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1 Introduction

Entanglement entropy has played an important role as a useful quantum order parameter
in various quantum many-body systems [1–5]. In particular, the topological entanglement
entropy [4, 5] can characterize topologically ordered phases. A prominent example of topo-
logical field theory is a three-dimensional Chern-Simons gauge theory, where the topological
entanglement entropy can be computed by the famous surgery method [6] as first shown
in [7]. Refer to [8–16] for further developments.
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Recently, a quantity called the pseudo entropy was introduced in [17], mainly motivated
by finding a counterpart to a generalization of holographic entanglement entropy [18–22]
to Euclidean time-dependent backgrounds. The pseudo entropy itself is a generalization
of entanglement entropy that depends on both the initial state |ψ〉 and the final state |ϕ〉,
defined as follows. Let |ψ〉 , |ϕ〉 ∈ HA ⊗ HB be unnormalized states satisfying 〈ϕ|ψ〉 6= 0.
Define the transition matrix as

τψ|ϕ ≡ |ψ〉 〈ϕ|
〈ϕ|ψ〉

, (1.1)

and its reduced version as

τ
ψ|ϕ
A ≡ TrB

[
τψ|ϕ

]
. (1.2)

The pseudo Rényi entropy is

S(n)
(
τ
ψ|ϕ
A

)
≡ 1

1− n log TrA
[(
τ
ψ|ϕ
A

)n]
, (1.3)

and we define the pseudo entropy by taking a limit n→ 1:

S
(
τ
ψ|ϕ
A

)
≡ lim

n→1
S(n)

(
τ
ψ|ϕ
A

)
= −TrA

[
τ
ψ|ϕ
A log τψ|ϕA

]
. (1.4)

Since the transition matrix is not Hermitian in general, the pseudo entropy can take com-
plex values. This guides us to define the following real-valued quantity

∆S(n)
(
τ
ψ|ϕ
A

)
≡ 1

2
[
S(n)

(
τ
ψ|ϕ
A

)
+ S(n)

(
τ
ϕ|ψ
A

)
− S(n)

(
τ
ψ|ψ
A

)
− S(n)

(
τ
ϕ|ϕ
A

)]
, (1.5)

where note the relation S(n)
(
τ
ϕ|ψ
A

)
= S(n)

(
τ
ψ|ϕ
A

)∗
and the fact that the latter two terms

are the standard entanglement Rényi entropy for |ψ〉 and |ϕ〉, respectively. In other words,

∆S
(
τ
ψ|ϕ
A

)
≡ lim

n→1
∆S(n)

(
τ
ψ|ϕ
A

)
(1.6)

is the difference between the real part of the pseudo entropy and the averaged entanglement
entropy.

In [23, 24], the pseudo entropy was numerically evaluated for the Lifshitz free scalar
field and for Ising and XY spin models. These calculations showed that the difference
∆S

(
τ
ψ|ϕ
A

)
always takes non-positive values when |ψ〉 and |ϕ〉 belong to the same phase.

However, it turns out that when the two states are in different quantum phases, the differ-
ence typically takes positive values. This implies that the pseudo entropy can distinguish
two different quantum phases. A heuristic explanation of this interesting behavior was
given in [24] based on holography, where an anti-de Sitter space emerges in the gravity
dual along the interface between two quantum phases, which enhances the pseudo entropy.

Motivated by these, the purpose of the present paper is to introduce a pseudo entropy
extension of topological entanglement entropy, which we call topological pseudo entropy.
We will explicitly evaluate the topological pseudo entropy in various examples in three-
dimensional Chern-Simons gauge theory. We will also point out that the pseudo entropy
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in a class of specific setups is equivalent to the interface entropy [25–33] in conformal field
theories (CFTs). We will also provide and evaluate a pseudo entropy extension of the
left-right entanglement entropy [16, 34, 35] in CFTs.

This paper is organized as follows. In section 2 we calculate the topological pseudo
entropy in various setups of a three-dimensional Chern-Simons gauge theory and provide its
interpretations in the light of quantum entanglement and geometry. In section 3, we explain
how to calculate the pseudo entropy in CFTs via conformal transformations and show that
the pseudo entropy in a special case of CFTs is equivalent to the interface entropy. In
section 4, we introduce the pseudo entropy extension of the left-right entanglement entropy.
In section 5, we summarize our conclusions. In the appendix A, we provide explicit values
for the SU(2) Chern-Simons gauge theory. In the appendix B, we evaluate the pseudo
entropy for multi-boundary states in Chern-Simons gauge theory.

2 Topological pseudo entropy in Chern-Simons gauge theory

Consider the three-dimensional Chern-Simons gauge theory with the gauge group SU(N)
at level k. The partition functions of the Chern-Simons theory with Wilson lines can be
calculated from the knowledge of two-dimensional (2d) conformal field theory of ŜU(N)k
Wess-Zumino-Witten (WZW) model [6] as quantum states in the Chern-Simons theory
correspond to the conformal blocks of the 2d CFT. First we explain how to calculate
pseudo entropy in Chern-Simons theory from section 2.1 to section 2.3. Next, we calculate
the entanglement entropy or the pseudo entropy for states on S2 with two excitations in
section 2.4 and four excitations in section 2.5, and states on T2 in section 2.7. In section 2.6,
we consider the geometric interpretation for pseudo entropy from the above calculations.
Finally in section 2.8, we consider the definition of boundary states in Chern-Simons theory
by analogy with boundary conformal field theory (BCFT) for comparison with the results in
later sections. We investigate another example of multi-boundary states in Chern-Simons
theory in appendix B.

2.1 Replica trick

Before considering the Chern-Simons theory, we review how to compute the pseudo entropy
in quantum field theory. We can compute the pseudo entropy on a spatial region Σ = A∪B
as well as the entanglement entropy by using the replica trick. We consider a Euclidean
field theory with an action I[Φ], where Φ is the collection of fields. We prepare the two
states |ψ〉 and |ϕ〉 by inserting operators Oψ and Oϕ respectively to the path integral on
the past of Σ:

〈Φ0|ψ〉 =
∫

Φ|Σ=Φ0
DΦ Oψ[Φ] e−I[Φ] = Oψ

Φ0 Σ
, (2.1)

〈Φ0|ϕ〉 =
∫

Φ|Σ=Φ0
DΦ Oϕ[Φ] e−I[Φ] = Oϕ

Φ0 Σ
, (2.2)
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where Φ0 is a boundary condition of Φ on Σ and |Φ0〉 is a state on Σ defined by Φ̂|Σ |Φ0〉 =
Φ0 |Φ0〉. The vertical direction in the figure is the imaginary time. The inserted operators
Oψ and Oϕ may be collections of line operators like Wilson loops as well as local operators.
The inner product is given by gluing the manifolds for |ψ〉 and |ϕ〉 along Σ and integrating
over the boundary condition:

〈ϕ|ψ〉 =
∫
DΦ0 〈ϕ|Φ0〉 〈Φ0|ψ〉 =

Oψ

O†ϕ
. (2.3)

We call the resulting manifold M1. Then we can interpret 〈ϕ|ψ〉 as a partition function
onM1 in the presence of Oψ and O†ϕ, so we denote it by Z

[
M1;Oψ,O†ϕ

]
.

Next, we evaluate TrA [(TrB |ψ〉 〈ϕ|)n]. A partial trace over B corresponds to the gluing
only over B, thus the unnormalized version of the reduced transition matrix is

τ̃
ψ|ϕ
A ≡ TrB [|ψ〉 〈ϕ|] =

∫
D[Φ0|B] 〈ϕ|Φ0〉 〈Φ0|ψ〉 =

Oψ

O†ϕ
AB B . (2.4)

To compute the nth power of τ̃ψ|ϕA , we prepare n copies of the manifold in (2.4) and glue
them along the subregion A cyclically:

TrA
[(
τ̃
ψ|ϕ
A

)n]
=

Oψ

O†ϕ

Oψ
· · ·

Oψ

O†ϕ O†ϕ
. (2.5)

We denote the glued manifold in (2.5) by Mn and the partition function on Mn by
Z
[
Mn;Oψ,O†ϕ

]
. Finally we obtain the pseudo entropy

S
(
τ
ψ|ϕ
A

)
= lim

n→1

1
1− n log TrA

 τ̃
ψ|ϕ
A

TrA
[
τ̃
ψ|ϕ
A

]
n

= − ∂

∂n
log

Z
[
Mn;Oψ,O†ϕ

]
Z
[
M1;Oψ,O†ϕ

]n
∣∣∣∣∣∣
n=1

.

(2.6)

2.2 Chern-Simons theory and modular S-matrix

The Chern-Simons theory on a 3d manifoldM with gauge group SU(N) is defined by the
action

ICS[A] = −i k4π

∫
M

tr
[
A ∧ dA+ 2

3 A ∧A ∧A
]
, (2.7)

– 4 –
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where A is a connection one-form and the trace is taken over the Lie algebra associated
with SU(N). A prefactor k, which has to take an integer value for gauge invariance, is
called the level of the Chern-Simons theory. Since the action does not depend on the
metric, Chern-Simons theory is a topological field theory. Topological invariance is such a
strong property that we can obtain a lot of information from the invariance. We will focus
on observables that are also topologically invariant, i.e., Wilson loops, defined by

WR[A] = trR P exp
(∫

C
A

)
, (2.8)

where the trace is taken over the representation space of a representation R of SU(N), P
means the path ordered integral along a closed loop C.

We can evaluate the partition function of a Chern-Simons theory by using the fact that
there is a duality between Chern-Simons theories and WZW models [6]. Before describing
the duality, we recapitulate several notions about WZW models. Let χi(τ) be a character
of a WZW model on a torus with a complex structure τ , where i denotes an integrable
representation of an affine Lie algebra ŜU(N)k. The modular invariance of the theory
amounts to the transformation law for the character:

χi(−1/τ) =
∑
j

Sij χj(τ) , (2.9)

where Sij is called modular S-matrix, which is a unitary and symmetric matrix,∑
l

Sil
(
S†
)
l

j
= δi

j , Sij = Sj i . (2.10)

Moreover, the square of the modular S-matrix is identical to the charge conjugation C:∑
l

Sil Slj = Cij = δi
j̄ , (2.11)

where j̄ denotes the charge conjugate representation of j. This leads to the identity Sij =(
Sij̄
)∗
. In particular, we find that the matrix element S0

i = Si0 is real valued for any i.

For an example of ŜU(2)k WZW theory, the modular S-matrix can be written as

Sij =
√

2
k + 2 sin

[
π(2i+ 1)(2j + 1)

k + 2

]
, (2.12)

where the subscripts i, j = 0, . . . , k/2 label the integrable representations of ŜU(2)k and 0
denotes the identity representation. Note that S-matrix for ŜU(2)k is real. We summarize
the properties and several explicit values of SU(2) S-matrix in appendix A.

There is another important relation between the modular S-matrix and the fusion
coefficients Nij

k, known as the Verlinde formula [36]:

Nij
k =

∑
l

Sil Sj l
(
S†
)
l

k

S0
l

, (2.13)

– 5 –
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or equivalently

∑
k

Nij
k Skm

S0
m = Si

m

S0
m

Sjm

S0
m . (2.14)

RegardingNij
k as the (j, k)-component of the matrix Ni, Sim/S0

m in (2.14) is an eigenvalue
of Ni. In particular, m = 0 yields the largest eigenvalue

di = Si
0

S0
0 , (2.15)

called quantum dimension for the representation i. Note that S0
0 and Si0 are real, so that

the quantum dimensions are also real. The total quantum dimension is defined by

D =
√∑

i

|di|2 = 1
S0

0 . (2.16)

The second equality in (2.16) follows from the unitarity condition (2.10).
Finally let us describe the duality between Chern-Simons and WZW theories. Consider

a Chern-Simons theory with Wilson loops and take a spatial submanifold Σ ' S2. When
Σ has some intersections with Wilson loops WRi [A], the Hilbert space on Σ is given by

HΣ = Inv
(⊗

i

Ri

)
, (2.17)

where Ri denotes the representation space of an integrable representation Ri, and “Inv”
means that it takes only the invariant subspace. The subscript i in (2.17) runs over all the
intersections of Wilson lines and Σ. In particular, if there are no intersections, then the
Hilbert space is one-dimensional.

2.3 Computation of partition functions in Chern-Simons gauge theory

With the input of the modular properties of 2d CFTs, we can evaluate the partition func-
tions in Chern-Simons theory by Witten’s method [6].

We cut a manifoldM along a submanifold Σ ' S2 into two partsM′ andM′′. When
Σ has no intersections with any Wilson loops, the Hilbert space on Σ is one-dimensional
by (2.17). Therefore we can attach a hemisphere to each of the cross-sections, then we have

Z [M] = Z [M′] Z [M′′]
Z [S3] . (2.18)

Figure 1 shows this relation graphically. We can apply this method also to the case where
Σ has two punctures Ri and Ri because the Hilbert space is one-dimensional. We consider
the caseM = S2 × S1 including two Wilson loops wrapping along S1. Applying the above
method, we obtain

Z
[
S2 × S1;Ri, Rj

]
= δi

j . (2.19)

– 6 –
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M′ M′′ =
M′ × M′′

S3

Figure 1. A manifold can be decomposed into two by cutting it a half and attaching hemispheres
to each of them.

Next, we would like to evaluate a partition function on a sphere S3. This can be
obtained by gluing two solid tori along their common boundary T2. When we glue the two,
we perform the modular transformation for one of the tori as depicted in figure 2. Thus
the partition function on S3 without any Wilson loops becomes

Z
[
S3
]

=
∑
i

S0
i Z
[
S2 × S1;Ri

]
= S0

0 . (2.20)

Moreover, the S3 partition function with a single Wilson loop in a representation Ri and
that with two linked Wilson loops in representations Ri and Rj are given by

Z
[
S3;Ri

]
= S0

i ,

Z
[
S3;L(Ri, Rj)

]
= Sij .

(2.21)

Figure 2 shows the calculations for these results.
By using these results and (2.18), we can calculate the partition functions with multiple

disconnected Wilson loops. For example, the S3 partition function with two disconnected
Wilson loops in representations Ri and Rj (see figure 3) is computed as

Z
[
S3;Ri, Rj

]
= S0

i S0
j

S0
0 . (2.22)

2.4 Topological entanglement entropy on S2 with two excitations

Before we go to our main target of topological pseudo entropy, we would like to start with
the calculation of topological entanglement entropy in a simple setup. Refer to [7] for more
extensive analysis. We consider a setup where a state |ψ〉 is defined by a path integral
on a hemisphere B3 such that on its boundary S2, there are two quasi-particle (i.e. anyon)
excitations one of which is in a representation Ri and the other is in Ri of ŜU(N)k, so that
they form a singlet. We choose the subsystem A on the sphere S2, such that A includes
the excitation in Ri and its complement B does that in Ri.

The entanglement entropy

S(ρA) = −TrA [ρA log ρA] , (2.23)

of the reduced density matrix

ρA = TrB
[ |ψ〉〈ψ|
〈ψ|ψ〉

]
(2.24)

can be computed via the replica trick we reviewed in section 2.1.
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∑
i

Sij
Ri

Rj

=

τ −1
τ

Ri

=

Ri

· = S0
i

Ri

Rj

=

Ri

Rj

· = Sij

Figure 2. The modular transformation in Chern-Simons gauge theory and the evaluations of the
partition functions with Wilson loops. The horizontal solid tori have a complex structure τ while
the vertical ones have −1/τ . The dot means the gluing along the torus on the boundaries of two
solid tori.

Ri Rj

=
Ri
×

Rj

= S0
i S0

j

S0
0

Figure 3. We can calculate Z
[
S3;Ri, Rj

]
by applying (2.18) and (2.21).

We can construct the state |ψ〉 by a path integral over B3 inserting a Wilson line
operator ending on the excitations (Oψ = WRi in (2.1)). The partial trace over B can be
performed by gluing only the subregion B of S2 and the product of two ρA’s can be done by
gluing the subregion A, then TrA [(TrB |ψ〉 〈ψ|)n] becomes a partition function on S3 with
a Wilson loop. Figure 4 shows the calculation of n = 2 case. Divided by the normalization
factor, we obtain

TrA [ρnA] = Z
[
S3;Ri

]
Z [S3;Ri]n

. (2.25)
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A B

|ψ〉

B̄ Ā

〈ψ|

A B

|ψ〉

B̄ Ā

〈ψ|

→
Ri

TrA
[
(TrB |ψ〉 〈ψ|)2]

Figure 4. We can calculate TrA
[
(TrB |ψ〉 〈ψ|)2] by gluing B with the neighboring B̄, corresponding

to taking the partial trace over B, and A with the neighboring Ā, corresponding to the product of
ρA. The last Ā is glued to the first A, corresponding to the trace over A.

Thus, the topological entanglement entropy is given by

S(ρA) = logZ
[
S3;Ri

]
= logS0

i

= − log D + log di .

(2.26)

If we do not insert any excitation, we have by simply setting dj = 0,1

S(ρA) = logZ
[
S3
]

= logS0
0

= − logD .

(2.27)

This vacuum topological entanglement entropy is related to the total quantum dimen-
sion [4, 5] and is expected to measure the degrees of freedom of edge modes, which is
analogous to the area term in the holographic entanglement entropy. When we add an
anyon, the topological entanglement entropy increases by the amount of log of the quan-
tum dimension as in (2.26).

2.5 Topological pseudo entropy on S2 with four excitations

We consider the case that the spatial region is S2, which is divided to two subregions A
and B as the figures show in (2.28) and there are four excitations. For simplicity, we only
consider fundamental (called j) or anti-fundamental (called j̄) excitations. For the total
charge to vanish, two of the four excitations must be fundamental and the others must be
anti-fundamental. There are then two possible cases: 1) a pair of j and j̄ in A and the
other pair in B, and 2) two j’s in A and two j̄’s in B. We prepare these states by the
path integral. The excitations will be the edges of Wilson lines. There are many ways to
connect the excitations so that the Wilson lines make some knots. In what follows we will
show they give rise to nontrivial contributions to the pseudo or entanglement entropies.

1In d = 3 dimensions, the pseudo entropy can have an area law UV divergent term. In the Chern-Simons
theory calculation, however, the partition function is a topological invariant, i.e., independent of any scale,
after renormalizing the UV divergence in an appropriate scheme [6]. Hence in this case the pseudo entropy
is free from the area law term and becomes scale independent.

– 9 –
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2.5.1 Case 1: j and j̄ in A, the others in B

In this case, there are two configurations of Wilson lines which end on one j and one j̄.
We set |ψ〉 and |ϕ〉 as

|ψ〉 =

A B
j

j̄

j̄

j

, |ϕ〉 =

A B
j

j̄

j̄

j

(2.28)

We first calculate the entanglement entropies of |ψ〉 and |ϕ〉. For |ψ〉, TrA
[(
ρ̃ψA

)n]
equals to the partition function on S3 that includes 2n Wilson loops in the representation
Rj . Thus

TrA
[(
ρψA

)n]
= Z

[
S3;Rj

]2n
/Z
[
S3]2n−1(

Z [S3;Rj ]2 /Z [S3]
)n

= Z
[
S3
]1−n

=
(
S0

0
)1−n

.

(2.29)

Since S0
0 = D−1, we have

S
(
ρψA

)
= − logD . (2.30)

For |ϕ〉, TrA
[
(ρ̃ϕA)n

]
equals to the partition function on S3 that includes two Wilson loops:

TrA
[
(ρϕA)n

]
= Z

[
S3;Rj

]2
/Z
[
S3](

Z [S3;Rj ]2 /Z [S3]
)n

=
[

(S0
j)2

S0
0

]1−n

.

(2.31)

Therefore, we have

S (ρϕA) = − logD + 2 log dj . (2.32)

Next, we calculate the pseudo entropy of the reduced transition matrix:

τ
ψ|ϕ
A = TrB

[ |ψ〉 〈ϕ|
〈ϕ|ψ〉

]
. (2.33)

TrA
[(
τ̃
ψ|ϕ
A

)n]
equals to the partition function on S3 with n Wilson loop, so

TrA
[(
τ
ψ|ϕ
A

)n]
= Z

[
S3;Rj

]n
/Z
[
S3]n−1

Z [S3;Rj ]n

=
(
S0

0
)1−n

.

(2.34)
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Therefore, the pseudo entropy is

S
(
τ
ψ|ϕ
A

)
= − logD . (2.35)

In this case the difference of the pseudo entropy from the entanglement entropy is negative:

∆S = − log dj < 0 . (2.36)

The results (2.30), (2.32), and (2.35) are easily interpreted as follows. |ψ〉 is not
entangled since no Wilson lines connect A and B, so that S

(
ρψA

)
has no non-topological

contributions. On the other hand, S (ρϕA) has the term 2 log dj because |ϕ〉 is entangled
due to the Wilson lines connecting the two points A and B. As shown in [17], the pseudo
entropy is zero when either state has no entanglement. Now |ψ〉 has no entanglement, so
S
(
τ
ψ|ϕ
A

)
has no terms other than the topological term.

2.5.2 Case 2: two j’s in A, the others in B

We define states |ψa〉 (a ∈ Z) as follows. First we define at a = 0

|ψ0〉 =

A B
j

j

j̄

j̄

. (2.37)

Then we define |ψa〉 (a ∈ Z+) by twisting the region B a times:

|ψ1〉 =

A B
j

j

j̄

j̄

, |ψ2〉 =

A B
j

j

j̄

j̄

, |ψ3〉 = · · · (2.38)

On the other hand, we define |ψa〉 (a ∈ Z−) by twisting the region B |a| times in the
opposite direction:

|ψ−1〉 =

A B
j

j

j̄

j̄

, |ψ−2〉 =

A B
j

j

j̄

j̄

, |ψ−3〉 = · · · (2.39)

In other words, |ψa〉 is a state which has |a| crossings. We would like to calculate the
pseudo entropy of the transition matrix:

τa|b ≡ |ψa〉 〈ψb|
〈ψb|ψa〉

. (2.40)
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The unnormalized reduced transition matrix τ̃a|bA ≡ TrB[|ψa〉 〈ψb|] is

τ̃
a|b
A =

A Ā
j

j

j̄

j̄

. . .

|a− b| crossings

, (2.41)

which has the crossing number |a − b|. In the figure, Ā means the conjugation of A.
Therefore TrA

[(
τ̃
a|b
A

)n]
has one or two Wilson loops with n|a− b| crossings.2

Here let us pause to compute the partition function on S3 with a crossing number m.
We call such a manifold as Xm. In this case, we also use a technique introduced in [6]. We
cut along a two-dimensional submanifold that intersects with Wilson lines for four times,
and we perform a twisting transformation on the cross section. Then we obtain three states
with different links. Since the Hilbert space on the cross section is two-dimensional due
to (2.17), these three states are linearly dependent, giving the skein relation:

αZ [Xm] + β Z [Xm−1] + γ Z [Xm−2] = 0 , (2.42)

where we call S3 including m-crossing Wilson lines Xm. Since now our gauge group is
SU(N) and Wilson loops are in the fundamental representation, the coefficients are3

α = −q
N
2 , β = q

1
2 − q−

1
2 , γ = q−

N
2 , (2.43)

where we define q = e2πi/(N+k). Then we obtain the recursion relation

Z [Xm] + q−
N+1

2 Z [Xm−1] = q−
N−1

2
(
Z [Xm−1] + q−

N+1
2 Z [Xm−2]

)
. (2.44)

Solving this relation with the initial conditions Z [X0] = S 0
0 d2

j and Z [X1] = S 0
0 dj ,

we have

Z [Xm]
S0

0 =
(
q−

N−1
2
)m [N + 1] [N ]

[2] +
(
−q−

N+1
2
)m [N ] [N − 1]

[2] , (2.45)

where

[x] ≡ q
x
2 − q−

x
2

q
1
2 − q−

1
2
, (2.46)

and the quantum dimension is dj = [N ]. This is what we have wanted to obtain.

2When n|a− b| is even, there are two Wilson loops while there is one Wilson loop when n|a− b| is odd.
3In fact, those coefficients depend on the choice of the “framing”. The framing of Wilson lines in S3 can

be chosen to be canonical in the sense that the self-interaction numbers of the links are zero. The result
Z [Xm] /Z [X1]n does not depend on the choice of the framing.

– 12 –



J
H
E
P
0
9
(
2
0
2
1
)
0
1
5

It follows from (2.45)

TrA
[(
τ
a|b
A

)n]
=
Z
[
X|(a−b)n|

]
Z
[
X|a−b|

]n
=
(
S0

0 [N ]
)(1−n)

(
q

1
2
)|a−b|n [N+1]

[2] +
(
−q−

1
2
)|a−b|n [N−1]

[2][(
q

1
2
)|a−b| [N+1]

[2] +
(
−q−

1
2
)|a−b| [N−1]

[2]

]n .

(2.47)

When a = b,

TrA [(ρaA)n] =
(
S0

0 [N ]2
)1−n

, (2.48)

where we have defined ρaA ≡ τ
a|a
A and used the relation [N ] = [N+1]

[2] + [N−1]
[2] . Then the

entanglement entropy becomes independent of a:

S (ρaA) = − logD + 2 log [N ] . (2.49)

We are now ready to calculate the difference ∆S of the pseudo entropy from the
averaged entanglement entropy, defined by

∆S = −1
2
∂

∂n
log

TrA
[(
τ
a|b
A

)n]
TrA

[(
τ
a|b
A

)n]∗
TrA [(ρaA)n] TrA

[(
ρbA
)n]

∣∣∣∣∣∣∣
n=1

. (2.50)

Here the argument of the logarithm is

TrA
[(
τ
a|b
A

)n]
TrA

[(
τ
a|b
A

)n]∗
TrA [(ρaA)n] TrA

[(
ρbA
)n]

= ([N ] [2])2(n−1) [N + 1]2 + [N − 1]2 + 2 (−1)|a−b|n cos
(

2π |a−b|n
N+k

)
[N + 1] [N − 1][

[N + 1]2 + [N − 1]2 + 2 (−1)|a−b| cos
(

2π |a−b|
N+k

)
[N + 1] [N − 1]

]n .

(2.51)

Now we analytically continue n in (2.47) or (2.51) to real numbers. However we
have to be careful because the phase factor (−1)|a−b|n depends on the way of analytic
continuation. In the followings we compute S

(
τ
ψ|ϕ
A

)
and ∆S in two different prescriptions

of analytic continuations: (1) a naive prescription by deforming (−1)|a−b|n = eiπ|a−b|n and
(2) restricting n to odd numbers and then analytically continuing to real numbers, which
is similar to the replica method for the logarithmic negativity [37].

(1) A naive prescription. When |a − b| is even, (−1)|a−b|n = 1 for any integer n.
Therefore there is no ambiguity due to the choice of the prescriptions. Thus the pseudo
entropy takes the form:

S
(
τ
a|b
A

)
=− logD + log

[ [N ]
[2]

]
+ log

[
q
|a−b|

2 [N + 1] + q−
|a−b|

2 [N − 1]
]

− i π |a− b|
N + k

q
|a−b|

2 [N + 1]− q−
|a−b|

2 [N − 1]

q
|a−b|

2 [N + 1] + q−
|a−b|

2 [N − 1]
,

(2.52)
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and ∆S becomes

∆S =− log ([N ] [2]) + 1
2 log

[
[N + 1]2 + [N − 1]2 + 2 cos

(2π |a− b|
N + k

)
[N + 1] [N − 1]

]

+ 2π |a− b|
N + k

sin
(

2π |a−b|
N+k

)
[N + 1] [N − 1]

[N + 1]2 + [N − 1]2 + 2 cos
(

2π |a−b|
N+k

)
[N + 1] [N − 1]

.

(2.53)

When |a − b| is odd, the factor (−1)|a−b|n remains. Deforming it to eiπ |a−b|n, the pseudo
entropy results in

S
(
τ
a|b
A

)
=− logD + log

[ [N ]
[2]

]
+ log

[
q
|a−b|

2 [N + 1]− q−
|a−b|

2 [N − 1]
]

− i π |a− b|
N + k

q
|a−b|

2 [N + 1] + (1−N − k) q−
|a−b|

2 [N − 1]

q
|a−b|

2 [N + 1]− q−
|a−b|

2 [N − 1]
,

(2.54)

and ∆S becomes

∆S =− log ([N ] [2]) + 1
2 log

[
[N + 1]2 + [N − 1]2 − 2 cos

(2π |a− b|
N + k

)
[N + 1] [N − 1]

]

+ (2−N − k)π |a− b|
N + k

sin
(

2π |a−b|
N+k

)
[N + 1] [N − 1]

[N + 1]2 + [N − 1]2 − 2 cos
(

2π |a−b|
N+k

)
[N + 1] [N − 1]

.

(2.55)

In this calculation, we used the relation −1 = eiπ. However, more generally it satisfies
−1 = ei(2m+1)π (m ∈ Z), which corresponds to choosing a branch of logarithm such that
(2m− 1)π < Im [log z] ≤ (2m+ 1)π. The pseudo entropy and ∆S depend on which branch
we choose because of differentiating (−1)|a−b|n with respect to n. While the usual entan-
glement entropy also depends on the branch, it does not affect the real part. Therefore, it
seems to be unnatural that the real part of the pseudo entropy, and ∆S, depends on the
branch. To avoid this obstruction, we have to use a prescription that does not include the
derivative of (−1)|a−b|n.

(2) Restricting n to odd numbers. In the previous calculation, the obstruction is the
existence of (−1)|a−b|n. Here we restrict n to odd so that (−1)|a−b|n reduces to (−1)|a−b|

and after that analytically continue n to real numbers.4 In this case,

S
(
τ
a|b
A

)
=− logD + log

[ [N ]
[2]

]
+ log

[
q
|a−b|

2 [N + 1] + (−1)|a−b| q−
|a−b|

2 [N − 1]
]

− i π|a− b|
N + k

q
|a−b|

2 [N + 1]− (−1)|a−b| q−
|a−b|

2 [N − 1]

q
|a−b|

2 [N + 1] + (−1)|a−b| q−
|a−b|

2 [N − 1]
,

(2.56)

4A similar method was used for the calculation of the entanglement entropy for Dirac fields [38]. Also
the logarithmic negativity calculation [37] employs the analytic continuation of even n. Here we simply
assume odd n in continuing to n = 1 as the (pseudo) Rényi entropy goes to the (pseudo) entanglement
entropy in the limit.
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Figure 5. The difference ∆S of the pseudo entropy from the averaged entanglement entropy as a
function of the levels k when N = 5. The left panel shows ∆S of the form (2.57) by the second
prescription (2) of analytic continuation. The blue, orange, green and red curves represent the cases
with |a − b| = 1, 2, 3, 4 respectively. For comparison, the right panel shows ∆S of the form (2.50)
by a naive prescription (1) when |a − b| is odd. For even |a − b|, ∆S takes the same values as the
left panel.

and

∆S=− log ([N ] [2])+ 1
2 log

[
[N+1]2 + [N−1]2 + 2 (−1)|a−b| cos

(2π|a−b|
N + k

)
[N+1] [N−1]

]

+ (−1)|a−b| 2π |a− b|
N + k

sin
(

2π |a−b|
N+k

)
[N + 1] [N − 1]

[N+1]2 + [N−1]2 + 2 (−1)|a−b| cos
(

2π|a−b|
N+k

)
[N + 1] [N−1]

.

(2.57)

∆S depends on a and b only through the difference |a − b| and highly depends on
whether |a− b| is even or odd through the sign factor (−1)|a−b|. The left panel of figure 5
shows the difference ∆S for several choices of the level k when N = 5 (For comparison the
right panel shows ∆S calculated by the previous prescription only for odd |a − b| in the
right panel). The four curves represent the cases of |a − b| = 1, . . . , 4. The figure shows
that ∆S can be positive only when |a− b| is even.

In the classical limit k →∞, [x] reduces to x, so

∆S →

0 |a− b| : even
− logN |a− b| : odd

(2.58)

Refer also to appendix B for the SU(2) case. This can also be seen in figure 5. We can
interpret this behavior as follows. Whether a is even or odd determines the pairs of the
excitations connected by Wilson lines in |ψa〉 (see figures in (2.37)–(2.39)). Therefore if
|a − b| is even, the pairs of excitations connected in |ψa〉 and those in |ψb〉 are same, but
those are different if |a− b| is odd. Eq. (2.58) shows that the links of Wilson lines do not
contribute to the pseudo entropy in the classical limit. When |a − b| is even, ∆S goes to
zero because we can regard |ψa〉 and |ψb〉 as the same states in the classical limit. When
|a− b| is odd, ∆S has a contribution from the difference of the pairs of excitations. In [17],
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Figure 6. The partition function for the pseudo entropy with n odd and even and their values. In
the odd case, we can interpret that the two states are related by the entanglement swapping. In
the even case, it can be regarded as two copies of entangled pairs.

it was shown in multi-qubit systems that if |ψ〉 and |ϕ〉 are related by an entanglement
swapping, then ∆S < 0. Moreover in the case of odd |a − b|, the result (2.58) can be
understood as a consequence of entanglement swapping (see figure 6).

Furthermore, it is also important that ∆S is non-positive in the classical limit. We can
see that ∆S can be positive (for a− b even) only when the quantum effect from the links of
Wilson loops give a huge contribution to the pseudo entropy. This is also consistent with
the results in the transverse Ising model [23] and the XY model [24]. In such situations,
∆S plays a role of the order parameter diagnosing whether the two states |ψ〉 and |ϕ〉, used
in the definition of the transition matrix, are in the same phase or not. The transverse
Ising model, for example, has the paramagnetic and ferromagnetic phase, which are called
quantum phases because those phases are emergent only in quantum systems. Therefore,
we may conclude that ∆S captures the quantum-theoretic difference between the two states
|ψ〉 and |ϕ〉.

2.6 Geometrical interpretation

Motivated by the geometric formula of holographic entanglement entropy [18–20, 22], we ex-
plore a possible geometric interpretation of topological pseudo entropy in the Chern-Simons
gauge theory. Consider Wilson loops on S3 and divide the sphere into two hemispheres.
The surface of each hemisphere is S2 and we separate S2 into two regions A and B along
a curve Γ(= ∂A = ∂B).

When there are no Wilson loops, it is clear that the topological entanglement entropy
is simply given by

S (ρA) = −n(Γ) logD , (2.59)

where n(Γ) is the number of connected components of Γ.
If Γ is connected, i.e., n(Γ) = 1 and the Γ intersects with only one Wilson line in the

fundamental representation (see the left of figure 7), it is easy to evaluate the topological
pseudo entropy:

S (τA) = log dj − logD . (2.60)
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W1 W2

Figure 7. The intersections between the entangling surface Γ and the Wilson loops. The left panel
describes the setup with n(Γ ∪W ) = 1. In the right panel, we count it as n(Γ ∪W ) = 2.

However, it is not straightforward to find a simple formula in more general cases. Thus,
we focus on the semi-classical limit k → ∞. In this limit, if Γ is connected, we can find
the following simple result:

S (τA) =
∑
j

ni(Γ ∩W ) log dj − logD . (2.61)

We defined nj(Γ ∩W ) to be the number of the Wilson loops W in the representation Rj
which wrap on Γ, as illustrated in figure 7. We may regard n(Γ ∩ W ) as the number
of entangled pairs given by the Wilson lines. This is qualitatively similar to the holo-
graphic entanglement entropy, where the entanglement entropy is proportional to the area
of codimension-two surface like Γ. The holographic entanglement entropy suggests a heuris-
tic picture of emergent spacetime from quantum entanglement in that a Bell pair per Planck
unit area is expected to be penetrated on the codimension-two surface. Indeed in our topo-
logical entropy, the Wilson loop is linked with Γ, which gives the contribution proportional
to log dj . On the other hand, the term proportional to − logD is analogous to the gravity
edge mode contribution.

2.7 Topological pseudo entropy on T2 with Wilson loops

We move onto the case where the subsystem A is a cylinder on a torus T2 and where there
is a Wilson loop in the interior of T2 winding handle. This is depicted as the vertical
subsystem in the upper figure 8.

By the same calculations as [7], we have

TrA [(TrB [ |Ri〉 〈Rj | ])n] = Z
[
S3;Ri

]2(1−n)
δij

=
(
S0

i
)2(1−n)

δij ,

(2.62)

where |Rj〉 is a state including a Wilson loop in the representation denoted by j. For
general unnormalized states

|ψ〉 =
∑
i

ψi |Ri〉 , |ϕ〉 =
∑
i

ϕi |Ri〉 , (2.63)
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Figure 8. Topological entanglement entropy of states on a solid torus with a Wilson loop insertion.
There are two ways to choose the subsystem A on the surface; the vertical subsystem [Above] and
horizontal subsystem [Below].

the trace of the nth power of the reduced transition matrix is

TrA [(TrB [ |ψ〉 〈ϕ| ])n] =
∑
i

ϕ∗iψi · · ·ϕ∗iψi TrA [(TrB [ |Ri〉 〈Ri| ])n]

=
∑
i

(ϕ∗iψi)n
(
S0

i
)2(1−n)

.
(2.64)

Thus

TrA
[(
τ
ψ|ϕ
A

)n]
=
∑
i(ϕ∗iψi)n

(
S0

i
)2(1−n)

(
∑
i ϕ
∗
iψi)

n . (2.65)

This leads to the pseudo entropy given by

S
(
τ
ψ|ϕ
A

)
= log

[∑
i

ϕ∗iψi

]
−
∑
i

ϕ∗iψi log ϕ∗iψi(
S0

i
)2 . (2.66)

When we consider the topological entanglement entropy for the Wilson line Ri we have

S (ρA) = 2 log S0
i

= −2 logD + 2 log di .
(2.67)

The difference ∆S of the pseudo entropy from the average of entanglement entropy is
calculated by

∆S = log | 〈ϕ|ψ〉 |2√
〈ψ|ψ〉 〈ϕ|ϕ〉

− 1∑
k ϕ
∗
kψk

∑
i

ϕ∗iψi log ϕ∗iψi(
S0

i
)2

+ 1
2

 1∑
k |ψk|2

∑
i

|ψi|2 log |ψi|
2(

S0
i
)2 + 1∑

k |ϕk|2
∑
i

|ϕi|2 log |ϕi|
2(

S0
i
)2

 .

(2.68)
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On the other hand, if we consider the horizontal subsystem in figure 8, the topological
entanglement entropy is found as follows. First, the replica method gives

TrA [(ρA)n] = Z2n
(Z2)n

=
∑

j1,...,j2n−3

Nī̄i
j1Nij1

j2Nīj2
j3 · · ·Nīj2n−4

j2n−3Nij2n−3
ī

=
∑
j

∣∣∣Sij∣∣∣2n∣∣∣S0
j
∣∣∣2n−2 ,

(2.69)

where Z2n is the partition function on S1 × S2 with n Wilson lines Ri and n Wilson lines
R∗i winding around S1. Finally, we find the entanglement entropy

SA = −
∑
j

∣∣∣Sij∣∣∣2 log

∣∣∣Sij∣∣∣2∣∣∣S0
j
∣∣∣2 . (2.70)

We will see later that this coincides with a finite term of the topological interface entropy
in (3.44). We can also get (2.70) by setting ψj = ϕj = Sij .

2.8 Possible definition of boundary states in Chern-Simons theory

Consider a path integral on a three-dimensional hemisphere or a ball in Chern-Simons the-
ory. We divide its boundary given by S2 into A and B, such that they are two dimensional
hemispheres.

Now we can define the Ishibashi-type state |Ii〉〉 as the path integral on the three-
dimensional hemisphere B3 with an open Wilson line with the representation Ri such that
one of its end points is on A and the other is on B (see figure 9).5 Obviously, they satisfy
the same relation as the Ishibashi-type states in boundary CFT2:

〈〈Ii|Ij〉〉 = δij S0
i . (2.71)

It is also straightforward to calculate the entanglement entropy SA of |Ii〉〉 via the replica
trick and this leads to

SA = logS0
i = − logD + log di . (2.72)

If we consider the linear combination state

|ψ〉 =
∑
i

ψi |Ii〉〉 ,

|ϕ〉 =
∑
i

ϕi |Ii〉〉 ,
(2.73)

5The Ishibashi-like state |Ii〉〉 we define in 3d Chern-Simons theory is different from the Ishibashi state
|i〉〉 in 2d BCFT used in section 4.
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|Ii〉〉 =
A B

Inner boundary
labeled by a

Cardy-like state

|Ba〉 =

Figure 9. Analogues of boundary states in Chern-Simons theory. The Ishibashi-like state is defined
as a state on the surface (S2) of a ball where a pair of excitations is located across the common
boundary of the two regions A and B [Left]. On the other hand the Cardy-like state is defined as
a state on the surface of a ball with the inner boundary surface with a specific boundary condition
corresponding to (2.77) [Right].

then the transition matrix looks like

τ
ψ|ϕ
A = TrB [ |ψ〉〈ϕ| ]

〈ϕ|φ〉
=
∑
i ϕ
∗
iψiTrB [ |Ii〉〉〈〈Ii| ]∑

i ϕ
∗
iψi Si0

. (2.74)

We can calculate the pseudo entropy

TrA
[(
τ
ψ|ϕ
A

)n]
=

∑
i(ϕ∗iψi)n Si0(∑
i (ϕ∗iψi)

n Si0
)n , (2.75)

leading to the expression

S
(
τ
ψ|ϕ
A

)
= log

[∑
i

ϕ∗iψi Si0
]
−
∑
i ϕ
∗
iψi Si0 log(ϕ∗iψi)∑

i ϕ
∗
iψi Si0

. (2.76)

Next, we introduce the Cardy-type state by6 (refer to figure 9)

|Ba〉 =
∑
i

Sai√
S0

i
|Ii〉〉 . (2.77)

It is easy to show that the Cardy-type states are orthogonal to each other

〈Ba|Bb〉 = δab . (2.78)

Even though in physical two-dimensional CFTs, the Cardy-type state satisfied the open-
closed duality, the above result corresponds to the truncation to the lowest energy mode
of open string. If we calculate the topological entanglement entropy for |Ba〉 we get
from (2.76)

SA = −
∑
i

(
Sai
)2

log

(
Sai
)2

S0
i . (2.79)

6While the Cardy-like state |Ba〉 satisfies the same relation (4.13) as the Cardy state |a〉 in 2d BCFT
they are different states.
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This is the same as the finite part of the left-right entanglement entropy (4.17) of the
Cardy state characterized by the boundary condition a in 2d boundary CFT examined in
section 4.

We can also evaluate the partition function on the hemisphere B3 with the boundary
condition of |Ba〉:

Z
[
B3;Ba

]
= 〈〈I0|Ba〉 = Sa0

√
S0

0 . (2.80)

We define the g-function by

ga = 〈〈Ĩ0|Ba〉 = Sa0 , (2.81)

where |Ĩ0〉〉 = 1√
S00 |I0〉〉 is the normalized vacuum state. Then we have

Z
[
B3;Ba

]
=
√
S0

0 ga . (2.82)

Note that the partition functions we have obtained above satisfy

Z
[
S3
]

=
∑
a

Z
[
B3;Ba

]∗
Z
[
B3;Ba

]
, (2.83)

which can be regarded as a completeness relation for |Ba〉.
Finally, we calculate the entanglement entropy of the vacuum state on a disk D2 with

the Cardy-type boundary condition. By (2.82), the resulting entanglement entropy takes
the form

logZ
[
B3;Ba

]
= 1

2 logZ
[
S3
]

+ log ga . (2.84)

The second term is analogous to the boundary entropy in BCFT. Indeed, the form

logZ
[
Bd;Ba

]
− 1

2 logZ
[
Sd
]

(2.85)

is proposed to be a candidate for a C-function in 3d [39] and 4d [40], and it was shown in
d-dimensional BCFT that the boundary entropy is defined by Sbdy = S(BCFT) − S(CFT)/2
equals to (2.85) up to a UV divergence [41].

3 Pseudo entropy in CFT

We switch gears and move to examining the pseudo entropy for a simple choice of the en-
tangling region in CFT. In section 3.1 we review the Casini-Huerta-Myers (CHM) map for
a spherical entangling surface on Rd, and describe the pseudo entropy as the path integral
on S1 × Hd−1. In section 3.2 we illustrate the application of the CHM map by showing
the calculation of the pseudo entropy in the three-dimensional Chern-Simons theory, re-
producing the results in section 2.5 from a slightly different viewpoint. We then expand on
the relation between the pseudo entropy and interface entropy in CFT2, which allows us
to read off the pseudo entropies of non-topological theories from their interface entropies
in section 3.3.
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|ϕ〉
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Figure 10. The spherical entangling surface Σ = ∂A at a time slice (t = 0) in flat space Rd.

3.1 Conformal map

We begin with reviewing the CHM map [42] that equates the entanglement entropy across
a sphere in CFTd to the calculation of the partition function on Sd or S1 ×Hd−1.

In what follows, we bipartite a constant time slice into two regions A and its comple-
ment B in flat space Rd with the metric:

ds2
Flat = dt2 + dr2 + r2 dΩ2

d−2 , (3.1)

and let the entangling surface Γ = ∂A be spherical (see figure 10):

Γ = {t = 0, r = R} . (3.2)

The flat space is conformally equivalent to S1 ×Hd−1 with the metric

ds2
Hyp = dτ2 + du2 + sinh2 u dΩ2

d−2 , (0 ≤ τ < 2π, 0 ≤ u <∞) , (3.3)

by the CHM map [42]

t = R
sin τ

cosh u+ cos τ , r = R
sinh u

cosh u+ cos τ . (3.4)

Indeed, the two spaces are related by

ds2
Flat = Ω2

Hyp ds2
Hyp , ΩHyp = R

cosh u+ cos τ . (3.5)

In the latter geometry, the replica geometry can be given simply by scaling the periodicity
of τ by n. The entangling region A (and its complement B) is mapped to the time slice at
τ = 0 (and at τ = π) and Γ is pushed to the infinity of the hyperbolic space (see figure 11):

Γ = {τ = 0, u =∞} . (3.6)

Now let us turn to the pseudo entropy between two states |ψ〉 and |ϕ〉. To prepare
the transition matrix τψ|ϕA we use the Euclidean path integral where the ket state |ψ〉 is
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τ

τ = 0
A

τ = π

B

S1

ϕ

ψ

0u

Hd−1

u =∞

A

A

τ

τ = 0

τ = π

τ = 2π

B

ψ

ϕ

S1

0u

Hd−1

u =∞

Figure 11. The Euclidean configuration for the pseudo entropy across the spherical entangling
surface after the CHM map [Left] and the path integral representation of the transition matrix τψ|ϕ

A

[Right].

represented as a path integral from t = −∞ to t = 0 while the bra state 〈ϕ| represented
as a path integral from t = ∞ to t = 0 in the flat space. After the CHM map, each state
covers half of the cylinder as in figure 11:

〈ϕ| : τ ∈ [0, π] , |ψ〉 : τ ∈ [π, 2π] . (3.7)

With this in mind the nth pseudo Rényi entropy defined by (1.3) is calculable from the
path integral representation of the replica partition function:

TrA
[(
τ
ψ|ϕ
A

)n]
≡ Z(n)

(Z(1))n , Z(1) ≡ 〈ϕ|ψ〉 . (3.8)

3.2 Chern-Simons calculation revisited

To illustrate the application of the CHM map, we revisit the pseudo entropy in the three-
dimensional Chern-Simons theory considered in section 2.5. Hence, we focus on states with
two excitations in the entangling region A and the other two excitations in the complement
in the Chern-Simons theory. Corresponding to the two cases studied in section 2.5 there
are two configurations depending on whether the two excitations in A are in the same
representation or not as shown in figure 12.

3.2.1 Case 1

We begin with the case with two excitations in the fundamental representation Rj inside
A and two excitations in the anti-fundamental representation Rj̄ . The two states |ψ〉, |ϕ〉
given by (2.28) are conformally equivalent to the configuration in figure 13.

The replica partition function can be given by gluing n copies of the transition matrix
cyclically along τ , resulting in a cylinder of circumference 2πn (times H2) with n disjoint
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Figure 12. The spherical entangling region with two excitations inside and the other two outside.
There are two configurations: (1) two excitations in A are in the same representation [Left], (2)
two excitations in A are in the conjugate representation to each other [Right].

A

A

τ

0

π

2π

B

ψ

ϕ

j j̄

j j̄

j j̄

Figure 13. The path integral representation of the transition matrix τψ|ϕ
A for the case with two

excitations in the fundamental representation inside A. We draw only the two-dimensional space
parametrized by the coordinates τ and u.

Wilson loops inserted. The replica manifold is topologically S3, so we find

Z(n) = Z
[
S3;R⊗nj

]
. (3.9)

One can simplify the right hand side to a product of the partition functions on S3 with one
Wilson loop insertion using the relation (2.18):

Z(n) = Z
[
S3;Rj

]n
Z [S3]n−1 . (3.10)

Hence we find the pseudo entropy of this configuration:

S
(
τ
ψ|ϕ
A

)
= logZ

[
S3
]

= − logD ,
(3.11)

which reproduces the previous result (2.35).

3.2.2 Case 2

Next we move to the second case with two excitations, one in the fundamental represen-
tation and the other in the anti-fundamental representation inside A, and take the two
states |ψ〉, |ϕ〉 as in figure 14. This configuration corresponds to the choice of the states
|ψ〉 = |ψ0〉 and |φ〉 = |ψ1〉 in section 2.5.2.
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τ

0
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2π
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ϕ
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j̄ j̄

j j

Figure 14. The path integral representation of the transition matrix τψ|ϕ
A for the case with two

excitations, one in the fundamental representation and the other in the anti-fundamental represen-
tation inside A.

In this case, the replica partition function falls into two classes depending on whether
n is even or not.

n: even. When n is even the replica manifold is topologically equivalent to S3 with two
Wilson loops inserted with linking number n/2:

Z(n) = Z
[
S3;R⊗2

j

∣∣
n/2 link

]
= [N ]
D [2]

[
q−

(N−1)n
2 [N + 1] + q−

(N+1)n
2 [N − 1]

]
,

(3.12)

where we use (2.45) in the last line. If we analytically continue even n to a real number
and calculate the pseudo entropy from the above partition function, we find

S
(
τ
ψ|ϕ
A

)
=− logD + log

[ [N ]
[2]

]
+ log

[
q

1
2 [N + 1] + q−

1
2 [N − 1]

]
− i π

N + k

q
1
2 [N + 1]− q−

1
2 [N − 1]

q
1
2 [N + 1] + q−

1
2 [N − 1]

.

(3.13)

n: odd. When n is odd the replica manifold is topologically equivalent to S3 with one
Wilson loop inserted with n crossings (self-intersection at n points):

Z(n) = Z
[
S3;Rj

∣∣
n crossing

]
= [N ]
D [2]

[
q−

(N−1)n
2 [N + 1]− q−

(N+1)n
2 [N − 1]

]
,

(3.14)

where we use again (2.45) in the last line. By analytically continuing n to a real number,
the pseudo entropy is calculated to be

S
(
τ
ψ|ϕ
A

)
=− logD + log

[ [N ]
[2]

]
+ log

[
q

1
2 [N + 1]− q−

1
2 [N − 1]

]
− i π

N + k

q
1
2 [N + 1] + q−

1
2 [N − 1]

q
1
2 [N + 1]− q−

1
2 [N − 1]

,

(3.15)

which reproduces (2.56) for |a− b| = 1 derived with the odd n analytic continuation.
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0

2π
τ

ψ

ϕ

Figure 15. The pseudo entropy for an interval in CFT2 [Left] and the conformal transformation
to the cylinder [Right].

3.3 Relation to interface entropy in two dimensions

The argument for the CHM map slightly differs in two dimensions from the one given in
the previous section. To be concrete, we consider an interval A = [u, v] on R at time slice
t = 0 and prepare two different states 〈ϕ| and |ψ〉 in the Euclidean path integral. Using a
transformation

ew = z − u
v − z

, (3.16)

the original space (parametrized by the complex coordinates z) can be mapped to a cylinder
of circumference τ ∼ τ + 2π with the coordinates w ≡ σ+ i τ as in figure 15. This is indeed
a conformal map as seen from the transformation of the metric:

dz dz̄ =
(

v − u
4 sinh(w/2) sinh(w̄/2)

)2
dw dw̄ . (3.17)

Note that the left and right boundaries correspond to the boundaries of the disks
around the endpoints of A which play a role of the UV cutoff in calculation of the partition
function. Then Z(n) is given by the partition function on the replica manifold which can
be constructed straightforwardly by gluing n copies of the strip as in figure 16.

It is sometimes useful to make a further map from the cylinder to a sphere by the
following coordinate transformation:

dw dw̄ = dσ2 + dτ2 = 1
sin2 φ

[
dφ2 + sin2 φ dτ2

]
, (3.18)

where σ = log tan(φ/2) with φ ∈ [0, π]. Combining the two transformations, we find the
map from the original space to the sphere:

dz dz̄ = Ω(φ, τ)2
[
dφ2 + sin2 φ dτ2

]
, Ω ≡ v − u

2(1− cos τ sinφ) . (3.19)

A closely related measure to the pseudo entropy is the entanglement entropy across
a conformal interface, also known as interface entropy. We here consider a restricted case
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Figure 16. The replica partition function Z(n) for the pseudo entropy.

I

A+

A−

ϕ ψ

conformal map

A−

I

I

A+

ψ

ϕ

ψ

τ

2π

3π
2

π
2

0

Figure 17. The entanglement entropy across a conformal interface I (interface entropy) in two
dimensions [Left]. The entangling region A is taken to be a half line right to the interface I. The
configuration can be mapped to the cylinder by a conformal transformation [Right].

where two different states |ψ〉 and |ϕ〉 in CFT2 are glued along an interface I at the origin
of a time slice as in figure 17. The interface entropy is the entanglement entropy for the
entangling region A extending from the origin to the right, which quantifies the difference
between the two states [25].

Using a canonical conformal map from flat space to a cylinder and gluing n copies
along the entangling surface one obtains the replica manifold as a cylinder of circumference
τ τ + 2πn with n interfaces inserted at specific locations (see figure 18):

I :
{
τ = (2i− 1)π

2 , (i = 1, 2, · · · , 2n)
}
. (3.20)

Compared with figure 16 this is the same replica manifold as the pseudo entropy in the
previous subsection with τ shifted by π/2. Hence, we establish the equality between the
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2
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2
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Figure 18. The replica partition function for the interface entropy.

Aτ

ϕ

ψ

Pseudo entropy

Aτ

ϕ ψ

Interface entropy

Figure 19. The pseudo entropy and interface entropy across a hyperplane. Their replica manifolds
are the same up to the τ shift by π/2.

pseudo entropy and interface entropy in CFT2:

S
(
τ
ψ|ϕ
A: interval

)
= SIA: half-line in CFT2 . (3.21)

More generally, taking the entangling surface to be a hyperplane in flat space the
pseudo entropy equals to the interface entropy in any QFT in d ≥ 2 dimensions:

S
(
τ
ψ|ϕ
A

)
= SIA for Γ = ∂A : {x0 = x1 = 0} . (3.22)

This is clear from figure 19 where one sees the replica manifold of the former is obtained
by rotating that of the latter by π/2 degree.

3.3.1 Compact scalar theory

We calculate the pseudo entropy between ground states of massless compact bosons of
different radii R1 and R2 in two dimensions. When the entangling region is an interval it
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amounts to the entanglement entropy across an interface between the two compact boson
theories as we saw in section 3.3.

There are four types of conformal interfaces I±k1k2
labeled by ± and their conjugates,

which act as intertwiners from one side of a free boson theory to the other. The pair of
relatively prime numbers (k1, k2) can be interpreted as the winding numbers of D-brane
along the two cycles of the torus parametrized by two compact bosons.

We focus on the case with I+
k1k2

and read off the pseudo entropy from the result of [25]
for the interface entropy by translating the parameters appropriately:

S
I+
k1k2

(
τ
ψ|ϕ
A

)
= σs (| sin(2θ+)|) log

(
L

ε

)
− log |k1k2| , (3.23)

where L ≡ v−u, ε are the lengths of the interval and the UV cutoff for the pseudo entropy,
respectively. The parameter θ+ defined through the relation

tan θ+ ≡
k2R2
k1R1

, (3.24)

controls the transmittance of the interface. The function σs(x) defined by

σs(x) ≡ 1
6 + x

3 + 1
π2 [(x+ 1) log(x+ 1) log x+ (x− 1)Li2(1− x) + (x+ 1)Li2(−x)] ,

(3.25)

interpolates between σs(0) = 0 and σs(1) = 1/3 monotonically.

3.3.2 Free fermion

The entanglement entropy across a conformal interface in the Ising model in two dimen-
sions was investigated in [28]. Interfaces in the Ising model can be described as boundary
conditions in either the Z2-orbifold theory of a free boson or the real Majorana fermion
theory. In the latter description, there is an independent set of interfaces: NS, R, and neu-
tral interfaces, labeled by a parameter φ controlling their transmittance. It follows from
the result of [28] the pseudo entropy for the NS interface becomes

SNS
(
τ
ψ|ϕ
A

)
= σf (| sin(2φ)|) log

(
L

ε

)
, (3.26)

where the function σf(x) defined by

σf(x) ≡ x− 1
6 − 1

π2 [(x+ 1) log(x+ 1) log x+ (x− 1)Li2(1− x) + (x+ 1)Li2(−x)] ,

(3.27)

interpolates between σf (0) = 0 and σf (1) = 1/6 monotonically. The pseudo entropies for
the R and neutral interfaces are also given by

SR
(
τ
ψ|ϕ
A

)
= SNS

(
τ
ψ|ϕ
A

)
,

Sneutral
(
τ
ψ|ϕ
A

)
= SNS

(
τ
ψ|ϕ
A

)
− log 2 .

(3.28)
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3.3.3 Topological interface

Suppose we are given two CFTs glued along a straight line C. To preserve a part of the
conformal symmetry, the energy flow perpendicular to C has to be continuous:

T (1) − T̄ (1)|C = T (2) − T̄ (2)|C . (3.29)

The gluing line C may be seen as an defect operator I intertwining the Hilbert space H(1)

of one theory with the other H(2). The condition (3.29) implies that such an operator
satisfies the commutation relations:(

L(1)
n − L̄(1)

n

)
I = I

(
L(2)
n − L̄(2)

n

)
. (3.30)

Finding solutions to these relations is a hard problem, but it simplifies if the defects satisfy
stronger conditions:

L(1)
n I = I L(2)

n , L̄(1)
n I = I L̄(2)

n . (3.31)

Since they commute with all the Virasoro generators, their locations can be moved freely,
and hence I becomes topological.

Topological defects have been extensively studied in a rational CFT (RCFT) whose
Hilbert space takes the form:

H =
⊕
i,j̄

Mij̄ Vi ⊗ V̄j̄ , (3.32)

where i and j̄ label (a finite number of) irreducible representations Vi and V̄j̄ of the Virasoro
algebra in chiral and anti-chiral sectors respectively and Mij̄ is the multiplicity of the pair
representation (i, j̄) appearing in the spectrum of the theory. In this case, the topological
defects between two RCFTs with multiplicity matrices M (1)

ij̄
and M

(2)
ij̄

can be written
as [29, 43]

IK =
∑

i
dKi P

i , (3.33)

whereK labels types of topological interface and i ≡ (i, j̄;α, β) is the index for the projector
P i intertwining between a representation

(
Vi ⊗ V̄j̄

)(α)
with α = 1, · · · ,M (1)

ij̄
of one RCFT

to another representation
(
Vi ⊗ V̄j̄

)(β)
with β = 1, · · · ,M (2)

ij̄
of the other RCFT.

When the two CFTs are isomorphic and hence M (1)
ij̄

= M
(2)
ij̄

, hence for conformal
defects between the same CFT, the projector P i is given a realization as

P (i,j̄;α,β) ≡
∑
n,n̄

(
|i,n〉 ⊗ |j̄, n̄〉

)(α) (
〈i,n| ⊗ 〈j̄, n̄|

)(β)
, (3.34)

where |i,n〉⊗|j̄, n̄〉 is an orthogonal basis for the representation Vi⊗V̄j̄ . Clearly IK satisfies
the conditions (3.31) which now reduce to the commutation relations with the Virasoro
generators

[Ln, IK ] = [L̄n, IK ] = 0 , (3.35)

– 30 –



J
H
E
P
0
9
(
2
0
2
1
)
0
1
5

and hence correlation functions depend only on the homotopy class of the contour of
IK [43]. Defects intertwining between the same theory are called interfaces, so topological
interfaces are the solutions to the conditions (3.35).

The replica partition function for calculating the entanglement entropy across a topo-
logical interface is given by a torus partition function with 2n insertion of interface
operators:

ZK(n) = tr
[(
IK e−tH I†K e

−tH
)n]

= tr
[(
IK I†K

)n
e−2tH

]
=
∑
(i,j̄)

Tr [(dKi dK∗i)n] χi
(
e−2nt

)
χj̄

(
e−2nt

)
,

(3.36)

where H is the Hamiltonian on a cylinder

H = L0 + L̄0 −
c

12 , (3.37)

and we used the commutation relation (3.35) in the second equality. χi is the character in
the Vi representation and the parameter t is related to the UV and IR cutoffs ε, L as

t = 2π2

log(L/ε) . (3.38)

We took a trace Tr with respect to the multiplicity indices α, β by regarding dK(i,j̄;α,β) as
a matrix with the notation dK∗(i,j̄;α,β) ≡ d∗

K(i,j̄;β,α). Using the modular property of the
character, the entanglement entropy becomes [29]

SIK = c

6 log
(
L

ε

)
−
∑
(i,j̄)

Tr
[
pKi log p

K
i
pId

i

]
, (3.39)

where pKi is a probability distribution characterized by the modular S-matrix as

pKi ≡
S0

i
(
S0

j̄
)∗

∑
(i,j̄) S0

i
(
S0

j̄
)∗

Tr [dKi dK∗i]
dKi dK∗i , pId

i ≡ S0
i
(
S0

j̄
)∗

δαβ . (3.40)

For diagonal theories with multiplicity Mij̄ = δij̄ , the CFTs on both sides are the same
theory and topological interfaces are one-to-one correspondence to the primary operators
labeled by a:

Ia =
∑
i

Sai

S0
i P

i , (3.41)

where P i is the projector acting on the representation Vi ⊗ V̄i:

P i ≡
∑
n,n̄
|i,n〉 ⊗ |i, n̄〉 〈i,n| ⊗ 〈i, n̄| . (3.42)
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Then the probability distribution simplifies to

pai =
∣∣∣Sai∣∣∣2 , pId

i =
∣∣∣S0

i
∣∣∣2 , (3.43)

and we find [26, 29]

SIa = c

6 log
(
L

ε

)
− 2

∑
i

∣∣∣Sai∣∣∣2 log
∣∣∣∣∣SaiS0

i

∣∣∣∣∣ . (3.44)

It would be worthwhile to note that the constant term contributed from the interface
takes the same form as the topological entanglement entropy for any state |ψ〉 in the
Chern-Simons theory on a torus we considered in section 2.7 (see also section 2.5.2 in [7]):

Sψ = −2
∑
i

|ψi|2 log |ψi|
S0

i , (3.45)

where ψi are coefficients for the state |ψ〉 which is the superposition of a single Wilson loop
in the irreducible representation Ri:

|ψ〉 =
∑
i

ψi |Ri〉 . (3.46)

Indeed one can reproduce the finite part of the interface entropy (3.44) by setting ψi to a
specific value ψi = Sai (see (2.70)). This coincidence may not be so surprising given the
well-known correspondence between the WZW model and the Chern-Simons theory, but
we are not aware of any direct link between them.

4 Left-right pseudo entanglement entropy

A closely related measure to the interface entropy is the left-right entanglement entropy
(LREE) in BCFT2 [34, 35]. For a boundary state |B〉 subject to the gluing condition(

Ln − L̄−n
)
|B〉 = 0 , (4.1)

there exists an orthogonal basis spanned by the Ishibashi states |i〉〉 [44]:

|i〉〉 =
∑

n
|i,n〉 ⊗ |i,n〉 . (4.2)

Note that they are non-normalizable states, but their inner product can be regularized as7

(see e.g. [45])

〈〈i|j〉〉 = δij S0
i . (4.3)

Hence one can expand any boundary state |ψ〉 by the Ishibashi state as follows:

|ψ〉 =
∑
i

ψi |i〉〉 . (4.4)

7We can equally normalize the Ishibashi state as 〈〈i|j〉〉 = δij . This is the normalization employed in [11],
which is equivalent to the rescaling of the coefficient such that ψi → ψi/

√
S0
i.
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The LREE is the von Neumann entropy of the reduced density matrix for the left (holo-
morphic) sector:

ρψL ≡
1
〈ψ|ψ〉

TrR [|ψ〉 〈ψ|] . (4.5)

Now we introduce the transition matrix for two boundary states |ψ〉 and |ϕ〉 by

τ
ψ|ϕ
L ≡ 1

〈ϕ|ψ〉
TrR [|ψ〉 〈ϕ|] , (4.6)

and define the left-right pseudo entropy (LRPE) as the von Neumann entropy of the transi-
tion matrix. Since the boundary states are non-normalizable we regularize them by slightly
evolving them in the imaginary time direction:

|ψ〉 → e−εH |ψ〉 . (4.7)

For a theory on a cylinder of circumference ` the Hamiltonian becomes

H = 2π
`

(
L0 + L̄0 −

c

12

)
, (4.8)

which yields the following expressions:

〈ϕ| e−2εH |ψ〉 =
∑
i

ψi ϕ
∗
i χi

(
e−

8πε
`

)
,

TrR
[
e−εH |ψ〉 〈ϕ| e−εH

]
=
∑
i,n

ψi ϕ
∗
i e
− 8πε

` (hi+Nn− c
24) |i,n〉 〈i,n| ,

TrL
[(
τ
ψ|ϕ
L

)n]
= 1[∑

i ψi ϕ
∗
i χi

(
e−

8πε
`

)]n ∑
i

(ψi ϕ∗i )
n χi

(
e−

8πεn
`

)
.

(4.9)

Here hi and Nn are the conformal dimension and the level of the descendant state |i,n〉
respectively, and χi(q) ≡ trVi qL0− c

24 is the character for the representation i. Using the
modular transformation

χi
(
e−

8πεn
`

)
=
∑
j

Sij χj
(
e−

π`
2εn
)
, (4.10)

and taking the ε→ 0 limit we find the LRPE:

S
(
τ
ψ|ϕ
L

)
= −∂n TrL

[(
τ
ψ|ϕ
L

)n] ∣∣
n=1

= πc`

24 ε −
∑
i Si0 ψi ϕ∗i log(ψi ϕ∗i )∑

i Si0 ψi ϕ∗i
+ log

[∑
i

Si0 ψi ϕ∗i

]
.

(4.11)

This expression is not necessarily real, but when ψ = ϕ it reduces to the LREE derived
in [35]:

S(LR) (|ψ〉) = πc`

24 ε −
∑
i Si0 |ψi|2 log |ψi|2∑

i Si0 |ψi|2
+ log

[∑
i

Si0 |ψi|2
]
. (4.12)

which is real as expected.
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In a diagonal theory, the Cardy states |a〉 can be written as a superposition of the
Ishibashi states:8

|a〉 =
∑
i

Sai√
S0

i
|i〉〉 . (4.13)

As a simple example let us take

|ψ〉 = |a〉 , |ϕ〉 = |i〉〉 , (4.14)

then the LRPE becomes

S
(
τ
ψ|ϕ
L

)
= πc`

24 ε + log Si0 . (4.15)

Interestingly, the LRPE does not depend on the choice of the Cardy state |a〉 as long as it
overlaps with the Ishibashi state |i〉〉

Next, consider the LREE for the Ishibashi state |ψ〉 = |i〉〉. It follows from (4.12) with
ψi = ϕi = 1, ψk 6=i = ϕk 6=i = 0 that

S(LR) (|i〉〉) = πc`

24 ε + log Si0 . (4.16)

This is the same as the LRPE considered above.
Another example is the LREE for the Cardy state |ψ〉 = |a〉, which is given by substi-

tuting ψi = ϕi = Sai/
√
S0

i to (4.11) [29, 35]

S(LR) (|a〉) = πc`

24 ε −
∑
i

(
Sai
)2

log
[

(Sai)2

S0
i

]
, (4.17)

which agrees with the topological entanglement entropy (2.79) of the Chern-Simons theory
for the Cardy state. Note that (4.17) is close to but differs from (3.44) by the denominator
in the logarithm. This difference can be accounted for by the fact that both holomorphic
and anti-holomorphic sectors contribute to the interface entropy while there is only the
holomorphic sector in the unfolded theory of BCFT in the LREE. In the latter case the
correspondence between the topological entanglement entropy in the Chern-Simons theory
and the LREE of a boundary state is clear as the left and right moving CFTs appear as
the edge modes of the Chern-Simons theory on either side of the entangling surface [35].
It would be interesting to understand the above coincidence between the interface entropy
in 2d and the topological entropy in 3d along the same lines of thought.

5 Conclusions

In this paper, we studied pseudo entropy in quantum field theory, mainly concentrating on
its topological properties.

8Note that this is the same relation as the expression of the interface operator (3.41) if one replaces S0
i

with
(
S0
i
)2.
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In section 2, we focused on the excited states in Chern-Simons theory. This provides a
class of important examples where pseudo entropy can be analytically computed in quan-
tum field theory. We found non-trivial behavior of the pseudo entropy in the presence of
four excitations on S2. Such excited states are prepared by path integrals with inserting
appropriate Wilson lines. In contrast to topological entanglement entropy, we have seen
that topological (Rényi) pseudo entropies are directly related to partition functions with
knotted Wilson loops. In other words, generic partition functions with Wilson loops should
be interpreted as topological pseudo entropy rather than topological entropy because the
initial state and final state are different. Since the dependence on the crossings vanishes in
the classical limit, we can interpret that the crossings give purely quantum contributions
to pseudo entropy. In particular, it is remarkable that the pseudo entropy may be larger
than the entanglement entropy, i.e., the difference ∆S defined in (1.6) can be positive. This
contrasts with a standard quantum many-body system or quantum field theory within the
same quantum phase, where ∆S is always non-positive [23, 24]. This is consistent with
the known fact that the anyonic states created by Wilson loops in Chern-Simons theory
belong to different quantum phases in general. Note that this is the first example in di-
mensions higher than two, where pseudo entropy was explicitly evaluated in non-trivial
topological phases.

We also explored a geometric interpretation of topological pseudo entropy in Chern-
Simons theory. We found a universal result when a single Wilson loop is linked with the
surface Γ = ∂A once. Although universal results are not available in more general cases,
we noted that in the semiclassical limit k → ∞, the topological pseudo entropy captures
the number of Wilson loops which link with the surface Γ = ∂A. This is analogous to
the holographic entanglement entropy in the sense that it also measures entanglement or
the number of Bell pairs around an extremal surface Γ. The geometrical interpretation
including full quantum effects remains as a future problem.

In section 3, we investigated the properties of the pseudo entropy in CFT. In particular,
we found the close relation between the pseudo entropy and the interface entropy in 2d
CFT, which can be generalized to any QFT in d ≥ 2 with the restriction to the case where
the subsystem A is a half space, i.e., ∂A : {x0 = x1 = 0}. The extension of the relation
to a more general A would be challenging and is left as a future problem. We used this
relation to calculate the pseudo entropies in several interface CFTs. The finite term in the
resulting interface entropy coincides with that in Chern-Simons theory on a torus.

The CHMmap in section 3.1 can be concatenated by a further conformal map tanh u
2 =

tan θ
2 to Sd with the metric:

ds2
Sph = dθ2 + cos2 θ dτ2 + sin2 θ dΩ2

d−2 ,

(
0 ≤ θ ≤ π

2

)
. (5.1)

The resulting map may open the way to evaluate the pseudo entropy in CFT through
the sphere partition function with two states glued alternately along the τ coordinate.
The same map was applied to the interface entropy to derive a universal relation between
the entropy and sphere free energy [41, 46], but there is a crucial difference between the
pseudo entropy and interface entropy as the number of the interfaces between the two
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states depends on the replica parameter in the former while it is independent in the latter.
Thus, the calculation of the replica partition function is a highly daunting task. While
the exact results of such a partition function are far from our reach in general, it would
become tractable for supersymmetric field theories. Supersymmetries are broken on the
replica manifold due to the conical singularity, but may be maintained by introducing a
sort of chemical potential to the pseudo entropy in a similar manner to the supersymmetric
Rényi entropy [47], resulting in being calculable due to the supersymmetric localization
(see also [48–60] for the generalizations in various dimensions). In particular, it would
be worthwhile to see if the supersymmetric extended pseudo entropy could probe two
difference phases related by duality such as the S-duality wall in N = 4 supersymmetric
Yang-Mills theory in four dimensions [61–63].
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A Modular properties in SU(2) case

Here we summarize the explicit partition functions for the SU(2) i.e. N = 2 case.
The S-matrices are

Sij =
√

2
k + 2 sin

[
π (2i+ 1)(2j + 1)

k + 2

]
. (A.1)

In particular we have

S0
0 =

√
2

k + 2 sin
[

π

k + 2

]
,

S 1
2

0 =
√

2
k + 2 sin

[ 2π
k + 2

]
,

S 1
2

1
2 =

√
2

k + 2 sin
[ 4π
k + 2

]
.

(A.2)

The quantum dimension reads

dj = [2j + 1] =
sin
[
π(2j+1)
k+2

]
sin
[
π
k+2

] . (A.3)
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The partition function Z [Xn] for Wilson loop with n crossing is in general given by

Z [Xn]
S0

0 =
(
q−

N−1
2
)n [N + 1][N ]

[2] +
(
−q−

N+1
2
)n [N ][N − 1]

[2] , (A.4)

where q = e2πi/(k+N).
For N = 2 we get explicitly

Z [Xn] =
√

2
k + 2 ·

(−i
2

)
·
[
e
πi(3−n)
k+2 − e−

πi(3+n)
k+2 + (−1)n e

πi(1−3n)
k+2 − (−1)n e−

πi(1+3n)
k+2

]
.

(A.5)

In particular, we find

Z [X0] =

(
S0

1
2
)2

S0
0 ,

Z [X1] = S0
1
2 ,

Z [X2] = S 1
2

1
2 .

(A.6)

In the k →∞ limit we obtain the simple result:

Z [Xn] −→ π
√

2
k

3
2

[3 + (−1)n] . (A.7)

B Multi-boundary states in Chern-Simons theory

In this section we consider the multi-boundary states of spatial regions Σ =
⊔
T2 consisting

of several tori without any Wilson loops. The calculation of the entanglement entropies
of these states is performed in [10], which is easily generalized to pseudo entropy. These
states can be prepared by drilling out the internal region of a subregion Σ =

⊔
T2 from S3.

The resulting state can be expanded by the states |Rj〉 in figure 8:

|ψ〉 =
∑

j1,...jn

cj1,...,jn |Rj1 , . . . , Rjn〉 , (B.1)

where n is the number of tori and |Rj1 , . . . , Rjn〉 ≡ |Rj1〉 ⊗ · · · ⊗ |Rjn〉. The coefficients

cj1,...,jn = 〈Rj1 , . . . , Rjn |ψ〉 (B.2)

are partition functions on S3 with n Wilson loops of representations Rj1 , . . . , Rjn .
Here we only consider a simple example of the two tori states Σ = T2 t T2 in U(1)

Chern-Simons theory. In this case, the coefficients turn out to be

cj1,j2 = Z
[
S3;Rj1 , Rj2

]
= exp

(2πi
k
q1 q2 `12

)
, (B.3)
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where q1, q2 are the U(1) charges of the two loops and `12 is the linking number between
the two loops. We define two states

|ψ〉 = 1
k

∑
q1,q2

exp
(2πi
k
q1 q2 `12

)
|Rj1〉 ⊗ |Rj2〉 ,

|ϕ〉 = 1
k

∑
q1,q2

exp
(2πi
k
q1 q2 `

′
12

)
|Rj1〉 ⊗ |Rj2〉 ,

(B.4)

with different linking numbers.
We call one of the two tori A, which corresponds to the region including a Wilson loop

with Rj1 , and the other B. Let us calculate the entanglement entropies between A and B
following [10]. The reduced density matrix for |ψ〉 is

ρψA ≡ TrB [|ψ〉 〈ψ|] = 1
k2

∑
q1,q′1,q2

e
2πi
k

(q1−q′1) `12 q2 |Rj1〉 〈Rj′1 |

= 1
k

∑
q1,q′1

ηq1,q2(k, `12) |Rj1〉 〈Rj′1 | ,
(B.5)

where

ηq1,q2(k, `12) ≡

1 `12(q1 − q2) = 0 mod k

0 `12(q1 − q2) 6= 0 mod k .
(B.6)

The Rényi entropy for |ψ〉 is

S(n)
(
ρψA

)
= 1

1− n log
[

1
kn

∑
q1,...,qn

ηq1,q2(k, `12) · · · ηqn,q1(k, `12)
]
. (B.7)

When we fix 0 ≤ q1 ≤ k − 1, there are gcd(k, `12) values of 0 ≤ q2 ≤ k − 1 satisfying the
relation `12(q1− q2) = 0 mod k. Similarly, q3, . . . , qn also take gcd(k, `12) values. Therefore
the summation in the logarithm in (B.7) will be k (gcd(k, `12))n−1, so

S(n)
(
ρψA

)
= log

[
k

gcd(k, `12)

]
, (B.8)

and the entanglement entropy is clearly

S
(
ρψA

)
= log

[
k

gcd(k, `12)

]
. (B.9)

Similarly, the entanglement entropy for |ϕ〉 is

S (ρϕA) = log
[

k

gcd(k, `′12)

]
. (B.10)

Next, let us calculate the pseudo entropy. The inner product is

〈ϕ|ψ〉 = 1
k2

∑
q1,q2

exp
(2πi
k
q1 q2 (`12 − `′12)

)
= 1
k

∑
q1

η`12,`′12
(q1, k)

= 1
k

gcd(`12 − `′12, k) .

(B.11)
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Figure 20. The difference ∆S of the pseudo entropy from the average of the entanglement entropies
varying the level k. We set `12 = 2, `′

12 = 1.

To obtain the third line, we have used the fact that there are gcd(`12 − `′12, k) values of
0 ≤ q1 ≤ k− 1 satisfying q1(`12− `′12) = 0 mod k. When `12 = `′12, i.e. |ψ〉 = |ϕ〉, the inner
product is 1 since gcd(0, k) = k. The reduced transition matrix is

τ
ψ|ϕ
A = 1

k2 〈ϕ|ψ〉
∑

q1,q′1,q2

e
2πi
k

(q1 `12−q′1 `
′
12) q2 |Rj1〉 〈R′j1 |

= 1
gcd(`12 − `′12, k)

∑
q1,q2

η̃q1,q′1(`12, `
′
12, k) |Rj1〉 〈R′j1 | ,

(B.12)

where

η̃q1,q2(`12, `
′
12, k) ≡

1 q1 `12 − q′1 `′12 = 0 mod k

0 q1 `12 − q′1 `′12 6= 0 mod k .
(B.13)

Let N(`12, `
′
12, k) be the number of 0 ≤ q′1 ≤ k−1 satisfying q1 `12− q′1 `′12 = 0 mod k when

fixing q1, which in fact does not depend on q1. Then the pseudo entropy is

S
(
τ
ψ|ϕ
A

)
= lim

n→1

1
1− n log

[
N(`12, `

′
12, k)

gcd(`12 − `′12, k)

]n−1

= log
[gcd(`12 − `′12, k)
N(`12, `′12, k)

]
.

(B.14)

Figure 20 shows the difference ∆S when the linking numbers are `12 = 2, `′12 = 1. We
can see that ∆S < 0 similar to the other typical examples.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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