First, let’s
examine the situation of a single EP, which is essentially
the non-Hermitian degeneracy point in parameter space.
Notably, it is also the point at which PT symmetry is
spontaneously broken and eigenspace collapses [157,158].
Consider a case for which a pair of exceptional points
merge into a Dirac point, and the non-Hermitian
Hamiltonian is given by [79]

H ¼ ðkx þ iδÞ�x þ ky�y: (15)

Here, two EPs appear at k ¼ ð0,� δÞ, as δ↕ ↓0, the EPs
translate into the Dirac point. In addition, the vorticity of
band structures can be defined as

vmn ¼ –

1

2π
#

Γ
rkArg Em kð Þ –En kð Þð Þ⋅dk: (16)

Here, Γ is a loop of momentum space, Em and En are the
eigenfrequencies of m,n bands. The vorticity of each EP is
�1=2 respectively as shown in Fig. 11(a).
The other situation is slightly different, for the onsite

gain or loss, the Hamiltonian of Dirac dispersive can be
rewritten as [67]

H ¼
ig vDðkx – ikyÞ

vDðkx þ ikyÞ – ig

 !

: (17)

Here, vD is the group velocity, and g signifies the offset
of gain and loss. The complex eigenvalues E�

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vDðk
2
x þ k2y Þ –g

2
q

, which refer to the ring of EP

appeared when k satisfies the condition vDðk
2
x þ k2y Þ ¼ g2.

For experiments, the waveguide array system can
satisfactorily achieve this effect in the 1D situation as
shown in Fig. 11(b). The topological edge state in PT
symmetric system has been experimentally demonstrated
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by Weimann et al. in 2017 [72]. Photonic crystals slabs
provide a radiation-induced platform for a 2D situation due

to the non-Hermiticity-induced form radiation. As shown
in Fig. 11(c), the SEM image and experimental results

Fig. 9 (a) 2D lattice of photonic crystal, where d1 and d2 corresponding to the coupling expressed in distance; (b) band structures of
trivial, gapless, and nontrivial situations; (c) diagram of 3D structure; (d) photograph of higher-order topological insulator surrounded by
ordinary insulators; (e) eigenfrequencies of bulk, edge and corner states; (f) simulation of corner states; (g) experimental measurement of
the corner states. Reproduced from Ref. [95]
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Fig. 10 (a) Nonlinear SSH model, two resonators in every unit cell; (b) band structures of trivial case when the mode intensity I ¼ 0;
(c) width of band gap changed by intensity; (d) winding number tuned by intensity; (e) time evolution of excitation probability for single-
photon state in three qubits Q1,2,3; (f) probability for a two-photon case. Reproduced from Refs. [54,56]
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indicate that this system can be described by the
Hamiltonian we discussed above [67].
The bulk-boundary correspondence of non-Hermitian

systems also encountered challenges in the following three
respects. One is how to define a gap for complex band
structures, Shen et al. [79] provide the proposals to define
“separable,” “isolated” and “inseparable” by their eigen-
values EnðkÞ≠EmðkÞ, EnðkÞ≠Emðk#Þ and EnðkÞ=EmðkÞ,
where n≠m. The second one is the extreme sensitive
relationships of the band structure to boundary conditions
[159]. The third one is all eigenstates may be localized at
the boundary for an ordered non-Hermitian lattice [159]. In
addition to the above-mentioned works, recently there has
been a great deal of interest in different systems and
models such as non-Hermitian SSH models [72,76], non-
Hermitian Chern bands [81], and zero modes in a non-
Hermitian system [77]. Topology and different symmetry
paradigms can yield interesting effects in the non-
Hermitian topological setting [160].

4.4 Other proposals

For a long time, besides the exciting possibilities in
topological physics, researchers have also been exploring
applications of topological photonic crystals. Topological
insulator lasers have recently been proposed as highly
efficient lasers, robust to disorders and defects. The
topological insulator laser of 1D periodic systems mainly
built on the SSH model [155,156] using coupled micro-
pillars [161] or microing resonators [162]. In 2017, St-Jean
et al. reported the lasing of topological edge states in
zigzag chains of coupled semiconductor micropillars
[161]. The topological edges states present a nonzero
Zak phase and the robustness of against lattice deforma-
tions. Interestingly, the px,y modes participate in this
topological model and lead to the edge states of p orbitals.
In 2018, Zhao et al. proposed to introduce the non-
Hermitian mechanism in SSH models to realize zero
modes, which are suitable for integrated silicon photonics
[163]. Besides, the topological lasing in the microing
resonators [162] and nanocavities [164] has also been
proved experimentally. For a 2D periodic system, recently,
Harari et al. [148] proposed a 2D topological insulator
laser based on the Haldane model [165], where the
dynamics is described by the real coupling between nearest
neighbors, and the complex coupling between next-nearest
neighbors opens a bandgap at the Dirac points. By
introducing gain characteristics at the boundary, semicon-
ductor lasers support single-mode and high-power trans-
port without magnetic fields. In the same year, Bandres et
al. first demonstrated this lasing phenomenon experimen-
tally [149].
Machine learnings, as one of the most exciting science

tools, have proved to effectively work on both physics and
applications for topological photonics [166]. Recently, the

machine learning for 1D topological photonic crystals
shows the potential of this technique. In 2018, Pilozzi et al.
[167] trained an artificial neural network (ANN) for the
Aubry-Andre-Harper band structure. Using this ANN,
topologically protected edge states at the target frequency
can be obtained by identifying parameters of 1D
topological insulators. In 2019, Long et al. focused on
the correlation between Zak phases of 1D photonic crystals
and space parameters by machine learnings. By determin-
ing the Zak phase property, band structures of the system
can be determined, which present a bright future for the
inverse design of topological photonic crystals [168]. For
higher-dimensional photonic crystal, recently, Barth and
Becker presented a method by combining the light field in
2D photonic crystals and classification of photonic modes.
Large amounts of data collected by numerical simulations
or experiments are clustered and identified into different
spatial properties by machine learnings [169].
Fano resonances [170] occur when discrete quantum

states interfere with states of the continuum spectrum with
a sharp asymmetric transmission, showing the potential
application in sensing and switching of photonic crystals
[171–173]. Until recently, Fano resonances in topological
photonic crystals present a high quality and topologically
protected cavity [174,175]. In 2018, Gao et al. combined
the topological edge states and Fano resonances, experi-
mentally produced a high-quality (Q � 104) resonance in
optical communication ranges [174]. In 2019, Zangeneh-
Nejad and Fleury induced the concept of topological Fano
resonances and demonstrated that the ultrasharp spectrum
for Fano resonances robustness to the geometrical disorder
[175]. They claimed that, as a general property of waves,
topological Fano resonances can also be found in
plasmonic, optical, and microwave systems.

5 Conclusions

In summary, we have presented a brief review of the recent
achievements in the area of topological photonic crystals.
In analogy with topological phenomena in condensed
matter physics, its photonic analog has received increased
attention due to many unique advantages reminiscent of
photonics, such as controllable photons interactions [57],
rich varieties of the coupling mechanism [127,132,137,
154,176], and versatile experimental settings [24,31,125,
126,132,133,143]. In addition, since it is rooted in the
photonic system, topological photonic crystals can also
take advantage of optical effects such as nonlinear optical
effects [31,47,48,50,52,53,55,59,100,101,112,133], gain
or loss systems [62,67,69,77,78,91,142], optical propaga-
tion systems [26,27,30,33,34,98], anisotropic (or bianiso-
tropic) materials [132,133], and quantum optics [57,110].
The results are promising not only in fundamental
understanding pertaining to these fields but also numerous
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Fig. 11 (a) Dispersion of non-Hermitian system near the exceptional points; (b) array of passive waveguides and realized structure of
fused silica glass; (c) SEM image of photonic crystal slabs and their band structure measured by experiment. Reproduced from
Refs. [67,72,79]
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optical applications such as topologically protected edge
states without backscattering [15,31,74,82,137,146], topo-
logical lasers [148,149], and topological waveguides
[14,24,132].
In future, many active directions of research could find

important ramifications, such as: integrated and tunable
robust transports, which play an important role in the
promotion of topological devices; topological active
devices such as integrated topological lasers and quantum
sources, which can widen the scope of quantum commu-
nication and quantum optics; direct measurements of
topological phases which can play an important role in the
display of topological information of photonic crystals. It
can be anticipated that with the continuous developments
of topological phases of matter in new directions with
intriguing physical effects at one hand and an equally
complementary micro- and nanofabrication technology on
the other, topological photonic crystals will find increasing
scientific interests.
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