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ABSTRACT

The paper is aimed at studying the topological dimension for sets definable in weakly o-minimal
structures in order to prepare background for further investigation of groups, group actions and
fields definable in the weakly o-minimal context. We prove that the topological dimension of a set
definable in a weakly o-minimal structure is invariant under definable injective maps, strengthening
an analogous result from [MMS] for sets and functions definable in models of weakly o-minimal
theories. We pay special attention to large subsets of Cartesian products of definable sets, showing
that if X,Y and S are non-empty definable sets and S is a large subset of X × Y , then for a large
set of tuples 〈a1, . . . , a2k〉 ∈ X2k

, where k = dim(Y ), the union of fibers Sa1 ∪ . . . ∪ Sa2k
is large

in Y . Finally, given a weakly o-minimal structure M, we find various conditions equivalent to the
fact that the topological dimension in M enjoys the addition property.

0 Introduction

In the theory of o-minimal structures, cell decompositions have usually been an essential tool
for introducing and effective investigation of various topological invariants of definable sets, the
dimension and the Euler characteristic being classical examples (see for instance [vdD2, Chapter
4]).

In this paper we concentrate on studying the topological dimension for sets definable in weakly
o-minimal structures. The dimension of an infinite set X ⊆ Mm definable in a weakly o-minimal
structure M = (M,≤, . . .) is defined as the biggest positive integer r for which there is a projection
π : Mm −→Mr such that π[X] has a non-empty interior in Mr. A finite set has dimension 0 if it
is non-empty and −∞ otherwise (see [MMS, Definition 4.1]). If M is o-minimal, then this notion
of dimension coincides with the usual one defined by cell decomposition. Some basic properties of
the topological dimension in weakly o-minimal structures are collected in §1.

As illustrated by various examples from [MMS] and [V], the weak o-minimality of linearly
ordered structures is not preserved under elementary equivalence. Therefore one cannot hope for
a reasonable counterpart of the cell decomposition for arbitrary weakly o-minimal structures. A
sensible way to avoid this kind of difficulty is to restrict one’s attention to the class of models
of weakly o-minimal theories. In such a situation, D. Macpherson, D. Marker and C. Steinhorn
established a version of cell decomposition (see [MMS, Theorem 4.6]). Naturally, one could ask
how much of the cell decomposition survives if the hypothesis of weak o-minimality of the theory
is relaxed to that of the structure. Our attempts towards answering this question are expressed by
Lemma 2.4, where we find a decomposition of a definable set into finitely many subsets of ’simple
nature’. However, these simple sets are rather remote from what has traditionally been understood
under the name of a ’cell’.

Macpherson, Marker and Steinhorn show that the dimension of a set definable in a model
of a weakly o-minimal theory is invariant under injective definable maps (see [MMS, Theorem
4.7]). Their proof uses cell decomposition and ω1-saturatedness, and therefore cannot be easily
generalized to sets and functions definable in general weakly o-minimal structures. Nevertheless,

12000 Mathematics Subject Classification. Primary 03C64.
2This research was supported by a Marie Curie Intra-European Fellowships within the 6th European Community

Framework Programme. Contract number: MEIF-CT-2003-501326.

1



applying a completely different approach, in §2 we prove that the dimension of a set definable in
a weakly o-minimal structure does not change under injective definable maps. The proof of this
result easily reduces to showing that if X ⊆ Mm is a non-empty definable set and f : X −→ M
is a definable function, then Γ(f) := {〈a, f(a)〉 : a ∈ X} ⊆ Mm+1, the graph of f , has dimension
equal to the dimension of X. The difficulty with establishing the latter lies in showing that there
is a projection witnessing the dimension of Γ(f) which drops the last coordinate.

Imagine for example that there are some nasty one-dimensional definable set S ⊆ M2 and a
definable function f : S −→M such that dim(Γ(f)) = 2, i.e. some projection of Γ(f) contains an
open box. Clearly, such a projection cannot drop the last coordinate. Suppose for instance that
there are open intervals I, J ⊆M for which

I × J ⊆ {〈y, z〉 ∈M2 : (∃x ∈M)(z = f(x, y))}.

For every a ∈ I, the set {x ∈ M : 〈x, a〉 ∈ S} is infinite. For the sake of simplicity, assume that
{x ∈ M : 〈x, a〉 ∈ S} is convex and open whenever a ∈ I. Fix b ∈ J and let X = {〈x, y〉 ∈
S : y ∈ I, f(x, y) = b}. Note that {x ∈ M : 〈x, a〉 ∈ X} is a non-empty proper subset of
{x ∈M : 〈x, a〉 ∈ S} whenever a ∈ I. By the monotonicity theorem (see Theorem 1.2) we can find
an open interval I ′ ⊆ I such that each of the functions

x 7−→ inf{x ∈M : 〈x, a〉 ∈ S}, x 7−→ sup{x ∈M : 〈x, a〉 ∈ S}

is constant or strictly increasing on I ′. As dim(S) = 1, the above functions must be both strictly
increasing or both strictly decreasing. Moreover, for distinct a1, a2 ∈ I ′

{x ∈M : 〈x, a1〉 ∈ S} ∩ {x ∈M : 〈x, a1〉 ∈ S} = ∅.

Consequently, the set {x ∈M : (∃y ∈ I ′)(〈x, y〉 ∈ X)} is not a union of finitely many convex sets,
which contradicts the weak o-minimality of M.

The general situation is much more complicated, however. Nevertheless, having in mind the
above example and various special cases that may arise, we were able to state the list of inductive
conditions of Theorem 2.11, from which the required result easily follows.

In §3 we study large subsets of Cartesian products of definable sets. The main result of §3 (i.e.
Theorem 3.6) will constitute one of the crucial ingredients of our further study of groups, group
actions and fields definable in weakly o-minimal structures. It will be used for example to show that
a large subset of a group definable in a weakly o-minimal structure is generic. Theorem 3.6 says
that if M = (M,≤, . . .) is a weakly o-minimal structure, X ⊆Mm, Y ⊆Mn, S ⊆ X×Y , are non-
empty definable sets, k = dim(Y ) and S is large in X×Y , then the set of tuples 〈a1, . . . , a2k〉 ∈ X2k

,
for which the union of fibers Sa1 ∪ . . . ∪ Sa2k

is large in Y , is large in X2k

.
We say that the topological dimension in a weakly o-minimal structure M has the addition

property iff for every definable set S ⊆Mm+n and a projection π : Mm+n −→Mm dropping some
n coordinates, if all fibers π−1(a) ∩ S, a ∈ π[S] are of dimension k, then dim(S) = dim(π[S]) + k.
The addition property holds in the o-minimal case but fails in general weakly o-minimal structures.
We prove in §4 that it is closely related to the exchange property of the definable closure (Theorem
4.3) and equivalent to each of the following statements (Theorem 4.2).

• If I ⊆ M is an open interval and f : I −→ M
M

is a definable function (i.e. the set
{〈x, y〉 ∈ I ×M : y < f(x)} is definable), then there is an open interval I ′ ⊆ I such that
f � I ′ is continuous.

• If m ∈ N+, B ⊆ Mm is an open box and f : B −→ M
M

is a definable function (i.e. the set
{〈x, y〉 ∈ B×M : y < f(x)} is definable), then there is an open box B′ ⊆ B such that f � B′

is continuous.

• If m ∈ N+, S ⊆ Mm+1 is a non-empty definable set and π : Mm+1 −→ Mm denotes a
projection dropping one coordinate, then dim(S) = dim(π[S]) iff the set of tuples a ∈ π[S]
for which the fiber π−1(a) ∩ S is finite is large in π[S].
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1 Notation and preliminaries

Let (M,≤) be a dense linear ordering without endpoints. A set X ⊆M is called convex in (M,≤)
iff for any a, b ∈ X and c ∈ M , if a ≤ c ≤ b, then c ∈ X. A non-empty convex set is called an
interval in (M,≤) iff it has both infimum and supremum in M ∪ {−∞,+∞}. The ordering of M
determines a topology on Mm, m ∈ N+, whose basis consists of open boxes in Mm, i.e. sets of the
form (a1, b1)× . . .× (am, bm), where ai, bi ∈M and ai < bi, 1 ≤ i ≤ m.

A first order structure M = (M,≤, . . .) equipped with a dense linear ordering ≤ without
endpoints is called weakly o-minimal iff every subset of M , definable in M, is a finite union of
convex sets. Weak o-minimality, unlike o-minimality, is not preserved under elementary equivalence
[MMS]. A first order complete theory is called weakly o-minimal iff all its models are weakly o-
minimal. If X ⊆ M is a non-empty set definable in a weakly o-minimal structure M, then any
maximal convex subset of X is said to be a convex component of X. If Y is a convex component
of X with inf Y = inf X [respectively: supY = supX], then Y is called the first [the last] convex
component of X.

Assume that M = (M,≤, . . .) is a weakly o-minimal L-structure. A definable cut in M is an
ordered pair 〈C,D〉 of non-empty definable subsets of M such that C < D and C ∪D = M . In an
obvious way the linear ordering (M,≤) extends to the linear ordering of

M
M

:= M ∪ {〈C,D〉 : 〈C,D〉 is a definable cut in M and C,D are not intervals in (M,≤)}.

Note that M is dense in M
M

and every subset of M , definable in M, has infimum and supremum
in M

M ∪ {−∞,+∞}. If X ⊆Mm is a non-empty definable [over A, A ⊆M ] set, then a function
f : X −→ M

M
is called definable [over A] iff there is a formula ϕ(x, y) ∈ L(M) [respectively:

ϕ(x, y) ∈ L(A)] such that |x| = m, ϕ(M) ⊆ X ×M and f(a) = supϕ(a,M) whenever a ∈ X.
If f, g : X −→ M

M
are definable functions such that f(a) < g(a) for a ∈ X, then by (f, g)X we

will denote the set of tuples 〈a, b〉 ∈ X ×M for which f(a) < b < g(a). Throughout the paper
we will also use the following convention. We will call a function f : X −→ M ∪ {−∞,+∞}
[f : X −→M

M ∪{−∞,+∞}] definable iff either f is a definable function from X to M [to M
M

],
or (∀x ∈ X)(f(x) = −∞), or (∀x ∈ X)(f(x) = +∞).

If M = (M, . . .) is a first order structure, m ∈ N+ and J is a proper subset of {1, . . . ,m}, then
by πm

J we will denote the projection from Mm onto Mm−|J| dropping all the coordinates from J .
In particular, πm

∅ is the identity map on Mm. If J is a non-empty subset of {1, . . . ,m}, then by %m
J

we will denote the projection from Mm onto M |J| dropping all the coordinates from {1, . . . ,m}\J .
Usually, if J = {j1, . . . , jk}, we write πm

j1,...,jk
instead of πm

{j1,...,jk} and %m
j1,...,jk

instead of %m
{j1,...,jk}.

For example we have π5
1,4(x1, x2, x3, x4, x5) = %5

2,3,5(x1, x2, x3, x4, x5) = 〈x2, x3, x5〉. A projection
from Mm onto Mr, r ∈ {1, . . . ,m}, is an arbitrary map of the form πm

J , where J ( {1, . . . ,m}
and |J | = m− r. Note that if m ≥ 3 and 1 ≤ i < j ≤ m, then πm−1

j−1 ◦ πm
i = πm−1

i ◦ πm
j = πm

i,j .
Throughout the rest of the paper, unless otherwise stated, we will work in an arbitrary weakly

o-minimal structure M = (M,≤, . . .). By a definable set (function) we will always mean a set
(function) definable in the structure M. When talking about the interior or closure of a definable
set X ⊆ Mm (notation: int(X), cl(X) respectively) we will always refer to the topology induced
on Mm by the ordering (M,≤).

Assume that m,n ∈ N+, S ⊆ Mm+n is a definable set, a ∈ Mm and b ∈ Mn. The fibers
determined by a and b are defined as follows:

Sa = {c ∈Mn : 〈a, c〉 ∈ S}, Sb = {c ∈Mm : 〈c, b〉 ∈ S}.

Definition 1.1 Let I be a non-empty convex open subset of M . A function f : I −→ M
M

is
called

(a) locally constant on I iff

(∀a ∈ I)(∃b, c ∈ I)(b < a < c and f � (b, c) is constant);
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(b) locally strictly increasing on I iff

(∀a ∈ I)(∃b, c ∈ I)(b < a < c and f � (b, c) is strictly increasing);

(c) locally strictly decreasing on I iff

(∀a ∈ I)(∃b, c ∈ I)(b < a < c and f � (b, c) is strictly decreasing);

(d) locally strictly monotone on I iff f is locally strictly increasing on I or locally strictly
decreasing on I.

The following theorem, to be referred to as the monotonicity theorem, is a consequence of
Theorem 3.3 from [MMS] and [Ar].

Theorem 1.2 Assume that A ⊆ M . If U ⊆ M is an infinite A-definable set and f : U −→ M
M

[respectively: f : U −→ M ] is an A-definable function, then there is a partition of U into A-
definable sets X, I0, . . . , Im such that X is finite, I0, . . . , Im are non-empty convex open sets, and
for every i ≤ m, f � Ii if locally constant or locally strictly monotone [and continuous].

Lemma 1.3 Assume that I ⊆M is an open interval and f, g : I −→M
M

are definable functions
such that f(a) < g(a) for a ∈ I and int((f, g)I) = ∅. Then there is an open interval I ′ ⊆ I such
that

(a) the functions f � I ′ and g � I ′ are either both strictly increasing or both strictly decreasing;
(b) for any distinct a, b ∈ I ′ we have that (f(a), g(a)) ∩ (f(b), g(b)) = ∅;
(c) for any a ∈ I ′ and any open interval I1 with inf I1 < f(a) < g(a) < sup I1, there is an open

interval I ′′ ⊆ I ′, containing a, such that inf I1 < f(x) < g(x) < sup I1 whenever x ∈ I ′′.

Proof. By the monotonicity theorem, there is an open interval I1 ⊆ I such that each of the
functions f, g restricted to I1 is either strictly monotone or constant. As int((f, g)I) = ∅, the
functions f, g restricted to I1 are either both strictly decreasing or both strictly increasing. Below
we only consider the first possibility.

Firstly, observe that f(a) > g(b) whenever inf I1 < a < b < sup I1. For, if inf I1 < a < c < b <
sup I1 and f(a) ≤ g(b), then (c, b)× (f(c), f(a)) ⊆ (f, g)I1 , which contradicts our assumption. For
a ∈ I1 define h1(a) = lim

x→a−
f(x) = lim

x→a−
g(x) and h2(a) = lim

x→a+
f(x) = lim

x→a+
g(x). By the weak

o-minimality of M, the set X := {a ∈ I1 : h1(a) 6= g(a) or h2(a) 6= f(a)} is finite, so there is an
open interval I ′ ⊆ I1 \X. Clearly, I ′ satisfies all our demands.

The proof of the following lemma can be easily derived from [Ar] and the proof of Theorem 4.8
from [MMS]. A similar technique will be used in the proof of Theorem 4.2.

Lemma 1.4 Assume that m ∈ N+, B ⊆ Mm is an open box and f : B −→ M is a definable
function. Then there is an open box B′ ⊆ B such that f � B′ is continuous.

The following lemma can be deduced from [Ar] and Theorem 4.3 from [MMS].

Lemma 1.5 Assume that m ∈ N+, B ⊆ Mm is an open box, f : B −→ M ∪ {−∞,+∞} and
g : B −→M

M ∪ {−∞,+∞} are definable functions, f is continuous, and b ∈M .
(a) If (∀a ∈ B)(f(a) < g(a)), then the set (f, g)B contains an open box C. If additionally f is

identically equal to b, then C may be chosen so that inf %m+1
m+1[C] = b.

(b) If (∀a ∈ B)(f(a) > g(a)), then the set (g, f)B contains an open box C. If additionally f is
identically equal to b, then C may be chosen so that sup %m+1

m+1[C] = b.
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Assume that M is a weakly o-minimal structure and X ⊆ Mm is an infinite definable set.
The dimension of X, denoted by dim(X), is the largest r for which there exists a projection
π : Mm −→ Mr such that π[X] contains an open box. Non-empty finite sets are said to have
dimension 0, while to an empty set we assign the dimension −∞. We shall use the convention that
if d ∈ N ∪ {−∞}, then d ≥ −∞ and d+ (−∞) = −∞+ d = −∞.

Fact 1.6 Assume that m,n ∈ N+ and X,Y ⊆Mm, Z ⊆Mn are definable sets.
(a) If X ⊆ Y , then dim(X) ≤ dim(Y ).
(b) If k ∈ {1, . . . ,m} and π : Mm −→Mk is a projection, then dim(X)−(m−k) ≤ dim(π[X]) ≤

dim(X).
(c) If f : Mm −→Mm is a permutation of variables, then dim(f [X]) = dim(X).
(d) dim(X × Z) = dim(X) + dim(Z).
(e) dim(X ∪ Y ) = max{dim(X),dim(Y )}.

Proof. (a), (b), (c) and (d) are immediate. (e) follows from [Ar] and [MMS, Theorem 4.2].

Lemma 1.7 Assume that m ≥ 3, S ⊆Mm is a definable set, i, j ∈ {1, . . . ,m} and i 6= j.
(a) If dim(S) = dim(πm

j [S]) = dim(πm
i [S])+1, then dim(πm

i [S]) = dim(πm
i,j [S]) = dim(πm

j [S])−
1.

(b) If dim(S) = dim(πm
i [S]) = dim(πm

i,j [S]), then dim(S) = dim(πm
j [S]).

Proof. (a) dim(πm
i,j [S]) ≥ dim(πm

j [S])− 1 = dim(S)− 1 = dim(πm
i [S]) ≥ dim(πm

i,j [S]).
(b) dim(S) ≥ dim(πm

j [S]) ≥ dim(πm
i,j [S]) = dim(S).

Definition 1.8 Assume that m ∈ N+ and X,Y ⊆Mm are non-empty definable sets. We say that
X is large in Y iff dim(Y \X) < dim(Y ).

Fact 1.9 Assume that m ∈ N+ and X,Y, Z ⊆Mm are non-empty definable sets.
(a) If X,Y are finite, then X is large in Y iff Y ⊆ X.
(b) If X is large in Y , Y is large in Z and Y ⊆ Z, then X is large in Z.
(c) If X and Y are both large in Z, then X ∩ Y and X ∪ Y are large in Z.

Proof. (a) is obvious; (b) and (c) follow from Fact 1.6.

Lemma 1.10 Assume that m ≥ 2, B ⊆ Mm is an open box and f : B −→ M
M

is a definable
function. For i ∈ {1, . . . ,m}, a ∈ πm

i [B] and b ∈ %m
i [B] define fa

i (b) = f(c), where c ∈ B is the
unique tuple such that %m

i (c) = b and πm
i (c) = a. Then there is an open box C ⊆ B such that for

every i ∈ {1, . . . ,m}, one of the following conditions holds.
(a) (∀a ∈ πm

i [C])(fa
i � %m

i [C] is strictly increasing);
(b) (∀a ∈ πm

i [C])(fa
i � %m

i [C] is strictly decreasing);
(c) (∀a ∈ πm

i [C])(fa
i � %m

i [C] is constant).

Proof. Let X1 [respectively: X2, X3] be the set of all tuples a ∈ πm
1 [B] for which there exists an

open interval I(a) ⊆ %m
1 [B] such that inf I(a) = inf %m

1 [B] and the function fa
1 � I(a) is locally

strictly increasing [respectively: locally strictly decreasing, locally constant]. By the monotonicity
theorem, πm

1 [B] = X1 ∪ X2 ∪ X3, so at least one of the sets X1, X2, X3 has dimension m − 1.
Suppose for example that dim(X1) = m− 1, and fix an open box B0 ⊆ X1. For a ∈ B0 define

h1(a) = sup{y ∈ %m
1 [B] : fa

1 � (inf %m
1 [B], y) is locally strictly increasing}.

By Lemma 1.5, there are an open box B1 ⊆ B0 and an open interval I1 ⊆ %m
1 [B] such that

B1 × I1 ⊆ {〈x, y〉 ∈ B0 ×M : inf %m
1 [B] < y < h1(x)}. Now, fix b ∈ I1 and for a ∈ B1 define

h2(a) = sup{y ∈ (b, sup I1) : fa
1 � (b, y) is strictly increasing}.
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Again, by Lemma 1.5, there are an open box B2 ⊆ B1 and an open interval I2 ⊆ I1 such that
B2 × I2 ⊆ {〈x, y〉 ∈ B1 × I1 : b < y < h2(x)}. Let B′ = I2 × B2. The function fa

1 � %m
1 [B′] is

strictly increasing whenever a ∈ πm
1 [B′].

Repeating the above procedure for the remaining coordinates, one obtains an open box C ⊆ B′

as required by the assertion of the lemma.

2 Essential dimension theory and injective maps

In this section we start to develop the dimension theory for sets definable in weakly o-minimal
structures. Among several other things we prove that the topological dimension of a set definable
in a weakly o-minimal structure is invariant under injective definable maps. Before formulating
the main theorem we prove a series of technical and preparatory lemmas.

Lemma 2.1 Assume that m ≥ 2, J is a non-empty proper subset of {1, . . . ,m}, i ∈ {1, . . . ,m}\J ,
S ⊆ Mm is a definable set and a ∈ πm

i [S]. Assume also that there are infinitely many tuples
c ∈ (πm

i )−1(a) ∩ S such that %m
J (c) ∈ int[%m

J [(πm
J )−1(πm

J (c)) ∩ S]]. Then there is a definable set
V ⊆ S such that %m

J∪{i}[V ] ⊆M |J|+1 is an open box and (in case |J | < m−1) πm
J∪{i} is a singleton.

Proof. Assume that m,J, i, S and a := 〈a1, . . . , ai−1, ai+1, . . . , am〉 satisfy assumptions of the
lemma. Permuting variables, without loss of generality we can assume that J = {1, . . . , |J |} and
i = |J |+ 1. In such a situation, let a′ = 〈a1, . . . , ai−1〉 and

S1 =
{
S if i = m
{〈x1, . . . , xi〉 ∈M i : 〈x1, . . . , xi, ai+1, . . . , am〉 ∈ S} if i < m.

There is an open interval I ⊆M such that a′ ∈ int{c ∈M i−1 : 〈c, d〉 ∈ S1} whenever d ∈ I. Let

S′ =
⋃
d∈I

int{c ∈M i−1 : 〈c, d〉 ∈ S1} × {d}.

We will be done if we demonstrate that int(S′) 6= ∅. For this reason we will inductively find
definable sets V1, . . . , Vi ⊆ S′ such that

(a)s (for s ∈ {1, . . . , i}) %i
i+1−s,...,i[Vs] ⊆Ms is an open box;

(b)s (for s ∈ {1, . . . , i− 1}) πi
i+1−s,...,i[Vs] = {〈a1, . . . , ai−s〉}.

Note that for V1 := {a′} × I, coditions (a)1 and (b)1 hold. Suppose that we have already
found Vs ⊆ S′, 1 ≤ s < i, for which conditions (a)s and (b)s are satisfied. For x ∈ %i

i+1−s,...,i[Vs],

define f(x) ∈ M
M ∪ {+∞}, f(x) > ai−s, as the supremum of the convex component of {z ∈

M : 〈a1, . . . , ai−s−1, z, x〉 ∈ S′} containing ai−s. By Lemma 1.5, the set {〈z, x〉 ∈ Ms+1 : x ∈
%i

i+1−s,...,i[Vs], ai−s < z < f(x)} ⊆ Ms+1 contains an open box B. Clearly, the set Vs+1 :=
{〈a1, . . . , ai−s−1〉} ×B satisfies our demands.

Definition 2.2 Assume that m ≥ 2, J ⊆ {1, . . .m} and ∅ 6= S ⊆ Mm. We say that the set S is
J-open iff the following conditions are satisfied.

(a) (∀i ∈ {1, . . . ,m} \ J)(∀a ∈ πm
i [S])((πm

i )−1(a) ∩ S is finite).
(b) If 0 < |J | < m and c ∈ S, then there exists a definable set U ⊆ S containing c such that

%m
J [U ] ⊆M |J| is an open box and πm

J [U ] = {πm
J (c)}.

(c) If J = {1, . . . ,m}, then S is open.

Fact 2.3 Assume that m ≥ 2, J, J1, J2 ⊆ {1, . . . ,m} and X,Y ⊆Mm.
(a) If X,Y are J-open, then X ∪ Y is J-open.
(b) If X is J1-open and Y is J2-open, then X ∩ Y is J1 ∩ J2-open or empty.
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Lemma 2.4 Assume that m ≥ 2 and S ⊆ Mm is a non-empty definable set. Then there are
pairwise disjoint definable sets XJ , J ⊆ {1, . . . ,m}, such that S =

⋃
J⊆{1,...,m}

XJ and for every

J ⊆ {1, . . . ,m}, the set XJ is either J-open or empty.

Proof. Let J1, . . . , J2m be an enumeration of all subsets of {1, . . . ,m} such that |Ji| ≥ |Jj |
whenever 1 ≤ i ≤ j ≤ 2m. Clearly, J1 = {1, . . . ,m} and J2m = ∅. We will define pairwise disjoint

sets X1, . . . , X2m such that
2m⋃
i=1

Xi = S and for every i ∈ {1, . . . , 2m}, the set Xi is either Ji-open

or empty.
Let X1 = int(S). If X1 6= ∅, then X1 is J1-open. For the inductive step, fix k ∈ {1, . . . , 2m− 2}

and suppose that the (pairwise disjoint) sets X1, . . . , Xk have already been defined. Let Y = X \
(X1∪ . . .∪Xk) and let Xk+1 be the union of all sets of the form (%m

Jk+1
)−1[B]∩(πm

Jk+1
)−1(πm

Jk+1
(c)),

where c ∈ Y and B ⊆M |Jk+1| is an open box such that c ∈ (%m
Jk+1

)−1[B]∩(πm
Jk+1

)−1(πm
Jk+1

(c)) ⊆ Y .
In case Xk+1 6= ∅, Lemma 2.1 and our enumeration of P({1, . . . ,m}) guarantee that condition (a)
of Definition 2.2 is satisfied. Condition (b) is obvious. Define also X2m as S \ (X1 ∪ . . . ∪X2m−1).
Certainly, X2m is ∅-open.

Lemma 2.5 Assume that m ∈ N+, i ∈ {1, . . . ,m + 1}, B ⊆ Mm is an open box, and X ⊆ S ⊆
Mm+1 are definable sets such that

• πm+1
i [S] = πm+1

i [X] = B;

• %m+1
i [(πm+1

i )−1(c) ∩ S] is an infinite convex set whenever c ∈ B;

• ∅ 6= (πm+1
i )−1(c) ∩X ( (πm+1

i )−1(c) ∩ S whenever c ∈ B.

Then dim(S) = m+ 1.

Proof. We use induction on m. For m = 1, the result is an easy consequence of Lemma 1.3.
Suppose that it is true for dimensions smaller than m, where m ≥ 2, and fix B,S,X and i as in
the statement of the lemma. Without loss of generality we can assume that i = m+ 1. In such a
situation, for c ∈ B define f(c) = inf{d ∈M : 〈c, d〉 ∈ S} and g(c) = sup{d ∈M : 〈c, d〉 ∈ S}. Note
that if one of the sets: {c ∈ B : f(c) = −∞}, {c ∈ B : g(c) = +∞} has non-empty interior, then
by Lemma 1.5, S contains an open box. Hence we can assume that f(c), g(c) ∈ M

M
whenever

c ∈ B. Clearly, f and g are definable functions and f(c) < g(c) for c ∈ B. Let B = B′ × I, where
B′ is an open box and I is an open interval. By Lemma 1.10, without loss of generality we can
assume that

• (∀a ∈ B′)(f(a, y) is strictly increasing) or

• (∀a ∈ B′)(f(a, y) is strictly decreasing), or

• (∀a ∈ B′)(f(a, y) is constant),

and similarly for g.
Suppose first that for a ∈ B′, f(a, y) is constant or strictly decreasing while g(a, y) is constant

or strictly increasing. Let b ∈ I. By the inductive hypothesis, dim({〈x, z〉 : 〈x, b, z〉 ∈ S}) = m.
Consequently, the set {〈x, y, z〉 : 〈x, b, z〉 ∈ S, b < y < sup I} ⊆ S has dimension m + 1. Similar
argument works if for a ∈ B′, we have that f(a, y) is constant or strictly increasing while g(a, y)
is constant or strictly decreasing.

To finish the proof, we have to consider the case when for every a ∈ B′, the functions f(a, y),
g(a, y) are both strictly increasing or both strictly decreasing. Below we only deal with the first
possibility.

For 〈a, b〉 ∈ B′ × I, let h(a, b) = inf{f(a, c) : c ∈ (b, sup I)}. Below we consider two cases.
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Case 1. There is a ∈ B′ such that the set {b ∈ I : h(a, b) ≥ g(a, b)} is infinite, i.e. contains an
open interval I ′. Then the set {z ∈ M : (∃y ∈ I ′)(〈a, y, z〉 ∈ X)} is not a union of finitely many
convex sets.

Case 2. For every a ∈ B′, the set {b ∈ I : h(a, b) ≥ g(a, b)} is finite. For a ∈ B′ define
u(a) = min({b ∈ I : h(a, b) ≥ g(a, b)} ∪ {sup I}). By Lemma 1.5, there are an open box B1 ⊆ B′

and an open interval I1 ⊆ I such that for any a ∈ B1 and b ∈ I1, we have that h(a, b) < g(a, b).
Again, using Lemma 1.5, without loss of generality we can assume that g(a, b1) > f(a, b2) for any
a ∈ B1 and b1 < b2 from I1.

Now, fix b1 < b2 < b3 from I1 and define

X1 = {〈x, z〉 ∈ B1 ×M : f(x, b2) < z < f(x, b3)};
S1 = {〈x, z〉 ∈ B1 ×M : f(x, b2) < z < g(x, b1)}.

Note that πm
m [X1] = πm

m [S1] = B1, and for every a ∈ B1, we have that (S1)a is an infinite
convex set such that ∅ 6= (X1)a ( (S1)a. By the inductive hypothesis, dim(S1) = m. So the set
{〈x, y, z〉 ∈ B1 × (b1, b2) ×M : f(x, b2) < z < g(x, b1)} ⊆ S has dimension m + 1, which finishes
the proof.

Definition 2.6 Assume that m ∈ N+, X ⊆ S ⊆ Mm are definable sets of dimension k ≥ 0 and
a ∈ X. We say that X is smooth at a with respect to S iff k = 0, or k ≥ 1 and there are an open
box B ⊆ Mm containing a and a projection π : Mm −→ Mk such that B ∩X = B ∩ S, π[B ∩X]
is an open box in Mk, and π � B ∩X is a homeomorphism from B ∩X onto π[B ∩X]. We say
that X is locally smooth in S iff for every a ∈ X, X is smooth at a with respect to S.

Lemma 2.7 Assume that m ∈ N+, X ⊆Mm is a definable set of dimension k ≥ 1, B′ ⊆ B ⊆Mm

are open boxes, a ∈ B′ ∩X, π : Mm −→ Mk is a projection, π[B ∩X] is an open box in Mk and
π � B ∩X is a homeomorphism from B ∩X onto π[B ∩X]. Then there is an open box B′′ ⊆ B′

containing a such that π[B′′ ∩X] is an open box in Mk and π � B′′ ∩X is a homeomorphism from
B′′ ∩X onto π[B′′ ∩X].

Proof. Let g : π[B ∩X] −→ B ∩X be the map given by g(π(c)) = c for c ∈ B ∩X. Since g is
a homeomorphism from π[B ∩X] onto B ∩X, the preimage g−1[B′ ∩X] = π[B′ ∩X] is open in
Mk. Let B1 ⊆ g−1[B′ ∩X] be an open box containing π(a). Then B′′ := B′ ∩ π−1[B1] is an open
box in Mm satisfying our demands.

Lemma 2.8 Assume that m ∈ N+, U, V, Y are definable subsets of Mm, U, V ⊆ Y , U is locally
smooth in Y , V is open in Y , U ∩ V 6= ∅, and dim(U) = dim(Y ) = k ≥ 1. Then dim(U ∩ V ) = k
and U ∩ V is locally smooth in Y .

Proof. Fix a ∈ U ∩ V . We have to show that U ∩ V is smooth at a with respect to Y . Since U
is smooth at a with respect to Y , there are an open box B1 ⊆Mm containing a and a projection
π : Mm −→ Mk such that B1 ∩ Y ⊆ U , π[B1 ∩ Y ] is an open box in Mk, and π � B1 ∩ Y is a
homeomorphism from B1∩Y onto π[B1∩Y ]. Since V is open in Y , there is an open box B2 ⊆Mm

containing a such that B2 ∩ Y ⊆ V . Hence B′ := B1 ∩ B2 is an open box in Mm containing a
such that B′ ∩ Y ⊆ U ∩ V . By Lemma 2.7, there is an open box B′′ ⊆ B′, containing a such that
π[B′′∩Y ] is an open box in Mk and π � B′′∩Y is a homeomorphism from B′′∩Y onto π[B′′∩Y ].
This finishes the proof.

Lemma 2.9 Assume that m ∈ N+, i ∈ {1, . . . ,m + 1} and S ⊆ Mm+1 is a definable set with
dim(πm+1

i [S]) = m. Then dim(S) = m iff for every open interval I ⊆ M , there is a definable set
X ⊆ πm+1

i [S] such that dim(X) < m, and for any k ∈ N+ and a1, . . . , ak ∈ πm+1
i [S] \X, we have

that I 6⊆
k⋃

l=1

%m+1
i [(πm+1

i )−1(al) ∩ S].
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Proof. Without loss of generality we can assume that i = m + 1. For the left-to-right direction,
suppose that there is an open interval I ⊆M such that for every definable set X ⊆ πm+1

m+1 [S] with
dim(X) < m, there are k ∈ N+ and a1, . . . , ak ∈ πm+1

m+1 [S]\X such that I ⊆ Sa1 ∪ . . .∪Sak
. Denote

by S1 the set of all tuples a ∈ πm+1
m+1 [S] for which the set I ∩ Sa is non-empty and contains some

open interval whose infimum is equal to inf I. Our assumptions guarantee that S1 contains an
open box B. For a ∈ B, let f(a) ∈ M

M
be the the supremum of the first convex component of

I ∩ Sa. The set {〈a, b〉 : inf(I) < b < f(a)} is contained in S and (by Lemma 1.5) has dimension
m+ 1. Consequently, dim(S) = m+ 1.

The right-to-left direction is trivial.

Lemma 2.10 Assume that m ∈ N+, S ⊆ Mm is a non-empty definable set, I ⊆ M is an open
interval and X ⊆ S × I is a definable set such that dim((S × {b}) ∩X) < dim(S) whenever b ∈ I.
Then dim(X) ≤ dim(S).

Proof. We use induction on m. Let S ⊆M be a non-empty definable set, I ⊆M an open interval
and X ⊆ S×I a definable set such that dim((S×{b})∩X) < dim(S) whenever b ∈ I. If S is finite,
then (S × {b}) ∩X = ∅ for b ∈ I, which means that X = ∅. If S is infinite, then (S × {b}) ∩X is
finite whenever b ∈ I. Hence X does not contain an open box, which means that dim(X) ≤ 1.

Now assume that S ⊆ Mm+1 is a non-empty definable set, I ⊆ M is an open interval and
X ⊆ S×I is a definable set such that dim((S×{b})∩X) < dim(S) whenever b ∈ I, and suppose that
the Lemma holds for lower dimensions. If dim(S) = m+1, then it is clear that X does not contain
an open box. Assume that dim(S) ≤ m and suppose for a contradiction that dim(X) = dim(S)+1.
Let π : Mm+2 −→ Mm+1 be a projection such that dim(π[X]) = dim(X) = dim(S) + 1. The
projection π does not drop the last coordinate, so there is a unique projection π′ : Mm+1 −→Mm

such that π(a, b) = 〈π′(a), b〉 for a ∈Mm+1 and b ∈M . Then

dim((π′[S]× {b}) ∩ π[X]) = dim(π[(S × {b}) ∩X]) ≤ dim((S × {b}) ∩X) < dim(S) = dim(π′[S]).

The first equality above holds because (π′[S]× {b}) ∩ π[X] = π[(S × {b}) ∩X]. By the inductive
assumption, dim(π[X]) ≤ dim(π′[S]). Hence dim(X) ≤ dim(S), a contradiction.

Theorem 2.11 Let m ∈ N+.
(a)m If S ⊆Mm is a non-empty definable set, then dim(cl(S) \ S) < dim(S).
(b)m If X ⊆ S ⊆ Mm are non-empty definable sets and dim(X) = dim(S), then the set

{a ∈ X : X is smooth at a with respect to S} is large in X.
(c)m Assume that S ⊆ Mm is a non-empty definable set and f : S −→ M is a definable

function. Then the set of continuity points of f is large in S.
(d)m Assume that S ⊆ Mm is a non-empty definable set, f : S −→ M and g : S −→ M

M
are

definable functions and f is continuous. If (∀a ∈ S)(f(a) < g(a)) [respectively: (∀a ∈ S)(f(a) >
g(a))], then there are an open interval I ⊆ M and a definable set X ⊆ S such that dim(X) =
dim(S) and X × I ⊆ (f, g)S [respectively: X × I ⊆ (g, f)S].

(e)m If S ⊆ Mm+1 is a non-empty definable set and i ∈ {1, . . . ,m + 1}, then dim(S) =
dim(πm+1

i [S]) iff for every open interval I ⊆ M , there is a definable set X ⊆ πm+1
i [S] such that

dim(X) < dim(πm+1
i [S]), and for any k ∈ N+ and a1, . . . , ak ∈ πm+1

i [S] \X,

I 6⊆
k⋃

l=1

%m+1
i [(πm+1

i )−1(al) ∩ S].

(f)m Assume that S ⊆ Mm+1 is a non-empty definable set, i ∈ {1, . . . ,m + 1} and for every
a ∈ πm+1

i [S], (πm+1
i )−1(a) ∩ S is finite. Then dim(S) = dim(πm+1

i [S]).
(g)m Assume that i ∈ {1, . . . ,m+1} and X ⊆ S ⊆Mm+1 are non-empty definable sets. Assume

also that πm+1
i [X] = πm+1

i [S], dim(πm+1
i [S]) ≥ 1, and for every a ∈ πm+1

i [S], %m+1
i [(πm+1

i )−1(a)∩
S] is an infinite convex set and ∅ 6= (πm+1

i )−1(a) ∩ X ( (πm+1
i )−1(a) ∩ S. Then dim(S) =

dim(πm+1
i [S]) + 1.
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Proof. We use induction on m. Conditions (a)1 and (b)1 are obvious by the weak o-minimality
of M. (c)1, (d)1 and (e)1 are consequences of Theorem 1.2 and Lemmas 1.5 and 2.9 respectively.
(e)1 implies (f)1. Finally, (g)1 is consequence of Lemma 1.3. For the rest of the proof suppose that
m ∈ N+ and statements (a)m–(g)m are true.

Proof of (a)m+1. Let S ⊆ Mm+1 be a non-empty definable set. By Fact 1.6(e), it is enough
to show that dim(cl(S) \ S) < dim(cl(S)). Suppose for a contradiction that dim(cl(S) \ S) =
dim(cl(S)) = k. Clearly, this is not possible for k ∈ {0,m + 1}, so let 1 ≤ k ≤ m. There is
i ∈ {1, . . . ,m+ 1} such that dim(πm+1

i [cl(S) \ S]) = dim(πm+1
i [cl(S)]) = k. To simplify notation,

assume that i = m+ 1 and let π = πm+1
m+1 , π′ = %m+1

m+1. Note that the set

X := {a ∈ π[cl(S) \ S] : π−1(a) ∩ S 6= ∅}

is large in π[cl(S) \ S]. Otherwise, by (b)m, there is an open box B0 ⊆Mm such that

B0 ∩ π[cl(S)] = B0 ∩ (π[cl(S) \ S] \X)

and dim(B0 ∩ π[cl(S)]) = k. Consequently, for every open box B ⊆ B0 ×M with B ∩ cl(S) 6= ∅,
we have that B ∩ S = ∅, which is impossible. So in particular dim(X) = k.

Let X1 be the set of all tuples a ∈ X such that at least one of the convex components of the
set π′[π−1(a) ∩ (cl(S) \ S)] precedes π′[π−1(a) ∩ S] and let X2 = X \ X1. As X1 ∪ X2 = X, at
least one of the sets X1, X2 has dimension k. The proof is similar in both situations, therefore we
only consider the case when dim(X1) = k. For a ∈ X1 denote by A(a) the last convex component
of π′[π−1(a) ∩ (cl(S) \ S)] preceding π′[π−1(a) ∩ S] and by B(a) the first convex component of
π′[π−1(a) ∩ S]. Define the following sets.

Y1 = {a ∈ X1 : supA(a) = inf B(a)}
Y2 = {a ∈ X1 : supA(a) < inf B(a)}

Again, at least one of the sets Y1, Y2 has dimension k. In case dim(Y1) = k, consider

X ′ :=
⋃

a∈Y1

{a} ×A(a) and S′ :=
⋃

a∈Y1

{a} × (A(a) ∪B(a)).

By (g)m, dim(S′) = k + 1, a contradiction. If dim(Y2) = k, then define

X ′′ :=
⋃

a∈Y2

{a} ×A(a) and S′′ :=
⋃

a∈Y2

{a} × {b ∈M : A(a) < b < B(a)}.

(g)m implies that dim(X ′′ ∪ S′′) = k + 1. But dim(X ′′) = k, so dim(S′′) = k + 1. By lemma 2.10,
there is b ∈M such that dim(S′′ ∩ (Mm ×{b})) = k. For such b, let Y3 = π[S′′ ∩ (Mm ×{b})]. By
(b)m, there is an open box B1 ⊆ Mm such that B1 ∩ Y3 = B1 ∩ π[cl(S)] and dim(B1 ∩ Y3) = k.
There is b1 ∈ (−∞, b) such that (B1 × (b1, b)) ∩ cl(S) 6= ∅ and (B1 × (b1, b)) ∩ S = ∅, which is
impossible.

Proof of (b)m+1. Assume that X ⊆ S ⊆ Mm+1 are definable sets of dimension k ≥ 0. The
assertion of (b)m+1 is obvious for k ∈ {0,m+1}. So let 1 ≤ k ≤ m and suppose for a contradiction
that the set X ′ := {a ∈ X : X is not smooth at a with respect to S} has dimension k. By Lemma
2.4 and Fact 1.6(e), there are J ( {1, . . . ,m + 1} and a k-dimensional J-open set X0 ⊆ X ′. By
(a)m+1, the set X ′

0 := X0 \ cl(S \ X0) is large in X0. Fix i ∈ {1, . . . ,m} \ J . Clearly, for every
a ∈ πm+1

i [X ′
0], the fiber (πm+1

i )−1(a) ∩X ′
0 is finite. Hence, by (f)m, dim(πm+1

i [X ′
0]) = k.

For a ∈ πm+1
i [X ′

0] define

f(a) = min %m+1
i [(πm+1

i )−1(a) ∩X ′
0];

g(a) = min((%m+1
i [(πm+1

i )−1(a) ∩X ′
0] \ {f(a)}) ∪ {+∞}).
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Let Y1 = {a ∈ πm+1
i [X ′

0] : g(a) ∈ M} and Y2 := {a ∈ πm+1
i [X ′

0] : g(a) = +∞}. Of course,
Y1 ∪Y2 = πm+1

i [X ′
0], so at least one of the sets Y1, Y2 has dimension k. Below we only consider the

case when dim(Y1) = k.
By (b)m and (c)m, there are an open box B1 ⊆ Mm and a projection π : Mm −→ Mk such

that B1 ∩ Y1 = B1 ∩ πm+1
i [S], π[B1 ∩ Y1] is an open box in Mk, π � B1 ∩ Y1 is a homeomorphism

from B1 ∩ Y1 onto π[B1 ∩ Y1], and the functions f, g are continuous on B1 ∩ Y1. Fix a ∈ B1 ∩ Y1

and b, c ∈ M such that b < f(a) < c < g(a). There is an open box B2 ⊆ B1 containing a
such that b < f(x) < c < g(x) whenever x ∈ B2 ∩ Y1. Let c ∈ X ′

0 be the unique tuple such
that %m+1

i (c) = f(a) and πm+1
i (c) = a. There is an open box B ⊆ Mm+1 containing c such

that B ∩ cl(S \ X0) = ∅, πm+1
i [B] ⊆ B2 and b < inf %m+1

i [B] < f(x) < sup %m+1
i [B] < g(x)

for x ∈ πm+1
i [B ∩ X ′

0]. By Lemma 2.7, there is an open box B3 ⊆ πm+1
i [B] containing a such

that π � B3 ∩ Y1 is a homeomorphism from B3 ∩ Y1 onto π[B3 ∩ Y1], an open box in Mk. Let
B′ = B∩(πm+1

i )−1[B3] and π′ = π◦πm+1
i . Then B′∩X = B′∩S, π′ � B′∩X is a homeomorphism

from B′ ∩X onto π′[B′ ∩X], an open box in Mk. This finishes the proof of (b)m+1.

Proof of (c)m+1. Assume that S ⊆ Mm+1 is a non-empty definable set, f : S −→ M is a
definable function and denote by X the set of discontinuity points of f . Suppose for a contradiction
that dim(X) = dim(S) = k. By Lemma 1.4, without loss of generality we can assume that
1 ≤ k ≤ m. By (b)m+1, there are an open box B ⊆ Mm+1 and i ∈ {1, . . . ,m + 1} such that
B∩S = B∩X, dim(B∩X) = k and the projection πm+1

i restricted to B∩X is a homeomorphism
from B ∩ X onto πm+1

i [B ∩ X]. Let g denote the inverse of this homeomorphism. By (c)m, the
function f ◦ g has a continuity point in πm+1

i [B ∩X]. Consequently, f has a continuity point in
B ∩X, which contradicts our choice of X.

Proof of (d)m+1. Assume that S ⊆ Mm+1 is a non-empty definable set, f : S −→ M and
g : S −→ M

M
are definable functions, f is continuous, and f(a) < g(a) whenever a ∈ S. In case

dim(S) = m + 1, the assertion of (d)m+1 is a consequence of Lemma 1.5. The case dim(S) = 0
is trivial. So assume that 1 ≤ dim(S) = k ≤ m. By (b)m+1, there are an open box B ⊆ Mm+1

and i ∈ {1, . . . ,m + 1} such that the projection πm+1
i restricted to B ∩ S is a homeomorphism

from B ∩ S onto πm+1
i [B ∩ S] and dim(πm+1

i [B ∩ S]) = k. Let h denote the inverse of this
homeomorphism. By (d)m, there are an open interval I and a definable set Z ⊆ πm+1

i [B ∩S] such
that dim(Z) = k and Z × I ⊆ {〈x, y〉 : x ∈ Z, f(h(x)) < y < g(h(x))}. Clearly, dim(h[Z]) = k.
Moreover, h[Z]× I ⊆ {〈x, y〉 : x ∈ B ∩ S and f(x) < y < g(x)}.

Proof of (e)m+1. Assume that S ⊆Mm+2 is a non-empty definable set and i ∈ {1, . . . ,m+ 2}.
If dim(S) = 0, then both sides of the equivalence in (e)m+1 are true. In case dim(πm+2

i [S]) =
dim(S) − 1 ∈ {0,m + 1}, they are both false. Also, by Lemma 2.9, if dim(S) = dim(πm+2

i [S]) =
m + 1, then the right side of the equivalence in (e)m+1 is valid. Having considered all the trivial
cases, assume that 1 ≤ dim(πm+2

i [S]) ≤ m.
For the left-to-right direction, assume that dim(S) = dim(πm+2

i [S]) and I ⊆ M is an open
interval. Denote by J the (necessarily non-empty) set of all j ∈ {1, . . . ,m + 2} \ {i} for which
dim(πm+2

i,j [S]) = dim(πm+2
i [S]) = dim(S). By Lemma 1.7(b), we have that dim(πm+2

i,j [S]) =
dim(πm+2

j [S]) whenever j ∈ J . Without loss of generality we can assume that i < j for all j ∈ J .
By (e)m, there are definable sets Xj ⊆ πm+2

i,j [S], j ∈ J , such that dim(Xj) < dim(πm+2
i,j [S]),

and for any k ∈ N+ and any a1, . . . , ak ∈ πm+2
i,j [S] \ Xj , I 6⊆

k⋃
l=1

%m+1
i [(πm+1

i )−1(al) ∩ πm+2
j [S]].

This implies that for any j ∈ J , k ∈ N+ and b1, . . . , bk ∈ πm+2
i [S] \ (πm+1

j−1 )−1[Xj ], we have that

I 6⊆
k⋃

l=1

%m+2
i [(πm+2

i )−1(bl) ∩ S]. Let X =
⋂

j∈J

(πm+1
j−1 )−1[Xj ] ∩ πm+2

i [S]. Certainly, for any k ∈ N+

11



and b1, . . . , bk ∈ πm+2
i [S] \X we have that

I 6⊆
k⋃

l=1

%m+2
i [(πm+2

i )−1(bl) ∩ S]

and dim(πm+1
j [X]) < dim(πm+2

i,j [S]) = dim(S) whenever j ∈ J . We claim that dim(X) <

dim(πm+2
i [S]). Suppose otherwise. Then there is j0 ∈ J such that

dim(S) = dim(πm+2
i,j0

[S]) ≥ dim(πm+1
j0−1[X]) = dim(X) = dim(πm+2

i [S]) = dim(S),

a contradiction.
For the right-to-left direction, assume that dim(S) = dim(πm+2

i [S]) + 1 and fix j ∈ {1, . . . ,m+
2} \ {i} such that dim(πm+2

j [S]) = dim(S). Again, without loss of generality, we can assume that
i < j. By Lemma 1.7, dim(πm+2

i [S]) = dim(πm+2
i,j [S]) = dim(πm+2

j [S]) − 1. By (e)m, there is an
open interval I ⊆ M such that for any definable set X ⊆ πm+2

i,j [S] with dim(X) < dim(πm+2
i,j [S]),

there are k ∈ N+ and a1, . . . , ak ∈ πm+2
i,j [S] \X such that

I ⊆
k⋃

l=1

%m+1
i [(πm+1

i )−1(al) ∩ πm+2
j [S]].

Denote by S1 the set of all a’s from πm+2
i,j [S] for which the set %m+1

i [(πm+1
i )−1(a) ∩ πm+2

j [S]]
contains an interval of the form (inf I, y) with y ∈ I. Our assumptions guarantee that dim(S1) =
dim(πm+2

i,j [S]) = dim(πm+2
i [S]). For a ∈ S1 denote by g(a) the supremum of the first convex

component of the set %m+1
i [(πm+1

i )−1(a)∩πm+2
j [S]]∩I. By (d)m, there are an open interval I1 ⊆ I

and a definable set S2 ⊆ S1 such that dim(S2) = dim(S1) = dim(πm+2
i [S]) and S2 × I1 ⊆ {〈x, y〉 :

x ∈ S1, inf I < y < g(x)}. Hence, for every a ∈ S2, I1 ⊆ %m+2
i,j [(πm+2

i,j )−1(a) ∩ S].
Now, suppose that Z ⊆ πm+2

i [S] is a definable set such that dim(Z) < dim(πm+2
i [S]). For

a ∈ S2 denote by R(a) the set of all elements b ∈ I1 for which there is a (necessarily unique)
tuple c ∈ πm+2

j [S] such that πm+1
i (c) = a, %m+1

i (c) = b and %m+2
j [(πm+2

j )−1(c) ∩ S] (necessarily a
non-empty set) is a union of some convex components of %m+1

j−1 [(πm+1
j−1 )−1(a) ∩ πm+2

i [S]]. Let

S3 = {a ∈ S2 : R(a) contains an open interval of the form (inf I1, y) with y ∈ I1}.

Below we consider two cases.
Case 1. dim(S3) = dim(S2) = dim(πm+2

i [S]). For a ∈ S3 let h(a) ∈MM
denote the supremum

of the first convex component of R(a). As previously, there are an open interval I2 ⊆ I1 and a
definable set S4 ⊆ S3 such that dim(S4) = dim(S3) = dim(πm+2

i [S]) and S4 × I2 ⊆ {〈x, y〉 : x ∈
S3, inf I1 < y < h(x)}. Fix a ∈ S4\πm+1

j−1 [Z] and choose b1, . . . , bk ∈ (πm+1
j−1 )−1(a)∩πm+2

i [S] so that
%m+1

j−1 (b1), . . . , %m+1
j−1 (bk) are representatives of all the convex components of %m+1

j−1 [(πm+1
j−1 )−1(a) ∩

πm+2
i [S]]. Clearly, I2 ⊆

k⋃
l=1

%m+2
i [(πm+2

i )−1(bl) ∩ S].

Case 2. dim(S3) < dim(πm+2
i [S]). Let S4 = S2 \ S3. Of course, dim(S4) = dim(πm+2

i [S]). For
a ∈ S4 denote by T (a) the set of all elements b ∈ I1 for which there is a (necessarily unique) tuple
c ∈ πm+2

j [S] such that πm+1
i (c) = a, %m+1

i (c) = b and at least one of the convex components of
%m+2

j [(πm+2
j )−1(c)∩S] is a proper subset of some of the convex components of %m+1

j−1 [(πm+1
j−1 )−1(a)∩

πm+2
i [S]]. Note that for every a ∈ S4, T (a) contains an open interval of the form (inf I, y), y ∈ I.

As in Case 1, by (d)m, there are an open interval I2 ⊆ I1 and a definable set S5 ⊆ S4 such
that dim(S5) = dim(S4) = dim(πm+2

i [S]) and for every c ∈ πm+2
j [S] with %m+1

i (c) ∈ I2 and
πm+1

i (c) ∈ S5, at least one of the convex components of %m+2
j [(πm+2

j )−1(c) ∩ S] is a proper subset
of some of the convex components of %m+1

j−1 [(πm+1
j−1 )−1(πm+1

i (c)) ∩ πm+2
i [S]].

12



Fix b ∈ I2 and for a ∈ S5 denote by c(a) the unique tuple from πm+2
j [S] such that %m+1

i (c(a)) = b

and πm+1
i (c(a)) = a. Let U(a) be the first convex component of %m+1

j [(πm+1
j−1 )−1(a) ∩ πm+2

i [S]]
such that %m+2

j [(πm+2
j )−1(c(a))∩S]∩U(a) is a non-empty proper subset of U(a). Denote by V (a)

the first convex component of %m+2
j [(πm+2

j )−1(c(a))∩S]∩U(a). For every a ∈ S5 denote by U ′(a)
the unique definable subset of (πm+1

j−1 )−1(a)∩πm+2
i [S] such that %m+1

j−1 [U ′(a)] = U(a) and by V ′(a)
the unique definable subset of πm+2

i [(πm+2
j )−1(c(a)) ∩ S] such that %m+1

j−1 [V ′(a)] = V (a). Let S′ =⋃
a∈S5

U ′(a) and X ′ =
⋃

a∈S5

V ′(a). Note that dim(S′) = dim(πm+1
j−1 [S′]), πm+1

j−1 [S′] = πm+1
j−1 [X ′] = S5,

and for every a ∈ πm+1
j−1 [S′] we have that %m+1

j−1 [(πm+1
j−1 )−1(a) ∩ S′] is an infinite convex set and

∅ 6= (πm+1
j−1 )−1(a) ∩X ′ ( (πm+1

j−1 )−1(a) ∩ S′. This contradicts (g)m.

Proof of (f)m+1. Assume that S ⊆ Mm+2 is a non-empty definable set, i ∈ {1, . . . ,m + 2},
and for every a ∈ πm+2

i [S], the set (πm+2
i )−1(a) ∩ S is finite. Then for any open interval I ⊆ M ,

k ∈ N+ and a1, . . . , ak ∈ πm+2
i [S], we have that I 6⊆

k⋃
l=1

%m+2
i [(πm+2

i )−1(al) ∩ S]. By (e)m+1,

dim(S) = dim(πm+2
i [S]).

Proof of (g)m+1. Of course, it is sufficient to prove (g)m+1 for i = m+ 1. To make the notation
simpler, let π = πm+2

m+2 . Assume that X ⊆ S ⊆ Mm+2 are non-empty definable sets such that
dim(π[S]) = dim(S) = k ≥ 1 and π[S] = π[X]. Assume also that for every a ∈ π[S], the set
B(a) := {b ∈M : 〈a, b〉 ∈ S} is an infinite convex set of which {b ∈M : 〈a, b〉 ∈ X} is a non-empty
proper subset. Denote by X ′ the unique definable subset of X such that for every a ∈ π[S], the
set A(a) := {b ∈ M : 〈a, b〉 ∈ X ′} is the first convex component of {b ∈ M : 〈a, b〉 ∈ X}. Define
the following sets.

Y1 = {a ∈ π[S] : inf B(a) < inf A(a) < supB(a)};
Y2 = {a ∈ π[S] : inf B(a) < supA(a) < supB(a)};
Y3 = {a ∈ π[S] : inf A(a) = inf B(a), supA(a) = supB(a) and inf B(a) ∈ B(a) \A(a)};
Y4 = {a ∈ π[S] : inf A(a) = inf B(a), supA(a) = supB(a) and supB(a) ∈ B(a) \A(a)};
Y5 = {a ∈ π[S] : inf A(a) = supA(a) = inf B(a)};
Y6 = {a ∈ π[S] : inf A(a) = supA(a) = supB(a)}.

Clearly, π[S] = Y1 ∪ Y2 ∪ Y3 ∪ Y4 ∪ Y5 ∪ Y6, so at least one of the sets Y1, Y2, Y3, Y4, Y5, Y6 has
dimension k. Below we consider 4 cases.

Case 1. dim(Y1) = k. Lemma 2.5 implies that k < m + 1. By (b)m+1, there are j ∈
{1, . . . ,m + 1} and an open box B ⊆ Mm+1 such that B ∩ π[S] = B ∩ Y1, dim(B ∩ Y1) =
dim(πm+1

j [B ∩ Y1]) = k and the projection πm+1
j restricted to B ∩ Y1 is a homeomorphism. By

(g)m, the set πm+2
j [π−1[B∩Y1]∩S] ⊆Mm+1 has dimension k+1, which implies that dim(S) = k+1,

a contradiction.
Case 2. dim(Y2) = k. This case is similar to Case 1.
Case 3. dim(Y3) = k. Define functions f : Y3 −→M and g : Y3 −→M

M
as follows:

f(a) = inf A(a), g(a) = supA(a).

Our assumptions guarantee that f(a) < g(a) whenever a ∈ Y1. By (c)m+1, there is a definable set
Z ⊆ Y3, large in Y3, such that the function f restricted to Z is continuous. By (d)m+1, there are
an open interval I and a definable set Z ′ ⊆ Z such that dim(Z ′) = k and Z ′ × I ⊆ {〈x, y〉 : x ∈
Z and f(x) < y < g(x)}. Hence dim(S) = k + 1.

Case 4. One of the sets Y4, Y5, Y6 has dimension k. This case is similar to Case 3.

The following corollary is a direct consequence of condition (f)m from Theorem 2.11.
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Corollary 2.12 Assume that m ∈ N+, S ⊆Mm is a non-empty definable set and f : S −→M is
a definable function. Then dim(Γ(f)) = dim(S).

Theorem 2.13 Assume that M = (M,≤, . . .) is a weakly o-minimal structure, m ∈ N+, S ⊆Mm

is a non-empty definable set and f : S −→ Mn is an injective definable map. Then dim(S) =
dim(Γ(f)) = dim(f [S]).

Proof. Let f = 〈f1, . . . , fn〉, where f1, . . . , fn are definable maps from S into M . Let g1 = f1 and
for 1 ≤ k < n define a map gk+1 : Γ(gk) −→ M as follows: gk+1(a, gk(a)) = fk+1(a). It is clear
that Γ(f) = Γ(gn). By Corollary 2.12, dim(Γ(f)) = dim(S). The same argument with f replaced
by f−1 shows that dim(Γ(f)) = dim(f [S]).

Corollary 2.14 Assume that m ∈ N+, J1, J2 are distinct subsets of {1, . . . ,m+ 1} and X1, X2 ⊆
Mm+1 are definable sets such that X1 is J1-open and X2 is J2-open. Then

dim(X1 ∩X2) < max{dim(X1),dim(X2)}.

Proof. Assume that m,J1, J2, X1, X2 satisfy assumptions of the lemma. In case dim(X1) 6=
dim(X2) or X1 ∩X2 = ∅, the assertion of the lemma is trivial. So let dim(X1) = dim(X2) = k and
let X1 ∩ X2 6= ∅. Without loss of generality we can assume that J2 \ J1 6= ∅. Below, for a fixed
i ∈ J2 \ J1 we consider two cases.

Case 1. dim(πm+1
i [X2]) < k. Then for every a ∈ πm+1

i [X1∩X2], the fiber (πm+1
i )−1(a)∩X1∩X2

is finite, and using condition (f)m from Theorem 2.11 we conclude that

dim(X1 ∩X2) = dim(πm+1
i [X1 ∩X2]) ≤ dim(πm+1

i [X2]) < k.

Case 2. dim(πm+1
i [X2]) = k. Suppose for a contradiction that dim(X1 ∩ X2) = k and let

Z = πm+1
i [X1 ∩X2]. Again, by condition (f)m from Theorem 2.11, dim(Z) = k. There is a unique

definable set X ⊆ X1 ∩X2 such that πm+1
i [X] = Z and for every a ∈ Z, we have that

%m+1
i [(πm+1

i )−1(a) ∩X] = {min %m+1
i [(πm+1

i )−1(a) ∩X1 ∩X2]}.

Clearly, dim(X) = k. Moreover, there is a unique definable set S ⊆ X2 such that πm+1
i [S] = Z

and for every a ∈ Z, %m+1
i [(πm+1

i )−1(a) ∩ S] is the convex component of %m+1
i [(πm+1

i )−1(a) ∩
X2] containing %m+1

i [(πm+1
i )−1(a) ∩ X]. Now, condition (g)m from Theorem 2.11 implies that

dim(X2) = k + 1, a contradiction.

3 Large subsets of Cartesian products

This section has been motivated in two ways. Firstly, if M is an o-minimal structure, X,Y are
non-empty definable subsets of Mm,Mn respectively, and S is a large subset of X × Y , then the
set of all a’s from X for which the fiber Sa is large in Y , is large in X. Of course, such a statement
fails in general weakly o-minimal structures. Nevertheless, I was eager to know if there exists a
number k such that for ”almost all” tuples 〈a1, . . . , ak〉 ∈ Xk, the union Sa1 ∪ . . . ∪ Sak

is large
in Y . Another motivation comes from the area of groups and fields definable in the o-minimal
context. One could easily rewrite all proofs from [Pi] so that the use of generic types is replaced by
the addition property of the dimension. Such proofs works for weakly o-minimal structures with
the addition property (for the definition see §4). A natural question to ask was how important is
the assumption of the addition property. It turned out that a weaker version of topologization of
groups and fields in weakly o-minimal context is possible modulo some technical fact concerning
large definable subsets of cartesian products of definable sets. The aim of this section is to provide
a proof of that technical fact. Below in a series of lemmas we will show that if X ⊆Mm, Y ⊆Mn

and S ⊆ X ×Y are definable sets and S is large in X ×Y , then we can find a1, . . . , ak ∈ X, where
k = 2dim(Y ) such that the set Sa1 ∪ . . . ∪ Sak

is large in Y .
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Lemma 3.1 Let m,n ∈ N+ and assume that X ⊆Mm, Y ⊆Mn and S ⊆ X × Y are non-empty
definable sets. The following conditions are equivalent.

(a) S is large in X × Y .
(b) For any definable sets U ⊆ X and V ⊆ Y with dim(U) = dim(X) and dim(V ) = dim(Y ),

we have that (U × V ) ∩ S 6= ∅.

Proof. (a)=⇒(b). If there are definable sets U ⊆ X and V ⊆ Y such that dim(U) = dim(X),
dim(V ) = dim(Y ) and (U × V ) ∩ S = ∅, then dim((X × Y ) \ S) = dim(U × V ) = dim(X × Y ),
which means that S is not large in X × Y .

(b)=⇒(a). Assume that S is not large in X × Y and let W = (X × Y ) \ S. By condition
(b)m+n from Theorem 2.11, there are open boxes B ⊆Mm and C ⊆Mn such that (B×C)∩W =
(B × C) ∩ (X × Y ) = (B ∩ X) × (C ∩ Y ) and dim((B × C) ∩ W ) = dim(X × Y ). Clearly,
dim(B ∩X) = dim(X), dim(C ∩ Y ) = dim(Y ) and ((B ∩X)× (C ∩ Y )) ∩ S = ∅.

Lemma 3.2 Let m,n ∈ N+ and assume that X ⊆Mm, Y ⊆Mn and S ⊆ X × Y are non-empty
definable sets.

(a) If the set {a ∈ X : Sa is large in Y } is large in X, then S is large in X × Y .
(b) If the set {b ∈ Y : Sb is large in X} is large in Y , then S is large in X × Y .

Proof. As both cases are similar, we only prove (a). Suppose that S is not large in X × Y .
Then by Lemma 3.1, there are definable sets U ⊆ X and V ⊆ Y such that dim(U) = dim(X),
dim(V ) = dim(Y ) and (U × V ) ∩ S = ∅. Hence dim({a ∈ X : Sa is not large in Y } = dim(X).

Lemma 3.3 Let m ∈ N+ and assume that X ⊆Mm, U ⊆M,S ⊆ X ×U are non-empty definable
sets, U is open and S is large in X×U . Then the set X ′ := {〈a, b〉 ∈ X×X : Sa∪Sb is large in U}
is large in X ×X.

Proof. The assertion of the lemma is obvious for X finite. So assume that dim(X) = k ≥ 1
and suppose for a contradiction that X ′ is not large in X × X. Then by Lemma 3.1, there are
definable sets X1, X2 ⊆ X such that dim(X1) = dim(X2) = k and (∀a ∈ X1)(∀b ∈ X2)(Sa ∪
Sb is not large in U). Let Y1 =

⋃
a∈X1

{a} × int(U \ Sa) and Y2 =
⋃

b∈X2

{b} × int(U \ Sb). Clearly,

(Y1 ∪ Y2) ∩ S = ∅ and

(∀a ∈ X1)(∀b ∈ X2)((Y1)a ∩ (Y2)b is a non-empty open subset of U).

Below we consider two cases.
Case 1. There is a ∈ X1 such that

(∗) dim({b ∈ X2 : (Y1)a ∩ (Y2)b is a union of some convex components of (Y1)a}) = k.

Fix a ∈ X1 for which (∗) holds. There are a definable set X ′
2 ⊆ X2 and an open interval I ⊆ U

such that dim(X ′
2) = k and (∀b ∈ X ′

2)(I ⊆ (Y1)a ∩ (Y2)b). Consequently, (X ′
2 × I) ∩ S = ∅, which

means that S is not large in X × U .
Case 2. For every a ∈ X1, the set

{b ∈ X2 : (Y1)a ∩ (Y2)b is not a union of some convex components of (Y1)a}

is large in X2. By Lemma 3.2, the set

{〈a, b〉 ∈ X1 ×X2 : (Y1)a ∩ (Y2)b is not a union of some convex components of (Y1)a}

is large in X1 × X2. Hence, by Lemma 3.1, there are definable sets X ′
1 ⊆ X1 and X ′

2 ⊆ X2

such that dim(X ′
1) = dim(X ′

2) = k and for any a ∈ X ′
1 and b ∈ X ′

2, (Y1)a ∩ (Y2)b is not a union
of some convex components of (Y1)a. Fix b0 ∈ X ′

2 and for a ∈ X ′
1 denote by A(a) the first
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convex component of (Y1)a which is not contained in (Y2)b0
and has a non-empty intersection with

(Y2)b0
. Denote also by B(a) the first convex component of A(a)∩ (Y2)b0

. Let P =
⋃

a∈X′
1

{a}×A(a)

and R =
⋃

a∈X′
1

{a} × B(a). Our construction guarantees that πm+1
m+1 [P ] = πm+1

m+1 [R] = X ′
1 and

dim(P ) = dim(R) = k. Moreover, for every a ∈ X ′
1, Pa is an infinite convex set and Ra is a

non-empty proper subset of Pa. By condition (g)m from Theorem 2.11, this is impossible.

Lemma 3.4 Let m,n ∈ N+ and assume that X ⊆ Mm, U ⊆ Mn, S ⊆ X × U are non-empty
definable sets, U is open, and S is large in X × U . Then the set

{〈a1, . . . , a2n〉 ∈ X2n

: Sa1 ∪ . . . ∪ Sa2n is large in U}

is large in X2n

.

Proof. We use induction on n. The case n = 1 is a consequence of Lemma 3.3, so suppose that
the result holds for dimension n. Assume that X ⊆Mm is a nonempty definable set of dimension
k, U ⊆Mn+1 is a non-empty open definable set and S ⊆ X ×U is a definable set, large in X ×U .
We will show that the set

{〈a1, . . . , a2n+1〉 ∈ X2n+1
: Sa1 ∪ . . . ∪ Sa2n+1 is large in U}

is large in X2n+1
. Let Y =

⋃
a∈X

{a} × int(U \ Sa). We will be done if we prove that the set

{〈a1, . . . , a2n+1〉 ∈ X2n+1
: Ya1 ∩ . . . ∩ Ya2n+1 = ∅}

is large in X2n+1
.

Clearly, dim(Y ) ≤ k + n. For every a ∈ X, the fiber Ya is an open (possibly empty) subset of
U . This implies that for every d ∈ Y , %m+n+1

m+1 [(πm+n+1
m+1 )−1(πm+n+1

m+1 (d)) ∩ Y ] ⊆ M is an open set
containing %m+n+1

m+1 (d).

Claim 1. For every b ∈M , dim((%m+n+1
m+1 )−1(b) ∩ Y ) < k + n.

Proof of Claim 1. Suppose for a contradiction that for some b ∈M , dim((%m+n+1
m+1 )−1(b)∩Y ) =

k+n. For 〈a, c〉 ∈ πm+n+1
m+1 [(%m+n+1

m+1 )−1(b)∩Y ], where |a| = m and |c| = n, let f(a, c) ∈MM∪{+∞}
be the supremum of the set

{b1 > b : (b, b1) ⊆ %m+n+1
m+1 [(πm+n+1

m+1 )−1(ac) ∩ Y ]}.

By condition (d)m+n from Theorem 2.11, there are a definable set X1 ⊆ πm+n+1
m+1 [(%m+n+1

m+1 )−1(b)∩
Y ] and an open interval I ⊆M such that dim(X1) = k + n and

X1 × I ⊆ {〈a, c, b1〉 : 〈a, c〉 ∈ πm+n+1
m+1 [(%m+n+1

m+1 )−1(b) ∩ Y ] and b < b1 < f(a, c)}.

This means that dim(Y ) = k + n+ 1, a contradiction.

Claim 1 implies that for every b ∈M , the set Y (b) := πm+n+1
m+1 [(%m+n+1

m+1 )−1(b) ∩ Y ] ⊆ X ×Mn

has dimension lower than k + n. Moreover, for any a ∈ X and b ∈ M , Y (b)a is an open subset of
Mn. By the inductive hypothesis, the set

V (b) := {〈a1, . . . , a2n〉 ∈ X2n

: Y (b)a1 ∩ . . . ∩ Y (b)a2n = ∅}

is large in X2n

. Consequently, by Lemma 3.2, the set Z :=
⋃

b∈M

V (b)× {b} ⊆ X2n ×M is large in

X2n ×M .
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Claim 2. For any a1, . . . , a2n ∈ X, the fiber ((X2n ×M) \ Z)〈a1,...,a2n 〉 ⊆M is open.

Proof of Claim 2. Let a1, . . . , a2n ∈ X. By our choice of Y , the set Ya1 ∩ . . .∩ Ya2n ⊆Mm+1 is
open. Moreover, for every b ∈Mm+1 we have that

b ∈ ((X2n

×M) \ Z)〈a1,...,a2n 〉 ⇐⇒
〈a1, . . . , a2n〉 6∈ V (b) ⇐⇒

Y (b)a1 ∩ . . . ∩ Y (b)a2n 6= ∅ ⇐⇒
(∃c ∈Mn)(〈b, c〉 ∈ Ya1 ∩ . . . ∩ Ya2n ) .

Thus, if b ∈ ((X2n ×M) \Z)〈a1,...,a2n 〉, then there are an open interval I containing b and an open
box B ⊆Mn such that I×B ⊆ Ya1 ∩ . . .∩Ya2n , which implies that I ⊆ ((X2n ×M)\Z)〈a1,...,a2n 〉.

By Lemma 3.3, the set

Z ′ := {〈a1, . . . , a2n+1〉 ∈ X2n+1
: Z〈a1,...,a2n 〉 ∪ Z〈a2n+1,...,a2n+1 〉 = M}

is large in X2n+1
. Clearly, if 〈a1, . . . , a2n+1〉 ∈ Z ′, then for every b ∈ M , 〈a1, . . . , a2n〉 ∈ V (b) or

〈a2n+1, . . . , a2n+1〉 ∈ V (b). Consequently, Ya1 ∩ . . . ∩ Ya2n+1 = ∅. This finishes the proof.

The following lemma is obvious.

Lemma 3.5 Assume that m,n ∈ N+, X ⊆ Mm is a non-empty definable set, Y ⊆ Mn is a non-
empty finite set and S ⊆ X × Y is a definable set, large in X × Y . Then the set {a ∈ X : Sa = Y }
is large in X.

Theorem 3.6 Let m,n ∈ N+ and assume that X ⊆ Mm, Y ⊆ Mn, S ⊆ X × Y are non-empty
definable sets, S is large in X × Y , and dim(Y ) = k. Then the set

{〈a1, . . . , a2k〉 ∈ X2k

: Sa1 ∪ . . . ∪ Sa2k
is large in Y }

is large in X2k

.

Proof. We proceed inductively on n. For n = 1 the result easily follows from Lemmas 3.3 and 3.5.
Suppose that it holds for dimension n and assume that X ⊆ Mm and Y ⊆ Mn+1 are non-empty
definable sets, k = dim(Y ) and S ⊆ X × Y is a definable set, large in X × Y . For k = 0 the
assertion of the theorem holds by Lemma 3.5. In case k = n+ 1, it is true by Lemma 3.4 and the
fact that dim(Y \ int(Y )) ≤ n. To complete the proof, assume that k ∈ {1, . . . , n}. By Lemma
2.4, there are J0, . . . , Jl, distinct proper subsets of {1, . . . , n + 1} and pairwise disjoint definable
sets Y0, . . . , Yl such that Y0 ∪ . . . ∪ Yl = Y and for every i ≤ l, the set Yi is Ji-open. Clearly,
without loss of generality we can assume that dim(Yi) = k whenever i ≤ l. Then for any i ≤ l,
S is large in X × Yi. Since the intersection of finitely many subsets of X2k

all of which are large
in X2k

is large in X2k

, without loss of generality we can assume that Y = Yi for some i ≤ l.
As Y is Ji-open, there is a projection π : Mn+1 −→ Mn such that for every a ∈ π[Y ], the fiber
π−1(a) ∩ Y is finite. By condition (f)m of Theorem 2.11, dim(Y ) = dim(π[Y ]). Consequently,
dim(X × Y ) = dim(X × π[Y ]). For a ∈ Mm and b ∈ Mn+1 define π′(a, b) = 〈a, π(b)〉. The set
S′ := (X × π[Y ]) \ π′[(X × Y ) \ S] is large in X × π[Y ] because

dim(π′[(X × Y ) \ S]) ≤ dim((X × Y ) \ S) < dim(X × Y ) = dim(X × π[Y ]).

By the inductive assumption, the set

X ′ := {〈a1, . . . , a2k〉 ∈ X2k

: S′a1
∪ . . . ∪ S′a2k

is large in π[Y ]}
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is large in X2k

. Note that for any a1, . . . , a2k ∈ X, π−1[S′a1
∪ . . . ∪ S′a2k

] ∩ Y ⊆ Sa1 ∪ . . . ∪ Sa2k
.

Consequently, if 〈a1, . . . , a2k〉 ∈ X ′, then Sa1 ∪ . . . ∪ Sa2k
is large in Y . This finishes the proof.

A natural question that appears in mind after having completed the proof of Theorem 3.6 is
whether one could replace the number 2k by a smaller one. To be more precise, given a weakly
o-minimal structure M, define a function fM : N −→ N as follows: fM(k) is the smallest number
l such that if m,n ∈ N+, X ⊆ Mm, Y ⊆ Mn and S ⊆ X × Y are non-empty definable sets, S is
large in X × Y , and dim(Y ) = k, then the set {〈a1, . . . , al〉 ∈ X l : Sa1 ∪ . . . ∪ Sal

is large in Y }
is large in X l. It is well known that if M is o-minimal, then fM(k) = 1. According to Theorem
3.6, fM(k) ≤ 2k for any weakly o-minimal structure M. Below we give an example of a weakly
o-minimal structure M with fM(k) ≥ k + 1 for k ∈ N.

Example. Let M = (M,≤, . . .) be a weakly o-minimal structure in which there are: a convex
open definable set U ⊆M and a definable function f : U −→M which is locally constant but not
piecewise constant (see [MMS, Example 2.6.1]). For k ≥ 2 and 1 ≤ j < k define

Xj,k = {〈x1, . . . , xk〉 ∈Mk : x1 = f(x1+j)};Sk = Mk \ (X1,k ∪ . . . ∪Xk−1,k). (1)

It is easy to see that Sk+1 is large in f [M ]×Mk for k ∈ N+. Moreover, if a1, . . . , ak ∈ f [U ], then
the set (Sk+1)a1 ∪ . . . ∪ (Sk+1)ak

is not large in Mk.

4 The addition property and the exchange property

For a definable set S ⊆ Mm+n and numbers d ∈ {−∞, 0, 1, . . . , n} and d′ ∈ {−∞, 0, 1, . . . ,m} we
define

X(S,m, d) = {a ∈Mm : dim(Sa) = d},

Y (S, n, d′) = {b ∈Mn : dim(Sb) = d′}.

Clearly, the sets X(S,m, d) and Y (S, n, d′) are definable.

Definition 4.1 We say that dim has the addition property in M iff one [equivalently: both] of the
following conditions is [are] true.

(a) If m,n ∈ N+, S ⊆Mm+n is a definable set, and d ∈ {−∞, 0, 1, . . . , n}, then

dim

 ⋃
a∈X(S,m,d)

{a} × Sa

 = dim(X(S,m, d)) + d.

(b) If m,n ∈ N+, S ⊆Mm+n is a definable set, and d′ ∈ {−∞, 0, 1, . . . ,m}, then

dim

 ⋃
a∈Y (S,n,d′)

Sb × {b}

 = dim(Y (S, n, d′)) + d′.

The following theorem relates the addition property of M to two statements concerning de-
finable functions with values in M

M
. The addition property (condition (d)) is also shown to be

equivalent to a seemingly weaker statement (c). In fact the proof of equivalence of (c) and (d) does
not depend on the assumption of weak o-minimality of M. It goes through in every first order
structure with a sufficiently good dimension function (for details we refer the reader to [vdD1],
section 1).
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Theorem 4.2 The following conditions are equivalent.
(a) For any open interval I ⊆ M and any definable function f : I −→ M

M
, there is an open

interval I ′ ⊆ I such that f � I ′ is continuous.
(b) If m ∈ N+, B ⊆Mm is an open box and f : B −→M

M
is a definable function, then there

is an open box B′ ⊆ B such that f � B′ is continuous.
(c) If m ∈ N+, i ∈ {1, . . . ,m} and S ⊆ Mm+1 is a non-empty definable set, then dim(S) =

dim(πm+1
i [S]) iff the set of tuples a ∈ πm+1

i [S] for which the fiber (πm+1
i )−1(a) ∩ S is finite, is

large in πm+1
i [S].

(d) dim has the addition property in M.

Proof. (a)=⇒(b). Assume that (a) holds. In order to prove (b) we use induction on m. There
is nothing to do in dimension 1, so fix a positive integer m, and suppose that for any open box
B ⊆Mm and any definable function f : B −→M

M
, there is an open box B′ ⊆ B such that f � B′

is continuous.
Let C ⊆ Mm be an open box, I ⊆ M an open interval and f : C × I −→ M

M
a definable

function. By Lemma 1.10, without loss of generality we can assume that for every a ∈ C, the
function f(a, y) is either constant or strictly monotone. For b ∈ I, denote by S(b) the set of
continuity points of f(x, b). By the inductive hypothesis, S(b) is large in C whenever b ∈ I. By
Lemma 3.2, the set

⋃
b∈I

S(b)×{b} is large in C × I, so it contains an open box C1× I1, where I1 is

an open interval. Clearly, for every b ∈ I1, the function f(x, b) restricted to C1 is continuous. By
(a), for every a ∈ C1, the set of discontinuity points of f(a, y) restricted to I1 is finite. For a ∈ C1,
let

u(a) = min({b ∈ I1 : b is a discontinuity point of f(a, y)} ∪ {sup I1}).

By Lemma 1.5, there are an open box C2 ⊆ C1 and an open interval I2 ⊆ I1 such that for every
a ∈ C2, the function f(a, y) is continuous on I2. Now, it is easy to check that f � C2 × I2 is
continuous.

(b)=⇒(c) Assume that (b) holds. Clearly, we will be done if we show that for any m ∈ N+,
the following condition (∗)m is true.

(∗)m If S ⊆ Mm+1 is a non-empty definable set and π : Mm+1 −→ Mm denotes the projection
dropping the last coordinate, then dim(S) = dim(π[S]) iff the set {a ∈ π[S] : π−1(a) ∩
S is finite} is large in π[S].

In order to prove (∗)1, consider a non-empty definable set S ⊆ M2 and let π : M2 −→ M be
be the projection dropping the second coordinate. If dim(S) = 2, then dim(π[S]) = 1 and the
set {a ∈ π[S] : π−1(a) ∩ S is finite} is not large in π[S]. If dim(S) = 0, then dim(π[S]) = 0 and
π−1(a) ∩ S is finite for every a ∈ π[S]. Thus in both cases the equivalence from (∗)1 holds. To
complete the proof of (∗)1, assume that dim(S) = 1. Then dim(π[S]) ∈ {0, 1}.

Case 1. dim(π[S]) = 1.

Suppose for a contradiction that the set {a ∈ π[S] : π−1(a) ∩ S is finite} is not large in π[S].
Then the set {a ∈ π[S] : π−1(a) ∩ S is infinite} contains an open interval I. For a ∈ I define
f(a), g(a) ∈ MM ∪ {−∞,+∞} as infimum and supremum (respectively) of the first convex com-
ponent of int({b ∈M : 〈a, b〉 ∈ S}). By (b), there is an open interval J ⊆ I such that the functions
f, g are both continuous on J . By Lemma 1.5, the set (f, g)J contains an open box, which means
that dim(S) = 2, a contradiction.

Case 2. dim(π[S]) = 0, i.e. π[S] is finite.
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Since dim(S) = 1, there is a ∈ π[S] such that π−1(a) ∩ S is infinite, which means that the set
{a ∈ π[S] : π−1(a) ∩ S is finite} is not large in π[S]. This finishes the proof of (∗)1.

Assume that m > 1, π : Mm+1 −→ Mm is the projection dropping the last coordinate,
S ⊆ Mm+1 is a non-empty definable set and suppose that (∗)k holds if 1 ≤ k < m. For the
left-to-right direction, assume that dim(S) = dim(πm+1

i [S]).

Case 1’. dim(πm+1
i [S]) = m.

Suppose for a contradiction that the set {a ∈ π[S] : π−1(a) ∩ S is finite} is not large in π[S].
Then the set {a ∈ π[S] : π−1(a) ∩ S is infinite} contains an open box B. For a ∈ B define
f(a), g(a) ∈ MM ∪ {−∞,+∞} as infimum and supremum (respectively) of the first convex com-
ponent of int({b ∈ M : 〈a, b〉 ∈ S}). By (b), there is an open box B′ ⊆ B such that the functions
f and g restricted to B′ are both continuous. Hence (by Lemma 1.5), the set (f, g)B′ contains an
open box, which implies that dim(S) = m+ 1 > dim(π[S]), a contradiction.

Case 2’. dim(π[S]) < m.

Denote by J the set of all j’s from {1, . . . ,m} for which dim(πm+1
j,m+1[S]) = dim(π[S]) = dim(S).

The assumption dim(π[S]) < m guarantees that J 6= ∅. Let j ∈ J . By (∗)m−1, the set

Xj := {b ∈ πm+1
j,m+1[S] : (πm

j )−1(b) ∩ π[S] is finite}

is large in πm+1
j,m+1[S]. By Lemma 1.7(b), dim(πm+1

j [S]) = dim(πm+1
j,m+1[S]). Again, by (∗)m−1, the

set
X ′

j := {b ∈ πm+1
j,m+1[S] : (πm

m)−1(b) ∩ πm+1
j [S] is finite}

is large in πm+1
j,m+1[S]. So Yj := Xj ∩X ′

j is also large in πm+1
j,m+1[S]. Let

Z = π[S] ∩
⋃
j∈J

(πm
j )−1[Yj ].

The definition of Z guarantees that

(∗) dim(πm
j [π[S] \ Z]) < dim(πm+1

j,m+1[S]) for j ∈ J,

and π−1(a) ∩ S is finite whenever a ∈ Z. We claim that Z is large in π[S]. Suppose not. Then

(∗∗) dim(π[S] \ Z) = dim(π[S]) = dim(S).

Since dim(π[S]) < m, there is j0 ∈ {1, . . . ,m} such that

(∗ ∗ ∗) dim(πm
j0 [π[S] \ Z]) = dim(π[S] \ Z).

(∗), (∗∗) and (∗ ∗ ∗) imply that j0 ∈ J and dim(πm+1
j0,m+1[S]) > dim(S), which is impossible.

For the right-to-left direction, assume that the set {a ∈ π[S] : π−1(a) ∩ S is finite} is large in
π[S] and dim(S) = dim(π[S]) + 1. We consider three cases.

Case 1”. dim(π[S]) = m.

In this situation, dim(S) = m + 1, i.e. S contains an open box B. This implies that the set
{a ∈ π[S] : π−1(a) ∩ S is finite} is not large in π[S], a contradiction.
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Case 2”. 0 < dim(π[S]) < m.

Let T = {a ∈ π[S] : π−1(a) ∩ S is infinite}. Since dim(S) ≤ m, there are distinct j1, . . . , jk ∈
{1, . . .m} such that dim(πm+1

j1,...,jk
[S]) = dim(S) = m+ 1− k. Then

dim(πm+1
j1,...,jk,m+1[S]) ≥ dim(πm+1

j1,...,jk
[S])− 1 = dim(S)− 1 = dim(π[S]) ≥ dim(πm+1

j1,...,jk,m+1[S]).

Consequently, dim(πm+1
j1,...,jk,m+1[S]) = dim(π[S]). Let

X = {a ∈ πm+1
j1,...,jk,m+1[S] : (πm

j1,...,jk
)−1(a) ∩ π[S] is finite} ∩ (πm+1

j1,...,jk,m+1[S] \ πm
j1,...,jk

[T ]).

Since
dim(πm

j1,...,jk
[T ]) ≤ dim(T ) < dim(π[S]),

by the inductive hypothesis and Fact 1.9, X is large in πm+1
j1,...,jk,m+1[S]. Note that (πm+1−k

m+1−k)−1(a)∩
πm+1

j1,...,jk
[S] is a finite subset of Mm+1−k whenever a ∈ X. Again, by the inductive hypothesis,

dim(πm+1
j1,...,jk,m+1[S]) = dim(πm+1

j1,...,jk
[S]). Summing up, dim(π[S]) = dim(S), a contradiction.

Case 3”. dim(π[S]) = 0.

The assumptions guarantee that π[S] is finite and π−1(a) ∩ S is finite for all a ∈ π[S]. Hence
S is finite and dim(S) = 0.

(c)=⇒(d) Suppose that (c) holds. Using induction on n, we will prove condition (a) from
Definition 4.1. Let S ⊆Mm+1 be a definable set. Applying (c) to the sets

⋃
a∈X(S,m,0)

{a}× Sa and⋃
a∈X(S,m,1)

{a} × Sa, we easily get

dim

 ⋃
a∈X(S,m,0)

{a} × Sa

 = dim(X(S,m, 0)) and

dim

 ⋃
a∈X(S,m,1)

{a} × Sa

 = dim(X(S,m, 1)) + 1.

Now, assume that S is a definable subset of Mm×Mn+1, d ∈ {−∞, 0, . . . , n+ 1}, and suppose
that condition (d) holds for definable subsets of Mm ×Mn. By (c), without loss of generality we
can assume that d ≥ 1. For

〈i, j〉 ∈ Qd := ({d} × {−∞, 0, . . . , d− 1}) ∪ ({−∞, 0, . . . , d− 1} × {d− 1})

define

Xi,j(S,m, d) = {a ∈Mm : dim(Sa) = d, dim(X(Sa, n, 0)) = i and dim(X(Sa, n, 1)) = j}.

It is clear that X(S,m, d) is a disjoint union of the sets Xi,j(S,m, d) as 〈i, j〉 ranges over Qd. Let

Y 0
i,j = {ab ∈ (Xi,j(S,m, d)×Mn) ∩ πm+n+1

m+n+1 [S] : dim(Sab) = 0} and

Y 1
i,j = {ab ∈ (Xi,j(S,m, d)×Mn) ∩ πm+n+1

m+n+1 [S] : dim(Sab) = 1}.
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One easily sees that Y 0
i,j ⊆ X(S,m + n, 0) and Y 1

i,j ⊆ X(S,m + n, 1) whenever 〈i, j〉 ∈ Qd. For
every a ∈ Xi,j(S,m, d), dim((Y 0

i,j)a) = i and dim((Y 1
i,j)a) = j. Using Fact 1.6(e), condition (c)

and the inductive hypothesis, we obtain

dim

 ⋃
a∈Xi,j(S,m,d)

{a} × Sa

 = dim

 ⋃
ab∈(Xi,j(S,m,d)×Mn)∩πm+n+1

m+n+1 [S]

{ab} × Sab

 =

max

dim

 ⋃
ab∈Y 0

i,j

{ab} × Sab

 ,dim

 ⋃
ab∈Y 1

i,j

{ab} × Sab


 =

max{dim(Y 0
i,j),dim(Y 1

i,j) + 1} = max{dim(Xi,j(S,m, d)) + i,dim(Xi,j(S,m, d)) + j + 1} =
dim(Xi,j(S,m, d)) + max(i, j + 1) = dim(Xi,j(S,m, d)) + d.

Now, by Fact 1.6(e),

dim

 ⋃
a∈X(S,m,d)

{a} × Sa

 = dim

 ⋃
〈i,j〉∈Qd

⋃
a∈Xi,j(S,m,d)

{a} × Sa

 =

max

dim

 ⋃
a∈Xi,j(S,m,d)

{a} × Sa

 : 〈i, j〉 ∈ Qd

 =

max{dim(Xi,j(S,m, d)) : 〈i, j〉 ∈ Qd}+ d = dim(X(S,m, d)) + d.

(d)=⇒(a) Assume that I ⊆ M is an open interval and f : I −→ M
M

is a definable function
such that for every a ∈ I, f is not continuous at a. By the monotonicity theorem, there is an open
interval I ′ ⊆ I such that f � I ′ is strictly monotone. Suppose for instance that f � I ′ is strictly
increasing. For a ∈ I ′, define

f1(a) = sup
x∈I′∩(−∞,a)

f(x) and f2(a) = inf
x∈I′∩(a,+∞)

f(x).

As I ′ is contained in the set of discontinuity points of f , we have that f1(a) < f2(a) for a ∈ I ′.
Moreover, (f1(a), f2(a)) ∩ (f1(b), f2(b)) = ∅ whenever a, b are distinct elements from I ′. Let
S =

⋃
a∈I

{a} × (f1(a), f2(a)). Clearly, S witnesses the fact that the addition property of dim

fails in M.

Lemma 4.3 (a) If for every N � M, dcl has the exchange property in N , then dim has the
addition property in M.

(b) If dim has the addition property in M, then dcl has the exchange property in M.

Proof. (a) Suppose that dim does not have the addition property in M. By Theorem 4.2, there
are an open interval I ⊆ M and a definable function f : I −→ M

M
such that each element a ∈ I

is a discontinuity point of f . By Theorem 1.2, there is an open interval I1 ⊆ I such that f � I1
is strictly monotone. Suppose for example that f � I1 is strictly increasing. For a ∈ I1 define
g(a) = lim

x−→a−
f(x) and h(a) = lim

x−→a+
f(x). Our assumptions guarantee that g(a) ≤ f(a) ≤ h(a)

and g(a) < h(a) for a ∈ I1. Hence at least one of the sets

X1 := {a ∈ I1 : g(a) < f(a)}, X2 := {a ∈ I1 : f(a) < h(a)}

contains an open interval I2. Suppose for instance that I2 ⊆ X1 and define an L(M)-formula
ϕ(x, y) as follows:

ϕ(x, y) ≡ (x ∈ I2) ∧ (g(x) < y < f(x)).
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Fix a ∈ I2 and N � M such that ϕ(a,N) is not contained in dcl(a). Clearly, dcl does not have
the exchange property in N .

(b) Suppose that dcl does not have the exchange property in M. There are A ⊆ M and
a, b ∈ M such that a ∈ dcl(Ab) \ dcl(A) and b 6∈ dcl(Aa). There is a formula ϕ(x, y) ∈ L(A)
such that ϕ(M, b) = {a} and |ϕ(M,d)| ≤ 1 whenever d ∈ M . Let X = {c ∈ M : ϕ(c,M) 6= ∅}.
Note that a ∈ int(X), because a 6∈ dcl(A). Denote by I convex component of int(X) containing a.
Again, b ∈ int(ϕ(a,M)), because b 6∈ acl(Aa). Assume that b belongs to the k-th convex component
of int(ϕ(a,M)). As a 6∈ dcl(A), there is an A-definable convex open set I ′ ⊆ I containing a such
that for every c ∈ I ′, the set int(ϕ(c,M)) has at least k convex components. There is a formula
ψ(x, y) ∈ L(A) such that ψ(M) ⊆ I ′ × M and for every c ∈ I ′, ψ(c,M) is the k-th convex
component of int(ϕ(c,M)). Now, for c ∈ I ′ let f(c) = sup(ψ(c,M)). Clearly, there is an open
interval I ′′ ⊆ I ′ on which f is strictly monotone. But then f is not continuous on any subinterval
of I ′′. This finishes the proof.

References

[Ar] R. Arefiev, On monotonicity for weakly o-minimal structures, preprint.

[MMS] D. Macpherson, D. Marker, and C. Steinhorn, Weakly o-minimal structures and real closed
fields, Trans. Amer. Math. Soc. 352 (2000), 5435-5483.

[Pi] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra
53 (1988), 239-255.

[V] V. Verbovskiy, Non-uniformly weakly o-minimal group. Algebra and model theory, 3 (Er-
logol, 2001), 136–145, 161, Novosibirsk State Tech. Univ., Novosibirsk, 2001.

[vdD1] L. van den Dries, Dimension of definable sets, algebraic boundedness and henselian fields,
Ann. Pure Appl. Logic 45 (1989), 189-209.

[vdD2] L. van den Dries, Tame Topology and o-minimal Structures, London Mathematical
Society Lecture Notes Series, vol. 248, Cambridge: Cambridge University Press 1998.

Mailing adress: Mathematical Institute, University of Wroc law,
pl. Grunwaldzki 2/4, 50-384 Wroc law, POLAND

E-mail: rwenc@math.uni.wroc.pl

23


