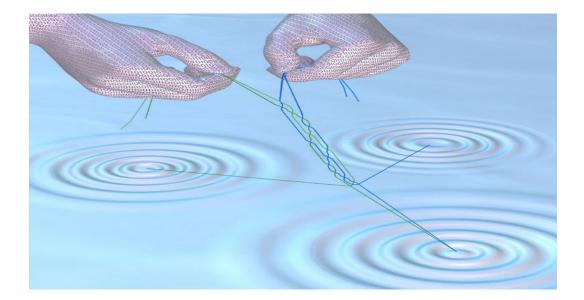
Topological Quantum Computation



Zhenghan Wang Microsoft Station Q & UC Sana Barbara Texas, March 26, 2015

P/NP, and the quantum field computer

MICHAEL H. FREEDMAN

Classical Physics Turing Model Quantum Mechanics Quantum Computing Quantum Field Theory ??? String Theory ???? Fault-tolerant quantum computation by anyons

Quantum field computing is the same as quantum computing.

True for TQFTs (Freedman, Kitaev, Larsen, W.)

Quantum Computation

- There is a serious prospect for quantum physics to change the face of information science.
- Theoretically, the story is quite compelling:
 - Shor's factoring algorithm (1994)
 - Fault tolerance ~1996-1997 independently
 - P. Shor
 - A. M. Steane
 - A. Kitaev
- But for the last twenty years the most interesting progress has been to build a quantum computer.

Why Quantum More Powerful?

Superposition

A (classical) **bit** is given by a physical system that can exist in one of two distinct states: 0 or 1

A **qubit** is given by a physical system that can exist in a linear combination of two distinct quantum states: $|0\rangle$ or $|1\rangle$

$$\begin{split} |\psi\rangle &= \alpha |0\rangle + \beta |1\rangle \\ {}^{\alpha,\beta \in \mathbb{C}} \\ |\alpha|^2 + |\beta|^2 = 1 \qquad |\psi\rangle \in CP^2 \end{split}$$

• Entanglement

Quantum states need not be products. For example:

$$\Psi_{AB} \rangle = \frac{1}{\sqrt{2}} \left(|0_A 0_B \rangle + |1_A 1_B \rangle \right)$$

$$\neq |\psi_A \rangle \otimes |\phi_B \rangle$$

This is the property that enables quantum state teleportation and Einstein's "spooky action at a distance." • Classical information source is modeled by a random variable X

The bit---a random variable $X \in \{0,1\}$ with equal probability. Physically, it is a switch

 $I_{X}(p) = -\sum_{i=1}^{n} p_{i} \log_{2} p_{i},$

• A state of a quantum system is an information source

The qubit---a quantum system whose states given by non-zero vectors in \mathbb{C}^2 up to non-zero scalars. Physically, it is a 2-level quantum system.

Paradox: A qubit contains both more and less than 1 bit of information.

The average amount information of a qubit is $\frac{1}{2ln^2}$.

A computing problem is given by a family of Boolean maps $\{0,1\}^n \longrightarrow \{0,1\}^{m(n)}$

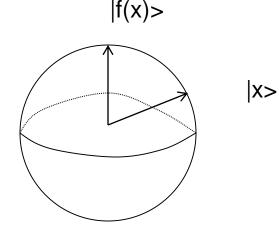
Name: Factoring Instance: an integer N>0 Question: Find the largest prime factor of N

Encode N as a bit string of length=n~ $\log_2 N$, the factoring problem is a family of Boolean functions $f_n: \{0,1\}^n \longrightarrow \{0,1\}^{m(n)}$

e.g. n=4, $f_4(1111) = 101$, i.e., $f_4(15) = 5$

How Quantum Computers Work

Given a Boolean map f: $\{0,1\}^n \rightarrow \{0,1\}^n$, for any $x \in \{0,1\}^n$, represent x as a basis $|x > \in (\mathbb{C}^2)^{\otimes n}$, then find a unitary matrix U so that U (|x >) = |f(x)>.



Basis of $(\mathbb{C}^2)^{\otimes n}$ is in1-1 correspondence with n-bit strings or $0,1,\ldots,2^n-1$

Problems

- x, f(x) does not have same # of bits
- f(x) is not reversible
- The final state is a linear combination
- Not every U_x is physically possible

Fix a collection of unitary matrices (called gates) and use only compositions of local unitaries from this gate set

e.g. standard gate set

$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
---Hadmard, $T = \begin{pmatrix} 1 & 0 \\ 0 & e^{\pi i/4} \end{pmatrix}$ --- $\frac{\pi}{8}$ -gate

$$CNOT = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ |i, j > \rightarrow |i, (i + j) \mod 2 >, i, j = 0 \text{ or } 1$$

Universality

- Fix a gate set S, a quantum circuit on nqubits (C²)^{⊗ n} is a composition of finitely many matrices g_i, where each g_i is of the form id⊗ g ⊗ id, where each g∈ S is a gate.
- Universality: A gate set S is universal if the collection of all quantum circuits form a dense subset of the union U_{n=1}∞ PSU(2ⁿ).

The class BQP (bounded error quantum polynomial-time) Fix a physical universal gate set

A computing problem $f_n: \{0,1\}^n \rightarrow \{0,1\}^{m(n)}$ is in BQP if

1) there exists a classical algorithm of time poly (n) (i.e. a Turing machine) that computes a function $x \rightarrow D_x$, where $x \in \{0,1\}^n$, and D_x encodes a poly(n)-qubit circuit U_x .

2) when the state $U_x|0\cdots 0>$ is measured in the standard basis $\{|i_1\cdots i_{p(n)}>\}$, the probability to observe the value $f_n(x)$ for any $x \in \{0,1\}^n$ is at least $\frac{3}{4}$.

Remarks:

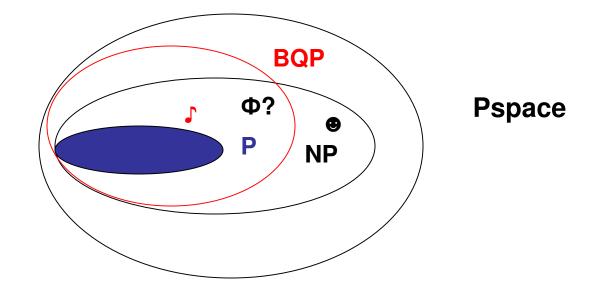
1) Any function that can be computed by a QC can be computed by a TM.

2) Any function can be efficiently computed by a TM can be computed efficiently by a QC, i.e. BPP \subseteq BQP

Factoring is in BQP (Shor's algorithm), but not known in FP (although Primality is in P).

Given an n bit integer N~ 2ⁿ

Classically ~ e^{c n^{1/3} poly (log n)} Quantum mechanically ~ n² poly (log n) For N=2⁵⁰⁰, classically ~ billion years Quantum computer ~ few days



Can We Build a Large Scale Universal QC?

Yes theoretically. Fault-tolerant quantum computation theory shows if hardware can be built up to the accuracy threshold ~10⁻⁴, then a scalable QC can be built.

But in reality, the obstacle is mistakes and errors (decoherence)

Classical error correction by redundancy 0 → 000, 1 → 111 Not available due to the No-cloning theorem:

The cloning map $|\psi \rangle \otimes |0 \rangle \rightarrow |\psi \rangle \otimes |\psi \rangle$ is not linear.

Key "Post-Shor" Idea

Peter Shor Shor's Factoring Algorithm

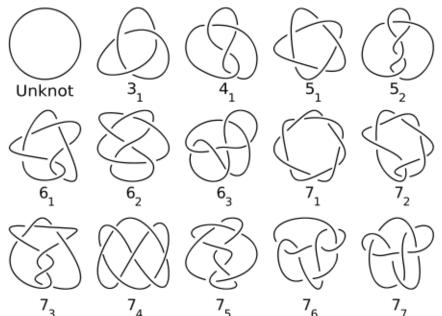
To use topology to protect quantum information

Michael Freedman

Alexei Kitaev

Why Topology?

• **Topology** is usually conceived of as that part of geometry which survives deformation.



• But, equally, **topology** is that part of quantum physics which is robust to deformation (error).

A Revolutionary New Idea

If a physical system were to have quantum *topological* (*necessarily nonlocal*) *degrees of freedom*, which were *insensitive to local probes*, then information contained in them would be *automatically protected against errors* caused by *local interactions with the environment*.

This would be fault tolerance guaranteed by physics at the hardware level, with no further need for quantum error correction, i.e. topological protection.

Alexei Kitaev

Topological Phases of Matter

A topological quantum phase is represented by a quantum theory whose low energy physics in the thermodynamic limit is modeled by a stable unitary topological quantum field theory (TQFT).

2D Topological Phases in Nature

Quantum Hall States

1980 Integral Quantum Hall Effect --von Klitzing (1985 Nobel)

 $R_H = \nu^{-1} \frac{h}{e^2}$

1982 Fractional QHE---Stormer, Tsui, Gossard at $\nu = \frac{1}{2}$

(1998 Nobel for Stormer, Tsui, and Laughlin)

1987 Non-abelian FQHE???---R. Willett et al at $\nu = \frac{5}{2}$

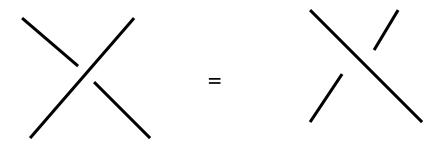
- Topological superconductors
- Topological insulators
- ...

Anyons

- **Anyons:** quasi-particles or topological excitations in topological phases of matter. Their statistics are more general than bosons/fermions, can be even non-abelian--- $k \times k$ matrices.
- **Models:** Simple objects in unitary modular tensor categories.

Statistics of Particles

In R³, particles are either bosons or fermions Worldlines (curves in R³xR) exchanging two identical particles depend only on permutations



Statistics is $\lambda: S_n \rightarrow Z_2$

Braid Statistics

In R², an exchange is of infinite order

Braids form groups B_n Statistics is λ : $B_n \rightarrow U(k)$ If k>1, non-abelian anyons

Non-abelian Statistics

If the ground state is not unique, and has a basis ψ₁, ψ₂, ..., ψ_k Then after braiding some particles:

$$\begin{array}{ll} \psi_1 \longrightarrow & a_{11}\psi_1 + a_{12}\psi_2 + \ldots + a_{k1}\psi_k \\ \psi_2 \longrightarrow & a_{12}\psi_1 + a_{22}\psi_2 + \ldots + a_{k2}\psi_k \end{array}$$

$$\lambda \colon B_n \longrightarrow U(k)$$

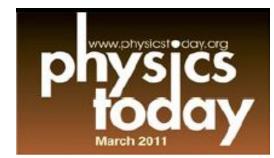
Do non-abelian anyons exist?

The search for Majoranas or the Jones rep of the braid group at 4th root of unity in the real world

Of all exotic excitations believed to exist in topological quantum physics, we are the closest to detecting and harnessing Majoranas.

perspective

Majorana returns



F. Wilczek, Nature Physics'09

Physics Today / Volume 64 / Issue 3 / SEARCH AND DISCOVERY

Physics Today - March 2011

The expanding search for Majorana particles

Barbara Goss Levi

Science, April (2011)

NEWS

Search for Majorana Fermions Nearing Success at Last?

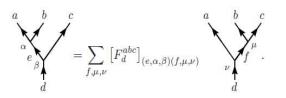
Researchers think they are on the verge of discovering weird new particles that barow a trick from superconductors and could give a big boost to quantum computers

Anyon Models

- Label set: a finite set L={a,b,c,...} of anyon types or labels with an involution and a trivial type. E.g. any finite group G.
- **Fusion rules:** { $N_{ab}{}^{c}$, a,b,c∈L}. The fusion rules determine when two anyons of types a,b are fused, whether or not anyons of type c appear, i.e. if $N_{ab}{}^{c}$ is ≥ 1 or =0.
- The Frobenius-Perron eigenvalue of the matrix N_a is the quantum dimension of a.
- Others

Anyon Model C = UMTC

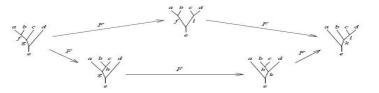
A modular tensor category = a non-degenerate braided spherical fusion category: a collection of numbers {L, N_{ab}^c , $F_{d;nm}^{abc}$, R_c^{ab} } that satisfy some polynomial constraint equations.



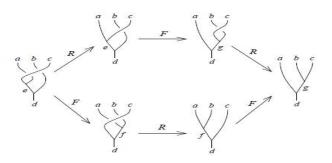
6j symbols for recoupling

$$a \bigvee_{c} b = \sum_{\nu} \left[R_c^{ab} \right]_{\mu\nu} a \bigvee_{c} b.$$

R-symbol for braiding

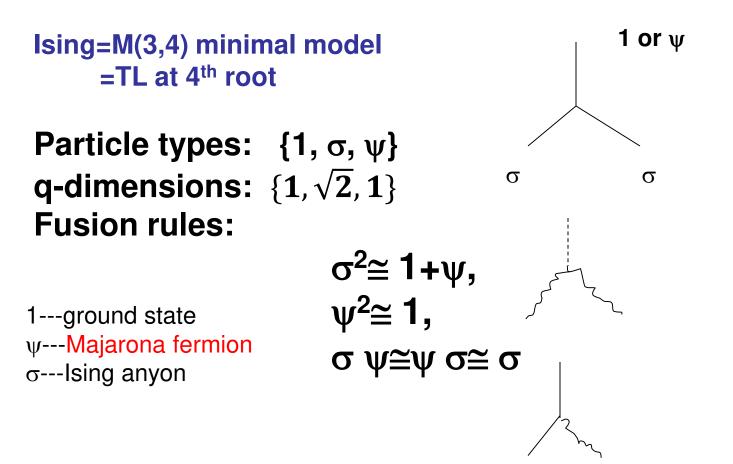


Pentagons for 6j symbols



Hexagons for R-symbols

Ising Theory



Fibonacci Theory G_2 level=1 CFT, c=14/5 mod 8

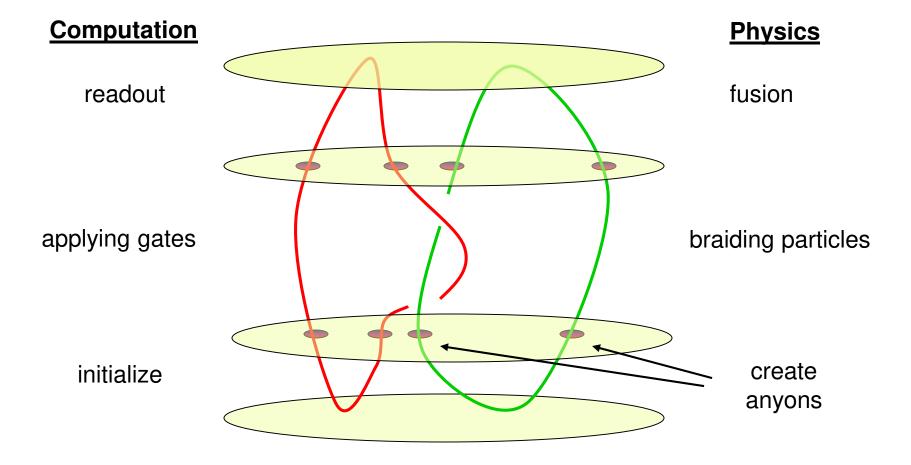
- Particle types: $\{1,\tau\}, \tau$ ---Fib anyon
- Quantum dimensions: $\{1,\phi\}, \phi=$ golden ratio
- Fusion rules:
- Braiding:

• Twist: $= e^{4\pi i/5}$

$$\tau^2 = \mathbf{1} \oplus \tau$$

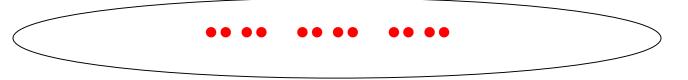
Topological Quantum Computation

Freedman 97, Kitaev 97, FKW 00, FLW 00



Anyonic Quantum Computer

For n qubits, consider the 4n anyons $\rho: B_{4n} \longrightarrow U(N_{4n})$, e.g. N_{4n} ---4n-2 Fib number



Given a quantum circuit on n qubits

$$\mathsf{U}_{\mathsf{L}} \colon (\mathsf{C}^2)^{\otimes \mathsf{n}} \longrightarrow (\mathsf{C}^2)^{\otimes \mathsf{r}}$$

Topological compiling: find a braid $b \in B_{4n}$ so that the following commutes for any U_L :

 V_{4n} -gs of 4n anyons

Mathematical Theorems

Theorem 1 (Freedman-Kitaev-W.): Any unitary (2+1)-TQFT can be efficiently simulated by the quantum circuit model.

There are efficient additive approximation algorithms of quantum invariants by the quantum circuit model.

Theorem 2 (Freedman-Larsen-W.): Anyonic quantum computers based on RT/WCS SU(2)-TQFTs at level k are braiding universal except k = 1, 2, 4.

The approximation of Jones poly of links at the $(k + 2)^{\text{th}}$ root of unity $(k \neq 1, 2, 4)$ is a BQP-complete problem.

Theorem 3 (Cui-W., Levaillant-Bauer-Bonderson-Freedman-W.): Anyonic model based on SU(2) at level k = 4 is universal for quantum computation if braidings are supplemented with (projective or interferometric) measurements in the middle of computation.

Universality of Braiding Gates

In 1981, Jones proved that the images of his unitary representation $\rho_{r,a}(B_n)$ of the braid groups are infinite

(same as anyon statistics in Reshetikhin-Turaev/Witten-Chern-Simons $SU(2)_k$ -TQFTs for k=r-2)

if $r \neq 1,2,3,4,6$, $n \ge 3$ or r = 10, $n \ne 4$, and asked:

What are the closed images of $\rho_{r,a}(B_n)$ in the unitary groups?

Density Theorem (FLW):

Always contain SU($N_{r,a}$) if $r \neq 1, 2, 3, 4, 6$ and $n \ge 3$ or r=10, also $n \ne 4$.

Others are finite groups which can be identified.

Proof is a general solution of 2-eigenvalue problem and generalized to 3eigenvalue by Larsen-Rowell-W.

Computational Power of Braiding Gates

- Ising anyon σ does not lead to universal braiding gates, but Fib anyon τ does
- Quantum dimension of Ising anyon σ has quantum dimension= $\sqrt{2}$, while Fib anyon τ has quantum dimension $\phi = (\sqrt{5}+1)/2$ ---golden ratio
- Given an anyon type x, when does it lead to universal braiding gate sets?

Rowell conjecture: Braid universal iff $d_x^2 \neq integer$

Quantum Mathematics:

Quantization and Categorification

TQFT and Higher Category

