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Waveguiding structures made of anisotropic media support bound states in the continuum (BICs) that

arise when the radiation channel of otherwise semileaky modes is suppressed. Hitherto, only structures with

optical axes aligned in symmetric orientations inside the waveguide plane, where BICs appear as lines in the

momentum-frequency dispersion diagram, have been considered. Here we address settings where such symmetry

is broken and unveil a number of fundamental different features. Weak and strong symmetry-breaking regimes

are identified, corresponding to azimuthal and polar optical axes orientation asymmetries, respectively. The

azimuthal symmetry breaking is found to still preserve the existence loci of BICs in the momentum-frequency

dispersion diagram as lines. However, all possible BICs become interferometric, while the polarization separable

states that occur in symmetric settings cease to exist. The polar symmetry breaking has stronger effects and

transforms the BICs’ existence loci from lines to points, which correspond to full-vector states that exist at

discrete values of the optical axis orientation for a given wavelength. Such transformation results in fundamental

changes in the topological properties of the radiated field around the BICs.

DOI: 10.1103/PhysRevA.98.063826

I. INTRODUCTION

Bound states in the continuum are resonant states that

are radiationless despite having energies above the confining

potential so that they coexist with the continuum of radiating

waves. The concept was introduced by Von Neumann and

Wigner in the early days of quantum mechanics [1] and

revisited by Stillinger and Herrick [2]. More recently, bound

states in the continuum (BICs) have been shown to be a

general wave phenomenon relevant to many areas of physics

and technology. They were first observed in acoustic systems

[3] and then subsequently studied in several photonic systems,

which initially included dielectric gratings [4] and waveguides

with defects [5]. Landmark experimental demonstrations con-

ducted in waveguide arrays [6,7] and in photonic crystal slabs

[8] exposed the potential of the concept to generate both

fundamental new phenomena and practical consequences.

BICs have been studied in a wide variety of photonic systems

including diffraction gratings [9], near zero refractive index

materials [10], and various periodic structures [11–13]. BICs

have promising applications in acoustics [14], spin filters [15],

and spin polarizers [16] for spintronics, three-dimensional

photonic nanostructures [17], resonant elements [18], high-Q

supercavity modes [19], embedded detectors [20], and laser

resonators [21–23], among others that, in general, seek to

improve integrated photonic circuitry.

In general, BICs can be classified into two categories,

according to their underlying existence mechanism, namely,

symmetry (or separability) protection or interference through

parameter tuning [24]. The former may disappear under the

*david.artigas@icfo.eu

effect of perturbations, while the latter, though in some cases

topologically protected, requires suitable symmetric layouts

that, when broken, cause losses to appear, hindering the device

performance due to the sensitivity of BICs to perturbations of

symmetry. This is, for example, the case of BICs arising from

wave equation separability [25] when the symmetry of the

corresponding potentials is broken. Similarly, BICs existing

in photonic crystal slabs [26] have been shown to couple to

the continuum and hence become finite resonances when the

supporting structures become asymmetric.

Recently [27], anisotropy-induced BICs were identified

as a new class of states existing in waveguides containing

anisotropic materials. Radiative-loss minima of leaky modes

of planar waveguides and spectrally embedded resonances in

layered media, which actually arise from BICs, had been stud-

ied theoretically previously [28,29]. In general, anisotropic

waveguides sustain both totally guided and semileaky full-

vector hybrid modes [28,30,31], and cannot be reduced to a

scalar approach. The semileaky modes are mathematical con-

structions that approximately describe fields that are partially

localized around the waveguide but that leak energy that is

carried away towards the waveguide substrate by a continuous

band of radiation modes [32,33]. They are improper modes

that feature a complex eigenvalue whose imaginary part,

however, gives a good approximation of the actual radiation

losses when radiation is not too high. Unlike other photonic

systems, such as traditional photonic crystal slabs [8], which

have radiation channels associated with transverse electric

or magnetic (TE or TM) polarizations, in the anisotropy-

induced BICs, radiation leakage occurs for one of the leaky

mode orthogonal polarizations. When the radiation channel

is canceled by destructive interference, or when the mode

features a polarization orthogonal to the radiation channel,
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interferometric and polarization separable BICs can exist,

respectively. Polarization separable BICs are pure TE or TM

modes propagating in a direction exactly orthogonal to the

optical axis orientation of the crystals, while interferometric

BICs feature full-vector hybridity and tunable angular prop-

agation directions. BICs in structures built with anisotropic

materials have recently been studied as defect modes with

tunable Q factors [34].

Although, by and large, the anisotropic structures analyzed

in Ref. [27] may be asymmetric in terms of refractive index

values, the optical axes of all involved crystals were arranged

in exactly anisotropy-symmetric geometries, i.e., they were

aligned with each other and, importantly, laid fully within

the waveguide plane. Here, we demonstrate that breaking

such anisotropy symmetry introduces fundamentally different

physical properties. In particular, we find that in structures

where the optical axes of the materials lay in the waveguide

plane but are not aligned with each other, so that the azimuthal

anisotropy symmetry is broken, the loci of the existing BICs

are lines contained within the sheet of leaky modes in the

frequency-momentum dispersion diagram, similar to what

was found in structures with symmetric anisotropy. However,

polarization separable BICs can no longer be supported and

only interferometric BICs with hybrid polarization exist. An

even stronger transformation occurs in structures where the

polar anisotropy symmetry is broken, to the extent that the loci

of existing BICs are reduced to points. Consequently, while

a variation in the carrier wavelength only displaces the BIC

to a different propagation direction in an on-plane symmetric

or in azimuthally symmetry-broken structures, structures with

polar symmetry breaking can support BICs only for specific

values of both the optical axis orientation and the wave-

length. Such BICs correspond to phase singularities in the

dispersion diagram that undergo a topological transition from

phase jumps to screw phase dislocations together with the

transformation from lines to points in the dispersion diagram.

The corresponding winding numbers in the parameter space

of optical axis orientations appear or disappear in such a way

that the total topological charge is preserved.

II. THEORY

We address the class of waveguides illustrated by the structure

depicted in Fig. 1(a). X is the axis normal to all the interfaces

and Y the wave propagation direction. In the calculations, the

film thickness d is conveniently normalized to the wavelength

of light λ. The refractive index of the isotropic cladding and

the ordinary and extraordinary indices for the substrate and

the film are given by nc, nos , nes , nof , and nef , respectively.

When the optical axis is oriented along the X direction, the

corresponding permittivity tensor is diagonal and given by

ǫ̂ =

⎡

⎣

n2
e 0 0

0 n2
o 0

0 0 n2
o

⎤

⎦. (1)

Different optical axis orientations in the substrate {θs, φs}
and the film {θf , φf } transform (1) by the appropriate ro-

tation matrices Rx (φ) and Rz(θ ). Guided and leaky modes

in arbitrarily layered structures can be found using Berre-

man’s transfer-matrix formalism [35]. The dimensionless

eigenvalues corresponding to the ordinary and extraordinary

waves, κo and κe, are given by

κo = ±
√

ǫo − κ2
y , (2)

κe =
1

ǫxx

[

−ǫxyκy ±
√

ǫo

[

ǫxxǫe + κ2
y (ǫzz − ǫe − ǫo)

]]

. (3)

Here κy is the normalized propagation constant (effective

index) in the Y direction; ǫe and ǫo denote the extraordinary

and ordinary permittivity, respectively, and ǫij denotes the

values of the permittivity tensor for an arbitrary orientation

of the optical axes. The eigenvectors for the ordinary and

extraordinary eigenvalues are respectively given by

−→
Fo =

⎡

⎢

⎢

⎢

⎣

κo sin (φ) sin (θ )

ǫo sin (φ) sin (θ )

−κo sin (θ ) cos (φ) + κy cos (θ )

κo[κo sin (θ ) cos (φ) − κy cos (θ )]

⎤

⎥

⎥

⎥

⎦

(4)

and

−→
Fe =

⎡

⎢

⎢

⎢

⎣

−κeκy cos (θ ) + κ2
o sin (θ ) cos (φ)

ǫo[κe sin (θ ) cos (φ) − κy cos (θ )]

ǫo sin (φ) sin (θ )

−ǫoκe sin (φ) sin (θ )

⎤

⎥

⎥

⎥

⎦

, (5)

where the four rows of
−→
Fe and

−→
Fo correspond to the field com-

ponents Ey , z0Hz, Ez, and z0Hy , respectively, with z0 being

the vacuum impedance. In the transfer-matrix formalism, the

field matrix F̂ is defined by arranging the eigenvectors in four

columns sorted as follows: ordinary forward (κ+
o ), ordinary

backward (κ−
o ), extraordinary forward (κ+

e ), and extraordinary

backward (κ−
e ), corresponding to the four eigenvalues in

Eqs. (2) and (3), where forward and backward refers to the

X direction. The total field at a point in the layer is given

by �m = F̂ �a, where �a is a column vector that contains the

coefficients for each of the basis waves. The field coefficients

in F̂ can be transformed within two points in the same layer

separated by a distance d using the phase matrix

Âd = diag(e−ik+
o d ; e−ik−

o d ; e−ik+
e d ; e−ik−

e d ), (6)

with the transversal momentum being k±
i = 2πκ±

i /λ0. Thus

the characteristic matrix M̂ of a film of thickness d can be

written using the phase matrix and the field matrix as [36]

M̂ = F̂−1
f Âd F̂f , (7)

where the subscript f refers to the film parameters. For guided

modes, the outgoing waves in both media are selected, while

the incoming ones are set to zero. This prescription for sorting

the eigenvalues and eigenvectors into forward and backward,

ordinary and extraordinary waves breaks down when solving

for leaky modes with complex propagation constants. Then,

the incoming wave in the radiative channel must be selected

properly to obtain the correct leaky mode solution, because

leaky modes are improper solutions that do not evanescently

vanish at x → −∞. Once we have selected the four waves

in the cladding and substrate, we use the film characteristic

matrix M̂ to apply the boundary conditions. Assuming that

the nonzero coefficients of the basis vector for the ordinary

063826-2
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FIG. 1. (a) Layout of the system: a generic layered waveguide system comprising cladding, film, and substrate. Light propagates along

the Y direction. The green and the blue arrows indicate the substrate and film optical axis (OA), respectively. The polar θf and azimuthal φf

angles indicate the film OA orientation in spherical coordinates. The substrate OA orientation is determined by θs and the azimuthal detuning

by �φ = φs − φf . (b) Momentum-frequency dispersion diagram for the leaky modes of an anisotropy-symmetric structure with a film with

positive birefringence (nof = 1.5, nef = 1.75), a substrate with a negative birefringence (nos = 2.00, nes = 1.25), and air as a cladding nc = 1.

The polar orientation of the OA are θs = θf = 90◦. The ratio d/λ is the normalized frequency and kz and ky are the mode momenta along

the crystallographic axis (with the OA laying in the Z direction), which can be related to the angle φf between the OA orientation and the

propagation direction as φf = arctan (kz/ky ). Two yellowish surfaces (B0 and B1) for the leaky modes are plotted, where dashed lines show

the limits of the surface and the color indicates the decay length L (in μm). Then, blue lines stand for an infinite decay length, indicating the

existence of BICs. The labels INT-BICs and PS-BICs refer to interferometric and polarization-separable BICs, respectively. The gray surface

behind the leaky mode sheets is the light cone, given by k0 · nos ; the light gray–transparent surface limited by solid lines sets the leaky mode

cutoff, given by k0 · nes (φf ). Here k0 is the free-space wave number.

and extraordinary wave are aT E
c and aT M

c at the cladding and

ao
s and ae

s at the substrate, and using boundary conditions, the

fields at the substrate-film interface fulfill

ao
s · �vo

s + ae
s · �ve

s = aT E
c · M̂ �vT E

c + aT M
c · M̂ �vT M

c , (8)

where �vi
j is a 4 × 1 column vector that contains the field

components of the basis wave (ordinary, extraordinary, TE,

and TM at the superscript) in the substrate and cladding

(indicated at the subscript). Rewriting Eq. (8) in a matrix form,

with the unknown coefficient vector �aT = (aT E
c , aT M

c , ao
s , a

e
s ),

one obtains the homogeneous system of equations Ŵ �aT = 0.

The solution for κy is thus given by solving det(Ŵ ) = 0,

which can explicitly be written as

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−tT E
c,Ey

−tT M
c,Ey

vo
s,Ey

ve
s,Ey

−tT E
c,Hz

−tT M
c,Hz

vo
s,Hz

ve
s,Hz

−tT E
c,Ez

−tT M
c,Ez

vo
s,Ez

ve
s,Ez

−tT E
c,Hy

−tT M
c,Hy

vo
s,Hy

ve
s,Hy

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, (9)

where tT E
c (tT M

c ) = M̂ �vT E
c (M̂ �vT M

c ). Each element of Ŵ is a

function of κy as seen in the components of the field expres-

sions in Eqs. (4) and (5). When a nontrivial solution exists

for this system of homogeneous equations, the corresponding

values of κy denote modes of the system. Therefore, solving

Eq. (9) for κy gives us the mode indices. Both guided and

semileaky mode indices can be obtained by choosing the

appropriate waves and boundary conditions.

BICs exist when the radiative channel is canceled, so that

ao
s = 0 (ae

s = 0) in the left-hand side of (8) for a negative

(positive) substrate with an ordinary (extraordinary) radiation

channel. Then, Eq. (8) reduces to

ai
s · �vi

s −
(

aT E
c · M̂ �vT E

c + aT M
c · M̂ �vT M

c

)

= 0, (10)

where the superscript i = e or o stands for an ordinary or an

extraordinary radiation channel, respectively. Following the

same superscript notation and by using a reduced coefficient

vector �ai
r = (aT E

c , aT M
c , ai

s ), Eq. (10) can be written in matrix

form as Ẑri �a
i
r = 0, where Ẑri is a 4 × 3 matrix. The system

of equations has a nontrivial solution when

det(Ẑri ) = 0, (11)

where the determinant is calculated for any combination of

rows of Ẑri . Equation (11) is of particular importance, as it

provides the condition for which a leaky mode becomes a

BIC. Together with Eq. (9), Eq. (11) makes it possible to

obtain the existence loci of BICs [27].

III. RESULTS AND DISCUSSION

As we describe above, the propagation direction is kept in

the Y direction. Then, when a sample rotates with respect

to the X axis, the azimuthal angles for the OAs in the film
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FIG. 2. Existence loci of BICs in structures with broken anisotropy symmetry. The colored area in the figures shows the decay length of

the leaky modes in the φf − d/λ plane, where BICs appear as blue lines. The transition from the colored to the white area is the cutoff for the

leaky modes. (a) Anisotropy-symmetric structure shown in Fig. 1(b), where the substrate and film OAs are aligned and in plane. (b) Structure

with weakly broken-anisotropy symmetry in the azimuthal direction (�φ = −0.5◦). (c) Structure with strongly broken-anisotropy symmetry

in the polar direction, by taking the OA of the film out of the interface plane (θs = 90◦, θf = 85◦) and keeping �φ = 0◦ (i.e., the projection of

the film OA is parallel to the substrate OA). Note the transition from existence lines in (a) and (b) to dots in (c).

and substrate, φf and φs , rotate concurrently. Therefore, we

chose to use as working parameters the azimuthal orientation

of the film OA, φf , and define the substrate azimuthal angle

through the detuning �φ = φs − φf . Note that if one takes

the film OA projection at the interface of the structure as a

reference, then φf specifies the propagation direction instead

of kz and ky [φf = arctan (kz/ky )], and �φ can be used

as a fixed parameter. Thus the dispersion diagrams shown

below depict projections of the 3D momentum-frequency

dispersion diagram to a 2D representation in the d/λ − φf

plane and, as in the 3D plot of Fig. 1(b), the color represents

the decay length. In what follows, BICs are studied using the

analysis described above and keeping the refractive indices

constant.

Figure 1(b) shows the momentum-frequency dispersion

diagram (ky , kz, d/λ) of an illustrative antiguiding structure

with anisotropy symmetry that does not support standard

guided modes. However, it supports two families of leaky

modes, which are shown in the plot with a color proportional

to their decay length. For a fixed wavelength, the families

reduce to two branches of leaky modes. The radiation channel

is related to the polarization at which the substrate refractive

index is higher than the effective index of the leaky mode,

while the orthogonal polarization is guided. BICs are pure real

solutions at which the leakage through the radiation channel

vanishes. The solution for the BICs exist as lines in the

dispersion diagram, in contrast to what happens in photonic

systems with degenerated radiation channels, where they exist

as dots. This can be seen in Fig. 1(b), where BICs appears as

blue lines. The vertical line and the curved horizontal line in

the upper surface correspond to polarization separable BICs

(the polarization is orthogonal to the radiation channel) and

interferometric BICs (the radiating ordinary wave is canceled

by destructive interference), respectively. The lower surface

corresponds to the fundamental leaky mode branch, and only

supports polarization separable BICs. Note that such BICs are

the only nonradiating states of the structure.

Figure 2 shows the projection of the dispersion diagram for

the second branch of leaky modes [labeled in Fig. 1(b) as B1].

Figure 2(a) corresponds to an anisotropy-symmetric structure

(all optical axes are fully in-plane and perfectly aligned with

each other) and the BIC existence lines are therefore symmet-

rically distributed with respect to φf = 90◦ in the dispersion

diagram. Polarization separable BICs (central vertical line)

carry a pure TE polarization, while the interferometric BICs

(curved lateral lines) feature a hybrid (TE-dominant) polariza-

tion. The anisotropy symmetry is broken when the azimuthal

OA orientations in the film and substrate are shifted relative

to each other (i.e., �φ = φs − φf �= 0◦), or when the OAs

are oriented out of the plane (i.e., θf and/or θs �= 90◦), and

in general combinations of both geometries. Importantly, note

that the rotation of the OA of the substrate or the film, either

in the azimuthal or the polar direction, modifies the modes

supported by the system, but also the coupling between the

modes and the continuum [37].

Figure 2(b) shows the projection of the dispersion diagram

for a structure where only the azimuthal symmetry is broken

with �φ = −0.5◦, while the polar symmetry still holds (θf =
θs = 90◦). Consequently, the symmetry in the dispersion dia-

gram with respect to φf = 90◦ axis is also broken, resulting in

a distortion of the existence lines of BICs. Large values of �φ

result in greater distortions, thus affording a way to tune the

BIC existence direction. The crossing of the polarization sep-

arable BICs and interferometric BICs in Fig. 2(a) transforms

into an anticrossing in Fig. 2(b), where the upper-right and

lower-left blue lines correspond exclusively to interferometric

BICs. Therefore, pure TE or TM modes do not exist and

polarization separable BICs transform into hybrid interfero-

metric BICs. Therefore, breaking the azimuthal anisotropy-

symmetry results in the smooth distortion of the BIC lines

in the dispersion diagram. However, such behavior changes

dramatically when the polar symmetry is broken. Figure 2(c)

shows the projection of the dispersion diagram for a structure

where only the polar symmetry is broken because the OA

063826-4
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FIG. 3. Transformation from simple phase dislocation to screw phase dislocations. The parameters are the same as in Fig. 2. The color

stands for the phase difference of the ordinary radiative channel with respect to the phase of the extraordinary confined wave in the substrate.

The existence lines of BICs in (a) and (b) exhibit phase dislocation of π . BICs in (c) are singularities with winding numbers +1 (clockwise

increase of phase) and −1 (counterclockwise increase of phase).

in the film is out of plane (θf = 85◦ and θs = 90◦) while

the azimuthal symmetry holds (�φ = 0◦). In this case, the

existence lines of BICs in Fig. 2(a) transform into dots of

interferometric BICs in Fig. 2(c) so that there is only one

combination of a specific orientation of the OA of the film

φf and normalized wavelength d/λ that results in a BIC.

Thus adding a new degree of freedom in the parameter space

reduces the dimensionality of the BIC existence loci, so that

continuous lines transform into discrete dots in the φf − d/λ

dispersion diagram.

To gain deeper insight into the difference between breaking

the polar and azimuthal anisotropy symmetry, the full vector

character of the leaky modes must be taken into account. In

the particular case shown, since θf = 85◦, the orientation of

the polarization of the ordinary wave at the film evolves with

the angle φf , while the orientation of the polarization of the

ordinary radiation channel, which determines the continuum,

remains constant because θs = 90◦. Consequently, the exis-

tence of interferometric BICs requires the fulfillment of an

additional constraint, namely, the matching of the polariza-

tion, in order to produce destructive interference of the radi-

ation channel. We found that only discrete points of the BIC

existence lines in Fig. 2(a) fulfill this condition, as depicted in

Fig. 2(c). This feature is a unique and direct consequence of

the vector nature of the anisotropy-induced BICs.

The transition from existence lines to dots in the projection

of the dispersion diagram is best elucidated by analyzing

the phase of the radiation fields around a BIC. Figure 3(a)

shows the case of a structure with anisotropy symmetry.

BIC existence lines correspond to zeros in the amplitude

of the radiation channel and feature a phase dislocation in

the φf − d/λ parameter space, with a jump of ±π (the

phase is measured relative to the phase of the extraordinary

wave component, which is confined). The existence lines of

BICs separate regions featuring radiation fields with opposite

phases [reddish and bluish color in Fig. 3(a), respectively].

The phase dislocations are preserved when only the azimuthal

anisotropy symmetry is broken [Fig. 3(b)].

In contrast, when the polar anisotropy symmetry is broken,

the transition from existence lines to dots in Fig. 2(c) results

in a topological change from a simple phase dislocation to

screw phase dislocations in Fig. 3(c). At orientations of the

film optical axis in the range 0◦ < φf < 180◦, the winding

numbers of the BIC points originated from the interferometric

BICs and the polarization separable BICs are −1 and +1,

respectively. They reverse sign for 180◦ < φf < 360◦ (not

shown in the figure). Transforming Fig. 3 from the parameter

space φf − d/λ into the momentum space ky − kz reveals

that the screw phase dislocation appears in the radiated far

field which thus carries orbital angular momentum. The re-

sulting singularity is a phenomenon similar to the appearance

of vortices in other photonic structures that support BICs

[38,39]; however, a similar topological transition has not been

described in any other physical setting.

The topological transition in the parameter space φf − d/λ

from lines featuring phase dislocations to dots featuring a

screw phase is far from trivial and greatly depends on the

parameters of the structure. A variety of combinations of

positive and negative birefringence for the film and substrate,

which lead to the corresponding diversity of standard modal

spectroscopies for the structure [30], may be considered. For

example, Fig. 4 shows the phase of the radiation fields to the

substrate for a structure made of a positive and a negative

birefringent substrate and film, respectively. In this case, BICs

for the anisotropy-symmetric structure [Fig. 4(a)] and for a

structure with broken azimuthal anisotropy symmetry [�φ =
−10◦ in Fig. 4(b)] appear as vertical lines that feature phase

dislocations of π , similar to Figs. 3(a) and 3(b). However,

in this structure, the breaking of the polar symmetry does

not necessarily result in a topological transition from phase

dislocations of π to screw phase dislocations. This is the case

in Fig. 4(c), where BICs disappear for structures with broken

polar anisotropy symmetry by taking the film OA out of the

interface plane. BICs exist again if, in addition to the film

OA, the OA of the substrate is also taken out of plane. Then,

when the OA of the substrate is mainly oriented towards the
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FIG. 4. Topological transformation of the phase of the radiative channel in a structure with a positive birefringent substrate and negative

film. The parameters of the structure are nes = 2.00, nos = 1.25, nef = 1.50, nof = 1.75, nc = 1, θs = θf = 90◦, and �φ = 0◦. The color

stands for the phase difference between the extraordinary radiative channel and the ordinary wave in the substrate. The lines of existence

of BICs in an anisotropy-symmetric structure (a) and in structures with the azimuthal symmetry broken (b) exhibit phase dislocations of π .

Breaking the polar symmetry by taking the film optical axis out of plane precludes the existence of BICs (c). BICs occur as points when the

polar symmetry is broken by taking both the film and substrate optical axes out of plane, resulting in one BIC with winding number +1 (d)

or two BICs with winding number −1 (e) depending on the relative orientation of the film and substrate OAs. When both polar and azimuthal

symmetries are broken, the BIC loci can be tuned for any orientation of φf (f).

substrate (same direction as the film OA) an interferometric

BIC with screw phase dislocation of charge +1 appears at

φf = 90◦ [Fig. 4(d)]. Alternatively, if the OA of the substrate

is oriented towards the film (opposite to the film OA), two

interferometric BICs with screw phase dislocation of charge

−1 appear [Fig. 4(e)]. Finally, when in addition to polar

symmetry, the azimuthal symmetry is broken, the loci of the

BIC showing screw phase dislocation is only translated to a

different point φf in the φf − d/λ space [Fig. 4(f)], without

modifying its topological nature.

The above results suggest that there are two different

symmetry-breaking regimes, which we refer to as weak and

strong, that correspond to the breaking of the azimuthal and

the polar anisotropy symmetries, respectively. The former is

characterized by a nonvanishing �φ = φf − φs , while the

latter occurs whenever the OAs are out of plane (θf or θs �=
90◦). Note that here weak and strong do not refer to whether

the symmetry is broken by a small or a large angle, but rather

to the fact that the two mechanisms produce fundamentally

different effects.

To further explore the properties of BICs existing in both

regimes, in Fig. 5 we plot the orientation of the film OA, θf

and φf , in a spherical representation, while �φ = φf − φs ,

and θs are kept constant. Every cut for a given value of θf

(following a parallel) in this representation corresponds to

the dispersion diagrams φf − d/λ shown in Fig. 2. In this

way, in practice, each spherical representation corresponds

to a structure with a fixed OA orientation for the substrate,

typically a crystal, and a film made of, e.g., a liquid crystal,

where the OA polar angle θf can be controlled by a dc electric

field. Then, φf could be varied by the physical rotation of the

sample for a fixed propagation direction.

Figure 5(a) depicts the BIC existence loci, which appear

as lines, and winding number (labeled as ±1) for a structure

with the film OA out of plane and the substrate OA still in the

interface plane. No azimuthal asymmetry is introduced. This

representation is spherically symmetric, as existence lines of

BICs in the four quadrants of the sphere occur at symmetric

locations with respect to the θf = φf = 90◦ point, except that

the winding numbers change sign with respect to the equato-

rial plane. The plot shown in Fig. 2(a), obtained for a structure

with symmetric anisotropy, corresponds to a cut of the sphere

at θf = 90◦ (equator), and shows that interferometric BICs

exist for a broad range of values of φf and wavelengths

[Fig. 5(a)]. The polarization separable BIC shown in Fig. 2(a)

appears here as a white dot at the symmetry point θf = φf =
90◦, where the white color indicates that the polarization

separable BICs exist for all values of the wavelength above

the mode cutoff. A cut at θf = 85◦ in Fig. 5(a) intersects

the BIC existence loci at only three points, with different

wavelengths falling in the green-blue region of the spectrum,

thus yielding the three dots with screw phase dislocations

depicted in Figs. 2(c) and 3(c). The allowed wavelength for

the three interferometric BICs to exist varies when the film
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FIG. 5. Spherical representation of the BIC existence loci as a function of the optical axis orientation in the guiding film. The film OA

orientation is given by the azimuthal angle φf and the polar angle θf in spherical coordinates, while the parameters for the substrate (θs and

�φ) are kept constant in each plot. Only the hemisphere in the range φf = [0◦, 180◦] is depicted as the vertical axis of the sphere; θf = 0◦ is

a symmetry axis. Film thickness is d = 0.35 μm; hence the colors of the BIC existence lines indicate the value of the wavelength. Winding

numbers are labeled as “+1” or “−1” and phase jumps are labeled with “=”. (a) Spherical representation for a structure with a positive film

and a negative substrate. The indices of refraction are as in Fig. 1(b). The substrate OA is parallel to the interface plane (θs = 90◦, �φ = 0◦).

(b) Same as in (a) but the substrate OA is out of the interface plane (θs = 89◦), resulting in strong anisotropy-symmetry breaking even at the

equatorial plane. In both cases �φ = 0◦. (c) Structure with azimuthal anisotropy-symmetry breaking (�φ = −0.5◦) with the substrate OAs

in the interface plane θs = 90◦. (d) Combined azimuthal (�φ = 0.5◦) and polar (θs = 89◦) anisotropy asymmetries. The insets in (b)–(d) are

a magnification of the area near θf = 90◦ and θf = 90◦ that show the splitting of the polarization separable BIC line in (a), shown as a white

point, into two segments of interferometric BICs. (e) Spherical representation of a structure with negative film and positive substrate. The

indices of refraction are as in Fig. 4. The substrate OA is parallel to the interface plane (θs = 90◦, �φ = 0◦). For this particular case, BICs

cease to exist when the polar anisotropy symmetry is broken (θf �= 90◦). (f) Same as in (e) but now the substrate OA is out of the interface

plane (θs = 100◦).

OA is taken out of the interface plane. In addition, the loci

of the BICs grow closer as the film OA moves further away

from the interface plane, until the three BICs join near θf =
46◦ and θf = 134◦ in the northern and southern hemisphere,

respectively. Then, two BICs with opposite winding numbers

are canceled, consistent with topological charge conservation.

The cancellation of BICs featuring winding numbers with

opposite signs also occurs when the interferometric BICs

reach the equator. The winding numbers reverse their sign

in the range φf = [180◦, 360◦] (i.e., in the reverse of the
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sphere); thus the total topological charge in the full range of

orientations φf for each value of θf is always null.

Breaking the anisotropy symmetry by taking the sub-

strate OA out of plane results in different configurations

for the northern and southern hemispheres in the spherical

representation. As shown in Fig. 5(b) for θs = 89◦, the sym-

metry of the BIC existence lines in the spherical representa-

tion between the northern and southern hemispheres is broken,

but the symmetry of the eastern and western hemispheres is

preserved. Here, the cut at the equator no longer corresponds

to a structure with anisotropy symmetry. Then, the crossings

that appear in Fig. 5(a) at the equator (θf = 90◦, φs = 90◦)

corresponding to interferometric BICs now transform into

anticrossings and the lines of BIC existence are pulled out

from the equator. In addition, the polarization separable BIC

existence line at φs = 90◦ [shown as a white dot in Fig. 5(a)]

transforms into two separate lines of interferometric BICs and

a gap in wavelength appears in the polar direction. The lower

section of the BIC existence line crosses the equator [inset of

Fig. 5(b)] for a given wavelength, resulting in a dot in the dis-

persion diagram that is the only BIC that survives at θf = 90◦

when the substrate OA is out of plane. When θf �= 90◦, three

isolated interferometric BICs may exist, one of them always

at φf = 90◦ and two at symmetric orientations with respect

to the former. Taking the substrate OA out of plane in the

opposite direction, i.e., θs = 91◦, results in a representation

where the BIC existence lines are mirror images with respect

to the equatorial plane of those shown in Fig. 5(b), but the

sign of the winding numbers of the interferometric BICs is

maintained. Again, BICs featuring opposite winding numbers

cancel at crossings of BIC existence lines.

Breaking the azimuthal anisotropy symmetry (�φ = 0.5◦),

but keeping the substrate OA in plane (θs = 90◦), breaks the

plane mirror symmetry at the meridian plane, φf = 90◦, and

preserves the equatorial mirror symmetry between northern

and southern hemispheres [Fig. 5(c)]. Under such conditions,

the interferometric BICs existing at the equator are preserved

[corresponding to Figs. 2(b) and 3(b)], but no BIC can exist at

the meridian φf = 90◦. Consequently, the two crossings ap-

pearing at the top and the bottom of the interferometric BICs

existence lines (φs = 90◦ and θf �= 90◦) become anticrossings

and the polarization separable BIC existence line breaks into

two existence lines of interferometric BICs [inset in Fig. 5(c)],

opening a gap of existence in wavelength and azimuthal angle.

Note that the transition to anticrossings is a combined effect

of the azimuthal and polar symmetry breaking, as θf �= 90◦.

When both azimuthal and polar anisotropy-symmetry

breaking are present with the substrate OA out of the interface

plane (θs �= 90◦), the mirror symmetries between the north-

south and the east-west hemispheres are broken and, as a

consequence, we find that no crossings occur in the existence

lines of BICs as illustrated in Fig. 5(d). Existence lines of

BICs then appear as closed lines or as disconnected lines that

cease to exist at the leaky mode cutoff. The topological charge

is maintained along a disconnected BIC existence line, while

it switches sign at structures located at a maximum or mini-

mum in θf of a closed line. If the polar symmetry breaking

increases, the closed BIC existence lines may cease to exist

as they collapse to a single point and thus the corresponding

winding numbers cancel each other. Open BIC existence lines

cease also to exist for structures where they would fall beyond

the leaky mode cutoff edge, resulting in structures where no

BICs exist for any orientation of the film OA.

The spherical representation corresponding to the structure

analyzed in Fig. 4 is presented in Figs. 5(e) and 5(f), and it

shows a different topological map compared to Figs. 5(a)–

5(d). The most remarkable property when the substrate OA

is lying in the interface plane [Fig. 5(e)] is that BICs exist

only at the equator, i.e., in structures where all OAs are

contained in the interface plane. As a result, breaking the

polar anisotropy symmetry by taking the film OA out of the

interface plane results in no BICs, as shown in Fig. 4(c).

When the polar symmetry is broken by taking the substrate

OA out of the plane [Fig. 5(f)], a number of features similar to

those described above occur. Namely, first, all BIC existence

lines are pulled out of the equator. Then polarization separable

BICs cease to exist and the resulting interferometric BICs only

exist at given orientations of the film OA and wavelengths

and feature screw phase dislocations in the radiated field near

the BIC. Second, the winding number of the BIC originating

from the polarization separable BIC (φf = 90◦) exhibits a

sign opposite to the winding number corresponding to the

BICs originating from interferometric BICs. The sign of the

winding number changes sign in the reverse of the sphere,

φf = [180◦, 360◦], so that the total topological charge in the

full range of orientations φf for each value of θf is null. Third,

the only possible BIC when the film OA is located on plane

is a reminiscence of the polarization separable BIC existing

at φf = 90◦. Fourth (not shown), breaking the azimuthal

symmetry only deforms the BIC existence lines in the west-

east direction, avoiding the existence of polarization separable

BICs, but preserving the phase nature of the radiation field

around a BIC, as phase jumps [as discussed in Fig. 4(b)] or

screw phase dislocations [Fig. 4(f)].

IV. CONCLUSIONS

In closing, we stress that the fundamental ingredient of

the phenomena uncovered here is the breaking of the very

optical axes anisotropy symmetry of the structures, rather than

a material (e.g., refractive index) or geometrical asymmetry.

Here we addressed uniaxial media and a relatively simple

structure, but results are relevant to all types of natural or

artificial anisotropic materials, including biaxial media, and

more complex geometries where anisotropy-induced BICs

may exist. We found that breaking the azimuthal anisotropy

symmetry results in weak transformations of the BIC proper-

ties, while polar symmetry breaking causes strong changes. In

particular, in the latter case, we found that the correspond-

ing structures can support BICs only for a single, discrete

combination of wavelength or carrier frequency and optical

axis orientation. Also, the dispersion diagrams and radiation

far fields around the BICs exhibit a much richer topologi-

cal structure than their counterparts in anisotropy-symmetric

media. Our findings connect the areas of full-vector bound

states and scalar topological photonics, providing insight to

the program that aims at expanding the BIC concept to general

anisotropic media, a research area that remains essentially

unexplored.
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