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TOPOLOGICAL PROPERTIES IN BCC-ALGEBRAS

SUN SHIN AHN AND SEOK HwWAN KWON

ABSTRACT. In this paper, we show how to associate certain topologies
with special ideals of BC(C-algebras on these BCC-algebras. We show
that it is natural for BC(C-algebras to be topological BCC-algebras with
respect to theses topologies. Furthermore, we show how certain standard
properties may arise. In addition we demonstrate that it is natural for
these topologies to have many clopen sets and thus to be highly connected
via the ideal theory of B('(’-algebras.

1. Introduction

In 1966, Y. Imai and K. Iséki [5] defined a class of algebras of type (2,0)
called BCK-algebras which generalizes on one hand the notion of algebra of sets
with the set subtraction as the only fundamental non-nullary operation, on the
other hand the notion of implication algebra (see {6]). The class of all BOK-
algebras is a quasivariety. K. Iséki posed an interesting problem (solved by A.
Wroniski [12]) whether the class of BC K-algebras is a variety. In connection
with this problem, Y. Komori {9] introduced a notion of BC'C-algebras, and
W. A. Dudek [1, 2] redefined the notion of BCC-algebras by using a dual form
of the ordinary definition in the sense of Y. Komori. In [4], J. Hao introduced
the concept of ideals in a BC'C-algebra and studied some related properties.
In this paper, we address the issue of attaching topologies to BCC-algebras
in as natural a manner as possible. It turns out that we may use the class
of BCC-ideals of a BC'(C-algebra as the underlying structure whence a certain
uniformity and thence a topology is derived which provides a natural connection
between the notion of a BC'C-algebra and the notion of a topology in that we
are able to conclude that in this setting a BC(C-algebra becomes a topological
BC(C-algebra. Other properties are also identified both in the BC(C-algebra,
and in the topology, such as {0} is closed if and only if the topology is Hausdorft
and {0} is open if and only if the topology is discrete among others.
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2. Preliminaries

By a BCC-algebra (|9]) we mean a non-empty set X with a constant 0 and
a binary operation “x” satisfying the following axioms: for all z,y, z € X,

(D) ((z*xy) * (z%y))* (z*2) =0,

(IT) 0 x z = 0,

(ITT) % 0 = =z,

(IV) zxy=0and yxz =0 imply z = v.

For brevity, we also call X a BC(C-algebra. In X we can define a binary
operation “ <” by z < y if and only if x xy = 0, is called a BCC-order on X.
Then it is easy to show that < is a partial order on X.

In a BC(C-algebra, the following hold: for any z,y,2 € X,

(2.1) zx2 =0,

(2.2) (zxy)*xxz =0,
2.3)
)

2

( r<y=>axxz<yx*z,

24)r<y=zxy<zxz.

Any BCK-algebra is a BC'(C-algebra, but there are BCC-algebras which
are not BC K-algebras (see [2]). Note that a BCC-algebra is a BCK-algebra
if and only i it satisfies: (2.5) (z*xy)*z = (x * 2) * y.

A non-empty subset S of a BCC-algebra X is called a subalgebra of X if it
is closed under the BCC-operation.

Definition 2.1. Let X be a BC'(C-algebra. An equivalence relation ~ on X
is called a left congruence if x ~ y implies u x £ ~ u *x y, where z,y,u € X.
An equivalence relation ~ on X is called a right congruence if x ~ y implies
T*xu~ Y*xu, where z,y,u € X.

Definition 2.2. Let X be a BC'(C-algebra. An equivalence relation ~ on X is
called a congruence if z ~y, u ~ v imply z x u ~ y * v, where z,y,u,v € X.

Proposition 2.3. Let X be a BCC-algebra and ~ be an equivalence relation
on X. Then ~ s a congruence if and only if it is both a left congruence and a
right congruence.

Definition 2.4 ([4]). Let X be a BCC-algebra and 0 # I C X. [ is called
an ideal of X if it satisfies the following conditions: (i) 0 € I; (ii) z xy,y € I
imply x € 1.

Theorem 2.5 ([4]). In a BCC-algebra X, any ideal of X is a subalgebra of
X.

Definition 2.6 ([3]). Let X be a BCC-algebra and § # I C X. I is called a
BCC(C-ideal of X if it satisfies the following conditions:

(i) 0 € I;

(ii) (x*y)xz€lTandye€ ] imply zx 2z € I.

Lemma 2.7 ([3]). In a BCC-algebra any BCC-ideal is an ideal.
Corollary 2.8 ([3]). Any BCC-ideal of a BCC-algebra is a subalgebra.
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Remark. In a BC(C-algebra, a subalgebra need not be an ideal and an ideal
need not be a BCC-ideal, in general (see {3, 4]).

Theorem 2.9 ([3]). IfI is a BCC-ideal of a BCC-algebra X, then the relation
defined on X by

r~yifand only ifrxy,yxx €l

is a congruence relation on X.

Theorem 2.10. Let I be a BCC-ideal of a BCC-algebra X. If we define a
binary operation on the quotient set X/I := {Il lx € X} by I, %I, = Iy, then
(X/I;%,1y) is a BCC-algebra, called the quotient algebra of X relative to I.

Proof. If I, =1,y and I, = I, , thenz ~2' and y ~ y'. Hence zxy ~ 2’ x ¢/
since ~ is a congruence relation. Therefore I, x I, = L.y = Ipray = Iy x Iy
Thus “x” is well-defined on X/I. It is easy to show (I), (II), and (IIT). Assume
that I, I, = [, «I, = Iy. Then I,., = I ., = Iyp. Hence z xy ~ 0 and
y*z ~ 0. Therefore x *y € I and y*x € I and so I, = I,,. Thus (X/I;x, Iy)
is a BC'(C-algebra. ]

3. Uniformity in BC(C-algebras

From now on, X is a BC(C-algebra, unless otherwise is stated.
Let X be a non-empty set, and U and V be any subsets of X x X. Define

UoV :={{z,y) € X x X| for some z € X,(x,z) € U and (z,y) € V},
U™ ={(z,y) € X x X|(y.z) € U},
A :={(z,z)|r € X}.

Definition 3.1. By a uniformity on X. we mean a non-empty collection K of
subsets of X x X which satisfies the following conditions:
(Uj) ACU for any U € K,
(U) if U € K, then U™! € K,
(Us) if U € K, then there exists a-V € K such that VoV C U,
(Uy) ifU,V ek, thenUNV € K,
(Us)ifUeKand U CV C X x X, then V € K.
The pair (X, K) is called a uniform structure.

Theorem 3.2. Let A be a BCC-ideal of a BCC-algebra X . If we define
Up ={(z,y) e X x X|xxy€ A andy*x € A}

and let
K" :={UxlA is a BCC-ideal of X}.
Then KC* satisfies the conditions (Uy)~(Uy).

Proof. (Uy): If (x,z) € A, then (z,z) € Ugsincezxz =0 & A. Hence A C Uy
for any Uy € K~.
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(Uz): For any Uy € K*,
(z,y) eUsg e rzxyc Aandyxz € A
TR
< (y,z) € Uy
& (z,y) e U
Hence U, ' = Uy € K*.

(Us): For any U4 € K*, the transitivity of ~ 4 implies that U4 o Uy C Ug4.
(Uy): For any Uy and U in K*, we claim that U; NU; € K*.

(z,y) e UrNU; & (z,y) € Uy and (z,y) € Uy
Scxy,yxxelnd
ST ~INT Y
< (x,y) € Urny.
Since I N J is a BCC-ideal of X, Uy NU; = Ujny € K*. This proves the

theorem. M

Theorem 3.3. Let K :={U C X x X|Us CU for someUg € K*}. Then K
satisfies the conditions for a uniformity on X and hence the pair (X,K) is a
uniform structure.

Proof. By Theorem 3.2, the collection K satisfies the conditions (U;)~(Uy).
It suffices to show that X satisfies (Us). Let U e Kand U CV C X x X.
Then there exists a U4 C U C V, which means that V € K. This proves the
theorem. ]

Let x € X and U € K. Define
Ulz] :=A{y € X|(z,y) € U}.
Theorem 3.4. Let X be a BCC-algebra. Then
T :={GC X|Vz € G,aU € K,U[z] C G}
is a topology on X.

Proof. It is clear that () and the set X belong to 7. Also from the definition,
it is clear that 7 is closed under arbitrary unions. Finally to show that 7 is
closed under inite intersection, let G,H € 7 and suppose x € G N H. Then
there exist U and V € K such that U[z] C G and V]z] C H. Let W :=UnNV.
Then W € K. Also W]z] C Ulz] N V{z] and so W[z] € G N H. Therefore
GNHeT. Thus 7 is a topology on X. O

Note that for any z € X, U[z] is an open neighborhood of z.

Definition 3.5. Let (X, K) be a uniform structure. Then the topology 7 is
called the uniform topology on X induced by K.

Proposition 3.6. Topological space (X,T) is completely regular.
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Proof. See [11]. O

Example 3.7. Let X := {0,1,2,3} be a BCC-algebra which is not a BCK-
algebra with the following table ([4}):

%

LW N - D

e DN = OO

W = O O
SO O
= e O

3 0

Then it is easy to show that A := {0,1,2},{0}, and X are the only BCC-
ideals of X. We can see that Uy = A, Us = AU {(0,1), (1,0), (0,2),
(2,0), (1,2), (2,1)} and Ux = X x X. Therefore K* = {Uyg},U4,Ux} and
K={UCXxX|Us CUforsomeUy € K*}. If we take U := Uy, then
Ul0] = Ull] = U{2] = {0,1,2} and U{3] = {3}. Therefore T = {G C X|Vz €
G,3U € K,Ulz] C G} 2 {X,0,{3},{0,1,2}}. Since {X,0,{3},{0,1,2}}is a
topology on X, the topology 7 on X induced by the BCC-ideal A = {0, 1, 2}
relative to Uy, is a finer topology than {X,0,{3},{0,1,2}}. Let A := {0}.
Then U4 = A. If we take U := Uy, then Ulz] = {z},Vz € X and we obtain
7 = 2%, the discrete topology. Moreover, if we take X as a BCC-ideal of X,
then Ulz] = X,Vx € X and obtain 7 = {0, X'}, the indiscrete topology.

4. Topological property of space (X, 7)

Let X be a BCC-algebra and C, DD be subsets of X. We define a set C x D
as follows:

CxD:={rxylreC,ye D}.

Let X be a BC(C-algebra and 7 be a topology on the set X. Then we
say that the pair (X,7) is a topological BCC-algebra if the operation “*” is
continuous with respect to 7. The continuity of the operation “x” is equivalent
to the following property:

(C): If O is an open set and a,b € X such that a xb € O, then there exist
open sets O and Oy such that a € 01, b € Oy and O * O3 C O.

Theorem 4.1. The pair (X,7T) is a topological BCC-algebra.

Proof. Let us first prove (C). Indeed, assume that r*y € G, with z,y € X and
G an open subset of X. Then there exist U € K, Ulz*y] C G and a BCC-ideal
I of X such that U; C U. We claim that the following relation holds:

Urle] * Urly] € Ulz * y].

Indeed, for any h € U;|z] and k € Uy[y] we have that  ~; h and y ~; k. Since
~1 is a congruence relation, it follows that x x y ~; h x k. From that fact we
have (zxy,h*k) € Uy CU. Hence hxk € Ur[zxy] C Ulr*y]. Then hxk € G.
Thus condition (C) is verified. O]



174 SUN SHIN AHN AND SEOK HWAN KWON

Theorem 4.2 ([11]). Let X be a set and S C P(X x X)) be a family such that
for every U € S the following conditions hold:

(a) ACU,

(b) U™ contains a member of S,

(c) there exists an V € S such that VoV CU.
Then there exists a unique uniformity U, for which S is a subbase.

Theorem 4.3. If we set B := {Uj|I is a BCC-ideal of a BCC-algebra X},
then B is a subbase for a uniformity of X. We denote its associated topology
by S.

Proof. Since ~ is an equivalence relation, it is clear that B satisfies the axioms
of Theorem 4.2. ]

In Example 3.7, we can see that B = {U;qy = A, Ua = AU {(0,1), (1,0),
(0,2), (2,0), (1,2),(2,1)},Ux = X x X}.

We say that the topology o is finer than 7 if 7 C o as subsets of the power
set. Then we have the following:

Corollary 4.4. The topology S is finer than T.

Theorem 4.5. Let A be an arbitrary family of BCC-ideals of a BCC-algebra
X which is closed under intersection. Then any BCC-ideal is a clopen subset
of X.

Proof. Let I be a BCC-ideal of X in A and y € I¢. Then y € Usly] and we
obtain that I¢ C U{U;[y]ly € I¢}. We claim that U;[y] C I€ for all y € I¢. Let
z € Urly|, then y ~; 2. Hence yx2 € I. If 2 € I, then y € I, since [ is a
BC(C-ideal of X, which is a contradiction. So z € I° and we obtain

H{Urlylly e I°} C I°.

Hence I¢ = U{U;[y]ly € I¢}. Since U;ly] is open for any y € X, I is a closed
subset of X. We show that I = U{U;[y]ly € I}. If y € I then y € U;|y| and
hence I C U{U[ylly € I}. Given y € I, if z € Urly|, then y ~; 2 and so
zxy € I. Since y € I and I is a BCC-ideal of X, we have z € I. Hence we get
that U{U;[y]ly € I} C I, i.e., I is also an open subset of X. O

In Example 3,7, the BCC-ideals A, {0}, and X are clopen subsets of X.

Theorem 4.6. For any x € X and I € A, Usz] is a clopen subset of a
BCC-algebra X.

Proof. We show that (Ur[z])¢ is open. If y € (U[z])¢, then z xy € I€ or
y*x € I°. We assume that y x z € I°. By applying Theorems 4.1 and 4.2,
we obtain (Uyly] x Us[z]) C Urly * 2] C I¢. We claim that Ur[y] C (Uslz])¢. If
z € Uqly], then zxx € (Ur[z]*Uy[z]). Hence zxx € I¢ then we get z € (Ur|z])¢,
proving that (Uy[z])¢ is open. Hence Uyz] is closed. It is clear that U;|z] is
open. So U[z] is a clopen subset of X. O
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A topological space X is connected if and only if it has only X and § as
clopen subsets of X. Therefore we have the following:

Corollary 4.7. The space (X,7) is not a connected space.

We denote by 75 the uniform topology by an arbitrary family A. Especially,
if A = {I}, we denote it by 7.

Theorem 4.8. 75 = 7, where J = N{I'] € A}.

Proof. Let K and K* be as Theorems 3.2 and 3.3, respectively. Now consider
Ag = {J}. Define (Ko)* := {U,} and Ky := {U|U; C U}. Let G € Tp. Given
an z € G, there exists U € K such that U[z] € G. From J C I, we obtain that
Uy C Uy, for any BCC-ideal I of X. Since U € K, there exists I € A such that
Ur CU. Hence Ujyfx] C Urlz] € G. Since Uy € Ky, G € T;. Hence Tp C 7.
- Conversely, if H € 7;, then for any = € H, there exists U € Ky such that
Ulz] € H. So Uylz] € H and hence A is closed under intersection, J € A.
Then we get Uy € K and so H € 7T5. Thus 7; C 7,. O]

Theorem 4.9. Let I and J be BCC-ideals of a BCC-algebra X and I C J.
Then J is clopen in the topological space (X, Tr).

Proof. Counsider A = {I,J}. Then by Theorem 4.8, 7y = 7; and therefore J is
clopen in the topological space (X, 7). O

Theorem 4.10. Let I and J be BCC-ideals of a BCC-algebra X. Then
T, CTyif JC 1.

Proof. Let J C I. Consider: Ay := {I},K7] = {U;},K; := {U|U; C U} and
Ay = {J}, K5 = {U,;}, Ko :={U|U; CU}. Let G € T;. Then for any z € G,
there exists U € K; such that U[z] C G. Since J C I, we have U; C Uj.
Urlz] € G implies U;[z] € G. This proves that U; € K2 and so G € 7;. Thus
T C 7. O

Recall that a uniform space (X, K) is said to be totally bounded if for each
U € K, there exist z1,...,z, € X such that X = U?_,U{x;], and (X, K) is said
to be compact if any open cover of X has its finite subcover.

Theorem 4.11. Let I be a BCC-ideal of a BCC-algebra X. Then the follow-
ing conditions are equivalent:

(1) the topological space (X, 7T;) is compact,

(2) the topological space (X, 7r) is totally bounded,

(3) there exists P = {x1,...,2,} C X such that for all a € X there exist
z;,€P (i=1,...,n) withaxz;, €I andx;*a € I.

Proof. (1)=(2): It is clear by {11].

(2)=>(3): Let U; € K. Since (X, 7;) is totally bounded, there exist z1, ..., z,
€ I such that X = U Ur[x;]. If a € X, then there exists z; such that
a € Uylz;], therefore a xx; € [ and z; xa € I.
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(3)=(1): For any a € X, by hypothesis, there exists z; € P with a; *xx; € I
and z;*a € I. Hence a € Ur[z;]. Thus X = UL Ur[z;]. Now let X = UpeqOa,
where each (), is an open set of X. Then for any x; € X there exists a; € §2
such that z; € O,,, since O, is an open set. Hence Us[z;] C O,,. Hence
X =V Uslz;) CUL,O,,, ie., X = UL,0,,, which means that (X,7;) is
compact. W

Theorem 4.12. If I is a BCC-ideal of a BCC-algebra X, then Urlz] is a
compact set in a topological space (X,Ty), for any z € X.

Proof. Let Ur[z] C UaeqOqn, where each O, is an open set of X. Since z €
Ur|z], then there exists a € Q such that z € O,. Hence U;[z] C O,, proving
that U;[z] is compact. O

Definition 4.13. A topological BC'C-algebra X is said to be discrete if every
element admits a neighborhood consisting of that element only.

Proposition 4.14. If {0} is an open set in a topological BCC-algebra X, then
X 1s discrete.

Proof. Since z xx = 0 € {0} for any z € X and {0} is open, there exist
neighborhoods U and V of x such that U * V = {0}. Let W := U N V. Then
WxW CUxV = {0} and so W« W = {0}. It follows from = € W that
W = {z}, which means that X is discrete. ]

Proposition 4.15. Let X be a topological BCC-algebra. Then {0} is closed
in X if and only if X is Hausdorff.

Proof. Assume that {0} is closed and let z,y € X with « # y. Then either
xxy # 0or yxx # 0. We may assume that x *y # 0 without loss of generality.
Then there exist neighborhoods U and V of x and y respectively such that
UxV C X —{0}. It follows that U NV = § and hence X is Hausdorft.
Conversely, let X be Hausdorff. We claim that X — {0} is open. If z €
X — {0}, then z # 0 and so there exist disjoint neighborhoods U and V of «
and 0 respectively. Therefore 0 ¢ U and hence U C X — {0}, which means that
X — {0} is open. This completes the proof. (]

Proposition 4.16. Let A be a BCC-ideal of a topological BCC-algebra X. If
0 is an interior point of A, then A is open.

Proof. Let x € A. Since xxxz = 0 € A and 0 is an interior point of A,
there exists a neighborhood U of 0 which is contained in A. Then there exist
neighborhoods G and H of z such that Gx H C U C A. On the other hand for
everyy € G,yxx € Gx H C A. Since A is a BCC-ideal and x € A, it follows
that y € A so that x € G C A. Hence A is open, proving the proof. [

Proposition 4.17. Let X be a topological BCC-algebra. If A is an open set
in X which is also a BCC-ideal of X, then it is a closed set in X.
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Proof. Let A be a BCC-ideal which is an open set in X and let x € X — A.
Then there exists a neighborhood U of x such that UxU C A, sincezxz =0¢€ A
and A is open. We claim that U C X — A. f U € X — A, then there exists
ye UNA. Notethat zxye UxU C Aforall z€ U. Sincey € A and A is
a BCC-ideal, it follows that z € A which shows that U C A, a contradiction.
Hence A is closed. L]

Proposition 4.18. Let X be a topological BCC-algebra and {0} be closed.
Then NNy = {0} where Ry s the neighborhood system of 0.

Proof. Since {0} is closed, by Proposition 4.15 X is Hausdorff. Given an ele-
ment z € X \ {0}, 0 has a neighborhood U such that z ¢ U and so z ¢ NNy.
Hence Ny = {0}. O

Let X be a BC(C-algebra. For an arbitrary element a € X and any non-
empty subset V of X, denote

Vie):={z € X|zrxacVandaxz €V}
Note that V(a) C U(a) whenever V C U C X.

Theorem 4.19. Let ) be a filter base on a BCC-algebra, X such that for every
p,geV €l

(1) 0xp eV,

(2) (x*xp)xq=0 implies x € V.
Then T := {0 C X|Va € 0,3V € Q: V(a) C O} is a topology on X and Q is
a local base at 0.

Proof. Let T := {O C X|Va € 0,3V € Q: V(a) C O}. Clearly, ,X € 7.
Let {O,} be a family of members of 7 and let a € UO,. Then a € O, for
some «. It follows that there exists V € € such that V{a) C O, C UO, so
that UO, € 7. Assume that O, and Oz belong to 7 and let a € O, N O3.
Then there exist V,, € € and V3 € 2 such that V,(a) C O, and V3(a) C O3,
respectively. Since {1 is a filter base, there exists V' € {2 such that V' C V, NV3.
Thus we have

V(a) C (Va M VJ)(a) C V, (a) M V_@(a) C O, N 05

and so O, N Oz € T. This proves that 7 is a topology on X (In this case we
call it a topology induced by (2, and is denoted by 7q).

Now we will show that € is the filter base of a neighborhood of 0 with
respect to the topology 7. Let p e V € (). Then 0% p € V by (i), and since
(0% p) * (0 xp) = 0 it follows from (ii) that 0 € V, i.e., every element V € {2
contains 0. If x € V(p) then z xp,p+xx € V and so z * p = v for some v € V.
Hence (z *p)*v = 0 which implies that z € V. Therefore V(p) CV andv € 7.
Thus V is a neighborhood of 0. If we let V' be a neighborhood of 0, then there
exists a U € ) such that U(0) C V. Note that Oxa € U and a*0 € U for some
a € U. Hence a € U(0) and 0 € U C U(0) C V. Thus 1 is a local base at 0
with respect to the topology 7. O]
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