Topological Quantum Computation

Zhenghan Wang
Microsoft Station Q \& UC Sana Barbara
Texas, March 26, 2015
$P / N P$, and the quartum field computer
Michael H. Freednaiv

Classical Physics Turing Model
Quantum Mechanics Quantum Computing
Quantum Field Theory ???

String Theory
??????

Fault-tolerantqualaum compulation by anyons

AYu. Kitend.

Quantum field computing is the same as quantum computing.

True for TQFTs (Freedman, Kitaev, Larsen, W.)

Quantum Computation

- There is a serious prospect for quantum physics to change the face of information science.
- Theoretically, the story is quite compelling:
- Shor's factoring algorithm (1994)
- Fault tolerance ~1996-1997 independently
- P. Shor
- A. M. Steane
- A. Kitaev
- But for the last twenty years the most interesting progress has been to build a quantum computer.

Why Quantum More Powerful?

- Superposition

A (classical) bit is given by a physical system that can exist in one of two distinct states:
0 or 1
A qubit is given by a physical system that can exist in a linear combination of two distinct quantum states: $|0\rangle$ or $|1\rangle$

$$
\begin{aligned}
& |\psi\rangle=\alpha|0\rangle+\beta|1\rangle \\
& \left.\begin{array}{l}
\alpha, \beta \in \mathbb{C} \\
|\alpha|^{2}+|\beta|^{2}=1
\end{array} \quad \right\rvert\, \psi>\in C P^{1}
\end{aligned}
$$

- Entanglement

Quantum states need not be products. For example:

$$
\begin{aligned}
\left|\Psi_{A B}\right\rangle & =\frac{1}{\sqrt{2}}\left(\left|0_{A} 0_{B}\right\rangle+\left|1_{A} 1_{B}\right\rangle\right) \\
& \neq\left|\psi_{A}\right\rangle \otimes\left|\phi_{B}\right\rangle
\end{aligned}
$$

This is the property that enables quantum state teleportation and Einstein's "spooky action at a distance."

- Classical information source is modeled by a random variable X

The bit---a random variable $X \in\{0,1\}$ with equal probability. Physically, it is a switch $\mathbf{I}_{\mathrm{x}}(\mathrm{p})=-\sum_{\mathrm{i}=1}{ }^{\mathrm{n}} \mathrm{p}_{\mathrm{i}} \log _{2} \mathrm{p}_{\mathrm{i}}$,

- A state of a quantum system is an information source

The qubit---a quantum system whose states given by non-zero vectors in \mathbb{C}^{2} up to non-zero scalars. Physically, it is a 2-level quantum system.

Paradox: A qubit contains both more and less than 1 bit of information.
The average amount information of a qubit is $\frac{1}{2 \ln 2}$.

A computing problem is given by a family of Boolean maps $\{0,1\}^{\mathrm{n}} \longrightarrow\{0,1\}^{\mathrm{m}(\mathrm{n})}$

Name: Factoring
Instance: an integer $\mathrm{N}>0$
Question: Find the largest prime factor of \mathbf{N}
Encode \mathbf{N} as a bit string of length=n~ $\log _{2} \mathbf{N}$, the factoring problem is a family of Boolean functions
$f_{n}:\{0,1\}^{n} \longrightarrow\{0,1\}^{m(n)}$

$$
\text { e.g. } n=4, \quad f_{4}(1111)=101, \text { i.e., } f_{4}(15)=5
$$

How Quantum Computers Work

Given a Boolean map $\mathrm{f}:\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}^{\mathrm{n}}$, for any $x \in\{0,1\}^{n}$, represent x as a basis $\mid x>\in\left(\mathbb{C}^{2}\right)^{\otimes n}$, then find a unitary matrix U so that $U(\mid x>)=\mid f(x)>$.

Basis of $\left(\mathbb{C}^{2}\right)^{\otimes n}$ is in11 correspondence with n -bit strings or $0,1, \ldots, 2^{\mathrm{n}}-1$

Problems

- $x, f(x)$ does not have same \# of bits
- $f(x)$ is not reversible
- The final state is a linear combination
- Not every U_{x} is physically possible

Gate Set

Fix a collection of unitary matrices (called gates) and use only compositions of local unitaries from this gate set
e.g. standard gate set

$$
\begin{aligned}
& \mathrm{H}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)--- \text { Hadmard, } \mathrm{T}=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\pi i / 4}
\end{array}\right)--\frac{\pi}{8}-\text { gate } \\
& \text { CNOT }=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right),|i, j>\rightarrow| i,(\mathrm{i}+\mathrm{j}) \bmod 2>, \mathrm{i}, \mathrm{j}=0 \text { or } 1
\end{aligned}
$$

Universality

- Fix a gate set S , a quantum circuit on n qubits $\left(\mathbb{C}^{2}\right)^{\otimes n}$ is a composition of finitely many matrices g_{i}, where each g_{i} is of the form $\mathrm{id} \otimes \mathrm{g} \otimes \mathrm{id}$, where each $\mathrm{g} \in \mathrm{S}$ is a gate.
- Universality: A gate set S is universal if the collection of all quantum circuits form a dense subset of the union $U_{n=1}{ }^{\infty} \operatorname{PSU}\left(2^{n}\right)$.

The class BQP (bounded error quantum polynomial-time) Fix a physical universal gate set

A computing problem $f_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{m(n)}$ is in BQP if

1) there exists a classical algorithm of time poly (n) (i.e. a Turing machine) that computes a function $x \rightarrow D_{x}$, where $x \in\{0,1\}^{n}$, and D_{x} encodes a poly(n)-qubit circuit U_{x}.
2) when the state $\mathrm{U}_{\mathrm{x}} \mid 0 \cdots 0>$ is measured in the standard basis $\left\{\left|i_{1} \cdots i_{p(n)}\right\rangle\right\}$, the probability to observe the value $f_{n}(x)$ for any $x \in\{0,1\}^{n}$ is at least $3 / 4$.

Remarks:

1) Any function that can be computed by a QC can be computed by a TM.
2) Any function can be efficiently computed by a TM can be computed efficiently by a QC, i.e. BPP $\subseteq B Q P$

Factoring is in BQP (Shor's algorithm), but not known in FP (although Primality is in P).

Given an \mathbf{n} bit integer $\mathbf{N} \sim \mathbf{2 n}^{\mathbf{n}}$
Classically $\sim e^{\left.c n^{1 / 3} \text { poly (log } n\right)}$
Quantum mechanically ~ \mathbf{n}^{2} poly $(\log n$) For $\mathrm{N}=\mathbf{2}^{500}$, classically \sim billion years Quantum computer \sim few days

Can We Build a Large Scale Universal QC?

Yes theoretically. Fault-tolerant quantum computation theory shows if hardware can be built up to the accuracy threshold $\sim 10^{-4}$, then a scalable QC can be built.

But in reality, the obstacle is mistakes and errors (decoherence)

Classical error correction by redundancy

$$
0 \rightarrow 000,1 \rightarrow 111
$$

Not available due to the No-cloning theorem:
The cloning map $|\psi\rangle \otimes|0\rangle \rightarrow|\psi\rangle \otimes|\psi\rangle$ is not linear.

Key "Post-Shor" Idea

Peter Shor
Shor's Factoring Algorithm

To use topology to protect quantum information

Michael Freedman

Alexei Kitaev

Why Topology?

- Topology is usually conceived of as that part of geometry which survives deformation.

- But, equally, topology is that part of quantum physics which is robust to deformation (error).

A Revolutionary New Idea

If a physical system were to have quantum topological (necessarily nonlocal) degrees of freedom, which were insensitive to local probes, then information contained in them would be automatically protected against errors caused by local interactions with the environment.

This would be fault tolerance guaranteed by physics at the hardware level, with no further need for quantum error correction, i.e. topological protection.

Alexei Kitaev

Topological Phases of Matter

A topological quantum phase is represented by a quantum theory whose low energy physics in the thermodynamic limit is modeled by a stable unitary topological quantum field theory (TQFT).

2D Topological Phases in Nature

- Quantum Hall States

1980 Integral Quantum Hall Effect --von Klitzing (1985 Nobel)

1982 Fractional QHE---Stormer, Tsui, Gossard at $v=\frac{1}{3}$
(1998 Nobel for Stormer, Tsui, and Laughlin)
1987 Non-abelian FQHE???---R. Willett et al at $v=\frac{5}{2}$

- Topological superconductors
- Topological insulators
- ...

$$
R_{H}=v^{-1} \frac{h}{e^{2}}
$$

Anyons

- Anyons: quasi-particles or topological excitations in topological phases of matter. Their statistics are more general than bosons/fermions, can be even non-abelian--- $k \times k$ matrices.
- Models: Simple objects in unitary modular tensor categories.

Statistics of Particles

In R^{3}, particles are either bosons or fermions Worldlines (curves in $R^{3} x R$) exchanging two identical particles depend only on permutations

Statistics is $\lambda: S_{n} \rightarrow Z_{2}$

Braid Statistics

In R^{2}, an exchange is of infinite order

Not equal

Braids form groups B_{n}
Statistics is $\lambda: B_{\mathbf{n}} \rightarrow \mathbf{U (k)}$
If $k>1$, non-abelian anyons

Non-abelian Statistics

If the ground state is not unique, and has
a basis $\psi_{1}, \psi_{2}, \ldots, \psi_{k}$
Then after braiding some particles:

$$
\begin{aligned}
& \begin{array}{l}
\Psi_{1} \rightarrow a_{11} \psi_{1}+a_{12} \psi_{2}+\ldots+a_{k 1} \psi_{k} \\
\psi_{2} \longrightarrow \\
a_{12} \psi_{1}+a_{22} \Psi_{2}+\ldots+a_{k 2} \psi_{k} \\
\ldots \ldots .
\end{array} \quad \lambda: B_{n} \longrightarrow U(k) \\
& \text { Do non-abelian anyons exist? }
\end{aligned}
$$

The search for Majoranas or the Jones rep of the braid group at $4^{\text {th }}$ root of unity in the real world

Of all exotic excitations believed to exist in topological quantum physics, we are the closest to detecting and harnessing Majoranas.

perspective

Majorana returns

Physics Today / Volume 64 / Issue 3 / SEARCH AND DISCOVERY

Physics Today - March 2011
The expanding search for Majorana particles

Science, April (2011)

NEWS

Search for Majorana Fermions Nearing Success at Last?

Researchers think they are on the verge of discovering weird new particles that b®Zow a trick from superconductors and could give a big boost to quantum computers

Anyon Models

- Label set: a finite set $L=\{a, b, c, \ldots\}$ of anyon types or labels with an involution and a trivial type. E.g. any finite group G.
- Fusion rules: $\left\{N_{a b}{ }^{c}, \mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{L}\right\}$. The fusion rules determine when two anyons of types a, b are fused, whether or not anyons of type c appear, i.e. if $N_{a b}{ }^{c}$ is ≥ 1 or $=0$.
- The Frobenius-Perron eigenvalue of the matrix N_{a} is the quantum dimension of a.
- Others

Anyon Model $\mathcal{C}=$ UMTC

A modular tensor category = a non-degenerate braided spherical fusion category: a collection of numbers $\left\{\mathrm{L}, N_{a b}^{c}, F_{d ; n m}^{a b c}, R_{c}^{a b}\right\}$ that satisfy some polynomial constraint equations.

6j symbols for recoupling

Pentagons for 6j symbols

Hexagons for R-symbols

Ising Theory

Ising=M(3,4) minimal model $=T L$ at $4^{\text {th }}$ root

Particle types:
 $\{1, \sigma, \psi\}$

 q-dimensions: $\{1, \sqrt{2}, 1\}$ Fusion rules:

1---ground state
$\psi---M a j a r o n a ~ f e r m i o n ~$
$\sigma---$ Ising anyon
$\sigma^{2} \cong 1+\psi$,
$\psi^{2} \cong 1$,
$\sigma \psi \cong \psi \sigma \cong \sigma$

Fibonacci Theory

G_{2} level=1 CFT, $c=14 / 5 \bmod 8$

- Particle types: $\{1, \tau\}, \tau---F i b$ anyon
- Quantum dimensions: $\{1, \phi\}, \phi=$ golden ratio
- Fusion rules:

$$
\tau^{2}=1 \oplus \tau
$$

- Braiding:

- Twist:

$$
=e^{4 \pi i / 5}
$$

Topological Quantum Computation

Freedman 97, Kitaev 97, FKW 00, FLW 00

Anyonic Quantum Computer

For n qubits, consider the $\mathrm{4n}$ anyons
$\rho: \mathrm{B}_{4 \mathrm{n}} \longrightarrow \mathrm{U}\left(N_{4 n}\right)$, e.g. $N_{4 n}--4 \mathrm{n}-2$ Fib number

Given a quantum circuit on \mathbf{n} qubits

$$
\mathrm{U}_{\mathrm{L}}:\left(\mathrm{C}^{2}\right)^{\otimes n} \longrightarrow\left(\mathrm{C}^{2}\right)^{\otimes n}
$$

Topological compiling: find a braid $b \in B_{4 n}$ so that the following commutes for any U_{L} :

Mathematical Theorems

Theorem 1 (Freedman-Kitaev-W.): Any unitary (2+1)-TQFT can be efficiently simulated by the quantum circuit model.

There are efficient additive approximation algorithms of quantum invariants by the quantum circuit model.

Theorem 2 (Freedman-Larsen-W.): Anyonic quantum computers based on RT/WCS SU(2)-TQFTs at level k are braiding universal except $k=1,2,4$.

The approximation of Jones poly of links at the $(k+2)^{\text {th }}$ root of unity ($k \neq$ $1,2,4$) is a BQP-complete problem.

Theorem 3 (Cui-W., Levaillant-Bauer-Bonderson-Freedman-W.): Anyonic model based on $\operatorname{SU}(2)$ at level $k=4$ is universal for quantum computation if braidings are supplemented with (projective or interferometric) measurements in the middle of computation.

Universality of Braiding Gates

In 1981, Jones proved that the images of his unitary representation $\rho_{r, a}\left(B_{n}\right)$ of the braid groups are infinite
(same as anyon statistics in Reshetikhin-Turaev/Witten-Chern-Simons $\operatorname{SU}(2)_{k^{-}}-$ TQFTs for $k=r-2)$
if $r \neq 1,2,3,4,6, n \geq 3$ or $r=10, n \neq 4$, and asked:

What are the closed images of $\rho_{r, a}\left(B_{n}\right)$ in the unitary groups?
Density Theorem (FLW):
Always contain $\operatorname{SU}\left(N_{r, a}\right)$ if $r \neq 1,2,3,4,6$ and $n \geq 3$ or $r=10$, also $n \neq 4$.
Others are finite groups which can be identified.
Proof is a general solution of 2-eigenvalue problem and generalized to 3eigenvalue by Larsen-Rowell-W.

Computational Power of Braiding Gates

- Ising anyon σ does not lead to universal braiding gates, but Fib anyon τ does
- Quantum dimension of Ising anyon σ has quantum dimension $=\sqrt{2}$, while Fib anyon τ has quantum dimension $\phi=(\sqrt{5}+1) / 2--$-golden ratio
- Given an anyon type x, when does it lead to universal braiding gate sets?
Rowell conjecture: Braid universal iff $d_{x}^{2} \neq$ inte ger

Quantum Mathematics:

Quantization and Categorification

TQFT and Higher Category

