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Abstract: Polarization singularities of vectorial electro-

magnetic fields locate at the positions where properties of

polarization ellipses are not defined. First observed for

conical diffraction in 1830s, polarization singularities

have been studied systematically with the underlying

concepts being reshaped and deepened bymany pioneers

of wave optics. Here we review the recent results on the

generation and observation of polarization singularities in

metaphotonics. We start with the discussion of polariza-

tion singularities in the Mie theory, where both electric

and magnetic multipoles are explored from perspectives

of local and global polarization properties. We then pro-

ceed with the discussion of various photonic-crystal

structures, for which both near- and far-field patterns

manifest diverse polarization singularities characterized

by the integer Poincaré or more general half-integer Hopf

indices (topological charges). Next, we review the most

recent studies of conversions from polarization to phase

singularities in scalar wave optics, demonstrating how

bound states in the continuum can be exploited to

generate directly optical vortices of various charges.

Throughout our paper, we discuss and highlight several

fundamental concepts and demonstrate their close

connections and special links to metaphotonics. We

believe polarization singularities can provide novel per-

spectives for light-matter manipulation for both funda-

mental studies and their practical applications.

Keywords: bound state in the continuum; metaphotonics;

metasurface; optical vortex; photonic crystal; polarization

singularity.

1 Introduction

Singularities represent a pervasive concept in different

areas of mathematics and physics, constituting the

fundamental skeletons and frameworks for many related

concepts and their applications [1–3]. The field of singular

optics originates from direct observations of singular

points in intensity (caustics), phase (vortices), or polari-

zation [4–8]. At the level of geometric optics, an optical

beam is interpreted not as a single ray but as a bunch of

rays with the envelopes termed as caustics [9]. From the

perspective of geometric optics, the caustics locate at the

positions where the light intensities diverge, and thus

become singular. Rainbows are essentially caustics of

intensity singularities, as pointed out by R. Potter and

G. B. Airy back to 1830s [10–12]. They also appear as

cusp-shaped highlighted curves formed in a teacup when

sunlight is reflected by the cups’ interior walls (see

Figure 1A) [5, 13]. However, geometric optics breaks down

at these singular points where the intensity divergence

is extinguished by wave effects of interference and

diffraction.

Singularities are found in many problems of wave

optics. At the next level of scalar wave optics, it was

realised in the mid-1900s that there are specific regions

(could be points or lines) where the phase is ill-defined,

and around those regions there are gradient phase

distributions and optical power circulations. Those points

correspond to phase singularities (optical vortices) [7, 13,
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14, 16, 17], a specific example of which is shown in

Figure 1B for the three-slit interference experiment

[14, 18–23]. At the higher level of vectorial wave optics,

singularities (generally moving over time) appear where

the field vector vanishes at a certain moment. Those sin-

gularities are called disclinations [24]. Interestingly, if a

disclination is pinned somewhere, for example at

the center of a basic waveguide for the TM01 mode, it

could result in an intensity null point (see Figure 1C) [25].

Such a stationary disclination is called a vector polariza-

tion singularity, which actually was firstly observed in

conical diffraction in 1830s and later studied in various

anisotropic crystals [20, 26–31]. As for the steady behav-

iors of electromagnetic waves, polarization ellipses as

the orbits of the oscillating field vectors can be employed

for characterizations, which can be represented effec-

tively by line fields in terms of the semi-major or

semi-minor axes of the ellipses [5, 6, 32–35]. Elementary

singularities of electromagnetic polarization fields are

either circularly polarized positions where the semi-major

or semi-minor axes are not defined, or linearly polarized

positions where the normal vectors perpendicular to the

ellipse plane are not defined. Of course, vector polariza-

tion singularities are also polarization singularities in

such fields, which nevertheless are not generic and can

be easily broken into circularly polarized singularities

by applying perturbations, provided the polarization

charge is an integer. In addition to those fields which

are completely polarized, polarization singularities may

even appear in a partially polarized field. During the

1800s, researchers discovered polarization singularities

in a clear sky where sun light is unpolarized [36–43],

which were then revealed to exhibit interesting polariza-

tion patterns [15] (see Figure 1D).

A special attention has been paid to the study of op-

tical singularities [5, 7, 8, 14, 44–46]. Examples include an

optical vortex beam, being a typical case of phase

singularity discovered to carry an orbital angular mo-

mentum of light [47, 48], and vortices of polarization states

(polarization singularities) in cylindrically polarized laser

beams [49] enabling tighter focusing [50–53]. Moreover,

singularities of wave optics can be employed to facilitate

optical communications [54–56] and enhance light-matter

interaction [57–59].

Over the past decades, studies on wave optics have

been extended to the microscale and even nanoscale

realm, yielding the new field of metaphotonics that

enables unprecedented manipulations of light-matter

interactions. Metaphotonics is a novel direction of

research regarded as metamaterial-enabled photonics

driven by strong optically-induced magnetic resonances

of nonmagnetic structured elements [60]. Metaphotonics

combines the concepts of metamaterials and nano-

photonics, and it offers a unique platform for achieving

unusual electromagnetic response on a scale much less

than the wavelength, although several practical applica-

tions are strongly hampered by device fabrication

complexity. As has been realized recently, optical singu-

larities, especially polarization singularities, play essen-

tial roles in such structures, and they have triggered

surging research enthusiasm.

In order to illustrate the current state of the field of

metaphotonic-driven polarization singularities and predict

its development in the future, here we review the recent

discoveries concerning topological polarization singular-

ities in nanophotonic structures and metasurfaces. More

specifically, in Section 2 we discuss the polarization sin-

gularities associated with individual multipoles and their

combinations manifested in far-field radiation. Section 3

covers the polarization singularities of the Bloch eigen-

modes supported by metaphotonic structures in the far

field. Section 3.1 reviews the nondegenerate polarization

singularities and their link with bound states in the con-

tinuum (BICs), Section 3.2 surveys the degenerate cases

and non-Hermitian effects, and then Section 3.3 discusses

Figure 1: Examples of optical singularities.

(A) Cusp-shaped caustic in a teacup. (B) Phase singularity in a three-

pinhole diffraction. (C) Vector polarization singularity for the TM01

waveguide mode. (D) Line-field polarization singularities in clear

sky. The image (B) is reproduced from Ref. [14], and the image (D) is

adapted from Ref. [15].
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some works studying conversions from polarization sin-

gularities to phase singularities. Section 4 introduces both

manipulation and observation of polarization singularities

in the near-field of nanoscale structures. Finally, Section 5

concludes the paper.

2 Polarization singularities and

electromagnetic multipoles

Currently, many different types of metamaterials and

metasurfaces are being designed to modulate the far-field

properties of radiation. In these structures, particles

made of metals, high-index dielectrics or their hybrids are

usually chosen to be the building blocks. Basically, to

clarify the far-field radiations of finite scattering bodies in

terms of polarization singularities is crucial for the un-

derstanding of many related phenomena. For those finite

structures, individual scattering particles in particular, Mie

theory is well-suited to be employed to analyze the far-field

behavior of the resonances supported. The fields of reso-

nances can be expanded into the complete and orthogonal

sets of vector spherical harmonics [61–65]. Different

multipolar moments (including electric and magnetic

multipoles of various orders) have different far-field radi-

ation patterns.

In the Mie theory, the subject of radiation direction-

ality enhancement with proper design of the interferences

among different multipolar radiation channels has

attracted enormous attention [65, 68–70] (see also refer-

ences therein). At the same time, there is actually another

phenomenon worth detailed discussions. That is, there

will be directions along which the radiation vanishes

(non-radiative singularities, which are also special sorts

of polarization singularities characterized by integer

indexed or topological charges). Moreover, the radiation

intensity will be greatly suppressed in the vicinity of those

non-radiative directions. This phenomenon would lead to

a possible effect: the more non-radiative singularities

there are in the far field, the more suppressed the radia-

tion would be, and thus the larger the quality factor

(Q-factor) of the resonance. Such an effect serves as the

underlying origin of high Q-factor supercavity modes in

subwavelength dielectric resonators [71], the radiations of

which can be represented by a combination of various

multipoles. The hypothesis was firstly briefly mentioned

in Ref. [72] and clarified systematically in Ref. [73]. In these

studies, Q-factor enhancement was observed when the

dominant multipolar moment of the supermodes is con-

verted from lower to higher order, accompanied by an

increase in number of suppressed intensity points.

Koshelev et al. in [74] applied the Q-factor enhancement

effect to boost the second-harmonic-generation efficiency

of AlGaAs nanoparticles. In their work, with the dominant

multipolar moment converted from a dipole to an octu-

pole, the Q-factor of the resonance is enhanced by several

orders.

The far electromagnetic fields of radiations are intrin-

sically transverse. As a result, the instantaneous far field of

an individual linearly polarized multipole can be repre-

sented by a tangent real-vector field on a momentum

sphere. In fact, the intensity null points in the far field are

one kind of polarization singularities, stationary dis-

clination singularities (vector polarization singularities or

V-points) [24]. In 2017, Garcia-Etxarri noticed this impor-

tant fact and conducted analytical calculations of the

vector fields scattered by a high-index nanoparticle [75].

The calculations showed that the two non-radiative poles

in the far field of the dominant electric (or magnetic) dipole

moment correspond to two stationary disclinations. A later

paper by Chen et al. in [66] gave a systematical analysis on

the far-field V-point distributions for multipoles of various

orders. It is found that there can be V-points both at the

poles and away from the poles. The real-valued expression

of the vector spherical harmonic Mlm

Mlm = −sin(mϕ)πlm(θ)êθ

−cos(mϕ)τlm(θ)êϕ,
(1)

where τlm(θ) =
d
dθ
Pm
l (cosθ),πlm(θ) =

m
sinθ

Pm
l (cosθ), and

Pm
l (cosθ) denotes associated Legendre polynomials, is

chosen to characterize the electromagnetic field of a mag-

netic multipole. For such a representation, there is no

phase difference between the vectors and the radiated light

is linearly polarized everywhere. Defining the Poincaŕe

index (or equivalently the topological charge) Indp as the

winding angle of the field vectors around the singular point

divided by 2π, it is found the indices of V-points at the poles

are

Indp = 1 − |m|, (2)

while the indices and positions of other V-points would be

Indp = −1,  cos(mϕ) = πlm(θ) = 0,

Indp = +1,  sin(mϕ) = τlm(θ) = 0.
(3)

From Eq. (3) it is clear that there would be 2|m|(l − |m|)

V-points with index of −1 and 2|m|(l − |m| + 1) V-points

with index of +1. Summing all the indices on the mo-

mentum sphere, the total index will always be +2, which

agrees with the Poincaré-Hopf theorem [76, 77]. On the

other hand, the result of an electric multipole Nlm can be

W. Liu et al.: Topological polarization singularities in metaphotonics 1471



similarly derived from the expression of Mlm above

considering the duality of Maxwell equations and the

tangent field premise, transforming the basis:

êϕ→ −êθ, êθ→ êϕ. Such a transformation will neither

change the position nor the index of the singularity and

index distributions. Consequently, both electric and mag-

netic multipoles with the same quantum numbers (l,m)

have the same index distributions. Figure 2A adapted from

[66] illustrates examples of the studied multipolar far-field

patterns and the corresponding vector field patterns

around the V-points. The authors also discussed the

V-points in the vector field of combined multipoles which

are kept to be linearly polarized, finding that a combined

multipole such as (the Kerker dipole or a quadrupole) has

only one singularity of index +2.

The aforementioned topic went further in [67],

extended from real vectors to complex vectors (also linear

polarizations to more general elliptic polarizations) that

are characterized by line fields rather than vector fields.

The same Poincaré-Hopf theorem was therefore applied

to these line-field singularities [78, 79]. Defined as the

winding angle of polarization major (or minor) axes

divided by 2π, the topological indices (called Hopf

indices, Indh) of singularities in a line field can be half

integers. The first row of Figure 2B gives some examples of

line singularities with different Hopf indices. Importantly,

a line singularity can not only be a V-point which we have

introduced above, but also a circularly polarized point

(C-point) where the field oscillates in a circular orbit. A

C-point and a V-point are indistinguishable in a line field,

but in the actual complex-vector field they are totally

different. For a V-point, the ill-defined direction of the

polarization state is accompanied by a zero intensity. In

contrast, for a C-point, though the azimuthal angle of the

polarization state is as well ill-defined, the intensity does

not vanish. Moreover, C-points cannot be defined in an

instantaneous real-vector field. Instead of V-points,

C-points of indices of ±1/2 are generic singularities in the

complex vector field, and V-points of integer indices

can be broken into a series of C-points by further

perturbations.

In order to study the far-field complex-vector field

in an analytical way, complex-valued expressions of

spherical harmonics Nlm (isolated electric multipoles) and

Mlm (isolated magnetic multipoles) can be adopted as the

set of basis:

Nlm = [τlm(θ)êθ + iπlm(θ)êϕ] [krzl(kr)]
′

kr
exp(imϕ),

Mlm = [ iπlm(θ)êθ − τlm(θ)êϕ]zl(kr)exp(imϕ).

(4)

One would find that behaviors of the far field of funda-

mental multipoles being studied here are pretty different

from the previously studied real-valued ones (actually

they are complex combinations of the ‘new’ basis here).

Looking into Eq. (4), the conclusion can be drawn that, for

arbitrary order of multipolar moment there can only be

two isolated polarization singularities with Hopf index

Indh equals to +1, which might either be C-points or

V-points, at the two poles of the far field. To obtain

V-points or C-points with other Hopf indices like ±1/2,

combinations of the complex multipolar basis are neces-

sary, for which some specific examples are shown in the

second row of Figure 2B. The first case in the second row of

Figure 2B can be viewed as a good example that an integer

V-point is perturbed into a pair of half-integer C-points.

There would be two V-points of index +1 at both sides of

the equator originally when a1,1 = a1,−1. Then, with a1,1

reduced, the total number of singularities will increase, as

shown, and the Hopf index per singularity degrades. The

sum of Hopf indices over the momentum sphere are still

secured by Poincaré-Hopf theorem to be +2 for all cases.

Those studies provide insights into the relation be-

tween the properties of local resonances supported by

finite scattering bodies and the far-field landscapes of

A

B
+1/2

Lemon 
-1/2 +1/2

Monsta
r

-3/2

↑-1/2 ↑ -3/2

44a 4,-4a=-
=100 1,-1a

↑ -1↑-1/2

33a 3,-3a=-
=20 3,1a

↑↑ +1/2

1,1a = -10/9 1,-1a

Baseball Line Field

-1 1S   3

Figure 2: (A) (Up) intensity null points in far-field radiation patterns

of individual multipoles. (Down) examples of polarization singular-

ities in the instantaneous vector fields of multipoles. (B) (Up) ex-

amples of polarization singularities in the polarization fields of

compositemultipoles. (Down) existence of polarization singularities

with half-integer Hopf indices in their polarization fields. (A) is

adapted from [66] while (B) is adapted from [67].
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polarization singularities. Since particles are building

blocks of metamaterials, the multipolar perspective based

on polarization singularities serves as a new viewpoint to

clarify complicated phenomena in metaphotonics, as will

be further discussed in the next sections.

3 Two-dimensional periodic

photonic structures

As introduced in the previous section, polarization sin-

gularities have been observed in the far field of finite

scattering bodies that can serve as building blocks of

extended metaphotonic structures. Those questions thus

naturally arise: will there also be optical singularities in

the far field of infinite metaphotonic structures? Will

those singularities lead to interesting phenomena or ap-

plications? The answers are yes. In this section, we focus

on two dimensional (2D) periodic structures composed of

nano-particles or holes as unit cells. Basing on the

radiative Bloch modes, 2D periodic structures can be

employed to flexibly modulate light propagation and the

polarization state.

3.1 Radiative Bloch modes without

degeneracies of photonic bands

Two-dimensional periodic photonics structures, e.g. pho-

tonic crystal slabs (2D PhC slabs), plasmonic crystals, and

periodic metasurfaces, are the structures composed of

identical units forming a two-dimensional lattice. Due to

periodicity, both localized and propagating modes in

the structure will turn into Bloch modes with well-defined

in-plane Bloch wave vectors k∥. The Bloch modes will form

photonic bands, and the part of the bands above the light

cone is radiative, producing radiations to the free space. In

last section, we have shown that polarization singularities

are generic in the far field of finite scattering bodies that

are building blocks of metaphotonic structures. Since the

optical response of a 2D periodic structure can be effec-

tively viewed as the collective behavior of its building

blocks (after considering the coupling among different

unit cells), it is expected that there will be polarization

singularities for Bloch modes in the far field too.

Early observations of polarization singularities in the

far fields of 2D periodic structures are associated with

bound states in the continuum. In 2014, Zhen Bo et al. [80]

firstly reported the existence of vector polarization

singularities in the radiation far field of PhC slabs. It is

worth mentioning that the definition of the far field in this

work is a little different from those in conventional studies,

where the frequency is variant rather than fixed. To be

more specific, the far field here is defined on one specific

photonic band, which means the frequency is varying

with changing in-plane wave vectors k∥ = (kx, ky). Polari-

zation state of each Bloch resonant mode on the studied

band can be mapped onto the defined far field (or the

momentum space), constructing a far-field polarization

field. Vector polarization singularities (V-points as

mentioned previously) may appear in this polarization

field and radiation intensity at those singularities would

vanish. The corresponding states will therefore be non-

radiative although they fall into the radiative continuum

(the light cone), i.e. they are bound states in the continuum.

The band taken as an example was the second TM-like

band of a PhC slab. Five V-points can be found in the

simulated polarization field, and the Q-factor map directly

proves the corresponding BICs, of which the Q-factors tend

toward infinity. Analyzing the relationship between the

symmetry and the polarizationfield, the authors concluded

that the index of the central pinned V-point is determined

by the symmetry of the system: the higher the fold of

rotational symmetry is, the larger the index may be. In

addition, they also showed the movement, annihilation

and emergence of the V-points (also BICs) in PhC slabswith

other symmetries by numerical calculations.

Afterwards in 2018, Zhang et al. [81] made the first

direct observation on the far-field V-points on photonic

bands in a C4v symmetric plasmonic crystal (see Figure 3A).

Applying a Fourier-transformation-based spectroscopy,

they were able to measure the angle-resolved extinction

spectra, which showed the band structure, as plotted in

the first panel. Analyzing the measured extinction which

is reciprocal to radiation, they mapped out Q-factors of

resonances on SPP band 1, and reconstructed the polari-

zation field considering not only the polarization azimuths

(see second panel of Figure 3A) but also the polarization

ellipticity. Five V-points (also BICs) were observed. They

also exhibited the polarization-resolved band surfaces

obtained by summing the iso-frequency extinction maps,

which directly visualized thewinding polarization states in

the vicinity of the V-points as dark patterns spinning with

the analyzer.

The same year, another work also proved the existence

of vector polarization singularities on the photonic band of

a grating [83]. They found that the reflected polarization

states near the BIC on the studied photonic band also

appeared to be winding. As a supplement to the papers

W. Liu et al.: Topological polarization singularities in metaphotonics 1473



mentioned [80, 81], a note from C. W. Hsu et al. [84] gave

the theoretical proof that the polarization states of radia-

tion from 2D periodic structures are generally elliptical.

However, with an in-plane C2 symmetry, the ellipticity of

the polarization states would be close to 0. In 2019, Liu

et al. [82] introduced symmetry breaking into Si3N4 PhC

slabs, and found that the previously studied V-points

would be perturbed into more elementary polarization

singularities, the C-points. With the square holes in the

studied slabs gradually transformed to isosceles trapezia

and then isosceles triangles, the in-plane C2 symmetry of

the system is further broken, resulting in the decomposi-

tion of the integer-charged V-points into C-points with

half-integer Hopf indices and the rise of ellipticity of

the polarization states in the far field (see Figure 3B). The

authors also explored the possibilities to modulate the

momentum-space polarization field with different types of

symmetry breaking.

About the origin of the polarization singularities in

the far field defined on photonic bands, the multipolar

expansion perspective introduced in the previous section

[66, 67, 85] can be applied, though the modes may be

extended states rather than localized resonances. Bloch

modes in 2D periodic structures can be expanded into

periodically distributed multipole moments, and far-field

singularities of the structures are revealed to stem from

the ones in the far field of the combinations of expanded

multipoles. As examples, Chen et al. [66, 67] gave the far

fields of the multipoles expanded from the Γ-point BICs

on the second TE-like band and the second TM-like

band in a C2v-symmetric PhC slab, and also mapped the

ellipticity distributions of the far field obtained by

expanding specific modes on the second TE-like band of a

C2v-symmetry-broken PhC slab. Both the examples given

show obvious correspondence between the polarization

singularities in the expanded radiation field and the

ones in the far field defined on photonic bands. The

intensity null points (V-points) in the expanded radiation

patterns forced by symmetry correspond to the symmetry-

protected Γ-point BICs, and themobile off-ΓBICs originate

from the null-points caused by destructive interference.

Meanwhile, the C-points originating from complex

combinations of multipoles correspond to the circularly

polarized modes near the Γ point as a result of C2

symmetry breaking.

The paper [82] is, to the best of our knowledge, the very

first study in which the generic polarization singularities

(that are C-points rather than non-generic V-points) into

the far field of metaphotonic structures. Following this

work, a lot of studies concerning polarization singularities

in metaphotonics have been conducted. Ye et al. reported

the existence of C-points near the boundary of the first

Brillouin zone of a hexagonal PhC slab which may be

related to diffraction [87]. Yin et al. discovered that, by re-

merging two C-points separated from a Γ-point V-point

(BIC) in a PhC slab with a substrate, a guided resonance

which radiates to only one direction can be realized [88].

Guo et al. showed that by lifting theDirac degeneracy at the

Brillouin zone edge of a honeycomb PhC slab, C-points and

meron spin textures would be generated on the valleys

[89]. Yoda et al. gave further results on manipulations of

polarization singularities in the far field of 2D periodic

structures, in which they discovered another type of

singularity decomposition which is different from the

aforementioned V-point-to-C-point conversion process:

one V-point of index −2 split into two V-points each of

index −1 in a system of which the symmetry is broken from

C6v to C2v. In addition, generation of six C-points from one

V-point was also shown possible with the symmetry of

system broken from C6v to C3v [90]. The so-defined far-field

polarization fields on photonic bands may contain infor-

mation of band topologies and topological properties of the

system [91], which brings a new vision to the research of

metaphotonics and topological photonics. Besides, due to

the high-Q nature of the far-field V-points, 2D periodic

Figure 3: (A) Direct observation of polarization singularities in the

far field of a square-lattice plasmonic crystal in the form of

absorption spectra. Left: the measured band structure of the

plasmonic crystal. Right: the reconstructed far-field polarization

field on band 1 of the plasmonic crystal, showing existence of five

vector polarization singularities. (B) An example of spawn of

circularly polarized states (C-points) from a vector polarization

singularity (V-point) in the momentum-space polarization field of a

photonic crystal slab. When the holes are transformed from

squares to isosceles triangles, the V-point correspondingly

separated into two C-points. (A) is adapted from [81] and (B) is

adapted from [82].
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structures may potentially be employed to produce vecto-

rial laser beams [92–96].

3.2 Radiative Bloch modes with

degeneracies of photonic bands

We introduced a far-field polarization field defined on

one photonic band of a 2D periodic structure in last sec-

tion. One would find that, most discussions on such

momentum-space polarization field concentrated on

singlet states. On account of the common existence of

degeneracies in 2D periodic structures and their unique

properties, the discussion should be extended to degen-

erate states. A paper from Chen et al. [86] discussed about

this topic. The authors argued that the previous definition

of polarization fields on photonic bands shall still be

applicable with the existence of degeneracies. Obviously,

polarization states of all the Bloch singlet modes on

the photonic bands are still well-defined under this

definition. Whereas, a degeneracy is a superposition of

multiple modes, so its polarization state is automatically

undefined. Consequently, as the touching points of

bands, the degeneracies can be naturally treated as sin-

gular points of the polarization field.

The authors also proposed that the topological

charges of the degenerate polarization singularities may

be associated with the symmetries protecting them, hence

can reflect the symmetry-protected local topological

properties of the degeneracies. In Figure 4A, the authors

plotted the two general classes of degenerate states in

2D periodic structures with corresponding schematic

polarization configurations: quadratic degeneracies and

linear degeneracies (diabolic or Dirac points). Quadratic

degeneracies may be protected by rotational symmetries

of order higher than two at high-symmetry points of

Brillouin zone. Meanwhile, Dirac degeneracies may be

protected by a product of C2 and time-reversal (T ) sym-

metry. For quadratic degeneracies which are trivial in

topology, a closed loop around the degenerate point on

either degenerate band will introduce trivial geometric

phase. Consequently, tracing around such a loop, the

polarization state can return to itself with no effective

phase shift, i.e. the polarization singularity shall be an

integer-charged point.

In contrast, the loop around a Dirac point is accom-

panied by a π Berry phase, making the charge of the

polarization singularity to be a half-integer. This can be

viewed as a Bloch analogue of the Hamilton’s diabolo in

biaxial crystals [20, 26, 27, 31]. It is worth emphasizing

that, the two classes of degeneracies can be connected by

symmetry breaking: a quadratic degeneracy will split into

two Dirac points when the symmetry of system change

from Cnv to C2v (with T symmetry not broken) [97].

The authors utilized this connection to show the rela-

tionship between the polarization singularities carried by

quadratic degeneracies and Dirac degeneracies (see

Figure 4A). Along with the split of Dirac degeneracies

from quadratic degeneracies, the corresponding integer

vector polarization singularity would split into a pair

of half-integer singularities. This V-point-to-V-point

decomposition at degeneracies appears to have one

Figure 4: (A) Schematic views of polarization singularities at band degeneracies. A quadratic degeneracy will have a radiative integer-index

V-point, while a linear degeneracy (Dirac point) will have a radiative half-integer-index V-point. A quadratic degeneracy is protected by

rotational symmetry higher than two folds, and by breaking the symmetry of a plasmonic crystal from C4v to C2v (see insets), it will split into

two linear degeneracies, and the corresponding V-point would split as well. (B) An example of naturally existing C-points near a Dirac point at

the corner of a hexagonal-lattice photonic crystal slab. Their mergence with the radiative V-point at the Dirac point would result in a

non-radiative V-point, i.e. a BIC. Left: the quality factor map of the Dirac degeneracy. Right: the polarization map on the upper band of the

degeneracy, before and after the mergence. (A) is adapted from [86] and (B) is adapted from [87].
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thing in commonwith the process Yoda et al. [90], that the

in-plane C2 symmetry of the system is maintained. It hints

that V-points in the far-field polarization field of periodic

structuresmay be protected by some in-plane symmetries.

The authors verified the proposed theory by simulations

of a plasmonic crystal. They also observed the singular-

ities with the same method as in [81], and discussed

the case of accidental degeneracies. Later, in work from

Ye et al. [87], the authors showed cases that vector po-

larization singularities (or V-points) also appear at the

Dirac points on the edges of the first Brillouin zone in a

honeycomb-lattice PhC slab. The complex interference

between radiation channels beyond the diffraction limit

can also lead to appearance of circularly polarized states

(or C-points). Their mergence with the radiative V-points

at the Dirac points will change the topological indices of

the V-points and turn those V-points to non-radiative

ones, which are symmetry-protected BICs in some way.

Figure 4B shows the simulated quality factormapped onto

the degeneracy when the mergence happened, and the

corresponding polarizationmaps on its upper band before

and at the time of mergence are also shown.

A non-negligible fact about the degeneracies is that,

the corresponding irreducible representations (irreps) of

some degeneracies may match the irreps of free-space

plane waves. As a result, these degeneracies can be radi-

ative and are able to be excited by arbitrary incident po-

larization, although they are also V-points like BICs. On the

contrary to the non-radiative BICs, the resonance-lifetime

will be pretty low for the radiative degeneracies. The strong

radiation loss will induce intense non-Hermiticity to the

degeneracies, leading to non-Hermitian phenomena such

as exceptional rings spawning fromaccidental Dirac points

[98]. In the more general case of symmetry protected Dirac

points, the non-Hermiticity would make the Dirac de-

generacies become bulk Fermi arcs (arcs where the real

part of eigen-frequencies degenerate) and lead to excep-

tional points (where two or more resonances coalesce in

both eigen-frequencies and eigenfunctions), as reported in

the seminal paper by Zhou et al. [99]. By theoretical anal-

ysis, they found that in a C2v-symmetric rhombic-lattice

PhC slab, therewill be two exceptional points as ends of the

bulk Fermi arc on specific photonic bands (see Figure 5A).

The bulk Fermi arc originates from eigenvalues of a com-

plex effective Hamiltonian perturbed by radiative losses

from the hamiltonian of a Dirac point. The two exceptional

points are the points where the complex Hamiltonian come

to have degenerate eigen-frequencies and eigenmodes. In

the polarization field defined on photonic bands, the

signature of a bulk Fermi arc was found to be a half-integer

topological charge. This feature seemswell-reasoned since

bulk Fermi arcs come from Dirac points which correspond

to half-integer singularities as discussed [86]. The authors

fabricated the designed sample and confirmed experi-

mentally the existence of bulk Fermi arcs and exceptional

points through an open-ended iso-frequency contour and

the measured half-integer (−1/2) polarization winding

number on iso-frequency contours around the open-ended

Fermi arc.

In both Refs. [86, 99], the researchers only showed

sketchy polarization maps around the non-hermitian de-

generacies. It makes people curious about the detailed

polarization behaviors in the vicinity of a bulk Fermi arc. In

the work by Chen et al. [100], the authors conducted a

careful theoretical study on the polarization field around

those non-hermitian degeneracies. They applied the pre-

viously studied [99] rhombic-lattice PhC slab to map out

the polarization field around the Fermi arc, discovering

that there were actually two C-points appearing in the

polarization field defined on the lower degenerate band

(see Figure 5B). The detailed map as Figure 5C shows an

interesting fact that, the polarization charge of a Fermi arc

may deviate from the prediction that it shall be half the
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Figure 5: (A) An example of a Dirac degeneracy turning into a bulk

Fermi arc due to non-Hermiticity. The system is a rhombic-lattice

photonic crystal slab. (B) The existence of circularly polarized states

near the two ends of the bulk Fermi arc (the two exceptional points)

on the lower band. (C) Polarization state distributions on different

iso-frequency contours around the bulk Fermi arc. For the upper

band, the winding number of polarization states equals to −1/2

which is expected.Meanwhile, for the lower band, if the twoC-points

are not enclosed by the chosen iso-frequency contour, the winding

number can unexpectedly be +1/2. (A) is adapted from [99], while

(B) and (C) are adapted from [100].
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integer charge of the corresponding quadratic degeneracy

[86]. The original quadratic degeneracy here have a po-

larization singularity of −1, and are expected to be splitted

into Fermi arcs with Indh = −1/2 polarization singularities.

The first panel of Figure 5C shows that the polarization

states on the upper band are well predicted. However, for

the polarization states on the lower bandwhich aremarked

by blue arrows in the other two panels of Figure 5C, the

winding number on an iso-frequency contour enclosing the

arc can be either −1/2 or +1/2. It is only by closing the two

C-points that theHopf index of the Fermi arc can agreewith

the prediction. Further breaking themirror symmetry of the

system, they found that there would surprisingly be cases

that the polarization-azimuth winding angle on an iso-

frequency contour enclosing the Fermi arc is not equal to

the invariant Berry phase. Even so, the authors observed

that the global topological index of the polarization fields

on the degenerate bands would still be conserved, medi-

ated by the C-points. They pointed out that the polarization

charge conservation is consistent with the Berry phase

invariance. Analytic Hamiltonian models were applied in

order to verify the theory the authors proposed explaining

the observed phenomena.

The studies on momentum-space polarization fields

near non-Hermitian degeneracies are important steps

towards the application of singular optics in studying

topological and non-Hermitian phenomena inside meta-

photonic structures. There is also a research showing the

existence of true diabolic degeneracies in non-Hermitian

systemswith specific symmetries [101], indicating that there

are more interesting phenomena to be revealed associated

with tuned symmetries and non-Hermiticity. Blending

the concepts from various fields including singular optics,

topological photonics, and non-Hermitian physics with

metaphotonics, more and more exotic phenomena and

refreshing applications are expected to be inspired.

3.3 Conversion from polarization

singularities to phase singularities

We notice that the polarization field introduced above

is actually a field indicating the polarization responses

of resonant modes of a 2D periodic structure in the mo-

mentum space. Readers might be reminded of the mecha-

nism of Pancharatnam-Berry (PB) phase based optical

vortex generators: spatial winding polarization responses

of resonators are utilized to induce helical geometric phase

shifts to the incident light [102–116].Willmomentum-space

winding polarization responses be capable of generating

phase singularities in the far field as well? The paper by

Wang et al. [117, 118] gave the definite answer. The authors

proposed a new way to generate optical vortices with 2D

periodic structures, implementing the spin-orbit interac-

tion (SOI) in momentum space, as shown in the upper

panel of Figure 6A. Let’s consider a parabolic photonic

band in a 2D periodic structure. If there is a V-point (BIC) at

its center, the far-field polarization states of the resonant

modes, ofwhich the frequencies are close to the BIC,will be

winding on the iso-frequency contours. The winding

number will be equal to the topological charge (or Hopf

index) q of the central V-point. Now, a circularly-polarized

Gaussian beam of a specific frequency, whose momentum-

space distribution covers the corresponding iso-frequency

Figure 6: (A) Left: the schematic view of generating an optical vortex beamwith a photonic crystal slab. When a slightly convergent beamwith

a certain circular polarization and the chosen working wavelength is shined on the photonic crystal slab, the resonance-converted cross-

polarized beam radiating from the slab would gain a spiral phase front. Right: measured interference patterns and extracted spiral phase

distributions in the validating experiments. (B) A perovskite-based photonic-crystal-slab sample which can actively generate a vortex laser.

With the increasing pumping power density, the sample clearly exhibits a lasing action as plotted in the right panel. The torus-shaped beam

profile and the interference pattern on the left show the vortex behavior of the generated laser beam. (A) is adapted from [117], and (B) is

adapted from [94].
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contour, is shone onto the 2D periodic structure. Part of the

beam will be converted into the other handedness due to

the Bloch resonances. The unconverted part of the beam is

then dropped by applying a cross-polarized analyzer,

keeping only the converted beam. The polarization states

of different k-components in the transmitted beam will

have experienced different changes according to different

polarization responses of the resonances with different k∥,

which can be deduced using Jones calculus with a helical

polarization basis:

|Eout〉 =
1

2
[tx(k∥) + ty(k∥)]|Ein〉

+
1

2
[tx(k∥) − ty(k∥)]e−2iθ(k∥)〈Ein|R〉|L〉

+
1

2
[tx(k∥) − ty(k∥)]e2iθ(k∥)〈Ein|L〉|R〉.

Here tx, ty are respectively the transmittance coefficients of

the k∥ Bloch mode with the polarization parallel and

perpendicular to the efficient fast axis; θ is the azimuthal

angle of major axis of the polarization state to the x-axis;

|Ein〉, |Eout〉 are the Jones vectors of the incident and trans-

mitted light; while |L〉, |R〉 denote the left- and right-handed

circularly polarized (LCP & RCP) unit vectors (0, 1)T &

(1,0)T . From the above formula, it is clear that the output

beam after the analyzer will be modified both in intensity

and phase – the intensity distribution will follow the shape

of the iso-frequency contour, while a phase vortex with

topological index l = ±2 Indh will be introduced. The re-

searchers fabricated a freestanding Si3N4 PhC slab, and

applied the resonances at 532 nm near a BIC to verify

their proposed theory. They measured intensity profiles,

interference patterns, and phase distributions of the

generated beams with circularly polarized incident light,

confirming the existence of phase vortices, shown as

Figure 6A.

The proposed principle may look identical to PB phase

gradient metasurfaces. However, the base of the winding

polarization responses applied in this theory are the

momentum-space V-points rather than real-space

designed resonators. Such polarization singularities, or

BICs, exist naturally in 2D periodic non-gradient structures

andwere discovered in different structuresmade of various

kinds of materials. The only conditions required are the

symmetry and the periodicity. Thus, such a new principle

of optical vortex generating would render more flexibil-

ities. And as mentioned, the index Indh of V-points can be

easily controlled by the rotational symmetry of the system,

so one can purposefully design the structure to obtain

desired order l of optical vortex. Another important feature

is that, such a principle removes the requirement of spatial

inhomogeneity to induce SOI. As a result, no more spatial

alignment of the structure is required according to the

beam center. It is worth mentioning that a similar theory

has also been proposed by Liu et al. [119] in honeycomb

and Lieb photonic lattices, linking the optical pseudo-

spins to far-field optical vortices.

Such a mechanism not only applies to passive

modulations of light, but also is valid in active lasing

actions. The paper by Huang et al. [94] realized vortex

microlasers within a square-lattice PhC slab made of

perovskite (MAPbBr3). A perovskite film patterned with

circular holes was fabricated and sandwiched by a sub-

strate and a cladding layer of which the refractive index

≈1.5 (see Figure 6B). The Γ-point vector singularity on the

second band TM-like band of the sample leads to a BIC

within the gain spectral range of MAPbBr3. The fabricated

sample was then pumped by a blue Ti:sapphire laser at

room temperature. With low pumping density, a broad

spontaneous emission peak centered at 520 nm appeared.

Enhancing the pumping power, a sharp peak at 552 nm

corresponding to the BIC appeared, and this peak quickly

dominated the spectral signal with a further increase of

the power. This phenomenon clearly marked the lasing

action. The profiles and self-interference patterns of the

laser beam were measured at different pumping powers,

clearly exhibiting the existence of polarization and phase

vortices (see Figure 6B). To Confirm the vortex nature of

the laser beams, the authors made further efforts to

experimentally prove the ability of all-optical control of

the vortex lasing action. The profile of the pumping beam

was modulated to be an ellipse or two overlapped circles,

which would lead to a spatial redistribution of the gain

coefficient. Consequently the symmetry of the PhC slab

would be broken, and thus the output would turn out to be

two lobe-shaped linear polarized beam, different from the

original donut-shaped vortex beam. The time delay of

such a switching was measured to be approximately

1.5 ps.

Applying fundamental concepts of singular optics to

the far-field polarization and phase behaviors of 2D peri-

odic structures, important optical phenomena like BICs

have been interpreted from amore general perspective. It is

also inspiring researchers to explore exotic applications of

2D periodic structures which was previously considered

more or less exhausted. Blending singular optics with pe-

riodic structures has certainly cross fertilized both

disciplines.
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4 Near-fields generated by

metaphotonic structures

Beyond the far-field behavior of light, sophisticated

metaphotonic structures can precisely modulate optical

near fields. Polarization singularities are also attaining

attention in those nano-scale near fields. These nano-

scopic fine structures in the light field of a metaphotonic

structure may be used to control the flow of light at nano-

scale.

For example, C-points as the generic polarization

singularity can be found among the fields inside a pho-

tonic crystal waveguide [120, 122–125] or around metallic

holes [126, 127]. The radiation of quantum emitters inside

the metaphotonic structures can be tuned by modifying

their position according to those singularities [122, 123].

On the other hand, Ostrovsky et al. [128] also demon-

strated continuous nanoscale control over C-points in

near field by changing the polarization state of a plane

wave coupled to a plasmonic spiral slit. Another kind of

polarization singularity we mentioned, vector polariza-

tion singularity (V-point), is also realized in the near-field

of hexagon-shaped plasmonic gratings and plasmonic

vortex slits, named as “optical (plasmonc) skyrmions” or

“optical (plasmonic) merons” [121, 129, 130]. These works

show the possibility of modulating light-matter interac-

tion through fine polarization structures in metaphotonic

devices.

Nevertheless, observing nano-scale singularities

experimentally is intrinsically a challenging task. The basic

problem is that, the abundant and various field behaviors

at nano-scale in systems like plasmonic structures are in

the near-field, which is evanescent and cannot be captured

by imaging devices directly. To solve this problem, many

methods were developed to offer an intermediate step

converting part of the near field to far field aiming

to observe the near field. Among them, the near-field mi-

croscopy technique based on near-field scanning optical

microscopes (NSOMs) are themost optimal one since it will

not alter the studied structure and can give access to as

much information of the light field as possible. Aperture

probes and scattering tips are used in those microscopes to

extract the near-field information by converting the near

fields to collectable radiations or scattering the near fields

to the free space.

Since the invention of NSOMs [131–136], they have

been playing a significant role in measuring near-field

intensity distributions and clarifying exciting phenomena

in nano-scale optical fields [137–149]. To confer the

capability of mapping the vectorial near field in NSOMs,

interferometers and polarizers can be applied in the

microscopes to achieve information about phase and

polarizations [144, 150–156]. Utilizing those techniques,

researchers managed to observe different kinds of optical

singularities in a variety of metaphotonic structures [120,

121,126, 128, 157–164]. In 2009, polarization singularities

were firstly experimentally measured by Burresi et al.

[120] in a photonic crystal waveguide using a polarization-

sensitive NSOM. Not only C-points, but also linear polar-

ization lines (L-lines) and disclinations were clearly

observed and the distribution of polarization states in the

photonic crystal waveguide were well mapped, as shown

in Figure 7A. Further studies on nano-scale polarization

singularities were then conducted with developed NSOM

techniques [126, 161], including an observation on an

“optical skyrmion” lattice [121] (shown as Figure 7B).

Studies about manipulations of polarization singular-

ities in the near fields of metaphotonic structures are

attracting surging attention. Together with direct observa-

tions of polarization singularities in near field assisted by

powerful instruments like NSOMs and photoelectron vector

microscope [129, 130], the way to experimental realizations

of nanoscale-controlled light-matter interaction has been

significantly broadened through concepts of singular optics.

Figure 7: (A) Observation of polarization singularities such as

C-points and disclinations in the near field of a photonic crystal

waveguide using a NSOM. The measured azimuthal angle map and

ellipticity map both show the existence of polarization singularities.

(B) An example of near-field polarization singularity manipulation. A

lattice of V-points, called an ‘optical skyrmion lattice’, was gener-

ated using a hexagonal-shaped plasmonic grating. (A) is adapted

from [120], (B) from [121].
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5 Conclusion and outlook

We have reviewed the recent theoretical and experimental

studies of polarization singularities that are present in both

far and near fields generated by nanoscale metaphotonic

structures. First, we have discussed the polarization

singularities in the far field of finite scattering objects such

as a dielectric sphere, which are the fundamental building

blocks of metaphotonic structures governed by the Mie

resonances and theMie theory. In such problems, intensity

null points play an important role, being linked to high-Q

resonant modes excited in the particles. Recent studies

revealed that the intensity null points carry also vector

polarization singularities in the far field. They could be

transformed into more generic polarization singularities,

the C-points. The Poinceré-Hopf theorem can be employed

to describe such singularities affecting a global charge

conservation on the whole far-field momentum sphere.

Next, we have proceeded with the discussion of far-

field polarization singularities in one of the most widely

discussed metaphotonic structures: a two-dimensional

periodic photonic structure, which covers the cases of

photonic crystals andmetasurfaces. Starting from the first

evidence of polarization singularities in the momentum

space of a photonic crystal slab, we have discussed other

discoveries of polarization singularities in the far field

defined on photonic bands of two-dimensional periodic

structures. We have demonstrated that their origin can be

explained by the multipolar expansion method imple-

mented for isolated particles. Among the momentum-

space polarization singularities, vector polarization

singularities, observed as intensity null points in the far

field, are known to be related to the concept of bound

states in the continuum. Subsequently, we have described

the method utilizing these vector polarization singular-

ities to generate phase singularities in the far field. Both

passive vortex modulation and active vortex lasing action

have been demonstrated. Extending the discussion on

polarization singularities to scenarios with photonic

band degeneracies, we have reviewed the studies on

non-Hermitian degeneracies spawning from the Dirac

points, which could serve as a direct platform for

establishing the correspondences between polarization

singularities and geometric phases.

Polarization singularities also play an important role in

the near fields of metaphotonic structures dominating their

interactions with matter such as quantum emitters. Control

over polarization singularities may enhance the coupling

efficiency. We have discussed briefly related theoretical

discoveries and propositions. Near-field microscopy based

on apertures and tips was invented and developed earlier to

study the near fields of structures, so that the developed

phase- and polarization-resolved near-field microscopy are

great tools for experimental observation and investigation

of near-field polarization singularities.

We believe that discoveries of polarization singular-

ities in metaphotonics have deepened our understanding

of optical phenomena at the nanoscale. More comprehen-

sive insights can be delivered by blending the concepts

from singular optics, topological photonics, and non-

Hermitian physics. Such studies may be extended further

to time-varying metaphotonic systems such as pulsed

structures and moving or rotating bodies [165]. There may

also be a deeper link between the polarization singularities

in metaphotonic structures and spontaneous half-vortices

in exciton-polaritons [166–168]. Other optical singularities

also require further research inmetaphotonics in both near

field and far field, such as caustics [169], optical vortices

being singularities of phase [126, 128, 162, 170–191],

vortices of optical currents [192–202], and Riemann-

Silberstein vortices being singularities in the electromag-

netic field independent of the gauge transformation [203].

We believe these future efforts will broaden significantly

the horizons of nanophotonics and offer new perspectives

for metaphotonics applications. In particular, further

progress in metadevices can be achieve by incorporating

optical singularities of various types, leading to novel

applications in the near future being definitely beyond our

current imagination.
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