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Abstract. We consider clustering games in which the players are
embedded in a network and want to coordinate (or anti-coordinate) their
choices with their neighbors. Recent studies show that even very basic
variants of these games exhibit a large Price of Anarchy. Our main goal is
to understand how structural properties of the network topology impact
the inefficiency of these games. We derive topological bounds on the Price
of Anarchy for different classes of clustering games. These topological
bounds provide a more informative assessment of the inefficiency of these
games than the corresponding (worst-case) Price of Anarchy bounds. As
one of our main results, we derive (tight) bounds on the Price of Anarchy
for clustering games on Erdős-Rényi random graphs, which, depending
on the graph density, stand in stark contrast to the known Price of Anar-
chy bounds.

Keywords: Clustering games · Coordination games · Price of
Anarchy · Random graphs · Nash equilibrium existence

1 Introduction

Motivation. Clustering games on networks constitute a class of strategic games
in which the players are embedded in a network and want to coordinate (or anti-
coordinate) their choices with their neighbors. These games capture several key
characteristics encountered in applications such as opinion formation, technology
adoption, information diffusion or virus spreading on various types of networks
(e.g., the Internet, social networks, biological networks, etc.).

Different variants of clustering games have recently been studied intensively
in the algorithmic game theory literature, both with respect to the existence and
the inefficiency of equilibria (see, e.g., [3,4,11,15,16,18,20,21]). Unfortunately,
several of these studies reveal that the strategic choices of the players may lead to
equilibrium outcomes that are highly inefficient. Arguably the most prominent
notion to assess the inefficiency of equilibria is the Price of Anarchy (PoA)
[19], which refers to the worst-case ratio of the optimal social welfare and the
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social welfare of a (pure) Nash equilibrium. It is known that even the most
basic clustering games exhibit a large (or even unbounded) Price of Anarchy
(see below for details). These negative results naturally trigger the following
questions: Is this high inefficiency inevitable in clustering games on networks?
Or, can we trace more precisely what causes a large inefficiency? These questions
constitute the starting point of our investigations: Our main goal in this paper is
to understand how structural properties of the network topology impact the Price
of Anarchy in clustering games.

In general, our idea is that a more fine-grained analysis may reveal topological
parameters of the network which can be used to derive more accurate bounds on
the Price of Anarchy; we term such bounds topological Price of Anarchy bounds.
Given the many applications of clustering games on different types of networks,
our hope is that such topological bounds will be more informative than the
corresponding worst-case bounds. Clearly, this hope is elusive for a number of
fundamental games on networks whose inefficiency is known to be independent
of the network topology, the most prominent example being the selfish routing
games studied in the seminal work by Rougharden and Tardos [22]. But, in con-
trast to these games, clustering games exhibit a strong locality property induced
by the network structure, i.e., the utility of each player is affected only by the
choices of her direct neighbors in the network. This observation also motivates
our choice of quantifying the inefficiency by means of topological parameters
(rather than other parameters of the game).

We derive topological bounds on the Price of Anarchy for different classes of
clustering games. Our bounds reveal that the Price of Anarchy depends on dif-
ferent topological parameters in the case of symmetric and asymmetric strategy
sets of the players and, depending on these parameters, stand in stark con-
trast to the known worst case bounds. As one of our primary benchmarks, we
use Erdős-Rényi random graphs [13] to obtain a precise understanding of how
these parameters affect the Price of Anarchy. More specifically, we show that the
Price of Anarchy of clustering games on random graphs, depending on the graph
density, improves significantly over the worst case bounds. To the best of our
knowledge, this is also the first work that addresses the inefficiency of equilibria
on random graphs.1

We note that the applicability of our topological Price of Anarchy bounds
is not limited to the class of Erdős-Rényi random graphs. The main reason for
using these graphs is that their structural properties are well-understood. In
particular, our topological bounds can be applied to any graph class of interest
(as long as certain structural properties are well-understood).

Our Clustering Games. We study a generalization of the unifying model
of clustering games introduced by Feldman and Friedler [11]: We are given an
undirected graph G = (V,E) on n = |V | nodes whose edge set E = Ec ∪ Ea

is partitioned into a set of coordination edges Ec and a set of anti-coordination

1 We note that Valiant and Roughgarden [23] study Braess’ paradox in large random
graphs (see Related Work).
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edges Ea.2 Further, we are given a set [c] = {1, . . . , c} of c > 1 colors and edge-
weights w : E → R≥0.3 Each node i corresponds to a player who chooses a color
si from her color set Si ⊆ [c]. We say that the game is symmetric if Si = [c]
for all i ∈ V and asymmetric otherwise. An edge e = {i, j} ∈ E is satisfied if
it is a coordination edge and both i and j choose the same color, or if it is an
anti-coordination edge and i and j choose different colors. The goal of player i
is to choose a color si ∈ Si such that the weight of all satisfied edges incident to
i is maximized.

We consider a generalization of these games by incorporating additionally:
(i) individual player preferences (as in [21]), and (ii) different distribution rules
(as in [3]): We assume that each player i has a preference function qi : Si → R≥0

which encodes her preferences over the colors in Si. Further, player i has a split
parameter αij ≥ 0 for every incident edge e = {i, j} which determines the share
she obtains from e: if e is satisfied then i obtains a proportion of αij/(αij + αji)
of the weight we of e. The utility ui(s) of player i for choosing color si ∈ Si is
then the sum of the individual preference qi(si) and the total share of all satisfied
edges incident to i. We consider the standard utilitarian social welfare objective
u(s) =

∑
i ui(s).

We use ᾱe to denote the disparity of an edge e = {i, j}, defined as ᾱe =
max{αij/αji, αji/αij}, and let ᾱ = maxe∈E ᾱe refer to the maximum disparity
of all edges. We say that the game has the equal-split distribution rule if ᾱ = 1
(equivalently, αij = αji for all {i, j} ∈ E).

Our clustering games generalize several other strategic games, which were
studied extensively in the literature before, such as max cut games and not-
all-equal satisfiability games [15], max k-cut games [16], coordination games [4],
clustering games [11] and anti-coordination games [20].

Main Contributions. We derive results for symmetric and asymmetric clus-
tering games. Due to space restrictions, we elaborate on our main findings for
symmetric clustering games only below; our results for the asymmetric case are
discussed in Sect. 5. An overview of the bounds derived in this paper is given in
Table 1.

1. Topological Price of Anarchy Bound. We show that the Price of Anar-
chy for symmetric clustering games is bounded as a function of the maximum
subgraph density of G which is defined as ρ(G) = maxS⊆V {|E[S]|/|S|}, where
|E[S]| is the number of edges in the subgraph induced by S. More specifically,
we prove that PoA ≤ 1 + (1 + ᾱ)ρ(G) and that this bound is tight (even for
coordination games). Using this topological bound, we are able to show that
the Price of Anarchy is at most 4 + 3ᾱ for clustering games on planar graphs
and 1 + 2ρ(G) for coordination games with equal-split distribution rule. We
also derive a (qualitatively) refined bound of PoA ≤ 5 + 2ρ(G[Ec]) for cluster-
ing games with equal-split distribution rule which reveals that the maximum

2 The game is called a coordination game if all edges are coordination edges and an
anti-coordination game (or cut game) if all edges are anti-coordination edges.

3 In this paper, we use [k] to denote the set {1, . . . , k} for a given integer k ≥ 1.
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Table 1. Overview of our topological Price of Anarchy bounds for symmetric and
asymmetric clustering games. A “+” or “1” in the column “distr. α” indicates whether
the distribution rule α is positive or equal-split, respectively. ᾱ is the maximum dis-
parity, and c is the number of colors. ρ(G) and Δ(G) refer to the maximum subgraph
density and the maximum degree of G, respectively. The stated bounds for random
graphs hold with high probability.

Symmetric clustering games

Graph topology Coord.

only

Indiv.

pref.

Distr.

α

Topological PoA (our bounds) PoA

(prev. work)

Arbitrary ✗ ✓ + 1 + (1 + ᾱ) ρ(G) (Theorem 1) c [3,11]

Planar ✗ ✓ + ≤ 4 + 3ᾱ (Corrollary 1)

Arbitrary ✗ ✓ 1 1 + 2ρ(G) (Corrollary 2)

Arbitrary ✗ ✓ 1 ≤ 5 + 2ρ(Gc) (Theorem 2)

Sparse random ✓ ✓ 1 Θ(1) (Corrollary 3)

Dense random ✓ ✗ 1 Ω(c) (Theorem 3)

Asymmetric clustering games

Graph topology Coord.

only

Indiv.

pref.

Distr.

α

(ε, k) -topological PoA (our bounds) (ε, k) -PoA

(prev. work)

Arbitrary ✓ ✗ 1 ≤ 2εΔ(G) (Theorem 5)

Arbitrary ✓ ✗ 1 ≥ ε(
Δ(G)
k−1 − 1) (Theorem 5) ≤ 2ε n−1

k−1

Dense random ✓ ✗ 1 Ω(εn) ≥ 2ε n−k
k−1 +1

Sparse random ✓ ✗ 1 Θ
( ε ln(n)
ln ln(n)

)
(Theorem 6) [21]

+ common color ✓ ✗ 1 O(1) (Theorem 7)

subgraph density with respect to the graph G[Ec] (or simply Gc) induced by the
coordination edges Ec only is the crucial topological parameter determining the
Price of Anarchy.

These bounds provide more refined insights than the known (tight) bound of
PoA ≤ c (number of colors) on the Price of Anarchy for (i) symmetric coordina-
tion games with individual preferences and arbitrary distribution rule [3], and (ii)
clustering games without individual preferences and equal-split distribution rule
[11] (both being special cases of our model). An important point to notice here is
that this bound indicates that the Price of Anarchy is unbounded if the number
of colors c = c(n) grows as a function of n. In contrast, our topological bounds
are independent of c and are thus particularly useful when this number is large
(while the maximum subgraph density is small). Moreover, our refined bound of
5 + 2ρ(G[Ec]) mentioned above provides a nice bridge between the facts that for
max-cut (or anti-coordination) games the price of anarchy is known to be con-
stant, whereas for coordination games the price of anarchy might grow large.

2. Price of Anarchy for Random Coordination games. We derive the
first price of anarchy bounds for coordination games on random graphs. We
focus on the Erdős-Rényi random graph model [13] (also known as G(n, p)),
where each graph consists of n nodes and every edge is present (independently)
with probability p ∈ [0, 1]. More specifically, we show that the Price of Anarchy
is constant (with high probability) for coordination games on sparse random
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graphs (i.e., p = d/n for some constant d > 0) with equal-split distribution
rule. In contrast, we show that the Price of Anarchy remains Ω(c) (with high
probability) for dense random graphs (i.e., p = d for some constant 0 < d ≤ 1).

Note that our constant bound on the Price of Anarchy for sparse random
graphs stands in stark contrast to the deterministic bound of PoA = c [3,11]
(which could increase with the size of the network). On the other hand, our
bound for dense random graphs reveals that we cannot significantly improve
upon this bound through randomization of the graph topology.

It is worth mentioning that all our results for random graphs hold against
an adaptive adversary who can fix the input of the clustering game knowing the
realization of the random graph. To obtain these results, we need to exploit some
deep probabilistic results on the maximum subgraph density and the existence
of perfect matchings in random graphs.

3. Convergence of Best-Response Dynamics. In general, pure Nash equilib-
ria are not guaranteed to exist for clustering games with arbitrary distribution
rules α, even if the game is symmetric (see, e.g., [3]). While some sufficient condi-
tions for the existence of pure Nash equilibria, or, the convergence of best-response
dynamics (see also [3]) are known, a complete characterization is elusive so far.

In this work, we obtain a complete characterization of the class of distribu-
tion rules which guarantee the convergence of best-response dynamics in clus-
tering games on a fixed network topology. Basically, we prove that best-response
dynamics converge if and only if α is a generalized weighted Shapley distribution
rule (Theorem 4). Our proof relies on the fact that there needs to be some form
of cyclic consistency similar to the one used in [14].

Prior to our work, the existence of pure Nash equilibria was known for certain
special cases of coordination games only, namely for symmetric coordination
games with individual preferences and c = 2 [3], and for symmetric coordination
games without individual preferences [11]. To the best of our knowledge, this is
the first characterization of distribution rules in terms of best-response dynamics
(which, in particular, applies to the settings in which pure Nash equilibria are
guaranteed to exist for every distribution rule [3,11]).4

Related Work. The literature on clustering and coordination games is vast; we
only include references relevant to our model here. The proposed model above
is a mixture of (special cases of) existing models in [3,4,11,21].

Anshelevich and Sekar [3] consider symmetric coordination games with indi-
vidual preferences and (general) distribution rules. They show existence of ε-
approximate k-strong equilibria, (ε, k)-equilibria for short, for various combina-
tions; in particular, (2, k)-equilibria always exist for any k. Moreover, they show
that the number of colors c is an upper bound on the PoA. Apt et al. [4] study
asymmetric coordination games with unit weights, zero individual preferences,
and equal-split distribution rules. They derive an almost complete picture of the

4 In the full version, we extend our ideas and provide a characterization of the existence
of pure Nash equilibria in symmetric coordination games, complementing a result
by Anshelevich and Sekar [3].
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existence of (1, k)-equilibria for different values of c. Feldman and Friedler [11]
introduce a unified framework (as introduced above) for studying the (strong)
Price of Anarchy in clustering games with individual preferences set to zero and
equal-split distribution rules. In particular, they show that the number of colors
is an upper bound on the PoA and that 2(n − 1)/(k − 1) is an upper bound
on the (1, k)-PoA. Rahn and Schäfer [21] consider the more general setting of
polymatrix coordination games with equal-split distribution rule, of which our
asymmetric coordination games with individual preferences are a special case.
They show a bound of 2ε(n − 1)/(k − 1) on the (ε, k)-PoA and that an (ε, k)-
equilibrium is guaranteed to exist for any ε ≥ 2 and any k.

There is also a vast literature on different variants of anti-coordination (or
cut) games, see, e.g., [16,18] and the references therein, which are also captured
by our clustering games. In a recent paper, Carosi and Gianpiero [8] consider so-
called k-coloring games. Moreover, clustering and coordination games were also
studied on directed graphs [4,7]. Finally, certain coordination and clustering
games can be seen as special cases of hedonic games [10]; we refer the reader to
[6] for, in particular, a survey of recent literature on (fractional) hedonic games.
Identifying topological inefficiency bounds for these type of games, as well as for
clustering games on directed graphs, could be an interesting direction for future
work.5

Regarding the study of the inefficiency of equilibria on random graphs, closest
to our work seems to be the work by [23]. They study the Braess paradox on
large Erdős-Rényi random graphs and show that for certain settings the Braess
paradox occurs with high probability as the size of the network grows large. The
study of randomness in games has also received some attention in other setting,
see, e.g., [1,5]. These are mostly settings with small strategy sets and random
utility functions, and are not comparable with ours.

Finally, our characterization results regarding the existence of pure Nash
equilibria and convergence of best-response dynamics are conceptually similar
to the work of Chen et al. [9] and Gopalakrishnan et al. [14].

2 Preliminaries

Clustering Games. As introduced above, an instance of a clustering game
Γ = (G, c, (Si), (αij), w, q) is given by:

– an undirected graph G = (V,E), where the set of edges E = Ec ∪ Ea is
partitioned into coordination edges Ec and anti-coordination edges Ea;

– a subset Si ⊆ [c] of colors available to player i ∈ V ;
– a split parameter αij ≥ 0 for every player i ∈ V and incident edge {i, j} ∈ E;
– a weight function w : E → R≥0 on the edges;
– a vector q = (qi)i∈V of individual preference functions qi : Si → R≥0.

5 Our results do not seem to extend to clustering games on directed graphs. One could
model a directed edge e = (i, j) by setting αij = 0 and αji > 0. E.g., Theorem 1
does not apply then as ᾱ = ∞ in this case.
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Whenever we refer to a clustering game below, we assume that all of the above
input parameters are non-trivial; we specify the respective restrictions otherwise.

Each node i ∈ V corresponds to a player whose goal is to choose a color
si ∈ Si from the set of colors available to her to maximize her utility

ui(s) = qi(si) +
∑

{i,j}∈Ec:si=sj

αij

αij + αji
wij +

∑

{i,j}∈Ea:si �=sj

αij

αij + αji
wij .

We call α = (αij) ≥ 0 a distribution rule. We assume that α satisfies αij +
αji > 0 for every edge e = {i, j} ∈ E; in particular, not both i and j have
a zero split for edge e. We say that α is positive if αij > 0 and αji > 0 for
all e = {i, j} ∈ E; we also write α > 0. Further, α is called the equal-split
distribution rule if αij = αji for all e = {i, j} ∈ E; we also indicate this by α = 1.
The disparity of an edge e = {i, j} is defined as ᾱe = max{αij/αji, αji/αij} and
we use ᾱ = maxe∈E ᾱe to denote the maximum disparity.

We say that the clustering game is symmetric if Si = {1, . . . , c} for every
player i ∈ V and asymmetric otherwise. If we focus on symmetric clustering
games, we omit the explicit reference of the strategy sets (Si) with Si = [c]. A
clustering game is called a coordination game if Ea = ∅ and an anti-coordination
game (or cut game) if Ec = ∅. We use n = |V | to refer to the number of players.

We consider the utilitarian social welfare objective u(s) =
∑

i∈V ui(s). The
Price of Anarchy of an instance Γ is defined as PoA(Γ ) = maxs∈NE(Γ ) u(s∗)/u(s),
where NE(Γ ) is the set of all pure Nash equilibria of Γ and s∗ is a socially optimal
strategy profile. Given a class of clustering games G, the Price of Anarchy is defined
as PoA(G) = supΓ∈G PoA(Γ ).

Random Clustering Games. In our probabilistic framework to study the
Price of Anarchy of random clustering games, we use the well-known Erdős-Rényi
random graph model [13], denoted by G(n, p):6 There are n nodes and every
(undirected) edge is present (independently) with probability p = p(n) ∈ [0, 1].
We say that a random graph is sparse if p = d/n for some constant d > 0, and it
is dense if p = d for some constant 0 < d < 1. In this paper, we focus on random
graph instances with equal-split distributions rules.7

Fix some probability p = p(n) ∈ [0, 1] and let β = β(n, c(n)) be a given
function. Define GGn

as the set of all clustering games on random graph Gn ∼
G(n, p). We say that the Price of Anarchy for random clustering games is at most
β with high probability (PoA(GGn

) ≤ β,for short) if PGn∼G(n,p){PoA (GGn
) ≤

β} ≥ 1−o(1). We use a similar definition if we want to lower bound the Price of
Anarchy. Finally, for a constant β (independent of n and c) we say that the Price
of Anarchy for random clustering games is β with high probability (PoA(GGn

) →
β, for short) if for all ε > 0 PGn∼G(n,p) {|PoA (GGn

) − β| ≤ ε} ≥ 1 − o(1). All
our results for clustering games on random graphs hold with high probability.

6 Although this model was first introduced by Gilbert, it is often referred to as the
Erdős-Rényi random graph model.

7 Some of our results naturally extend to more general distribution rules, but we omit
the (technical) details here because they do not provide additional insights.
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Shapley Distribution Rules. We adapt the definition of Shapley distribution
rules for resource allocation games [14] to our setting.

A distribution rule α corresponds to a generalized weighted Shapley distri-
bution rule if and only if there exists a permutation σ of the players in V and
weight vector γ ∈ R

V
≥0 such that the following two conditions are satisfied for

every edge e = {i, j}: (i) If αij = 0, then σ(i) < σ(j). (ii) If αij > 0, then
αij

αij+αji
= γi

γi+γj
. If all weights are strictly positive, then the resulting distribu-

tion rule is a weighted Shapley distribution rule. If γi = γj for all i, j ∈ V the
resulting distribution rule is an unweighted Shapley distribution rule. Note that
this case corresponds to an equal-split distribution rule.

Due to space restrictions, some proofs below are omitted and will be given
in the full version of the paper.

3 Refined Bounds on the Price of Anarchy

In this section, we first establish our topological bound on the Price of Anarchy
for symmetric clustering games and then use it to derive new bounds for some
special cases as well as random clustering games.

3.1 Topological Price of Anarchy Bound

Our topological bound depends on the maximum subgraph density of G which
is defined as ρ(G) = maxS⊆V {|E[S]|/|S|}, where |E[S]| is the number of edges
in the subgraph induced by S. Recall that ᾱ refers to the maximum disparity.

Theorem 1 (Density bound). LetΓ = (G, c, α,w, q) be a symmetric clustering
game with α > 0. Then PoA(Γ ) ≤ 1 + (1 + ᾱ) ρ(G) and this is tight.

Proof (upper bound). Let s and s∗ be a Nash equilibrium and a social optimum,
respectively. Consider an edge {i, j} ∈ E and assume without loss of generality
that ui(s) ≤ uj(s). If {i, j} is a coordination edge, then ui(s) ≥ ui(s−i, sj) ≥
αij/(αij+αji)wij , where (s−i, sj) is the strategy profile in which player i deviates
to the color of player j and all other players play according to s. Suppose {i, j}
is an anti-coordination edge. If si 
= sj , then we trivially have ui(s) ≥ αij/(αij +
αji)wij by non-negativity of the weights and individual preferences. If si = sj ,
then the same inequality holds by using the Nash condition for some arbitrary
color which is not sj . (We may assume that every player has at least two colors
in her strategy set.) In either case, we conclude that

wij ≤
(

1 +
αji

αij

)

ui(s) ≤
(

1 + max
e∈E

ᾱe

)

ui(s) = (1 + ᾱ) ui(s). (1)

Moreover, by exploiting that s is a Nash equilibrium and the non-negativity of
the edge weights, we obtain for every i ∈ V , ui(s) ≥ ui(s−i, s

∗
i ) ≥ qi(s∗

i ).
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Using that the sum of the weights of all satisfied edges in s∗ is at most the
sum of all edge weights, we obtain

u(s∗) ≤
∑

i∈V

qi(s∗
i ) +

∑

e={i,j}∈E

wij ≤
∑

i∈V

ui(s) + (1 + ᾱ)
∑

{i,j}∈E

min{ui(s), uj(s)}.

If we can find a value M such that
∑

{i,j}∈E

min{ui(s), uj(s)} ≤ M ·
∑

i∈V

ui(s) (2)

then it follows that u(s∗) ≤ (1 + (1 + ᾱ) · M)u(s). We show that M =
maxS⊆V {|E[S]|/|S|} satisfies (2).

Let N(i) = {j ∈ V : {i, j} ∈ E} be the set of neighbors of i. Define
mi =

∣
∣{j ∈ N(i) : ui(s) < uj(s) or (ui(s) = uj(s) and i < j)}∣∣ and note that∑

i∈V mi = |E|. We can assume without loss of generality that
∑

i∈V ui(s) = 1,
since the expression in (2) is invariant under multiplication with a constant
positive scalar. Moreover, the players may be renamed such that u1(s) ≤ u2(s) ≤
· · · ≤ un(s).

We continue by showing that M is an upper bound for the linear program
below (in which ui = ui(s) and the mi are considered constants).

max
∑

i∈V uimi s.t. u1 + u2 + · · · + un = 1
0 ≤ u1 ≤ u2 ≤ · · · ≤ un

The dual of this program is given by

min z s.t. −πi + πi+1 + z = mi, i = 1, . . . , n − 1
−πn + z = mn

πi ≥ 0, i = 1, . . . , n
z ∈ R

We now construct a feasible dual solution. Set z∗ = maxl∈V {∑n−1
i=l mi/(n − l)}.

We will often use that (n − l)z∗ ≥ ∑n−1
i=l mi for any fixed l. In particular, with

l = n − 1, we find z∗ ≥ mn, so that π∗
n := z∗ − mn ≥ 0. Then we define

π∗
n−1 := π∗

n + z∗ − mn−1 = 2z∗ − (mn−1 + mn) ≥ 0. Using induction it then
easily follows that π∗

i := π∗
i+1 + z∗ − mi ≥ 0 for all i = 1, . . . , n − 2 as well. We

have constructed a feasible dual solution with objective function value z∗. Using
weak duality it follows that for any feasible primal solution u = (u1, . . . , un), we
have

∑

{i,j}∈E

uimi ≤ max
l∈V

{∑n−1
i=l mi

n − l

}

≤ max
S⊆V

{ |E[S]|
|S|

}

,

since the term in middle is precisely the density of the induced subgraph on the
nodes l, . . . , n. This completes the upper bound proof. ��



250 P. Kleer and G. Schäfer

We use our topological bound to derive deterministic bounds on the Price
of Anarchy for two special cases of clustering games. Note that these bounds
cannot be deduced from [3,11].

Corollary 1 (Planar clustering games). Let Γ = (G, c, α,w, q) be a symmet-
ric clustering game on a planar graph G with α > 0. Then PoA(Γ ) ≤ 4 + 3ᾱ.

Proof. By Euler’s formula, |E(H)|/|V (H)| ≤ 3 for any planar graph H. Further,
any induced subgraph H of a planar graph G is again planar. Using this in
Theorem 1 proves the claim. ��
Corollary 2 (Equal-split coordination games). Let G be a given undirected
graph, and let GG be the set of all symmetric coordination games Γ = (G, c,1, w, q)
with equal-split distribution rule on G. Then PoA(GG) = 1 + 2ρ(G).

We emphasize that the bound in Corollary 2 is tight on every fixed graph
topology G, rather than only in the value of ρ(G).

It is known that the Price of Anarchy of anti-coordination games is 2 (see,
e.g., [18]), which is not reflected by our bound in Theorem 1. Intuitively, this
suggests that a large Price of Anarchy is caused by the coordination edges of
the graph. Theorem 2 reveals that this intuition is correct: it shows that the
maximum subgraph density with respect to the coordination edges only is the
determining topological parameter.

Theorem 2 (Refined density bound). Let Γ = (G, c,1, w, q) be a symmetric
clustering game with equal-split distribution rule. Then PoA(Γ ) ≤ 5 + 2ρ(G[Ec]),
where G[Ec] is the subgraph induced by the coordination edges Ec.

Using a similar construction as in the proof of Corollary 2 we can also estab-
lish a lower bound of 1 + 2maxS⊆V {|Ec[S]|/|S|}.

Note that for anti-coordination games we obtain an upper bound of 5 which
is inferior to the known (tight) bound of 2. It would be interesting to see whether
our topological bound in Theorem 2 can be improved to match this bound.

3.2 Price of Anarchy for Random Coordination Games

We now turn to our bounds for random coordination games. Recall that for
random graphs we consider equal-split distribution rules only. We first show that
for sparse random graphs the Price of Anarchy is constant with high probability.

Corollary 3 (Sparse random coordination games). Let d > 0 be a constant.
Let GGn

be the set of all symmetric coordination gamesΓ = (Gn, c,1, w, q) on graph
Gn ∼ G(n, d/n)with equal-split distribution rule.Then there is a constantβ = β(d)
such that PoA (GGn

) → β.

Proof. The maximum subgraph density of a random graph Gn approaches a
constant β = β(d) with high probability [2] (see [17] for approximations of this
constant). Combining this with the bound in Corollary 2 proves the claim. ��
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As we show in Theorem 3, the result of Corollary 3 does not hold for suffi-
ciently dense random graphs if the number of available colors grows large.

Theorem 3 (Dense random coordination games). Let 0 < d ≤ 1 be a con-
stant and let (cn)n∈N → ∞ be a sequence of available colors. Let GGn

(cn) be the set
of all symmetric coordination games Γ = (Gn, cn,1, w,0) on graph Gn ∼ G(n, d)
with cn colors, equal-split distribution rule andno individual preferences.Then there
is a constant β = β(d) such that PoA (GGn

(cn)) ≥ βcn.

We note that this lower bound holds even for coordination games without
individual preferences (as studied in [11]). Basically, this bound implies that
for dense graph topologies we cannot significantly improve upon the Price of
Anarchy bound of c by [3,11], even if we randomize the graph topology.

Proof (Theorem 3). We first construct a deterministic instance Γ with Price
of Anarchy Ω(cn) and then show that we can embed this construction into a
random graph with high probability.

Consider a graph G = (V,E) and let c be the number of available colors. Let
M = {e1, . . . , eq} ⊆ E be a matching of size at most c. Let VM be the set of
nodes which are matched in M . Define the weight of an edge e ∈ E as w(e) = 2 if
e ∈ M , w(e) = 1 if precisely one of e’s endpoints is matched in M , and w(e) = 0
otherwise.

Consider the strategy profile s in which the nodes adjacent to ei play color
i, for i = 1, . . . , q. Note that this is possible because q ≤ c by assumption. All
other nodes play an arbitrary color; these nodes are irrelevant as all the edges
that they are adjacent to have weight zero. In a social optimum s∗ all players
choose a common color. It follows that PoA(Γ ) ≥ |E[VM ]|/(2q), where |E[VM ]|
is the number of edges in the induced subgraph of VM . Note that all these edges
have weight at least one.

Now, let Gn = (Vn, En) ∼ G(n, d) and assume without loss of generality that
Vn = {1, . . . , n}. We claim that with high probability the induced subgraph on
nodes Wn = {1, . . . , �cn/4�} contains both Ω(c2n) edges and a perfect matching
(if �cn/4� is odd, we consider the first �cn/4� + 1 nodes).8

The first claim follows from standard arguments. Note that μ =
E{En[Wn]} = d

(
cn/4�
2

)
= Ω(c2n). Using Chernoff’s bound, it follows that

P{En[Wn] < μ/2)} ≤ exp(−μ/8) = exp(−Ω(c2n)/8) → 0 as n → ∞ as (cn) →
∞. The second claim relies on the following result (see, e.g., [12]): For every fixed
0 < d ≤ 1 it holds that limn→∞ PGn∼G(n,d){Gn contains a perfect matching} =
1. By applying this result to the induced subgraph on Wn and using that cn

approaches infinity as n → ∞, the claim follows.9

8 One may focus on any set of �cn/4� nodes. The important thing to note is that we
need a set of nodes with many edges on its induced subgraph and a perfect matching
(it is not sufficient to find two different sets each satisfying one of these properties).
Moreover, if cn ≥ 4n, we consider Wn = {1, . . . , n} and then the same argument
works.

9 Note that here we implicitly use that the intersection of two probabilistic events
which occur with high probability also occurs with high probability.
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Combining this with the deterministic bound on the Price of Anarchy derived
above concludes the proof. ��

4 Convergence of Best-Response Dynamics

We provide a characterization of distribution rules that guarantee the conver-
gence of best-response dynamics in symmetric clustering games.

Theorem 4 (Best-response convergence). LetGG,c,α be the set of all symmet-
ric clustering games Γ = (G, c, α,w, q) on a fixed graph G with c common colors
and distribution rule α. Then best-response dynamics are guaranteed to converge to
a pure Nash equilibrium for every clustering game in GG,c,α if and only if α corre-
sponds to a generalized weighted Shapley distribution rule.

Remark 1. Theorem 4 remains valid also for various settings without individual
preferences. For example, this holds for coordination games (corresponding to
certain models in [3,11]) and for general clustering games with c = 2.10

For symmetric coordination games with c ≥ 3 colors, we can strengthen the
condition in Theorem 4 to “guaranteed existence of a pure Nash equilibrium”,
which complements the result in [3] (details will be given in the full version).

5 Results for Asymmetric Clustering Games

We give an overview of our results for asymmetric clustering games. We focus
on coordination games with equal-split distribution rule and no individual pref-
erences.

Apt et al. [4] show that the Price of Anarchy of coordination games is
unbounded if c ≥ n + 1; notably, this holds for arbitrary graph topologies.
We slightly generalize this observation by showing that the Price of Anarchy is
unbounded if and only if c ≥ χ(G) + 1, where χ(G) is the chromatic number of
G. We exploit this insight to prove that if the number of colors c is a constant
then the Price of Anarchy is unbounded for sparse random graphs, while it is
bounded by some constant for dense random graphs (details will be given in the
full version).

Subsequently, we focus on the Price of Anarchy of ε-approximate k-strong
equilibria, called (ε, k)-equilibria for short.11 The Price of Anarchy naturally

10 In general, this is not true if c ≥ 3. For example, consider a cycle of length three
with only anti-coordination edges.

11 A strategy profile s is an (ε, k)-equilibrium with ε ≥ 1 and k ∈ [n] if for every set of
players K ⊆ V with |K| ≤ k and every deviation s′

K = (s′
i)i∈K , there is at least one

player j ∈ K such that ε · uj(s) ≥ uj(s−K , s′
K). We turn to (ε, k)-equilibria because

pure Nash equilibria are not guaranteed to exist in asymmetric coordination games
(see, e.g., [4]).
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extends to the set of (ε, k)-equilibria. It is known that the (ε, k)-PoA of coordi-
nation games is between 2ε(n−1)/(k−1)+1−2ε and 2ε(n−1)/(k−1) for k ≥ 2
[21]. In particular, the Price of Anarchy grows like Θ(εn) if k is a constant.

We derive a topological bound on the (ε, k)-Price of Anarchy which depends
on the maximum degree Δ(G) of the graph G.

Theorem 5 (Degree bound). Let ε ≥ 1, k ≥ 2, c ≥ 3, and let G be an arbitrary
graph. Let GG(c) be the set of all coordination games Γ = (G, c, (Si),1, w,0) on
graph G with c colors, equal-split distribution rule and no individual preferences.
Then ε · max{1,Δ(G)/(k − 1) − 1} ≤ (ε, k)-PoA(GG(c)) ≤ 2ε · Δ(G).

We use this result to bound the (ε, k)-Price of Anarchy for random graphs. It
is known that the maximum degree of a dense random graph is Θ(n) (see, e.g.,
[12]). So for these graphs the (ε, k)-Price of Anarchy still grows like Ω(εn) (as
in the worst case). In contrast, we obtain an improved bound for sparse random
graphs.

Theorem 6. Let ε ≥ 1, k ≥ 2 and d > 0 be constants. Let (cn)n∈N be a sequence
of integers with cn ≥ 3 for all n. Let GGn

(cn) be the set of all coordination
games Γ = (Gn, cn, (Si),1, w,0) on graph Gn ∼ G(n, d/n) with cn colors, equal-
split distribution rule and no individual preferences. Then (ε, k)-PoA(GGn

(cn)) =
Θ(ε ln(n)/ ln ln(n)).

If, in addition, the strategy sets are drawn according to a sequence of dis-
tributions that satisfy the so-called common color property, and all weights are
equal to one (corresponding to the games studied in [4]), then we can even prove
that the (ε, k)-Price of Anarchy is bounded by a constant. Intuitively, the com-
mon color property requires that with positive probability any two players have a
color in common in their strategy sets.12 In particular, this condition is satisfied
if we draw the strategy sets uniformly at random from 2[c] \ ∅.

Theorem 7. Let ε ≥ 1, k ≥ 2 and d > 0 be constants. Let (cn)n∈N be a sequence
of integers with cn ≥ 3 for all n and let (Fn)n∈N be a sequence of strategy set
distributions satisfying the common color property. Let GGn,(Si)(cn) be the set
of all coordination games Γ = (Gn, cn, (Si),1,1,0) on graph Gn ∼ G(n, d/n)
with cn colors, strategy set Si ∼ Fn for every i, equal-split distribution rule, unit
weights and no individual preferences. Then there exists a constant β = β(d, ε)
such that (ε, k)-PoA(GGn,(Si)(cn)) ≤ β.

Theorem 7 does not hold for k = 1. To see this, consider the uniform dis-
tribution over strategy sets {s0, s1}, . . . , {s0, sn}. In the strategy profile where
every player picks her color different from s0, at most a constant number of edges
will be satisfied with high probability. Thus, (ε, 1)-PoA ≥ βn for some β with
high probability.

Acknowledgements. The first author thanks Remco van der Hofstad for a helpful
discussion on random graph theory and, in particular, the results in [2].

12 Note that in the deterministic setting the Price of Anarchy does not improve if all
players have a color in common (see [21]).
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on graphs. Int. J. Game Theory 46(3), 851–877 (2017)
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