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Topological quantum properties of chiral 
crystals
Guoqing Chang 1,2,3,4,12, Benjamin J. Wieder

5,6,7,12, Frank Schindler8,12, Daniel S. Sanchez1, Ilya 
Belopolski1, Shin-Ming Huang 9, Bahadur Singh 2,3, Di Wu2,3, 
Tay-Rong Chang10, Titus Neupert 8, Su-Yang Xu1*, Hsin Lin2,3,4* and 
M. Zahid Hasan 1,11*

Chiral crystals are materials with a lattice structure that has a well-defined handedness
due to the lack of inversion, mirror or other roto-inversion symmetries. Although it has
been shown that the presence of crystalline symmetries can protect topo- logical band
crossings,  the  topological  electronic  properties  of  chiral  crystals  remain  largely
uncharacterized. Here we show that Kramers–Weyl fermions are a universal topological
electronic property of all non-magnetic chiral crystals with spin–orbit coupling and are
guaranteed by structural chirality, lattice translation and time-reversal symmetry. Unlike
conventional Weyl fermions, they appear at time-reversal-invariant momenta. We identify
representative chiral materials in 33 of the 65 chiral space groups in which Kramers–Weyl
fermions are relevant to the low-energy physics. We determine that all point-like nodal
degeneracies in non-magnetic chiral crystals with relevant spin–orbit coupling carry non-
trivial Chern numbers. Kramers–Weyl materials can exhibit a monopole-like electron spin
texture and topologically non-trivial bulk Fermi surfaces over an unusually large energy
window.

The spatial structures of three-dimensional crystal
lattices are characterized by a finite set of possible
symmetries that give rise to the 230 space groups
(SGs) for non-magnetic materi-

als1,2. In this work, we examine the properties of the
SGs that char-  acterize crystal structures with a
sense of handedness, or structural  chirality  (Fig.
1a).  Spatial  inversion,  mirror  reflection  and  roto-
inversion, that is, a combination of inversion and
rotation, all invert structural chirality in crystals3. Of
these 230 groups, 65 SGs are free  of chirality-
inverting symmetries. These chiral SGs
correspondingly  characterize structurally chiral
lattices (Supplementary Section A).

momenta (TRIMs) are Kramers–Weyl nodes with a
quantized chi- ral charge ICI = 1. We then use group
theory, briefly in this section  and  exhaustively  in
Supplementary Section B, to generalize this result
and demonstrate that the same arguments apply to
all of the TRIMs in symmorphic chiral SGs.

SG 16 characterizes a non-centrosymmetric
orthorhombic crys-  tal structure with two-fold
rotation symmetries along each principle axis,  x,  y
and  z.  Considering  all  the  symmetry-allowed
nearest- neighbour hopping terms, the tight-binding
Hamiltonian reads:

The electronic properties of chiral crystals have been previ- H(k) = L t 1cos(k ) + t ssin(k ) cr i (1)

ously recognized as supporting a wide range of 
phenomena: chi- ral magnets support skyrmions4, 
chiral metals show non-local and

i i i i
i=x ,y ,z  

non-reciprocal electron transport5,6  and chiral crystals also exhibit with t 1 # t 1 # t s # t s ∀ i ≠ j. Here t 
1 denotes thes-orbital-like hopping
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optical activity and magnetochiral dichroism . These
unusual prop- erties mean it is of great interest to
search for possible topological electronic properties
in  chiral  crystals.  In  this  work,  we  show  that
structural chirality leads to a universal topological
electronic prop-

strength and ti is a spin–orbit term. By examining
the bands at each TRIM at the k·p level, we observe
that each TRIM hosts a Weyl node described by:

erty of all non-magnetic chiral crystals with spin–
orbit coupling

     k 2  

(SOC), namely, Kramers–Weyl fermions. Although most of the Hk-p = L
ui 1−   i   + 
vikicr i (2)

recent theoretical advances in topological 
semimetals have related band structures to the 
presence of additional crystalline symmetries

i=x ,y ,z   2  

(for example, rotation, reflection, non-symmorphic symmetries)8–24,  we highlight a class of nodal fermions





enforced by structural chiral-  ity, and therefore by
the absence of particular crystal symmetries.

Tight-binding model of a SOC coupled chiral 
crystal  Without loss of generality, we present a 
tight-binding model in the symmorphicchiral SG 16 
(P222) asarepresentativeexample. Weshow that in SG
16, all Kramers degeneracies at time-reversal-
invariant

where each TRIM has the same magnitude of ui and
vi inherited  from the  lattice  hopping  parameters,
but  different  TRIM-specific  signs.  In  Fig.  1c,d,  we
show  the  band  structure  for  this  tight-bind-  ing
model  in  the  absence  and  presence  of  SOC,
respectively.  The inclusion  of  SOC splits  the spin-
degenerate band in Fig.  1c and generates isolated
two-fold-degenerate Kramers–Weyl nodes at all  of
the TRIMs (Fig. 1d)18. To determine the chiral charge
of  each  Kramers–Weyl node, we examine the
direction of the wrapping of
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Fig. 1 | Structural chirality, topological chirality and Kramers–Weyl fermions. a, Structurally chiral crystals have a distinct 
handedness, and are therefore characterized by an absence of inversion, mirror or other roto-inversion symmetries3. b, 
Topologically chiral fermions act as monopoles or antimonopoles of Berry curvature. They are characterized by a quantized 
chiral charge, that is, the quantized Chern number of the occupied bands on a closed surface in momentum space that 
surrounds the chiral fermion. We  found all non-magnetic chiral crystals with SOC host topological chiral fermions at their 
TRIMs.    c, The band structure for the SG 16 tight-binding model in the absence of SOC is characterized by a single band 
with a two-fold spin degeneracy. d, The inclusion of SOC splits the bands of this structurally chiral model everywhere except 
at the TRIMs, where Kramers theorem mandates that the bands remain doubly degenerate. We found that these nodal 
degeneracies carry the same quantized chiral charge as conventional Weyl fermions, and therefore designate them Kramers–
Weyl fermions.

Berry curvature given by the relative signs of the {vi}
(the  overall  sign  exchanges  the Bloch  states  of  the
upper and lower bands) to find the Chern number:

that describe Kramers–Weyl fermions2,19,20,23. We 
also show in Supplementary Sections C and D that
Kramers–Weyl fermions
with ICI = 3 and non-linear dispersion are permitted 
in chiral point groups with three- and six-fold 
rotation symmetries, and in

C =  IT
i=x ,y ,z  

sgn (vi)

(3)

Supplementary Section D we identify the irreducible
co-represen- tations of these higher-Chern-number
Kramers–Weyl  fermions.  Previous reports also
exploited similar simple models in discussing

This result indicates the chiral charge C+1 = +1 ×
sgn (t st st s )

for  the  Kramers  pairs  at  TRIM  points  Γ,  S,  U
and  T  and

C−1 = −1 × sgn (t st st s ) for the pairs at X, Y, Z and
R, as illustrated

Weyl  fermions25,26.  However,  they  did  not  explore
the relations of the little groups at the TRIMs with
each  other,  and  more  impor-  tantly they did not
recognize that their isomorphisms to chiral point

x  y z
sin Fig. 1b. The sign of C at Γ reflects the signs of the {ti

} for the
position–space lattice. Thus, the chirality of the
atomic positions is directly responsible for defining
the handedness of the Kramers– Weyl node at Γ and
therefore, by the pattern of alternating signs, at all
of the other TRIMs as well.

As our determination of C = ±1 only relied on the
two-fold degen-

eracy and linear dispersion of equation (2), we
deduce that any such

groups allow the generalization to other crystal systems.
In  non-symmorphic  chiral  crystals,  these

arguments become modified away from the Γ point,
and the Kramers–Weyl nodes can become obscured
by  additional  band  degeneracies.  Consider,  for
example,  the chiral  SG 19 (P212121),  which differs
from SG 16 in that all of its two-fold rotations are,
instead, non-symmorphic
screws: sx ={C 2x1 

1 1 
0}, sy ={C 2y101             1   } and sz ={C 2z11 01   }. In recipro-

degeneracy must be a Weyl node. More precisely, asthe little groups 2 2 2 2 2 2cal space,
of all eight TRIMs in SG 16 are isomorphic to the
same chiral point group 222, which with spinful  T-
symmetry  only has  a  single  two-  dimensional co-
representation2,22, we conclude that any TRIM with a
little group isomorphic to point group 222 must also

host Kramer– Weyl fermions. Tuning parameters such that ui

= 0 and vi = vj for all  i and j, this k·p theory becomes
isotropic, and thus invariant under the action of  any  chiral
point group. Taken together, this implies that the little group
of  the  Γ  point  in  an  arbitrary  chiral  crystal,  which  is
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isomorphic to the point group of that crystal,  and
every  TRIM  point  in  symmorphic  chiral  crystals,
which host  symmetry algebras unmodified by the
projections of fractional lattice transla- tions, must
always allow at least one irreducible co-
representation of  a Kramers–Weyl fermion. In
Supplementary Section B, we explicitly confirm this
conclusion  and  list  the  irreducible co-
representations

si × T  are valid symmetry operations that map a k
point to

itself on the ki = 0, π planes. When acting on a
Bloch eigenstate of the Hamiltonian, (siT ) 2 = e−iki

enforces two-fold Kramers degeneracies throughout
all three ki = π planes. TRIMs that belong to exactly
two nodal planes will host four-fold degeneracies,
due to the algebra of the screw rotations at those k
points. In Supplementary Sections E
and F, we examine these nodal surfaces in detail
and determine that  they  exhibit  non-zero  chiral
charges27.

We  also  note  that  in  certain  achiral  SGs,  it  is
possible  for  some of  the TRIMs to  still  have little
groups isomorphic to chiral point groups due to the
relationship between the SG roto-inversion axes,
mirror planes, and the reciprocal lattice vectors. In
Supplementary  Section  G,  we  explore  this
possibility  and present examples of  Kramers–Weyl
fermions in achiral crystals.



Table 1 | Representative topological chiral crystals with Kramers–Weyl fermions in symmorphic chiral SGs

SG Material (code) Number of 
collections in

SG Material (code) Number of 
collections in

the ICSD the ICSD

Li6CuB4O10 (249215) 492 146 β-Ag3IS (93431) 307

3 Pb3GeO5 (200517) 58 149 RbGeIO6 (73613) 40

5 Ca2B5Os3 (59229) 539 150 Tl2TeO6 (4321) 314

16 AlPS4 (15910) 13 155 Ag3BO3 (26521) 244

21 YSb2 (651733) 51 168 K2Ta4F4O9 (8204) 3

22 ThOs2B2 (601346) 55 177 PbS2O·4H2O (68630) 3

23 BaAg2SnSe4 (170856) 28 195 SnI4 (18010) 29

75 K4CuV5ClO15 (401042) 27 196 α-Cu2Se (59955) 47

79 AgBi(Cr2O7)2 (14233) 45 197 m-Bi2O3 (27152) 174

89 – 3 207 RbNO3 (60966) 1

97 Ta2Se8I (35190) 9 209 Na3PO4 (14090) 8

143 RbW3O9 (96421) 112 211 NiHg4 (151197) 3

We  list all 24 symmorphic chiral SGs and, where possible, material candidates from the ICSD30. All the compounds listed in the table host Kramers–Weyl 
fermions. Among them, the compounds          in italic are (semi)metals or small-gap insulators with clean Fermi surfaces and Kramers–Weyl fermions near 
the Fermi level; their electronic structures are shown in Supplementary Section J.           The numbers in brackets are the ICSD collection codes. The SGs in 
bold may also host additional unconventional four-fold-degenerate chiral fermions at TRIMs with little groups isomorphic to       chiral point groups19,23,24. 
SGs 195, 196 and 197 have TRIM-point little groups isomorphic to chiral point group 23 (T)23,24. SGs 207, 209 and 211 have TRIM-point little groups 
isomorphic to
chiral point group 432 (O)19.

Apart from conventional ICI = 1 Weyl fermions, all
the degener-  acies in non-magnetic crystals are
captured by the set of irreducible
(co)representations22. For each of these
degeneracies, a separate cal- culation of the chiral
charge can then be performed. Remarkably, by
exhaustively enumerating all of the irreducible
(co)representations  of the 65 chiral SGs and
comparing them to the set of known chiral
fermions, now including the Kramers–Weyl fermions
highlighted in this work, we find that all the point
degeneracies in chiral SGs exhibit a non-zero chiral
charge (Supplementary Section N). Specifically,
they are either conventional ICI = 1 Weyl fermions11–

13, double- or
triple-Weyl  fermions  on  rotation  axes16,
unconventional chiral  fer-  mions at high-symmetry
crystal momenta19,23,24 or Kramers–Weyl fermions. In
Supplementary  Section  O,  we  compare  the
symmetry  and  topology  of  the  Kramers–Weyl
fermions with previous exam- ples of conventional
and unconventional chiral fermions.

Intrinsic-filling  Kramers–Weyl  metals  also
represent the sim- plest examples of filling-enforced
semimetals18. Although previ- ous works focused on
the  role  of  non-symmorphic  symmetries   in
generating  large  and  exotic  band
connectivities18,19,22,23,  we  found  in  this  work  that
even  the  simplest  filling  restriction—that  is,  a  T-
symmetric crystal with an odd number of electrons
per unit cell—must be gapless and can be used to
predict  materials  with  Weyl  fermions.  A  deeper
theoretical  understanding  of  this  preference  may
provide greater insight into the appearance of Mott
insulating  and  other  interacting  phases  in  certain
filling- enforced semimetals28,29.

Kramers–Weyl  physics  in  known  chiral
materials
Consulting the Inorganic Crystal Structure Database
(ICSD)30, we  identify  in  Tables  1 and  2

representative  examples  of  previously  synthesized  chiral
crystals  and  highlight  in  italic  the  materials  in  which
Kramers–Weyl fermions are relevant to the low-energy phys-
ics, which we demonstrate with calculated electronic
structures pro-  vided  in  Supplementary  Section  J.  The
number of materials varies greatly across the 65 chiral SGs.
We found that a large number of known chiral crystals have
SGs 4, 19, 173 and 198, whereas SGs 89,
93,  153,  171  and  172  are  devoid  of  promising  material
candidates.

Among the chiral materials listed in Tables 1 and 2, there
are both chiral metals and insulators. Although the Kramers–
Weyl nodes in  insulators are not generically relevant to
transport experiments,



they  may  still  be  probed  with  angle-
resolved  photoemission  spec-  troscopy8,31–

33,  scanning  tunnelling  microscopy9,
resonant inelastic  X-ray scattering34,
neutron scattering35 or by optical
measurements36.  Furthermore,  when  the
Kramers–Weyl  nodes  of  an  insulator  are
near the Fermi level, they could also be
studied in transport experi-  ments37 after
slight electron or hole doping.

We  present  two  material  candidates
particularly representative of this physics: a
chiral  metal  and  a  chiral  insulator  with
spectro-  scopically  accessible  Kramers–
Weyl  Fermi arcs.  The  band  struc-  ture of
the  symmorphic  compound  Ag3BO3 (no.
26521)  (SG  155)  is  plotted  in  Fig.  2b,c
without  and  with  SOC,  respectively;  we
highlight the Kramers–Weyl nodes with
orange circles. As in con-  ventional Weyl
semimetals, Kramers–Weyl points also give
rise to  Fermi  arcs  which,  on  surfaces  for
which bulk TRIMs project onto the surface
TRIM points, must necessarily appear in
time-reversed  pairs.  We  identified  the
insulating  compound  AgBi(Cr2O7)2 (no.
14233) in SG 79 as representative of this
physics.  The bulk elec- tronic structure of
AgBi(Cr2O7)2 in the absence and presence
of  SOC is shown in Fig. 2f,g, respectively.
We confirmed the existence  of  time-
reversed pairs of Fermi arcs at about −0.23
eV  below  the  Fermi  energy  on the  (110)
surface (Fig. 2i). A loop taken around one of
the  surface  TRIMs  exhibits  a  projected
Chern  number  of C = +2, which
necessitates the existence of two Fermi
arcs (Fig. 2j).  We  note  that,  because  the
Kramers–Weyl  nodes  are  pinned  to  the
TRIMs,  chiral  crystals  can,  in  principle,
support the longest pos- sible Fermi arcs,
and  therefore  span  the  entire  surface
Brillouin  zone  like  those  in  the
unconventional  chiral  semimetal  β-RhSi
(refs 23,24). However, this is very challenging
to realize in real mate- rials, for which the
bandwidths, determined by the hopping
ampli-  tudes,  are  typically  much  greater
than the spin splitting, which is determined
by the strength of the SOC (Supplementary
Section I).

Quantum phenomena in chiral crystals
Here we describe five phenomena relevant
to  the  Kramers–Weyl  fermions  in  chiral
crystals. Phenomena 1 and 2 are unique to
Kramers–Weyl fermions and have not been
proposed previously. Phenomena 3–5 were
proposed  in  previous  works  and  are  not
unique to Kramers–Weyl fermions. Instead,
we  highlight  how  Kramers–Weyl  fermions
provide  a  previously  unrecognized  plat-
form for realizing these phenomena.



Table 2 | Representative topological chiral crystals with Kramers–Weyl fermions in non-symmorphic chiral SGs

SG Material (code) Number of 
collections

SG Material (code) Number of 
collections

in the ICSD in the ICSD

4 BaCu2Te2O6Cl2 (85786) 912 152 IrGe4 (53655) 408

17 Ba2Cu3YPb2O8 (66088) 29 153 – 1

18 Pd7Se4 (77897) 177 154 SrIr2P2 (73531) 159

19 α-Ag2Se (261822) 1145 169 α-In2Se3 (82203) 55

20 CsCuBr3 (10184) 219 170 BaN2O4·H2O (201484) 14

24 K2PdSe10 (71947) 10 171 – 4

76 TlBO2 (36404) 64 172 – 1

77 MgB2O(OH)6 (24920) 9 173 CuLa4S7 (628240) 1238

78 Sr2As2O7 (190008) 22 178 Hf5Ir3 (638575) 55

80 β-NbO2 (35181) 22 179 Na3B4O7Br (252106) 32

90 Na4Ti2Si8O22·4H2O (240912) 20 180 NbGe2 (16503) 241

91 Ag3SbO4 (417675) 31 181 WAl2 (173662) 48

92 MgAs4 (1079) 309 182 PbRbIO6 (73615) 217

93 – - 198 β-RhSi (79233) 766

94 H6NaB6·2H2O (39376) 7 199 K2Sn2O3 (40463) 104

95 H4Ca2AsF13 (415156) 15 20
8

Zn3As2 (24486) 9

96 m-Cu2S (16550) 105 210 H6TeO6 (16435) 7

98 CdAs2 (16037) 25 212 Li2Pd3B (84931) 152

144 LaBSiO5 (39756) 89 213 Mg3Ru2 (260022) 221

145 BiB2O4F (172481) 32 214 Ag3Se2Au (171959) 33

151 DyAl3Cl12 (65975) 48

We list all 41 non-symmorphic chiral SGs and, where possible, material candidates from the ICSD30. The details are given in Table 1. SGs 198 and 199 have
TRIM-point little groups isomorphic to chiral point group 23 (T)23,24. SGs 208, 210, 212, 213 and 214 have TRIM-point little groups isomorphic to chiral point
group 432 (O)19.

Spin texture of Kramers–Weyl  fermions. The
most   gen-   eral  Hamiltonian  of  a  ICI  =  1  Weyl
fermion can be written as HWeyl(k) = vikiσ0 + Aijkiσj,
where Aij and vi are real numbers and sums  over
repeated indices i,j = x,y,z are implied. For the Weyl
nodes in
a band-inversion Weyl semimetal, σ represents only
an effective pseudo-spin degree of freedom, which
is very difficult to measure in a momentum-resolved
fashion. The physical spin, which can be  directly
measured  by  spin-resolved  angle-resolved
photoemission  spectroscopy,  is  distinct  from  this
pseudo-spin.

Conversely,  in  the  k·p  theory  of  Kramers–Weyl
fermions, σ represents the true electron spin in the
limit  in  which  the  energy  scale  of  SOC  is  much
smaller  than  the  interband  separation  in  the
absence of SOC (Supplementary Section L).
Remarkably, we found that, in this limit, the chiral
charge of a Kramers–Weyl fermion can be directly
probed  by  measuring  the  spin  texture.  This  is  a
unique  property of Kramers–Weyl fermions.
Specifically, the physical spin on Fermi surfaces that
enclose a Kramers–Weyl node sweeps out the full
unit sphere. As the chiral charge is given by C =
sgn[det(A)],  C can be directly obtained by
measuring the spin polarization
Sk =(kIcrIk)  near the Kramers–Weyl nodes by
calculating:

points inward along all three principal directions, or
it  points  inward along one direction and outward
along the other two direc-  tions.  In  addition,  T-
symmetry  enforces  vi =  0  for  Kramers–Weyl
fermions, and thus the Kramers–Weyl cone cannot
be ‘tilted’ in momentum space38.

Using first-principles calculations, we confirmed
the presence of  this spin texture in the Kramers–
Weyl fermions in Ag2Se, and con- trast it here with
that  of  the  conventional  band-inversion  induced
Weyl fermions in TaAs (Fig. 3e,f). In Supplementary
Section M, we  further  show  that  the  real  spin–
momentum  locking  of  Kramers–  Weyl nodes can
lead to a large spin Hall conductivity.

Unusually  large  topologically  non-trivial
energy windows. A Fermi pocket that encloses a
single Weyl node carries a quantized Chern number.
Recent  reports39–41 highlighted  that  such  Fermi
pockets  can  lead  to  unique  transport  and
symmetry-breaking  phe-  nomena,  which  include
magnetic  breakdowns39,  unconventional  quantum
oscillations40, chiral charge-density waves41 and
giant spin Hall effects42.

For  a  conventional  band-inversion-induced  Weyl
semimetal, isolated chiral Fermi surfaces may only
be realized at energies close

C Kramers−Weyl = −sign(k)sign (S × S · S )(4) to the Weyl nodes, which typically are only separated by a 
few hun-

(k,0,0) (0,k,0) (0,0,k)  



Moreover, in the presence of additional rotational
symme- tries, Kramers-Weyl fermions exhibit spin–
momentum locking (Supplementary Section L gives
a detailed discussion). Specifically,  for  a  C  = +1
Kramers–Weyl node, the spin either points outward
along all three principal directions (for example, kx,
ky and  kz) or it points outward along one direction
and inward along the other two directions; for a C
= −1 Kramers–Weyl node, the spin either

dredths of the Brillouin zone in momentum, and at
less  than  the  order of 100 meV in energy31,32.
Therefore, it is quite challenging to  realize band-
inversion Weyl semimetals with isolated chiral Fermi
surfaces;  only  TaAs  and  TaP  display  well-isolated
chiral surfaces, whereas in other materials, such as
NbP, NbAs and WTe2, the chem-  ical potential
misses the narrow energy window defined by the
weak band inversion31,32,38.

In stark contrast, in chiral crystals, isolated Fermi
surfaces with a non-vanishing Chern number can
form at any energy between
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Fig. 2 | Band topology and Fermi arcs of Kramers–Weyl material candidates. a, The chiral crystal Ag3BO3 in SG 155. 
b,c, The band structures of Ag3BO3 passing through TRIMs in the absence (b) and presence (c) of SOC, respectively. All 
of the TRIMs in Ag3BO3 host isolated Kramers–Weyl nodes in the presence of SOC, as indicated by the orange circles. d, 
The Kramers–Weyl band structures in the vicinity of L (top) and F (bottom). e–g, The crystal (e), electronic structures of
AgBi(Cr2O7)2 in SG 79 in the absence (f) and presence (g) of SOC. h, Momentum-space distribution and chiralities of the
Weyl nodes in AgBi(Cr2O7)2 between the two blue bands in g. The red and blue circles indicate Weyl nodes of opposite 
chiral charges. i, The (110) surface state spectral function of AgBi(Cr2O7)2 at E = −0.235 eV. The Fermi arc surface 
states that connect the projections of the two distinct bulk pockets are clearly visible. The projected charges of red 
(blue) circles are +2 (−1). j, The surface spectral function along the k path highlighted in i exhibits a +2 winding 
number, consistent with the pair of chiral Fermi arcs observed in i.

the highest and the lowest Kramers–Weyl nodes or
unconventional chiral fermions in a set of connected
bands. The scale of this energy window is governed
by the lattice hopping, typically much larger than
the  accessible  scale  of  band  inversion  in
conventional  Weyl  semimetals,  and  the  splitting
between Fermi surfaces of opposite Chern number
is, instead, determined by the strength of the SOC
(Fig. 1d and Supplementary Sections H and I).

Quantized circular photogalvanic current. In a

recent theoretical work, a quantized circular photogalvanic
response effect (CPGE) in  roto-inversion-free Weyl
semimetals was proposed36, in which Weyl  nodes of one
chirality sit at the Fermi level and nodes of the oppo- site
chirality lie energetically far away from it. A crucial limitation
that has hindered the realization of this phenomena is the
lack of viable materials. Indeed, very few  Weyl  semimetals
are known to
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satisfy  this  stringent  requirement.  In
contrast,  Kramers–Weyl  fer-  mions with
opposite chirality are not related by crystal
symmetries,  and will appear at different
energies. Thus, the universal presence of
Kramers–Weyl fermions in chiral crystals
allows access to a simple,  powerful
strategy  to  identify  additional  ideal
material candidates for the observation of
quantized photocurrent: identify
semimetal-  lic chiral crystals in which a
Kramers–Weyl node is isolated at the
intrinsic  chemical  potential,  or  identify
narrow-gap semiconduct- ing chiral crystals
in which a Kramers–Weyl node can be
isolated by  moderate  electron  or  hole
doping.

We present  α-Ag2Se0.3Te0.7 (SG 19) as an
example  for  doping-  enabled  photocurrent
(Fig.  3).  As  discussed  in  Supplementary
Section F, crystals in SG 19 display chiral
Kramers–Weyl nodes at  Γ,  and  two-fold-
degenerate  chiral  nodal  planes  along  the
Brillouin  zone  boundaries  (ki =  π)  (Fig.
3a,b). With slight electron doping,
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Fig. 3 | Quantized circular photogalvanic current and topological spin–momentum locking. a, The chiral crystal α-
Ag2Se0.3Te0.7 (left) and the chiral fermions in α-Ag2Se0.3Te0.7 (right) where the Γ point allows an isolated Kramers–Weyl node
and the Brillouin zone boundaries feature a nodal surface with a non-zero chiral charge (Supplementary Sections E and 
F). b, The band structure of α-Ag2Se0.3Te0.7   with SOC. The Kramers–Weyl  fermions at Γ   are highlighted by orange 
circles. The chiral nodal surfaces are indicated by the blue box. c, Bands in the vicinity of the Γ point. d, Quantized 
circular
photogalvanic currents induced by the Kramers–Weyl  fermions in slightly electron-doped α-Ag2Se0.3−δTe0.7  (δ = 0.16%) 
(whose Fermi level is at the energy   of the Kramers–Weyl fermion of conduction bands). β is the multiband gyrotropic 
photocurrent tensor (Methods) and Tr[β] means the trace of the photocurrent tensor β. β0 = πe3/h2 is a quantized constant, 
where e and h are the electron charge and the Planck constant. Tr[β]/iβ0 is dimensionless and should reach an integer if the 
photocurrent is quantized. e,f, Real spin along the three principle axes (kx, ky and kz) for the Kramers–Weyl node near the 
Fermi level in α-Ag2Se (e) and a conventional Weyl node in TaAs (f).

one can shift the Fermi level to the Kramers–Weyl
fermions. The calculated photogalvanic current of α-
Ag2Se0.3−δTe0.7 (δ  =  0.16%)  (Fig.  3d)  exhibits  a
quantized value in the terahertz photon ener- gies
(~1 meV)43. Continuing with this strategy, we easily
identify 16  additional  chiral  materials  for  the
observation  of  Kramers–Weyl-  enabled quantized
photocurrent. These compounds are enumerated
along with their band structures in Supplementary
Section J.

The chiral magnetic effects. The chiral and
gyrotropic effects are  linear responses in Weyl
semimetals to electromagnetic waves44,45. In these
chiral  magnetic  effects,  a  dissipationless  current
arises in response to an alternating magnetic field.
These  effects  are  cru-  cially reliant on the same
energetic restrictions as the CPGE in the previous

section:  that  Weyl  nodes  of  different  chiralities  lie  at  dif-
ferent energies. Like the CPGE, the realization of these
effects has  been  hindered  due  to  the  absence  of  ideal
material platforms. Our proposal of Kramers–Weyl fermions
immediately provides a fea- sible platform in which to probe
these response effects.
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Other  exotic  phenomena  in  chiral
crystals. Finally, we propose that Kramers–
Weyl fermions may offer a way to
systematically con-  trol  and  modulate  a
number  of  symmetry-allowed  phenomena
in structurally chiral crystals, including the
magnetochiral  and  mag-  netoelectric
effects5,6. Although these phenomena can
still occur in a chiral crystal in the absence
of a Weyl node near the Fermi energy,
recent theoretical works highlight that the
presence of  a strong Berry curvature can
dramatically  enhance  the  magnitude  of
these effects6. In addition, the presence of
Kramers–Weyl fermions near  the  Fermi
energy  may offer  the  possibility  to  study
superconduct-  ing  pairing  on  Fermi
surfaces with a non-zero Chern number46,47,
which may provide a promising recipe for
engineering  unconven-  tional
superconductivity48.

Conclusion
In this work, we uncovered a fundamental
consequence of the com-  bination  of  T
symmetry  and  structural  chirality  in
crystals  with  a  spin–orbit  interaction.  We
found that in chiral crystals, the TRIM



points host Kramers–Weyl and other unconventional
chiral fermi- ons, or non-symmorphic nodal planes,
some  of  which  also  exhibit  chiral charges19,23,24,27

(Supplementary Sections E and F). Kramers–  Weyl
fermions enable unusual phenomena, such as a
monopole-like  electron  spin  texture  and
topologically non-trivial bulk Fermi sur- faces over
an unusually large energy window. Given the
abundance of previously synthesized chiral crystals,
our  findings  are  widely  applicable  and  provide
another approach to engineering and con- trolling
the  unconventional  optical7 and  transport5,6

properties in chiral materials.
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We performed first-principles calculations within the density 
functional theory
framework using the projector augmented wave method as 
implemented in

ij jkl
nm

k,n,m 

k,nm k,nm 
k,mn

k,mn

the VASP49 package and the full-potential augmented plane-wave
method as implemented in the package Wien2k50. The 
generalized gradient approximation was used51. The lattice 
constants for the materials examined in this paper were 
obtained from the ICSD36. To calculate the surface states of 
AgBi(Cr2O7)2, Wannier functions were generated using the d 
orbitals of Ag, the p and d orbitals of Cr and the p orbitals of O. 
The surface states were calculated for a semi-infinite slab by the
iterative Green’s function method.

To calculate the circular photogalvanic current in α-
Ag2Se0.3Te0.7 (SG 19), we generated the Wannier functions of α-
Ag2Se (SG 19) and α-Ag2Te (SG 19) using the s and d orbitals of 
Ag and the p orbitals of Se and Te. The electronic structure of α-
Ag2Se0.3Te0.7 (SG 19) was calculated by a linear interpolation 
between tight- binding model matrix elements of α-Ag2Se (SG 
19) and α-Ag2Te (SG 19). We calculated the multiband gyrotropic
photocurrent tensor βij(ω) (ref. 36) to obtain the circular 
photogalvanic effect photocurrent rate:
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