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We amalgamate two fundamental designs from distinct areas of wave control in physics, and place them

in the setting of elasticity. Graded elastic metasurfaces, so-called metawedges, are combined with the now

classical Su-Schrieffer-Heeger (SSH) model from the field of topological insulators. The resulting struc-

tures form one-dimensional graded-SSH metawedges that support multiple, simultaneous, topologically

protected edge states. These robust, enhanced localized modes are leveraged for applications in elastic

energy harvesting using the piezoelectric effect. The designs we develop are first motivated by applying

the SSH model to mass-loaded Kirchhoff-Love thin elastic plates. We then extend these ideas to using

graded resonant rods, and create SSH models, coupled to elastic beams and full elastic half-spaces.
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I. INTRODUCTION

Topological insulators are exotic materials in which

protected edge or interfacial surface states exist between

bulk band gaps, owing their existence to broken sym-

metries within a periodic system. Despite their origins

in quantum-mechanical systems [1–3], there has been a

flurry of intensive research translating these effects into

all flavors of classical wave propagation, from electromag-

netism and acoustics to mechanics and elasticity [4,5]; the

protected edge modes can have attractive properties such

as resilience to backscattering from defects and impuri-

ties, and can exhibit unidirectional propagation. As such

the physical phenomena surrounding topological insulators

has naturally led to a concerted effort mapping such effects

into metamaterial and photonic crystal (and their analogs)

design [6–8].

The nature of the symmetry breaking giving rise to

a protected edge state defines two classes of topo-

logical insulators. Inspired by the original quantum-

mechanical systems exhibiting the quantum Hall effect

(QHE), where time-reversal symmetry (TRS) is broken

*gregory.chaplain16@imperial.ac.uk

through applied external fields [9,10], has led to so-called

active topological materials [11–15]. Similarly the quan-

tum spin Hall effect (QSHE), in which symmetry breaking

is achieved through spin-orbit interactions (TRS is pre-

served) [16,17], has engendered passive topological sys-

tems. Such systems have promulgated simpler topological-

insulator-motivated designs in continuum-wave systems

through the breaking of geometric symmetries to induce

topologically nontrivial band gaps [18].

Underpinning the topological nature of the Bloch bands

defined by each material are associated invariants, which

characterize the geometric phase, that is the phase change

associated with a continuous, adiabatic deformation of the

system; most notably the Berry phase [19,20], and its one-

dimensional (1D) counterpart, the Zak phase [21].

Numerous translations of two-dimensional (2D) topo-

logical insulators to wave physics have been realized, often

based around honeycomb structures [22], which guarantee

symmetry-induced Dirac points that can be leveraged to

induce edge states at the interface between two topologi-

cally distinct media. These have been replicated for waveg-

uiding applications for photonics [23], phononics [24],

platonics [25,26], and acoustics [27]. More nuanced

interpretations have achieved beam-splitter designs with

square lattices [28–30]. Higher-order topological effects,
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for higher-dimensional structures have also received much

attention [31,32].

Despite their relative simplicity, 1D topological insula-

tors serve not only as pedagogical examples, but possess

useful features for applications ranging from lasing [33]

to mechanical and acoustic transport [34–36]. Motivated

by applications in elastic energy harvesting, we highlight a

modality of 1D topological insulators, based on the well-

established Su-Schrieffer-Heeger (SSH) model [37], via

the amalgamation of this model with graded metawedge

structures [38–41].

Throughout this paper we examine the SSH model, due

to its successful predictions and ease of its translation from

topological wave physics to mechanical systems [44], but

now in the setting of elasticity. Figure 1 highlights the

overarching theme of this paper, which combines the con-

ventional SSH model with a graded system. Shown in

Fig. 1(a) is an elastic version of the classical SSH inter-

face, for resonant rods atop a beam. The interface at which

a topological edge mode exists is highlighted by the red

dashed line; this is where two related geometries meet. To

the left of this interface are a set of periodic unit cells,

of width a, each with two resonant rods set apart a dis-

tance �1 from the center of the cell: we call this structure

S1. To the right of the interface we consider structures,

S1′, that consist of unit cells of the same width, but this

(a)

(b)

(c)

FIG. 1. Combining SSH interfaces with metawedge structures.

(a) An elastic version of the SSH model, where an interface is

encountered between structures S1 and S1′. The unit cells of each

are highlighted in green, each shares the same periodicity a, but

have rod separation �1 and �2, respectively. (b) Conventional

metawedge structure consisting of periodically spaced rods of

increasing height. (c) The amalgamation of these geometries to

produce several SSH interfaces for differing rod heights, marked

by the dashed red lines. The green material at the base of each

rod represents a piezoelectric material, which is to be used for

energy harvesting [42,43].

time with the rods placed a distance �2 = a − �1 apart

from the cell center. In an infinite periodic array both

these structures are identical as there is merely a trans-

lation in the definition of the unit cell. For that infinite

array, then, taking advantage of periodicity to introduce

Floquet-Bloch waves, both structures have the same dis-

persion curves. We show in Sec. II how an edge mode

arises at this interface, sometimes referred to as a domain

wall.

Shown in Fig. 1(b) is the, now conventional, graded

metawedge structure [38], that has recently been utilized

for energy-harvesting purposes [42,45]. This consists of

periodically spaced rods, which increase in height through

an adiabatic grading; in each subsequent cell the rod height

is linearly increased, with the unit-cell width remaining

constant. As such we assume the coefficients of the fun-

damental Bloch mode of each cell vary slowly, thus the

locally periodic dispersion curves sufficiently describe the

spatial behavior of the adiabatic grading [46]. A more

rigorous mathematical definition of the adiabatic nature

requires a multiple-scale asymptotic approach where Bloch

waves, captured with a WKB approximation, are matched

with a high-frequency-homogenization [47] solution at

dispersion singularities [48]. The utility of such devices is

provided by their ability to manipulate and segregate fre-

quency components by slowing down waves, which can

reach effective local band gaps at different spatial posi-

tions [43]. Our desire is to combine these two structures,

as shown in Fig. 1(c), to incorporate several, simultaneous,

topologically protected edge modes for energy-harvesting

applications. Such a structure is devised by alternating

between primed and unprimed pairs of structures for dif-

fering rod heights.

To elucidate the design paradigm and conditions for

existence of an edge mode, we firstly consider the simpli-

fied elastic model of a point-mass-loaded thin Kirchhoff-

Love elastic plate. The expected existence of edge states

in a one-dimensional SSH chain is confirmed through

calculation of the Zak phase via an efficient numerical

scheme [49], corroborated via Fourier spectral analysis of

scattering simulations. The differences between the local-

ized 1D edge states and that of conventional band-gap

defect states are highlighted. This methodology is then

extended to a topological system of resonating rods atop

an elastic beam. Recent experimental work has highlighted

the existence of such states in quasiperiodic resonant-

loaded beams [50], whilst other works incorporate piezo-

electric effects to tune the topological phases of the bands

[51]. Here we continue with the SSH model demonstrat-

ing that, by the addition of piezoelectric materials, efficient

energy harvesting from mechanical to electric energy is

possible; this extends the applications of coupling piezo-

electricity with topological insulators [52]. The motivation

of coupling with the graded structures, as highlighted

in Fig. 1, is to extend the bandwidth from the single
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frequency at which the edge mode exists thereby achieving

broadband performance of the device with an attractively

compact device. Finally, this model is extended to elastic

half-spaces that support Rayleigh waves, introducing the

concept to broaden the scope of topological groundborne

vibration control.

II. SSH IN THIN ELASTIC PLATES

The equations governing flexural wave propagation

in thin Kirchhoff-Love (KL) elastic plates [53] provide

a flexible avenue for investigating a wide variety of

wave-manipulation effects; they efficiently predict wave

behavior in physical systems [54], with elegant solutions

readily available for point-loaded scatterers [55]. Further

to this, the Green’s function of the governing biharmonic

wave equation is nonsingular and remains bounded, and

as such numerical complications during the implementa-

tion of scattering simulations are side stepped, enabling

efficient scattering calculations to be obtained by extend-

ing a method attributed to Foldy [56]. Recent advances for

analyzing one-dimensional, infinite, periodic structures, in

such systems, [49] have generated efficient methods for

calculating their dispersion curves, enabling fast design

and analysis. These features of the KL system, and the

numerical ease of its solution, motivate its use as a power-

ful toolbox for quickly characterizing topological systems

[18,28,57–60].

For a point-mass-loaded KL plate, loaded with J masses

of value M (j ) at positions x(j ), the restoring forces at

the mass position are proportional to the displacement

of the mass at that point, resulting in the out-of-plane

flexural wave displacement, w(x), being governed by the

biharmonic wave equation,

(∇4 − �2)w(x) = �2

J
∑

j =1

M (j )w(x)δ(x − x(j )). (1)

We adopt a nondimensionalized frequency such that �2 =

ρhω2/D, where ρ is the mass density of the plate and h is

the plate thickness, with ω being the dimensional angu-

lar frequency. D is the flexural rigidity, which encodes

Young’s modulus, E, and Poisson’s ratio, ν, of the plate

through D = Eh3/12(1 − ν2).

Considering an infinite periodic line array of point

masses, capable of supporting propagating Rayleigh-Bloch

modes, which exponentially decay perpendicularly to the

array, allows the governing equation to be formulated as a

generalized eigenvalue problem; we do so by partitioning

the array and plate into periodic infinite strips and by for-

mulating the wavefield, w(x) as a combination of a Fourier

series and a decaying basis, as in Ref. [49]. Employ-

ing Floquet-Bloch conditions, and invoking orthogonality,

then characterizes the dispersion relation for an arbitrary

periodic strip of width a. Adopting the nomenclature

conventional with topological systems, the eigensolutions

(wavefields) of this system of equations are then written as

|w〉 =
∑

n,m

Wnm exp[i(Gn − κ)x]ψm(y), (2)

where, for integer n, G = 2nπ/a is a reciprocal lattice vec-

tor component, κ is the Bloch wave number and ψm(y)

is an exponentially decaying orthonormal Hermite func-

tion. The advantages of this approach allows a spectral

Galerkin method to accurately and rapidly characterize the

dispersion relation, an example of which is shown in Fig. 2.

An advantage of having such explicit solutions for the

eigenstates, satisfying (1) with periodic modulation, is that

they can be used to obtain key information from the bulk

bands in the form of topological invariants, specifically the

(a)

(b)

(c)

FIG. 2. (a) Schematics of the infinite strips, that periodically

repeat, that characterize the array and which are used for the

dispersion curves for structures S1 and S1′, such that a = 1,

M = 5, �1 = 0.2, �2 = a − �1. The dispersion curves, from

the spectral method [49], for the normalized frequency, �(κ) are

shown in white, with the dotted white line showing the free-space

flexural “sound line,” which, for KL plates is not dispersion-

less. Plotted along the wave numbers from κ = −X ≡ −π/a

to κ = Ŵ ≡ 0 are the curves for S1, with Ŵ to κ = X ≡ π/a

showing those for S1′. The two dispersion relations are clearly

identical. Further to this, the Fourier spectrum is also shown in

(b), through a FFT of scattering simulations of the SSH geometry

shown in (c). Corroborated by the calculation of the distinct Zak

phases, which label the bands in (b), there is an edge mode within

the bulk band gap, highlighted at � = 2.7. The topological nature

of a band gap is determined by summation over the Zak phase of

all the bands below this gap [65,70], having no dependence on

the bands above it. As such we only show the lowest dispersion

branch of this system.
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Zak phase. To demonstrate the efficiency of this, and the

existence of 1D topological edge states we utilize the SSH

model. This has been utilized in many systems for trans-

port [34,61] and to identify the existence of edge modes

[62]. Here we exploit this model to emphasize the features

of 1D topological defect states, and how they can be used

for energy harvesting.

To build the SSH model, in the setting of a 1D array

of point-loaded masses on a KL elastic plate, we first con-

sider an infinite, periodic, 1D array consisting of infinite

unit strips of width a, with two masses of mass M placed

symmetrically about the strips origin a distance �1 apart;

this system has the dispersion relation highlighted in Fig. 2.

As before, this cell configuration is labeled as structure

S1. Due to the translational invariance present in the infi-

nite structure, the same periodic structure can be built by a

translation of the unit strip by a distance a/2. In this new

unit cell, the masses are separated symmetrically about

the strip origin by �2 = a − �1; this configuration has an

identical dispersion relation to S1, and we denote the unit

cell of this structure S1′. Structures S1 and S1′ can be seen

in Fig. 2(a), with their calculated dispersion relation shown

in Fig. 2(b) (as also confirmed by the Fourier spectrum

obtained through scattering simulations).

We then form a SSH array by creating a 1D chain com-

posed of repeated cells of S1 and S1′, which meet at an

interface [Fig. 2(c)]. To determine whether a topological

edge mode exists at this interface, we calculate the Zak

phase [21] for each band defined by S1 and S1′; each mate-

rial composing the SSH array has a common band gap and,

provided each periodic structure has a distinct Zak phase,

the existence of an edge mode is guaranteed [63–65].

The Zak phase, ϕZak
n , for the nth band is defined in terms

of the Berry connection A(κ) such that

ϕZak
n =

∫

BZ

A(κ)dκ , (3)

with

A(κ) = i〈uκ |∂κuκ〉, (4)

where BZ denotes the Brillouin zone; there are several

efficient methods capable of calculating such invariants

[66,67]. We opt to dovetail the eigensolutions obtained

from the spectral method (2) to calculate the Zak phase

for each band, by ensuring that |un,κ〉 is cell periodic such

that |w〉 = e−iκ ·r|un,κ〉. In doing so the required quantities

are readily available from the obtained eigensolutions. We

evaluate Eq. (3) over the discretized BZ in κ space such

that

∫

BZ

A(κ)dκ →
∑

κ j

dκ〈uκ |∂κuκ〉
∣

∣

κ=κ j
, (5)

resulting in

ϕZak
n = −Im

⎛

⎝log

J
∏

j =1

〈un,κ j
|un,κ j +1

〉

⎞

⎠ . (6)

The periodic gauge condition is satisfied through

|un,κJ+1
〉 = e−iG·r|un,κ1

〉. Due to the intrinsic connection

with Wannier charge centers [68,69], provided we have

inversion symmetry with respect to the array axis, we are

guaranteed a quantized Zak phase of 0 or π ; indeed this can

be inferred from the symmetry properties of the band edge

states [65]. In this setting, these correspond to the flexural

displacement fields being localized to the center or edges

of the strip, respectively.

As expected, we find distinct Zak phases as highlighted

for the lowest band in S1 and S1′ in Fig. 2(b). As such

at the interface between S1 and S1′ we have an analog to

an incomplete Wannier state: there exists an edge mode.

This is confirmed through the Fourier spectrum shown in

Fig. 2(b).

To visualize the edge mode we make use of the attractive

Green’s function approach [55,57] that can be employed to

calculate the total wavefield, subject to forcings F (j ) from

J masses. This can be evaluated quickly, obtaining

w(x) = wi(x) +

J
∑

j =1

F (j )g
(

�, |x − x(j )|
)

, (7)

where wi(x) is the incident field. Using the well-known

Green’s function [55], g (�, ρ) = (i/8�2) [H0(�ρ)−

H0(i�ρ)], the unknown reaction terms F (j ) come from the

linear system

F (k) = M (k)�2

{

wi(x
(k)) +

J
∑

j =1

F (j )g
(

�, |x(k) − x(j )|
)

}

.

(8)

From this, fast Fourier transform (FFT) techniques can

be utilized to obtain the dispersion relation in κ space,

shown in Fig. 2(b). Using this method, we demonstrate the

characteristics of a 1D edge mode, by also evaluating the

time-averaged flux through [71]

〈F〉 =
�

2
Im

[

w(x)∇3w∗(x) − ∇2w∗(x)∇w(x)
]

. (9)

Shown in Fig. 3 are the scattered fields, for a monopolar

point source placed at the interface between structures S1

and S1′ in the SSH model, for the parameters as defined

in Fig. 2. Exciting at different frequencies reveals three

distinct modes present in the system: propagating, con-

ventional defect, and topologically protected edge modes.

When exciting at � = 2, unsurprisingly a propagating
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Ω = 2.0
0.20

0.10

1.0

0.0

Ω = 3.0

Ω = 2.7

(a) (b)

(d)

(f)

(c)

(e)

FIG. 3. Scattered fields for (a) propagating, (c) edge mode, and (e) conventional scattering defect modes, excited at the interface of

S1 and S1′, marked by the white stars. The field amplitudes are normalized with respect to the maximum amplitude of the scattered

field of the topological edge mode, showing that it is approximately 17 times greater than the maximum amplitude of conventional

defect modes. (b),(d), and (f) Streamline plots of the time-averaged flux in the regions highlighted by the rectangular box in (a),(c),

and (e) for the propagating, edge, and defect modes, respectively. The chiral nature of the edge-mode flux is markedly different from

the other cases.

Rayleigh-Bloch mode exists, transiting along the array in

each direction. Increasing the frequency to lie within the

band gap, we see stark contrasts between the wavefields

between the edge mode [� = 2.7, Figs. 3(c) and 3(d)]

and a conventional localized defect state [� = 3 Figs. 3(e)

and 3(f)]; the amplitude of the topologically protected

edge state is nearly 17 times that of the localized defect

state, with its flux displaying chiral orbits, which are

indicative of edge modes, induced by the distinct topo-

logical phases at the interface [58]. We further test the

robustness of the topological edge state, by introduced

line and impurity defects, by the removal and addition

of extra masses, respectively, demonstrated in Fig. 4: in

each case the amplitude and chirality of the fields are pre-

served. We successfully show that the SSH model can

be implemented in the setting of point-mass-loaded KL

elastic plates. The existence of edge modes is confirmed

through a variety of numerical techniques. The purpose

of exploring such features in this system is to motivate

energy-harvesting applications in elastic settings, particu-

larly because the localized amplitudes of edge modes are

so much greater than those for conventional defect modes.

A key feature of such harvesting structures is the ability to

recycle energy from a distance; until now we only focus on

source positions at the interface between topologically dis-

tinct media. In order to assess the feasibility of harvesting

devices, we explore the excitation of this mode from a

distance.

To do this, we consider a region, S0, consisting of the

same geometric structure as S1, but with a lower mass

value (M = 2.3) such that a propagating mode exists at the

frequency of the edge mode in the SSH model. Then, at a

given spatial position, we abruptly switch the mass value

to be consistent with S1 (M = 5)—in this region an expo-

nentially decaying mode is excited. The SSH interface is

then encountered, by constructing a region of S1′ close to

the interface between S0 and S1. A schematic of this is

shown, along with the field and flux computations in Fig. 5,

showing that it is possible to excite this mode from a dis-

tance; the amplitude of the resulting mode depends on the

decay length introduced in the transition region between

S1 and S1′, a feature that can be predicted from high-

frequency homogenization techniques [47,49]; the shortest

decay length is at the center of a band gap, exactly where

the edge mode resides in the interfacial configuration. This,

coupled with the chiral nature of the flux, leads to the edge

modes being more strongly confined in space than their

conventional defect counterparts. Thus 1D edge modes can

be excited by a source, which is external to the topological

interface and this motivates energy-harvesting applications

within such regions. Limitations of this simplistic sys-

tem are, however, immediately apparent; there must be a
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1.0

0.0

(a) (b)

(c) (d)

FIG. 4. Testing disorder in the system, with (a),(b) showing scattered fields and flux for a line-defect structure; a mass is removed

in the first cell of S1′ to the right of the interface (highlighted by the red point). (c),(d) Similar plots for an impurity-type defect; the

red point represents an additional mass of M = 1 to the left of the source. In each case, the field is normalized with respect to the

maximum amplitude of the perfect SSH case [Fig. 3(c)]. The chirality of the flux is seen to be preserved.

propagating region before the interface, and the effect is

extremely narrowband. To circumnavigate these deficien-

cies, we turn to recent metawedge structures, and hybridize

the SSH model with an adiabatic grading in a system of

resonant rods atop an elastic beam.

III. GRADED-SSH METAWEDGE

The graded resonant metawedge [38] has proved a

source of inspiration for the “trapping” of energy, by a

reduction in effective group velocity of propagating waves.

1

0.10

0.00

(a)

(b)

(c)

FIG. 5. Exciting an edge mode using a step “grading.” (a) Schematic of the array, composed of structures S0 of M = 2.3 (blue

masses), three cells of structure S1 (green masses), and finally a region of S1′, forming a step-SSH array. In region S0, the frequency

� = 2.7 corresponds to a slow propagating mode that, upon reaching S1, excites a decaying mode in S1. This mode then feeds into

the interface region between S1 and S1′; at this frequency an edge mode is excited, shown by the chiral fields in the inset. (b) The

scattered field, normalized to the amplitude of the perfect SSH array [Fig. 3(c)]. (c) The absolute amplitude |w| along the array axis,

indicating the increased amplitude at the interface between S1 and S1′, demonstrating this edge mode can be externally excited.
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The classical arrangement is that of resonant rods atop an

elastic half-space, or elastic beam, as shown in Fig. 1(b).

In this example, the rods adiabatically change in height

from one unit cell to the next, generating locally peri-

odic cells; the global behavior of the device is inferred

from the dispersion curves corresponding to an infinite

array of each rod height [72]. As such, different frequency

components encounter local band gaps at different spatial

positions. Similar to rainbow trapping devices [73,74], the

metawedge achieves local-field enhancement, which can

be used for energy-harvesting [42]. Despite the success,

both in design and experimental verification, of a wide

variety of effects exhibited by the metawedge and similar

structures [39–41], this simplistic array has reflections, due

to Bragg scattering, at the “trapping” positions. As such,

energy is not confined for prolonged periods due to inter-

modal coupling, and rainbow reflection phenomena is seen

instead [43].

Topological systems therefore seem attractive candi-

dates for energy extraction, due to their resilience to

backscatter and strong confinement; the longer energy is

confined to a spatial position, the more energy that can be

harvested [43]. This is more efficient for symmetry-broken

systems, where a lack of coupling to reflected waves leads

the energy to be more localized; a natural extension of this

is to consider topological devices. Indeed, recent designs

for topological rainbow effects have been theorized for

elasticity in perforated elastic plates of varying thickness,

based on topologically protected zero-line-modes (ZLMs)

between an interface of 2D square array structures [28,75],

and for acoustic valley phononic crystals [76].

Due to the low dimensionality of the 1D SSH system,

the SSH model provides an optimal arrangement for elas-

tic energy harvesting as there is no propagating component

of the edge mode. However, the caveat to this has already

been alluded to—this mode only exists for a very nar-

row range of frequencies. We therefore design a hybrid

graded-SSH metawedge, which, based on a gentle adia-

batic grading of alternating SSH structures, significantly

increases the bandwidth of operation, serving as the per-

fect candidate for topological rainbow trapping. Due to the

strong interaction between the symmetry-broken structure

and the edge mode, these devices offer an additional benefit

of being compact compared to classical metawedges.

Figure 6 shows the proposed design, as an enlargement

of Fig. 1, consisting of resonant rods atop an elastic beam.

Similar to the motivational mass-loaded case, we define

structures S1 and S1′ to be unit cells consisting of rods of

height h1 arranged in the SSH configuration. The heights

of the rods are adiabatically increased every two unit cells,

with the arrangement being mirrored: cells with rods of

height h2 follow an S0′-S0 interface. This is repeated along

the array. An example of the corresponding Sn-Sn′-Sm′-

Sm geometry (where n and m corresponding to heights

hn, hm) is shown in Fig. 6(b). The advantages of altering

(a)

(b)

FIG. 6. Graded-SSH schematics: (a) the Sn-Sn′-Sm′-Sm alter-

ing cell structure for heights hn, hm (b) the graded-SSH

metawedge for seven alternating SSH cells. The green disks at

the base of each rod represent the positioning of the piezoelectric

material discussed in Sec. IV.

the cells in this pairwise fashion (as opposed to Sn-Sn′-

Sm-Sm′) come from that, given the grading is suitably

adiabatic, there appears to be more cells with the same

configuration, i.e., on either side of the SSH interface there

are two cells with the same structure; conventional SSH

interface states are typically formed with larger numbers

of identical cells either side of the interface (e.g., in Fig. 4).

We show that using this configuration, despite the edge

modes being a manifestation related to the bulk properties

of such structures, we are able to excite several simulta-

neously with as little as one of each structure within the

graded hybrid device. This shall be explored throughout

the following sections for the now familiar S1-S1′ configu-

ration, followed by an investigation into the uses for elastic

energy harvesting.

IV. TOPOLOGICAL RAINBOW TRAPPING FOR

ELASTIC ENERGY HARVESTING

Topological systems have been widely proposed as effi-

cient solutions for elastic energy transport, guiding and

localization [28,58]. These concepts offer, amongst oth-

ers, promising capabilities for energy harvesting, due to

the enhancement of local vibrational energy present in

the environment. One of the main challenges in elastic

energy scavenging, is obtaining simultaneously broad-

band and compact devices [77]. Broadband behavior is

usually achieved through nonlinear effects [78,79] or mul-

timodal response [80,81], i.e., by exploiting multiple bend-

ing modes of continuous beams or arrays of cantilevers.

Whilst multimodal harvesting enhances the operational

bandwidth, it is usually accompanied by an increase in the

volume or weight of the device. This can affect the overall

power density of the system as well as the circuit interface,

which becomes more complex with respect to single-mode
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harvesters. Conversely, it is worthwhile to appreciate that

multimodal schemes can be well integrated with metama-

terial concepts, leading to truly multifunctional designs

[82] with enhanced energy-harvesting capabilities.

Here we propose a multimodal scheme, i.e., a broad-

band device, which is simultaneously compact due to the

reduced number of required cells. The device is similar

to that in Ref. [42], but based on the excitation of local

edge modes through the graded-SSH-metawedge geom-

etry (Fig. 6). We recall that the physics of these arrays

is primarily governed by the longitudinal (axial) reso-

nances of the rods [38], which, along with the periodicity,

determine band-gap positions through their resonance. The

axial resonance frequency of the rod is governed by the rod

height [38]. By a simple variation of the length of adjacent

rods, an effective band gap, that is both broad and sub-

wavelength can be achieved. The addition of alternating

SSH configurations introduces frequency-dependent posi-

tions of localized edge states. By the definition of rainbow

effects [43], this hence defines a true topological rainbow.

To quantify the advantages of such designs for energy

harvesting, we compare its performance with a conven-

tional rainbow-reflection device [42] composed of an equal

number of rods, with identical grading angle and quantity

of piezoelectric material.

The existence of an edge mode is first confirmed by

considering two arrays, one composed only of equal rods

with constant spacing, i.e., consisting only of structures S1,

and another with a transition between regions consisting of

structures S1 and S1′, shown in Fig. S1(b) within the Sup-

plemental Material [83], similar to the previous examples

[Figs. 1(a) and 3]. Both systems are made of aluminium

(ρ = 2710 kgm−3, E = 70 GPa, and ν = 0.33) and com-

posed of rods with length 82 mm and circular cross section

with 3 mm radius. The beam is defined by 10 mm thick-

ness and 30 mm width, and is assumed to be infinitely

long in the direction of the wave propagation. The unit-

cell dimension is a = 30 mm, with the resonator separation

inside the cell as �1 = 10 mm (in structure S1) and �2 =

a − �1 = 20 mm (in S1′). The dispersion curves for both

configurations are calculated using Abaqus [84] with a

user-defined code able to impose Bloch-Floquet bound-

ary conditions, as shown within the Supplemental Material

[83]. To detect the presence of an edge mode, we excite

both systems with a time-domain frequency sweep in the

range 5–15 kHz, with a source inside the array and located

at the interface between S1-S1′. By inspection of the spa-

tiotemporal Fourier transform of the resultant wavefield,

an edge mode clearly appears inside the band gap opened

by an axial resonance.We consider graded line arrays of

resonators, to simultaneously excite the array from outside

and to enlarge the bandwidth, based around the designs

shown in Figs. 6 and 7(a). Thus it is the height of the rods

in the pairs of SSH cells, which are graded (as opposed

to, say, the spacing �1). This grading profile ensures

the largest flexibility in operational bandwidth (see the

Supplemental Material [83]). To quantify the energy that

can be stored, we insert PZT-5H piezoelectric disks (ρ =

7800 kgm−3, E = 61 GPa, and ν = 0.31) of 2 mm thick-

ness between the rods and the beam (shown as green disks

in Fig. 6). Due to the dominant axial elongation in the rod

response, we model the piezoelectric coupling by means

of the 33 mode piezoelectric coefficient e33 = 19.4 Cm−2,

and constant-stress dielectric constant ǫT
33/ǫ0 = 3500, with

ǫ0 = 8.854 pFm−1 the free-space permittivity. The device

is composed of 40 rods with height approximately from 5

to 100 mm and grading angle θ ≃ 4.7◦. We compare the

SSH rainbow system with a conventional rainbow device,

through a steady-state dynamic direct analysis performed

using Abaqus with open-circuit electric conditions. The

infinite length of the beam is modeled using ALID bound-

aries at the edges [85]. We see rainbow effects in both

cases [Figs. 7(c) and 7(d)], i.e., spatial signal separation

depending on frequency, but the voltage peaks are more

localized and with higher amplitude in the SSH case. It

is worthwhile to notice that this effect is more signifi-

cant in the steady-state regime; a relatively long excitation

is required in order to properly activate the edge modes.

Both systems are compared using a time-domain simula-

tion with a frequency sweep in the range 10–40 kHz with a

source duration of 40 ms. In order to quantify the amount

of electric energy stored in both cases, we attach each

piezo disk to an electric load of 10 k� by means of a user

Fortran subroutine integrated with Abaqus implicit time-

domain integration scheme. The accumulated energy as a

function of time is shown in Figs. 7(e) and 7(f). The excita-

tion of the edge modes at discrete frequencies can clearly

be seen, with an approximate maximum value of stored

energy of 0.44 nJ. For the conventional metawedge, we see

that energy is more evenly distributed along space, with

a maximum value of approximately 0.26 nJ. This implies

that, once the edge modes have been efficiently excited in

the SSH configuration, we obtain a local enhancement of

approximately 40% of the trapped electric energy when

compared to conventional reflective rainbow metawedge

configurations.

V. GRADED-SSH METAWEDGE FOR RAYLEIGH

WAVES

Galvanized by the amplifications achieved by the 1D

topological edge states in elastic beams, we now turn

our focus to full three-dimensional (3D) (isotropic) elastic

half-spaces, patterned with arrays of resonant rods on the

surface. This structuration creates a so-called metawedge

and these have been used to exhibit extraordinary control

of surface Rayleigh waves in terms of rainbow devices

and tailored surface to body wave converters [38,39,41];

here we explore graded-SSH structures for the elastic

half-space.
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FIG. 7. (a),(b) Schematics of graded-

SSH metawedge and conventional

metawedge, respectively. Open circuit

voltage (c),(d) and accumulated energy

(e),(f) for the graded SSH and con-

ventional metawedges as a function of

position along the array.

Elastic half-spaces support a wider variety of waves

than the motivational KL plates or elastic beams. Surface

Rayleigh waves propagate along the free surface, expo-

nentially decaying with depth into the bulk, traveling at

wavespeed cr, independently of any periodic structuring.

Further to this, two polarizations of body waves, namely

compressional (P) and vertical and horizontal shear (SV

and SH) waves exist, both traveling at differing wave

speeds cp and cs, respectively, such that cp > cs > cr [86].

Unlike recently designed mode-conversion devices [41],

we focus here on exciting topologically protected surface

waves by utilizing the now familiar SSH model of rods,

but now placed atop such a half-space. Similar analysis of

the dispersion curves of two structures S1 and S1′ show

the existence of an edge mode at the domain boundary

between the two geometries, which are similar to those

considered on the beam, but now with the rods atop a

finite elastic halfspace, shown in Fig. S3, and confirmed

through time-domain scattering simulations (carried out

with SPECFEM3D [87]) in Fig. 8, detailed within the

Supplemental Material [83].

After a thorough analysis of the dispersion relations

we select the input frequencies for the scattering sim-

ulations in SPECFEM3D. Here we excite the array at

the SSH interface with a sinusoidal source correspond-

ing to propagating, scattering, and edge-mode frequencies,

respectively, at 35, 37, and 37.5 kHz, shown in Fig. 8.

Here we show the displacement of the surface of the half-

space; at the positions of the resonators (shown by white

points) the displacement is of the attachment point where

the resonators are joined to the surface. In Fig. 8(e) we

additionally show the vertical displacement (uz) of the res-

onators at a frequency close to that of the edge mode; there

is a large amplification (over 100 times) of the vertical dis-

placement of the rods compared to the maximum vertical

surface displacement of the half-space, which further cor-

roborates the rods as suitable candidates for harvesters on

half-spaces.

To confirm the characteristic chiral flux of the surface

edge modes, we calculate the time-averaged flux, only

on the surface. To do this, we use a simplified asymp-

totic approximation for the surface Rayleigh wave, treating

the governing equation as a simple scalar wave equation,

with the wave speed corresponding to that of the Rayleigh

wave, cr. This model has been extensively developed

[88,89] and adopted in the design of seismic lenses [90].

It provides a simplification for calculating the flux, 〈F〉,

which now takes the form

〈F〉 ∼ Im
[

φ∗(∇φ)
]

, (10)

054035-9



GREGORY J. CHAPLAIN et al. PHYS. REV. APPLIED 14, 054035 (2020)

(b)

(c)

(d)

0.01

0.01

0.00

0.00

1

1

S1 S1a

0.01

0.01

(a)

a

(e)

115

FIG. 8. (a) Schematic of the SSH interface, as a cross section of that in Fig. S3(c) within the Supplemental Material [83]. Regions

composed of S1 are shown as gray rods with S1′ shown as green. A top view of the surface displacement of the half-space shows a

propagating, edge, and scattering mode in (b)–(d), respectively, normalized to the displacement of the edge mode. Their respective

fluxes, within the dashed white rectangles, are shown in the insets. The arrays are forced at the SSH interface (dashed black line).

Again the difference in amplitude (with the edge mode having approximately 100 times the amplitude) and flux patterns demonstrate

the existence of the protected edge state. (e) The vertical displacement of the rods relative to the maximum displacement of the surface

in (c), for a frequency � = 37.7 kHz, near the edge-mode frequency, excited at the SSH interface. Also shown is the chiral flux pattern.

The relative vertical displacement of the rods near the SSH interface is over 100 times larger than the maximum vertical displacement

of the half-space surface.

where φ is the out-of-plane displacement of the sur-

face and ∗ denotes complex conjugation. As such this

approximation treats the Rayleigh wave as a scalar surface

wave, and allows the nature of the edge modes to be seen,

as highlighted in Figs. 8 and 9.

As for the conventional graded metawedge devices, the

design of graded-SSH-metawedge structures for energy

harvesting depends on the desired operational frequen-

cies. For conventional metawedges, the height and grading

profile is informed by the periodicity and resonances of

the individual rods; for efficient harvesting these struc-

tures operate by slowing propagating waves to encounter

zero-group-velocity modes at some designed spatial posi-

tion. Such modes are always present at the band edge by

virtue of the Bragg condition. Alternatively, symmetry-

broken structures can obtain zero-group-velocity modes

within the first BZ [43]. As for graded-SSH systems, the

edge mode appears at the center of the band gap [91], and

as such this allows the tailored design of a stepwise SSH

grading to operate over a range of frequencies, as high-

lighted in Sec. IV. There is a larger degree of freedom

when considering an elastic half-space compared to, say

the KL plate model; surface Rayleigh waves exist inde-

pendently of any structuring on the array. As such, the

broadband excitation of multiple individual edge modes is

possible. We highlight this through the design of a graded-

SSH metawedge, shown in Fig. 9(a). The array consists of

an Sn-Sn′-Sm′-Sm configuration as introduced in the case

of rods on an elastic beam. The dispersion curves of each

individual pair are computed in a similar manner to the

example array in Fig. S3 within the Supplemental Material

[83], and the heights selected so that there is an overlap

between the longitudinal dispersion curves of the shortest

rods with the band gaps of the tallest rods, which ensures

the propagation of the total broadband signal through the

array, with lower frequencies traveling furthest through the

array. The rod heights range linearly from 20 to 50 mm,

all with the same cross-section thickness defined in Fig.

S3 within the Supplemental Material [83]. A broadband

Rayleigh wave (10–60 kHz) of duration 38 ms excites

the array, and by frequency-domain analysis we show the

excitation of several edge modes at their predicted fre-

quencies and interfacial positions between the designed

structures [Figs. 9(b)–9(d)]. To confirm these are indepen-

dently excited edge modes we analyse the flux through

Eq. (10), which shows the chiral nature of this quantity,

shown in Figs. 9(e) and 9(f). Despite there only being one

cell of the corresponding SSH pairs for each edge mode
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FIG. 9. (a) Schematic of the graded-SSH metawedge composed of structures in the alternating primed unprimed configuration

(shown by gray-green colors of the rods), similar to the beam structure. Rod heights range linearly from 20 to 50 mm, on an elastic

half-space of dimensions defined in Fig. S3 within the Supplemental Material [83]. The array is excited, from the left (shown by

white arrow), with a broadband Rayleigh wave in the range 10–60 kHz with a duration of 38 ms, with (b)–(d) showing a top view

of the frequency-domain response for three frequencies, which correspond to the predicted edge modes obtained from the individual

dispersion curves for these heights (as in Fig. S3 within the Supplemental Material [83]), with rod positions marked by white points.

(e)–(g) The flux on the surface from the scalar approximation of the surface Rayleigh wave at the corresponding interface positions

marked by the dashed white boxes in (b)–(d). The enhanced amplitude at the predicted interface positions along with the chiral nature

of the flux confirms the existence and separate excitation of several edge modes in the graded system.

(i.e., one cell of S1 and one cell of S1′), rather remark-

ably each predicted edge mode is excited as highlighted

by the example in Fig. 9(d) at the extremity of the array.

As such, graded-SSH metawedges on elastic half-spaces

have much promise in the design of compact topological

rainbow-trapping energy harvesters.

To further emphasize the utility of these devices, and to

better emulate a true metawedge, we extend the device to

include several rows of the graded-SSH geometry, repre-

senting those considered in Ref. [39,41]. This barrier con-

figuration enables the excitation of more edgemodes in the

perpendicular direction. We analyse this system as above,

which corroborates with the initial assumptions used to

match the edge-mode frequency and position from the

dispersion curves; the predictions are obtained from the Ŵ-

X direction of the two-dimensional dispersion curves and

applied to a single, one-dimensional array. In Fig. 10, the

edge modes exist at the same frequencies and spatial posi-

tions along the array for normally incident radiation. This

arrangement further motivates energy-harvesting devices

and vibration isolation effects due to the strong confine-

ment of the topological edge modes.

VI. DISCUSSION

We successfully implement the SSH model in a vari-

ety of elastic wave regimes, extending the uses of one-

dimensional topological modes. The coalescence between
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FIG. 10. SSH-barrier-metawedge (a) shows a schematic of a SSH-barrier-metawedge, where five rows of the graded array condis-

ered in Fig. 9 are separated by the array parameter a. The barrier array is excited, from the left, with a broadband Rayleigh wave in

the range 10–60 kHz with a duration of 38 ms (b), (d), and (f) show the multiple edge modes excited in this configuration, matching

the positions as in Fig. 9, with their corresponding fluxes shown in (c), (e), and (g). This corroborates the use of the section of the

dispersion curves (Ŵ − X ), which are calculated from a doubly periodic array (Fig. S3 within the Supplemental Material [83]) for the

prediction of this effect for normally incident Rayleigh waves. Again, the edge modes are quickly excited, requiring only one cell of

each pair of SSH geometries at a given height, further motivating compact SSH devices.

the, seemingly distinct, SSH topological insulator and the

graded metawedge provides an alternate avenue for topo-

logical rainbow devices; these provide significant broad-

ening of the bandwidth over which these one-dimensional

edge modes can be utilized. Specifically we show elastic

energy-harvesting applications and compare the graded-

SSH metawedge to conventional metawedges, showing a

pronounced increase in extracted energy, of approximately

40%, due to the strong localization of these modes.

There is a trade-off between device dimensions and

operational bandwidth, as the edge modes supported by

each SSH interface occur nearly at single frequencies.

As such the optimum device for passive elastic energy

harvesting, be it a graded metawedge or a graded-SSH

metawedge, depends on the vibrational environment and

the range of frequencies present. Distinctions between the

graded-SSH systems and the classical elastic metawedge

arise here. The mode conversion and rainbow trapping

and reflection effects present in Refs. [38,39,43], leverage

resonant band gaps to achieve the desired wave control,

whereas here it is the topological nature of the edge modes

within a Bragg gap that are of interest. The functional-

ity of the graded-SSH metawedge is only permitted by

the addition of the grading that alters these gap positions
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and widths; the longitudinal resonances occurring at fre-

quencies higher than the edge state influences its posi-

tion because the underlying Bragg scattering wavelength

becomes locally shorter due to the effect of the resonance

on the dispersion curves, even far away from the band

gap [92]. The synergistic relationship between the reso-

nances and the band positions is mirrored in the simple

mass-loading case where the mass value plays a similar

role.

Further applications, be it in thin plates, elastic beams or

3D elastic half-spaces, include vibration isolation. These

small-scale models can be readily scaled up to ground-

borne and mechanical vibration control [90], and as such

we envisage applications of established topological models

by synthesis with other metamaterial structures.
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