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Topological properties of a time-integrated activity-driven network
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Here we consider the topological properties of the integrated networks emerging from the activity-driven
model [N. Perra et al., Sci. Rep. 2, 469 (2012)], a temporal network model recently proposed to explain the
power-law degree distribution empirically observed in many real social networks. By means of a mapping to
a hidden-variable network model, we provide analytical expressions for the main topological properties of the
integrated network, depending on the integration time and the distribution of activity potential characterizing
the model. The expressions obtained, exacts in some cases, the results of controlled asymptotic expansions in
others, are confirmed by means of extensive numerical simulations. Our analytical approach, which highlights
the differences of the model with respect to the empirical observations made in real social networks, can be easily
extended to deal with improved, more realistic modifications of the activity-driven network paradigm.
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I. INTRODUCTION

Modern network science allows us to represent and ratio-
nalize the properties and behavior of complex systems that
can be represented in terms of a graph [1,2]. Research in this
area has focused on a twofold objective: a data-driven effort to
characterize the topological properties of real networks [3-5]
and an a posterior modeling effort aimed at understanding
the microscopic mechanisms yielding the observed topological
properties [1,3] as well as the effects that a complex topology
has on dynamical processes running on top of it [6,7].

Until recently, a large majority of work in the field
of network science has been concerned with the study of
static networks, i.e., networks in which topological properties
do not change in time. Presently, however, a great deal
of attention is being devoted to the temporal dimension
of networked systems [8]. Indeed, many real networks are
actually dynamical structures in which edges appear, vanish,
or are rewired at different times scales. An important example
is given by social networks [9], in which social relationships
are represented by a succession of contact or communication
events, continuously created or terminated between pairs of
individuals. In this sense, the social networks previously
considered in the literature [10—12] represent a projection or
temporal integration of time-varying graphs in which all the
links that have appeared at least once in a time integration
window T are present in the projection.

The recent availability of large digital databases and the
deployment of new experimental infrastructures have made
possible the real-time tracking of social interactions in groups
of individuals and the reconstruction of the corresponding
temporal networks [13—16]. The newly gathered empirical data
poses new fundamental questions regarding the properties of
temporal networks, questions that have been addressed through
the formulation of theoretical models, aimed at explaining
both the temporal patterns observed and their effects on the
corresponding integrated networks [17-20].

Especially interesting from this perspective is the activity-
driven social network model recently introduced by Perra
etal. [21], aimed in particular at capturing the relation between
the dynamical properties of social temporal networks and the
topological properties of their corresponding time projections.
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The key element in the definition of this model is the
observation that the formation of social interactions is driven
by the activity of individuals, urging them to interact with their
peers, and by the empirical fact that different individuals show
different levels of social activity [21]. Based on the concept of
activity potential, defined as the probability per unit time that
an individual engages in a social activity, Ref. [21] proposed
an activity-driven social network model, in which individuals
start interactions, which span for a fixed length of time At,
with probability proportional to their activity potential. The
model output is thus given by a sequence of graphs, depending
on the distribution F(a) of the activity potential, which is
updated every time interval At. The topological properties of
the integrated activity-driven network were related in Ref. [21]
at the level of the degree distribution, which, by means
of approximate arguments, was shown to be proportional
to the activity potential distribution F(a). However, despite
the interest of the model, expressions for the rest of the
topological observables are still lacking, a fact that hampers its
possible validation as a generator of realistic integrated social
networks as well as the identification of the particular role that
integration time has on the behavior of dynamical processes
running on top of the temporal network [22,23].

Here we address the study of the aggregated network
generated by the activity-driven model, obtained by integrating
the temporal network up to a given time T, by considering
a mapping of the integrated network to a hidden-variable
model [24] depending on the activity potential distribution and
the considered time 7. We obtain a set of expressions for the
degree distribution, degree-degree correlations, and clustering
coefficient of the aggregated network that is exact in the limit of
large network size N — oo and finite time 7 and is amenable
to analytic asymptotic expansions in this same limit. The
expressions obtained, confirmed by numerical simulations,
corroborate the basic assumption of the activity-driven model
linking social activity with network topology. Moreover,
the formalism proposed can be extended to generalizations
of the activity-driven model, opening thus the path to the
analytical solution of model extensions, aimed at better
reproducing the topological features of real integrated social
networks.
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The paper is organized as follows. Section III defines the
activity-driven network model. Section III gives a brief review
of the hidden-variable network formalism; Sec. IV deduces the
mapping of the activity-driven model onto this formalism. In
Sec. V we compute the topological properties of the integrated
activity network model as a function of time T, providing exact
expressions as well as asymptotic results in the limit of 7/N
small, for different forms of the activity potential distribution.
In Sec. VI we discuss the extension of the formalism presented
to possible variations of the activity-driven model. Finally, we
summarize our results and conclusions in Sec. VII.

II. ACTIVITY-DRIVEN NETWORK MODEL

The activity-driven network model proposed in Ref. [21]
is defined in terms of N individuals i (agents), each one of
them characterized by the agent’s activity potential a;, defined
as the probability that the agent engages in a social act or
connection with other agents per unit time. The activity of the
agents is a (quenched) random variable, extracted from the
activity potential distribution F(a), which can take a priori
any form. The model is defined by means of a synchronous
update scheme, time being measured in units of the lifespan
of each connection At. It proceeds by creating a succession
of instantaneous networks G;, t = 0,At,2At, ... ,nAt, . ...
At a given time ¢, all previous edges are deleted and we
start with N disconnected individuals. Each one of them is
checked and becomes active with probability a; Af. Active
agents generate m links (start m social interactions) that are
connected to m other agents selected uniformly at random.
Finally, time is updated as t — ¢ + At. This procedure
implies that all edges in the temporal network have the same
constant time duration Atz. In order to avoid complications
due to the differences in the number of emitted and received
connections arising from using a synchronous approach,’
here we consider a probabilistic recipe for the instantaneous
network construction: Each microscopic time step Af, we
choose N agents, uniformly at random, and check sequentially
each one of them for activation and eventual link emission. We
avoid self- and multiple connections.

To simplify the analytical calculations performed below,
in the following we choose At =m = 1. Both quantities
can be restored, however, by a simple rescaling of the
activity potential and the integration time 7. We notice that
imposing At = 1 implies restricting the activity potential to
be probability and thus to be limited in the interval a € [0,1].

III. HIDDEN-VARIABLE FORMALISM: A SHORT REVIEW

The class of network models with hidden variables was
introduced in Ref. [24] (see also [25,26]) as a generalization of
the random network Gilbert model [2], in which the probability
of connecting two vertices is not constant, but depends on some
intrinsic properties of the respective vertices, their so-called
hidden variables. This class of models is defined as follows:

'Indeed, in a synchronous scheme, every time step an agent fires
at most one connection, but can receive a number n of connections,
given trivially by a binomial distribution.
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Starting from a set of N disconnected vertices and a general
hidden variable s, we construct an undirected network with
no self-edges or multiple connections by applying these two
rules.

(i) To each vertex i, a variable h; is assigned, drawn at
random from a probability distribution p(h).

(ii) For each pair of vertices i and j, i # j, with hidden
variables h; and h;, respectively, an edge is created with
probability r(h;,h;), the connection probability, which is a
symmetric function bounded by 0 < r(h,h’') < 1.

Each model in the class is fully defined by the functions p (k)
and r(h,h’) and all its topological properties can be derived
as a function of these two parameters. These topological
properties are encoded in the propagator g(k|h), defined as
the conditional probability that a vertex with hidden variable
h ends up connected to k other vertices. The propagator
is a normalized function ), g(k|h) =1 whose generating
function g(z|lh) =), I g(k|h) fulfills the general equation
[24]

Ing(zlh) = N Y p(h)In[l — (1 = 2r(h.h)]. (1)
h!

From this propagator, expressions for the following topolog-
ical properties of the model can be readily obtained [24]: the
degree distribution

P(k) =Y g(kI)p(h); 2
h

degree correlations, as measured by the average degree of the
neighbors of the vertices of degree k, k™" (k) [27],

k' (k) =1+ % Z p(h)g(k|mk™ (h), 3

where we have defined

k" (h) = @ Zp(h Yk(h'yr (h, 1) “

and

k(hy=NY_ p(hyr(h.h), (&)
™

which is the average degree of the vertices with hidden variable
h; and the average clustering coefficient (c), defined as the
probability that two vertices are connected provided they share
a common neighbor [28]

= p(h)e(h), (6)
p
where we have defined
&(hy =Y p(h'|hyr(' k") p(h"|I) (7
Pt
and
p' |y = 2RO, ®)

k(h)

Additionally, one can define the clustering spectrum, as
measured by the average clustering coefficient of the vertices
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of degree k, ¢(k) [27,29],
1

=50

Z p(h)g(k|m)c(h). €))
h

IV. MAPPING THE INTEGRATED NETWORK
TO A HIDDEN-VARIABLE MODEL

The activity-driven network model generates a time series
of instantaneous sparse networks, with an average degree
(k); ~ 2(a), where (a) = ), aF(a). The integrated network
at time 7T is constructed by performing the union of the
instantaneous networks, i.e., Gr = U,TZOQ,. In this integrated
network, vertices i and j will be joined by an edge if there
has ever been a connection created between them in any of the
instantaneous networks at 0 < ¢ < T. The key point to map
the integrated network to a hidden-variable model resides in
computing the probability IT7(i,j) that two vertices i and j
become eventually joined at time 7'. This probability is given
by r@,j)=1— Qr(,j), where Qr(i,j), the probability
that no connection has ever been created between agents i and
j up to time T, can be calculated as follows: At time T, an
agent i will have become active z times with probability Pr(z).
Given the definition of the model, at time 7" we have selected
TN agents to check for activation. The number of times z
that agent i has become active will be given by the binomial
distribution

TN a; ‘ a; TN==
= (1) 0-5)"

and analogously for agent j. Now vertices i and j will be
connected in the integrated network if at least one of the links
generated from i reaches j or vice versa. Since every time
that an agent becomes active the agent creates a connection
targeted to a randomly chosen peer, the probability Q7 (i, j) is
given by

1 Zi 1 Zj
Or@,j) = Z Pr(z;)Pr(z;) (1 — ﬁ) <1 — ﬁ)

Zi»Zj

[ o

where we have performed the summation using the probability
distribution in Eq. (10). We see now that the probability that
agents i and j are connected in the integrated network at
time 7 depends only on their respective activity potentials
a; and a;, which are random variables with distribution
F(a). The mapping to a hidden-variable network is thus
transparent: The hidden variable &7 — a, the distribution of
hidden variables p(h) — F(a), and the connection probability
r(h,h") — My(a,a’).

At very large times, the integrated network emerging from
the activity-driven model will trivially tend to a fully connected
network. Interesting topology will thus be restricted to the limit
of small T compared with the network size N. In this limit,
Eq. (11) can be simplified, yielding

(a+a’) TN
]
~ 1 —exp[—A(a +ad)l, (12)

Nr(a,a)=1—- 0r(a,a)=1-— |:1 -
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where we have neglected terms O(N~2) and defined the
parameter

A= N (13)
An explicit calculation of the connection probability for
a factor m > 1 and a time interval Af % 1 can be easily
performed; in the limit of large N and constant A, the only
change ensuing is a rescaling of time 7 — T'm, the value
of At becoming canceled in the process of taking the limit
A — 0.

V. TOPOLOGICAL PROPERTIES OF THE INTEGRATED
ACTIVITY-DRIVEN NETWORK

Here we will apply the formalism presented in Sec. III
to provide analytic expressions characterizing the topology
of the integrated network resulting from the activity-driven
model. For the sake of concreteness, we will focus in the
following activity potential distributions, in the continuous a
limit: constant activity

F(a) =644, for0<ap<l,

homogeneous activity

F(a) = 1/amax for 0 L a < Amax < 1’ (14)

and power-law-distributed activity

F(a)=(y — D&’ 'a™” fora € [g,1]. (15)

In the last case, where we consider y > 2, in accordance with
experimental evidence [21], we have introduced a lower cutoff
0 <& < 1 in order to avoid dangerous divergences in the
vicinity of zero.

A. Degree distribution

In order to compute the degree distribution, we have to
solve and invert the generating function equation (1), an almost
impossible task to perform exactly, except in the case of very
simple forms of the activity potential distribution. So in the
case of constant activity F(a) = 8,4, we have

8(zlag) = {zMr(ag,a0) + [1 — M7 (ag,a)l}™,  (16)

which corresponds to the generating function of a binomial
distribution [30]. Therefore, in the limit of large N and constant
A, the degree distribution takes the Poisson form

k
*MM_

Pr(k)=e i

A7)
with the parameter u = N(1 — e~2) which, for fixed T and
large N, can be approximated as u >~ 2T ay.

For a nontrivial activity distribution F(a), we must resort
to approximations. We therefore focus on the interesting limit
of small A, which corresponds to fixed 7" and large N, which
is the one yielding a nontrivial topology. In this limit, we can
approximate the connection probability as

My(a,a’) = AMa + a’). (18)
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Introducing this expression into Eq. (1) and performing a new
expansion at first order in A, we obtain [24]

Ing(zla) =~ (z — DAN Z F(a)a+a") 19)

= (z — DAN(a + (a)). (20)

The generating function of the propagator is a pure exponen-
tial, which indicates that the propagator itself is a Poisson
distribution [30], i.e.,

~T(a+{a)) [T(a + (a))]k
Ck+1)
where I'(x) is the Gamma (factorial) function [31]. From

Eq. (2) we obtain the general expression for the degree
distribution

glkla) =e , 2n

Tk
Pr) = 5D Y F@la+ (@)fe " (22)

In the case of a homogeneous activity distribution F(a) =
amax ' for which (a) = ama/2, we can integrate directly
Eq. (22) to obtain
Pr(k) = I'k+1,T{a)) —T'(k+ 1,3T(a))’ 23)
2T (a)I'(k + 1)
where I'(x,z) is the incomplete Gamma function [31].

More complex forms of the activity distribution do not
easily yield to an exact integration and more approximations
must be performed. In particular, the asymptotic form of the
degree distribution can be obtained by performing a steepest-
descent approximation. Thus we can write

Pr(k) = _ / F(a)e*Yda (24)
I'tk+1) ’
where we have defined
¢(a) =kIn[T(a + (a))] — T(a + (a)). (25)
The function ¢(a) has a sharp maximum around ay = ? —

(a). Performing a Taylor expansion up to second order, we can
. 2 .

write ¢(a) =~ ¢lay) — %[a —ayl?, w1§h d(ay) 7: kIn(k) —

k. Now, for T2 /k > 1, the function e~ T7/Z0la—an]” ig strongly

peaked around the maximum a,,; therefore, we can substitute

the activity potential by its value at the maximum to obtain

e¢(aM)F(aM) 00

PT(k) ~ W ei(Tz/Zk)laiaMlzda
V2 kike=* k
=Y (S —@), 26)
TT(k+1)  \T

where we have extended the integration limits to plus and
minus infinity. In the large-k limit, we can use Stirling’s ap-
proximation I'(k + 1) ~ /2w kkke™* to obtain the asymptotic
form

1 k
Pr(k) TF (T (a)) . (27)
In this expression we recover, using more rigorous arguments,
the asymptotic form of the integrated degree distribution
obtained in Ref. [21]. The limits of validity of this expression,
however, are now transparent, being explicitly N > T > 1
and T2 > k> 1.
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FIG. 1. (Color online) Rescaled degree distribution Pr(k) for
integrated networks corresponding to different values of 7', with
power-law activity distribution with exponents y =3 and 2.25.
Network size N = 10°. The behavior predicted by Eq. (27) is
represented as dashed lines.

For the case of constant activity F(a) = 8, 4,, the asymp-
totic form of the degree distribution is Py (k) ~ 8k 14,/ T, while
the exact form is a Poisson distribution centered at 27 a,. For
a uniform activity, in contrast, the asymptotic prediction is
a flat distribution, while the exact expression can be quite
different, in particular for large and small values of k [see
Eq. (23)]. For the case of a power-law-distributed activity, in
Fig. 1 we plot the degree distribution Pr(k) of the aggregated
network at different values of T for networks of size N = 10°
and two different values of y. As we can see, for such large
networks sizes and values of A ~ 1072—1073, the asymptotic
expression (27) represents a very good approximation to the
model behavior. In Fig. 2 we plot the degree distribution for
a smaller network size N = 10. As one can see, a numerical

0
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4l i
=10
[
10°F
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FIG. 2. (Color online) Degree distribution Pr(k) for integrated
networks corresponding to different values of 7', with power-law
activity distribution with exponent y = 2.25. Network size N = 10°.
The result of a numerical integration of Eq. (22) is showed as
continuous lines. The inset shows the rescaled Pr(k) against Eq. (27)
as a blue dashed line.
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integration of Eq. (22) recovers exactly the behavior of Pr(k)
even for small values of k. With such small network size,
however, the asymptotic prediction of Eq. (27) is not as good,
as shown in the inset of Fig. 2.

B. Degree correlations

We start from Eq. (5), which takes the form, as a function
of time

kr(a) = N[1 — e W), (28)
where W(A) is the Laplace transform
YL = Z F(a)e ™. (29)
We can now use Eq. (4), which leads to the exact expression
_ (L) — W(2A)e
k'a)=N {1 — W . 30
() { D g } (30)

In order to obtain an explicit expression for k" (k) we must
perform the integral in Eq. (3). In the case of a constant activity
potential F(a) = 8,4, we have Pr(k) = g(kl|ap). Since in this
case W(L) = e *®_ we have

];t]’ljl(k) =1+ N[] _ 6_2)‘“0] ~ 1+ 2Td0, (31)

where the last expression corresponds to the limit of small A.
This function is independent of k, indicating that the integrated
network corresponding to constant activity potential has no
degree correlations.

For more complex forms of F(a), we resort to an expansion
in powers of A to obtain an approximate expression, which at
lowest order takes the form

AN
a+ (a)

Inserting this expression into Eq. (3) and considering the
Poisson form of the propagator Eq. (21), we can write

k(@) ~ [(a®) + (a)* + 2a(a)]. (32)

znn (@) + (a)*)
ky'(k) ~ 1+ kP(k) /da F(a)g(k — 1]a)
272 (a)
—I—T(k)/daa F(a)g(k — 1|a)

2P k
=1+ | e (7))

where in the last expression we have performed the steepest-
descent approximation used to obtain Eq. (26) and o =
(a®) — (a)? is the variance of the activity potential F(a). In
the limit of large k, where P(k — 1)/ P(k) ~ 1, we have the
general form for the degree correlations

rnn _ -1
’# ~2a) +o? (5> . (33)

This expression recovers in a natural way the exact result for
constant activity potential, where o2 = 0. From Eq. (33) we
conclude that, in general, for a nonconstant activity distribu-
tion, the integrated networks resulting from the activity-driven
model show disassortative mixing by degree [32], with a E’}" (k)
function decreasing as a function of k. This disassortative
behavior, which, can be however quite mild in the case of small
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FIG. 3. (Color online) Rescaled average degree of the nearest
neighbors of the vertices of degree k, IE'}” (k), for the integrated network
with size N = 10* and power-law activity distribution with y = 2.5,
for different values of 7. The prediction of Eq. (33) is shown as a
dashed blue line. The inset shows the average degree of the neighbors
of the vertices with activity a, k%' (a), for the same integrated network.
The predictions from Eq. (32) are shown as continuous lines.

variance oy, as in the case of a power-law-distributed activity
with small €, is in any case at odds with the assortative form
observed for degree correlations in real social networks [1].

InFig. 3 we check the validity of Eq. (32) and the asymptotic
form (33) in the case of power-law-distributed activity. We
observe that the prediction of Eq. (32) recovers exactly the
model behavior, also in the case of small activity a (shown
in the inset). The degree correlation E;”(k) is also correctly
captured by the asymptotic form (33). Note, however, that
since the variance o, is small (of order ¢”~! for y < 3 and
order &2 for y > 3), the net change in the average degree of
the neighbors is quite small and the integrated network can be
considered as approximately uncorrelated without incurring a
gross error.

C. Clustering coefficient

The expression of the clustering spectrum at time 7', ¢7(k),
takes the form, from Eq. 9),

cr(k) = P—(k) Z F(a)g(kla)er(a). (34)

Using Egs. (7) and (8) and the expression for kr(a), we can
write the exact form

_ ,—Aa 2
W) —e \y(zx)} 35)

era)=1- [ 1 — e *aW(n)

Again in the simplest case of a constant activity potential

F(a) = 8,4, we have ¢r(a) = 1 — e~2*% which leads to a

clustering spectrum

2Ta0
N

where the last expression is valid for small A. The clustering
spectrum is in this case constant and equal to the average

ert)=(c)r =1 —e 20 ~ : (36)
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FIG. 4. (Color online) Rescaled clustering coefficient of the nodes
of degree k, ¢r(k), of the integrated network with size N = 10* and
power-law activity distribution with y = 2.5, for different values of
T. The prediction of Eq. (39) is shown as a dashed blue line. The
inset shows the clustering coefficient of the nodes with activity a,
¢r(a), of the same integrated network. The predictions from Eq. (37)
are shown as continuous lines.

clustering coefficient. For fixed time 7', it is inversely propor-
tional to the network size, in correspondence with a purely
random network. It increases with T, saturating at (c)oo = 1
for a fully connected network in the infinite-time limit.

For a general activity potential distribution, we need to
perform again an expansion in A, which in this case takes the
form, at first order in A,

&a) ~ [(a®) + ala)]. (37)

a+(a)

Inserting this form into Eq. (34) and performing the same
steepest-descent approximation applied in Eq. (33), we obtain

“(k ~2T2 Pk —1) ) ) k 38
c(k) ~ TT(]C)[“(I ) — {a) )+(a)<?>:|. (38)

In the limit of large k, we obtain the general form of the
clustering spectrum, valid for any activity potential,

ak) _ 2a) N 2<7a2<k>1.

T N N \T

In Fig. 4 we plot the clustering coefficient as a func-
tion of the degree (main) and the activity (inset), in the
case of power-law-distributed activity. We observe that both
Egs. (37) and (39) recover correctly the clustering coefficient
behavior.

(39)

VI. MODEL EXTENSIONS

The potency of the hidden-variable formalism we have
introduced above to solve the activity-driven model allows
us to easily extended it to tackle the analysis of generalized
models inspired in the same principles. We can consider indeed
different rules for activation and reception of connections.
The only limitation to be imposed in order to properly
implement the formalism is that connection rules must be local,
i.e., involving only properties of the emitting and receiving
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agents. As a simple example, we consider a sort of inverse
activity-driven model, in which every agent i becomes active
with the same constant probability a; = ao and, when active,
the agent sends a connection to another agent j, chosen at
random with probability proportional to some (quenched)
random quantity b;, the attractiveness of the node, i.e., with
probability b;/(b)N. In this case, one can easily repeat the
steps of the mapping presented in Sec. IV: The number of
times z that agent i becomes active is now

, _ TN ap z ap TN==
PT(Z)—< ; )(ﬁ) (1 _ ﬁ) 40)

and the probability that i and j never become connected up to
time T is

" (i 1 / ’ b; G b,‘ R
07(i.j) = Z PT(z,-)PT(z,)<1 - (b)JN> (1 _ W)

(0=l
=|1- 1-—
(b)yN? (b)N?

~ CXp[—)\/(b,' =+ bj)],

where we have defined the new parameter A’ = aoT /{b) N and,
in the last step of the previous expression, we have performed
and expansion for large N and finite 7. From here we obtain
[5G, /) = 1 — Q%(@, j). As we can see, this modified model
is exactly mappable to the activity-driven model [see Eq. (12)]
with the simple translation . — A’; all the general expressions
derived above hold thus in this case and can be worked out upon
providing the appropriate expression for the attractiveness
distribution F(b).

VII. CONCLUSION

The activity-driven model represents an interesting ap-
proximation to temporal networks, providing an preliminary
explanation of the origin of the degree distribution of in-
tegrated social networks, in terms of the heterogeneity of
the agents’ activity and the distribution of this quantity.
Here we have explored the full relation between topology
and activity distribution, obtaining analytical expressions for
several topological properties of the integrated social networks
for a general activity potential, in the thermodynamic limit of
a large number of agents N — oo and finite integration time
T. To tackle this issue, we have applied the hidden-variable
formalism by mapping the aggregated network to a model in
which the probability of connecting two nodes depends on
the hidden variable (in this case represented by the activity
potential) of those nodes. Our analysis is complemented by
numerical simulations in order to check theoretical predictions
against concrete examples of activity potential distributions.
Using our formalism, we can demonstrate rigorously that
the integrated degree distribution at time 7 takes the same
functional form as the activity potential distribution, as a
function of the rescaled degree k/T — (a). This is, however,
an asymptotic result, which is well fulfilled for an activity
potential power-law distribution, as empirically measured in a
wide range of social interaction settings, which fails for simple
constant or homogeneous distributions. We also show that the
aggregated networks show in general disassortative degree
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correlations, at odds with the assortative mixing revealed
in real social networks. The clustering coefficient is low
(c) ~ T/N, comparable with a random network.

Our study opens an interesting direction for future work,
concerning, for example, the clarification of the role of
integration time in the properties of dynamical process on
activity-driven networks and the possible modifications of the
activity-driven network model, in order to incorporate some
properties of real social networks currently missed, such as a

PHYSICAL REVIEW E 87, 062807 (2013)

high clustering coefficient, assortative mixing by degree, or a
community structure [1].
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