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Abstract

We present here a new randomized algorithm for repairing the topology of objects repre-
sented by 3D binary digital images. By “repairing the topology”, we mean a systematic way of
modifying a given binary image in order to produce a similar binary image which is guaranteed
to be well-composed. A 3D binary digital image is said to be well-composed if, and only if, the
square faces shared by background and foreground voxels form a 2D manifold. Well-composed
images enjoy some special properties which can make such images very desirable in practical
applications. For instance, well-known algorithms for extracting surfaces from and thinning
binary images can be simplified and optimized for speed if the input image is assumed to
be well-composed. Furthermore, some algorithms for computing surface curvature and ex-
tracting adaptive triangulated surfaces, directly from the binary data, can only be applied to
well-composed images. Finally, we introduce an extension of the aforementioned algorithm
to repairing 3D digital multivalued images. Such an algorithm finds application in repairing
segmented images resulting from multi-object segmentations of other 3D digital multivalued
images.

keywords: well-composed images, digital topology, randomized algorithms.
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1 Introduction

In several important applications, such as computer-aided diagnosis, videoconferencing, and fluid
dynamics simulation, geometric objects are represented by 3D digital (multivalued) images. A 3D
digital image consists of a finite grid of points of Z

3, each of which is assigned some value in a
gray-level or color scale via a digitization process. In general, the digitization process is carried out
by a sampling device, such as a CT scanner or a CCD camera, which assigns a value to a point of
the image grid that is proportional to some physical quantity measured by the device at the point
location.

By a segmentation process, the image points are grouped together to form digital sets. For
example, for simple threshold binary segmentation, the points whose intensity values are greater
than a given threshold value are classified as belonging to a certain digital set. The output of the
segmentation process is a 3D digital binary image in which the points representing the digital set
are assigned the value 1 and the remaining points are assigned the value 0. By a reconstruction
process, we commonly identify each point assigned the value 1 by the segmentation process with
a cuboid (voxel) centered at the point. The union of these voxels forms a subset of R

3, called the
continuous analog of the foreground, which can be viewed as the “continuous” representation of one
or more objects represented by the multivalued image.

Whenever a 3D digital image is used to represent geometric objects in practical applications, the
continuous analog of the foreground corresponding to any object in the image is expected to exhibit
some fundamental properties of the object. In particular, the topology of the continuous analog
of the foreground is expected to be the same as the topology of the object. Unfortunately, due to
several factors related to the digitization process, the segmentation and reconstruction processes
may not be able to produce a topologically correct continuous analog of the foreground [1, 2].
To make things worse, the topology of the object may not be known or even available for the
application, which makes the correction of the topology of the continuous analog of the foreground
generally not feasible.

In many applications, the only geometric objects involved are solids, i.e., objects that can be
viewed as bounded and closed subsets of R

3 whose boundary is a (topological) surface (i.e., a 2D
manifold). If a 3D digital binary image correctly represents a solid object, then the image must be
well-composed, i.e., the boundary of the continuous analog of the foreground representing a solid
must be a surface [3]. If it is not, we can be sure that the topology of the continuous analog is
incorrect. However, if we do not know the topology of the solid or are not given any information
that allow us to derive the correct topology, any attempt to modify the topology of the continuous
analog is at best a good guess.

Despite the resulting topological ambiguities, there are still practical advantages in modifying the
incorrect 3D digital binary image so that the boundary of the continuous analog of the foreground
becomes a surface, i.e., in order to produce a well-composed image. This is true even if the resulting
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well-composed image is not the correct one, i.e., even if the surface corresponding to the boundary
of the continuous analog of the foreground is not topologically equivalent to the surface of the
solid. The reason is that well-composed images have very interesting topological properties, which
enable us to simplify and optimize for speed algorithms commonly used in computer graphics, image
processing and computer vision applications.

In particular, if the input image is well-composed, the popular Marching Cubes (MC) algo-
rithm for extracting triangulated isosurfaces from 3D binary digital images will always produce
a topologically consistent surface [4]. The reason is that the “ambiguity” problem will not oc-
cur [5]. Although there are several extensions of the MC algorithm that ensure the extraction of
a topologically consistent surface from any given 3D digital binary image (see [6, 7, 8, 9, 10] to
name a few), these algorithms demand more work if the input image is not well-composed. In
addition, thinning algorithms can be simplified and naturally made parallel if the input image is
well-composed [11, 12], and some algorithms for computing surface curvature [13, 14] or extracting
adaptive triangulated surfaces [15], which operate directly on the binary data, do assume that the
input image is well-composed.

The aforementioned advantages of well-composed images motivated the development of the
so-called repairing algorithms [16], which are algorithms for modifying a 3D digital binary image
(that is not well-composed) to produce a well-composed image. A repairing algorithm can be used
whenever a 3D digital binary image representing a solid is not well-composed and we have no means
to find out the correct topology of the solid. However, in order to be really useful in practice, a
repairing algorithm must produce a well-composed image by making only a few modifications in the
input binary image, so that the the resulting well-composed image will not differ very much from
the input image.

Here, we introduce a new repairing algorithm for generating a 3D well-composed image from a
given 3D digital binary image. The key operation of our algorithm is to change the value assigned
to a point of a binary image from 0 to 1. The result is a new binary image. The operation is firstly
executed on the input binary image, and then on the image obtained by the previous execution of
the operation. The algorithm stops when the image resulting from the most recent execution of the
key operation is well-composed, which we prove to be the case after a finite amount of executions
of the operation.

Our algorithm is randomized, and its time and space complexities are linear in the number of
image points. We provide an upper bound on the expected point difference between the input image
and its well-composed counterpart produced by the algorithm. We also introduce an extension of
our algorithm that repairs 3D digital multivalued images. We assume that the given multivalued
image is the result of a multi-object segmentation of another 3D digital multivalued image (see [17]
for an example of such a segmentation algorithm). The repaired image is also a well-composed
image with respect to each digital set corresponding to a distinct object of the input segmented
image.
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The remainder of this paper is organized as follows. Section 2 reviews some relevant and related
work. Section 3 introduces some basic concepts of digital topology. Section 4 gives an important
characterization of 3D well-composed images. Section 5 describes the algorithm for producing a 3D
well-composed image from a 3D digital binary image, and derives an upper bound on the expected
point-wise difference between the input image and its well-composed counterpart produced by the
algorithm. Section 6 introduces the extension of the algorithm in Section 5 to dealing with 3D
digital multivalued images. Section 7 shows the results of the application of our algorithms on
medical images. Finally, Section 8 summarizes our contributions and results, and discusses future
work.

2 Related Work

Latecki, Eckhardt, and Rosenfeld [11] provided a formal definition of 2D well-composed images, and
characterized these images by the absence of certain 2 × 2 neighborhoods of image points, the so-
called critical configurations. Later, Latecki [3] extended the notion of well-composedness to three
dimensions, and characterized 3D well-composed images in terms of the absence of certain 2 × 2
and 2× 2× 2 neighborhoods of image points, which are the corresponding critical configurations in
three dimensions.

Latecki, Conrad, and Gross [1] showed that a topology-preserving digitization process of a 2D
r-regular object (i.e., the 2D analogous of a solid) must yield a 2D well-composed image. Further-
more, they derived conditions relating the properties of a 2D r-regular object to the image grid
size such that if these conditions are met by the digitization process, then the topology of the ob-
ject can be correctly recovered from the image by the segmentation and reconstruction processes.
Unfortunately, the conditions derived in [1] depends on the knowledge of properties of the object
that are hardly known in practice or they cannot be met by the sampling device available for the
digitization process.

Stelldinger and Köthe [2] showed that the conditions given in [1] are not sufficient to guarantee
that the topology of a 3D r-regular object (i.e., a solid) can be correctly recovered from the image
by the segmentation and reconstruction processes. Later, Stelldinger, Latecki, and Siqueira [18]
gave sufficient conditions to correctly reconstruct the topology of a solid from a 3D digital binary
image. However, these conditions suffer from the same practical limitations that the conditions
given in [1] do.

The idea of modifying a binary image to produce a well-composed one was given by Latecki [16],
who also proposed the first algorithm for producing a 2D well-composed image from a 2D digital
binary image. However, his algorithm cannot be extended to dealing with 3D digital binary images.
Later, Rosenfeld, Kong, and Nakamura [19] introduced an image operator, called simple defor-
mation, that can be used to produce 2D and 3D well-composed, but the resulting well-composed
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images have 9 and 27 times more points than the input 2D and 3D binary images1, respectively. To
our best knowledge, the algorithm described in this paper for producing a 3D well-composed image
from a 3D digital binary image is the first one to generate an output image with the same size as
the input image.

Our repairing algorithm is related to several results regarding the correct segmentation and
reconstruction of the human brain cortical surface from MR images [20, 21, 22, 23, 24, 25, 26, 27, 28].
The cerebral cortex is the largest part of the human brain, and its correct reconstruction is an
important goal in medicine and neuroscience. Although the human brain cortex is highly folded, its
intrinsic structure is that of a two-dimensional sheet, several millimeters thick. More specifically,
the cortex is a thin folded sheet of gray matter (GM) that lies inside the cerebrospinal fluid (CSF)
and outside the white matter (WM) of the brain. If the opening at the brain stem is artificially
closed, the surface of the cortex has the topology of a sphere, and the major topological problem that
results from an incorrect digitization or segmentation is the presence of handles in the reconstructed
surface [24].

Algorithms for segmenting and reconstructing cortical models can be broadly divided into two
types: those that incorporate some sort of topology-preserving mechanism into the segmentation
process [20, 21, 25, 26], and those that that do not [22, 29, 23, 24, 28, 27]. The topology-preserving
algorithms typically start with a surface of known topology and then iteratively warp it so that it
closely approximates the geometry of the cortical surface. There are two major problems regarding
topology-preserving segmentation algorithms. First, they may lead to large geometric inaccuracies.
Second, they also require an initialization close to the cortex. So, correcting the cortex topology
is often necessary, either before or after an initial, unconstrained segmentation [27], which can be
performed using local intensity, prior probabilities, and geometric information without regard to
topology [30].

There are several algorithms to retrospectively correct the topology of an already segmented
MR brain image. The underlying idea behind them is to identify handles and then choose between
cutting a handle or filling a hole. Some algorithms assume that the handles are located at the
thinnest parts of the image region of interest, and make their decision by minimally modifying the
region or a triangulated surface approximating the region boundary [23, 24]. Although they often
lead to accurate results, topological corrections may not be optimal. Some other algorithms have
achieved better results by integrating statistical or geometric information to the decision making
process [22, 29, 28]. More recently, Bazin and Pham [27] proposed an algorithm that corrects
the topology of an already segmented image using a topology-preserving distance function. Their
algorithm modifies the color associated with the image points in order to preserve the topology of
an isosurface defined by a distance function. The topological changes are detected by keeping track
of the function critical points.

There are two major differences between the above algorithms and the repairing algorithms

1The algorithm in [19] inserts extra “slices” in the original image.
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presented here. First, the above algorithms assume that the desired topology is known a priori,
while our repairing algorithms do not. More specifically, our repairing algorithms solve a related,
but yet different problem from the one of correcting topology: the problem of restoring the manifold
property of digital sets. In this problem, the correct topology is not known and the goal is to obtain
a well-composed image that is similar to the input image. The topology of the resulting image may
not be correct. As we pointed out before, there are several applications in computer graphics, image
processing, and computer vision that can benefit from dealing with well-composed images. Second,
most of the above topology correction algorithms are restricted to correcting the topology of MR
images of the human brain cortex, while our repairing algorithms may be applied to more general
MR images.

Our repairing algorithms are also related to algorithms for simplifying the topology of shapes
represented by 3D digital images [31, 32, 33, 34]. By “simplifying topology”, we mean the removal
of topological artifacts in the form of tiny handles from the image isosurfaces. These nearly invisible
artifacts are responsible for slowing down the performance of algorithms for isosurface simplification,
remeshing, and parametrization. Like the repairing algorithms presented here, the simplification
algorithms in [31, 32, 33, 34] do not assume any prior knowledge of the correct topology, and they
also produce images that are suitable for some particular applications. Despite these similarities,
the images produced by topology simplification algorithms are not necessarily well-composed, and
the underlying ideas of some of those algorithms are quite different from the ones of our repairing
algorithms.

3 Preliminaries

This section introduces some basic concepts of digital topology, which is the field that studies the
topological properties of digital images. We refer the reader to [35, 36] for detailed discussions of
the concepts introduced here.

For any positive integer δ, let

δZ
3 = {(δ · z1, δ · z2, δ · z3) ∈ Z

3 | (z1, z2, z3) ∈ Z
3}.

Every point p in δZ
3 is called a grid point and is the center of a grid cube with edges of length

δ ∈ R
+, oriented parallel to the Cartesian coordinate axes. We denote the grid cube centered at p

by V(p), and we commonly refer to a grid cube as a voxel, to a corner of a voxel as a grid vertex,
to an edge of a voxel as a grid edge, and to the side of a voxel as a grid square. Note that a grid
vertex may be a point in R

3.

In what follows we define several important adjacency and connectedness relations on δZ
3, for

any positive integer δ:

Definition 3.1. Two distinct points p = (p1, p2, p3) and q = (q1, q2, q3) of δZ
3 are said to be face-
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adjacent if |p1 − q1| + |p2 − q2| + |p3 − q3| = δ, or equivalently, if V(p) and V(q) share a grid
square.

Definition 3.2. Two distinct points p = (p1, p2, p3) and q = (q1, q2, q3) of δZ
3 are said to be edge-

adjacent if |pi − qi| = δ and |pj − qj| = δ, for any i, j ∈ {1, 2, 3}, with i 6= j, and pk = qk, for
k ∈ {1, 2, 3}, with k 6= i and k 6= j; or equivalently, if V(p) and V(q) share a grid edge but not a
grid square.

Definition 3.3. Two distinct points p = (p1, p2, p3) and q = (q1, q2, q3) of δZ
3 are said to be corner-

adjacent if |pi − qi| = δ, for all i ∈ {1, 2, 3}, or equivalently, if V(p) and V(q) share a grid vertex
but not a grid edge.

For an example, refer to Figure 1 and suppose that the points a, b, c, and d in the figure are
all grid points of the set δZ

3. Then, points a and b are face-adjacent, points b and c are edge-
adjacent but not face-adjacent, and points c and d are corner-adjacent but not edge-adjacent nor
face-adjacent.

a b

c

d

x

y

z

R
3

Figure 1: Four points of δZ
3 and their corresponding voxels.

The face-adjacency relation is also known as 6-adjacency. Two other relevant adjacency relations
are the 18- and 26-adjacency relations. Two distinct points of δZ

3 are said to be 18-adjacent if
they are face- or edge-adjacent, and 26-adjacent if they are face-, edge-, or corner-adjacent. For
instance, in Figure 1, points a and b are 6-adjacent, 18-adjacent, and 26-adjacent, points b and c
are 18-adjacent and 26-adjacent but not 6-adjacent, and points c and d are 26-adjacent but not
18-adjacent.

Definition 3.4. Let A be any subset of points of δZ
3, and let ρ ∈ {6, 18, 26}. For any p and q in

A, the sequence 〈x(0), . . . , x(n)〉 of points of A, where n ∈ Z, with n ≥ 0, is said to be a ρ-path in A
connecting p to q if x(0) = p, x(n) = q, and x(i−1) is ρ-adjacent to x(i), where i ∈ Z and 1 ≤ i ≤ n.
In particular, there are ρ-paths of length zero; for instance, 〈p〉. We refer to ρ-paths of length zero
as trivial paths. If there is a ρ-path in A connecting p to q then we say that p is ρ-connected in A
to q.
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Definition 3.5. Let A be any subset of points of δZ
3, and let ρ ∈ {6, 18, 26}. We say that A

is ρ-connected if for all p, q ∈ A, there is a ρ-path in A connecting p to q. If B is a maximal
ρ-connected subset of A then we say that B is a ρ-connected component, or simply ρ-component,
of A.

For an example, suppose that A is the set of points in Figure 1. Then, point a is 6-connected to
point b, 18-connected to point c, and 26-connected to point d. So, there is a 26-path of length 3 in
A connecting a to d. We also have that A is 26-connected and that B = {a, b, c} is a 18-component
of A. Note that ρ-connectedness is an equivalence relation, i.e., it is reflexive, symmetric, and
transitive. So, every ρ-component of A is nonempty and any two distinct ρ-components of A are
disjoint.

Definition 3.6. Let A be any subset of δZ
3. We define the set

bd(A) = {(p, q) ∈ δZ
3 × δZ

3 | p ∈ A, q ∈ A, and p and q are face-adjacent},

which is called the digital boundary in δZ
3 between A and A, where A is the complement of A with

respect to δZ
3.

Given any subset A of δZ
3, we define

V(A) =
⋃

p∈A

V(p) and V(bd(A)) =
⋃

(p,q)∈bd(A)

(V(p) ∩ V(q)),

i.e., V(A) is the point set corresponding to the union of all voxels of points in A, and V(bd(A)) is
the point set corresponding to the union of all grid squares shared by a point in A and a point not
in A. Note that V(bd(A)) is the (topological) boundary of V(A) in R

3. We call V(A) and V(bd(A))
the continuous analog of A and the continuous analog of the digital boundary in δZ

3 between A and
A, respectively [3].

Definition 3.7. A 3D digital (multivalued) image is a function

F : Gn1,n2,n3,δ → C

from a nonempty and finite subset of δZ
3,

Gn1,n2,n3,δ = {(g1, g2, g3) ∈ δZ
3 | gi = δ · di, di ∈ [1, ni], i ∈ {1, 2, 3}},

where n1, n2, n3, and δ are all positive integers, to a nonempty and finite subset of Z. The domain
Gn1,n2,n3,δ of F is called a 3D grid with spacing δ and size n1 × n2 × n3. The elements of the
co-domain C of F are called colors. So, the image F assigns a color F(p) from C to each grid point
p ∈ Gn1,n2,n3,δ.
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A special type of 3D digital image is the 3D binary image which is a two-valued 3D digital image
whose co-domain is {0, 1}. We shall denote a 3D binary image F by the pair (Gn1,n2,n3,δ, X), where
Gn1,n2,n3,δ is the image grid and X is the subset of all points p of Gn1,n2,n3,δ such that F(p) = 1.
We commonly refer to X and to Gn1,n2,n3,δ − X as the foreground and background of the image
(Gn1,n2,n3,δ, X), respectively. From now on, we will assume that δ = 1. The reason is that the
algorithms and proofs described henceforward do not depend on the “size” of the image voxels, and
the use of δ as an arbitrary parameter can mislead the reader to think otherwise. For simplicity,
we will also let G denote a 3D grid Gn1,n2,n3,1 with spacing 1 and size n1 × n2 × n3, for some given
positive integers n1, n2, n3, and we may sometimes denote the foreground and background of (G, X)
by X1 and X0, respectively.

4 3D Well-Composed Images

This section gives the formal definition of 3D well-composed images and provides a characteriza-
tion of 3D well-composed images in terms of certain configurations of grid points, called critical
configurations.

Definition 4.1 ([3]). Let (G, X) be any 3D digital binary image. We say that (G, X) is a 3D well-
composed binary image, or simply well-composed, if, and only if, the continuous analog V(bd(X1))
of the digital boundary bd(X1) in Z

3 between X1 and X1 = (Z3−X1) is a (topological) surface (i.e.,
a 2D manifold) in R

3.

Recall that a subset S ⊂ R
3 is called a topological surface, or just surface for short, if each point

p ∈ S has an open neighborhood Nǫ(p) = {q ∈ S | d(p, q) < ǫ} that is homeomorphic to the open
disk

D
2 = {x = (x1, x2) ∈ R

2 | x2
1 + x2

2 < 1},
where d(x, y) is the Euclidean distance from x to y, with x, y ∈ R

3, and ǫ is some positive real
number.

For instance, if (G, X) is the binary image whose foreground X1 = X is the set of points
{a, b, c, d} in Figure 1, then (G, X) is not well-composed, as any point in the edge V(b) ∩ V(c), as
well as the point V(c) ∩ V(d), have no open neighborhood that is homeomorphic to D

2. But, if X1

is the set {a, b}, then (G, X) is well-composed, as V(bd(X1)) is the boundary of a parallelepiped
(i.e., a surface in R

3).

Although Definition 4.1 does not provide us with any explicit property that could be used
to decide whether a given image is well-composed, well-composedness is indeed equivalent to the
absence of certain configurations of subsets of four and eight points of the image grid as defined
below (refer to Figure 2):
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Definition 4.2. Let A be any set of four points of G. We say that A is an instance of the critical
configuration 1 in (G, X), or C1 for short, if two points of A are in X1, the other two are in X1,
the two points in X1 (resp. X1) are edge-adjacent, and the voxels of the four points share an edge.

Definition 4.3. Let A be any set of eight points of G. We say that A is an instance of the critical
configuration 2 in (G, X), or C2 for short, if two (resp. six) points of A are in X1, the other six
(resp. two) are in X1, the two points in X1 (resp. X1) are corner-adjacent, and the voxels of the
eight points share a corner.

(b)(a)

Figure 2: . (a) Critical configuration 1. (b) Critical configuration 2. For the sake of clarity, only
the two voxels in X1 (or X1) are shown in (a), and only the two (or six) voxels in X1 (or X1) are
shown in (b).

The following theorem stated and proved by Latecki [3] establishes an equivalence between a
3D well-composed image and the absence of instances of the critical configurations 1 and 2 in the
image grid:

Theorem 4.1. A 3D digital binary image (G, X) is well-composed if, and only if, there is no
instances of C1 and C2 in (G, X).

There is a straightforward algorithm to decide whether a given 3D digital binary image (G, X)
is well-composed: for each subset A of four (resp. eight) points of G, whose voxels share an edge
(resp. a corner), it suffices check if A is an instance of C1 (resp. C2) in (G, X) using Definitions 4.2
and 4.3.

Theorem 4.1 also implies that there is only one kind of ρ-connectedness in well-composed images,
for ρ ∈ {6, 18, 26}; that is, every 26-component of the foreground X (resp. background X0) of (G, X)
is a 18-component of X (resp. X0), which in turn is a 6-component of X (resp. X0). However, the
converse is not generally true; that is, if every 26-component of X (resp. X0) is a 18-component
of X (resp. X0), and every 18-component of X is a 6-component of (resp. X0), the image is not
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necessarily well-composed. For instance, suppose that G is the grid [0, 3]× [0, 3]× [0, 1], and let X
be the set

X = {(1, 1, 0), (2, 2, 0)} ∪ {(x, y, z) ∈ G | z = 1} ,
as shown in Figure 3. Note that the foreground X (resp. background X0) of (G, X) has only one
ρ-component, for any ρ ∈ {6, 18, 26}. The 26-component of X (resp. X0) is a 18-component of X
(resp. X0), and the 18-component of X (resp. X0) is in turn a 6-component of X (resp. X0). Yet,
(G, X) is not well-composed.

(b)(a)

Figure 3: (a) Points with coordinates (x, y, 0) and (b) points with coordinates (x, y, 1) of the 3D
binary digital image (G, X), where G = [0, 3]×[0, 3]×[0, 1] and X = {(1, 1, 0), (2, 2, 0)}∪{(x, y, z) ∈
G | z = 1}. Foreground and background points are represented by open circles and solid circles,
respectively.

5 A Repairing Algorithm for 3D Binary Images

This section presents a new algorithm for repairing a given 3D binary image (G, X) that is not
well-composed. By repairing, we mean to produce a 3D well-composed binary image (G, X ′) by
iteratively changing the color value of certain background of (G, X), so that they become foreground
points of (G, X ′). The algorithm is randomized and has linear space and time complexities in |G|,
where |G| is the number of grid points. The input of the algorithm consists of G and X, and its
output is X ′.

To compute X ′, the algorithm finds a subset P of the background X0 of (G, X) such that
(G, X ∪ P ) is well-composed, and then lets X ′ = X ∪ P . So, P can be viewed as a subset of
the background whose assigned colors are changed from 0 to 1 in order to produce (G, X ′). Such
a subset P always exists, as P = X0 would make (G, X ∪ P ) = (G, G), which is clearly a well-
composed image. However, in the context of practical applications, it is important to have (G, X)
and (G, X ′) as similar as possible.
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We can maximize the similarity between (G, X) and (G, X ′) by finding the smallest subset P
of X0 such that (G, X ∪ P ) is well-composed. We can trivially do that by enumerating and testing
all subsets of X0. However, this procedure has exponential time complexity in the size |G| of G,
which rules out its practical use. Our algorithm is not guaranteed to find a smallest set P , but it
has linear time complexity in |G|. Furthermore, the size of the sets P computed by our algorithm
when tested against biomedical images typically found in practical applications were satisfactorily
small (see Section 7).

The algorithm starts by letting P = ∅. Then, it loops over all points of G seeking for instances
of C1 and C2 in (G, X). If no instance of a critical configuration is found, the algorithm terminates
with X ′ = X. Otherwise, for each instance of C1 and C2, the algorithm iteratively inserts points
from X0 − P into P until the image (G, X ∪ P ) becomes well-composed. Every time the algorithm
inserts one or more points into P , it eliminates at least one instance of C1 or C2 from the current
image, (G, X ∪ P ). However, the point insertion operation may also give rise to other instances of
C1 and C2 in (G, X ∪ P ), which will be eventually eliminated from the resulting image by further
point insertions.

5.1 The Elimination of Critical Configurations

Let n1, n2, n3 be the positive integers defining G (see Definition 3.7), and for any p = (p1, p2, p3) ∈ Z
3,

let

Nx(p) = {(p1, y, z) | y ∈ {p2, p2 + 1} and z ∈ {p3, p3 + 1}},
Ny(p) = {(x, p2, z) | x ∈ {p1, p1 + 1} and z ∈ {p3, p3 + 1}},
Nz(p) = {(x, y, p3) | x ∈ {p1, p1 + 1} and y ∈ {p2, p2 + 1}},

and
N (p) = {p1, p1 + 1} × {p2, p2 + 1} × {p3, p3 + 1}.

Figure 4 illustrates the above definitions.

We also define
J (p) = {Nx(p),Ny(p),Nz(p),N (p)}.

If any of Nx(p), Ny(p), Nz(p) is an instance of C1 in (G, X), we say that J (p) contains an instance
of C1. Likewise, if N (p) is an instance of C2 in (G, X), we say that J (p) contains an instance of
C2. Note that each instance of C1 consists of the four points in one of Nx(p), Ny(p), and Nz(p),
for some p ∈ G. Likewise, each instance of C2 consists of the eight points in N (p), for some p ∈ G.
Note also that if N (p) is an instance of C2 in (G, X), then none of Nx(p), Ny(p), and Nz(p) can be
an instance of C1 in (G, X). Conversely, if at least one of Nx(p), Ny(p), and Nz(p) is an instance
of C1 in (G, X) then N (p) cannot be an instance of C2 in (G, X). So, either J (p) contains no
instances of a critical configuration, or it contains at least one instance of C1, or it contains exactly
one instance of C2.
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Figure 4: Illustration of the definitions of Nx(p), Ny(p), Nz(p), and N (p). Points in Nx(p), Ny(p),
Nz(p), and N (p) are represented by solid circles.

The above observations led us to a simple procedure to find all instances of C1 and C2 in the
input image, (G, X). Let Q be an empty queue. For each point p ∈ G, check if J (p) contains a
critical configuration. If so, we insert p into Q. If Q remains empty then (G, X) has no critical
configurations and the algorithm terminates with X ′ = X. Otherwise, the algorithm initiates the
step of elimination of critical configurations. Note that a point p ∈ G is in Q if, and only if, J (q)
contains an instance of C1 or C2. For the purpose of the description of the algorithm, let us assume
that Q is not empty.

The step of elimination of critical configurations is basically a loop that iterates until the queue
Q becomes empty. For the time being, assume that Q will become empty after a finite number,
n, of iterations of the loop. Then, for each i ∈ {1, . . . , n}, the i-th iteration of the loop removes
exactly one point q from Q and produces the i-th subset, X(i), of a sequence, X(1), . . . , X(n), of
subsets of G, where X ⊂ X(1) and X(j−1) ⊂ X(j), for each j ∈ {2, . . . , n}. More specifically, for
each i ∈ {1, . . . , n}, the subset X(i) is obtained by letting X(i) = X(i−1) ∪S(i), where X(0) = X and
S(i) ⊆ (X0 − X(i−1)). In other words, S(i) is a subset of the background of the image (G, X(i−1)),
and hence the foreground, X(i), of (G, X(i)) is a superset of the foreground, X(i−1), of (G, X(i−1)).
The set S(i) is carefully chosen by the algorithm in such a way that J (q), where q is the point
removed from Q at the beginning of the i-th iteration, does not contain any critical configuration
with respect to (G, X(i)). When the loop ends, we let X ′ = X(n), which is equivalent to say that
X ′ = X ∪ P , with

P =
n

⋃

i=1

S(i) .

To efficiently compute the set S(i), the algorithm relies in three simple facts. First, if q is the
point removed from Q in the i-th iteration and J (q) contains an instance, A, of C1 or C2 in
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(G, X(i−1)), then all points of A must belong to G, as G is a rectangular grid. Second, it can be
shown that A will not be a critical configuration in (G, X(i)) only if a subset of the background
points of (G, X(i−1)) that belong to A are inserted into S(i). So, the set S(i) can always be computed
and the choices of points of (X0 − X(i−1)) to be inserted into S(i) are limited to the background
points of (G, X(i−1)) in A. Third, the set J (q) contains either 0, exactly one, exactly two, or exactly
three instances of C1 in (G, X(i−1)), or exactly one instance of C2 in (G, X(i−1)); that is, these five
cases are mutually exclusive.

For each of the four mutually exclusive cases in which J (q) contains an instance of C1 or C2,
the algorithm computes a set of sets denoted by B(q). The elements of B(q) are called choices, and
S(i) is chosen to be one of the elements of the choices. Table 1 describes the choices of B(q) in each
case, and Figures 5-9 illustrates these cases. To choose a subset S(i) ∈ B(q), the algorithm follows a
simple rule of choice: pick a choice, S(i), of B(q) such that (G, X(i)) does not contain any instance
of C1 or C2 that is not also in (G, X(i−1)). If there is more than one choice, pick the one with
smallest cardinality. If there is still a tie, break it at random. Finally, if every choice is such that
(G, X(i)) contains an instance of C1 or C2 that is not in (G, X(i−1)), then pick any S(i) at random.

Case #C1 #C2 B(q) Figure

A1 1 0 {{a}, {b}} 5
A2 2 0 {{a}, {b, c}} 6

A3(1) 3 0 {{a}, {b, c, d}} 7
A3(2) 3 0 {{b, c}, {b, d}, {c, d}} 7
B(1) 0 1 {{a}, {b}} 8
B(2) 0 1 {{a}, {b}, {c}, {d}, {e}, {f}} 9

Table 1: Description of the choices of B(q) for each of the four mutually exclusive cases (and
their sub-cases) in which C(p) contains an instance of C1 or C2: case denomination (first column),
number of instances of C1 in J (q) (second column), number of instances of C2 in J (q) (third
column), the choices of B(q) (fourth column), and the number of the figure illustrating the choice
(fifth column).

It is straightforward to verify that J (q) cannot contain any instance of C1 nor C2 in (G, X(i))
if, and only if, S(i) ⊆ (X0−X(i−1)) is one of the choices of B(q). To decide whether a choice for S(i)

is such that (G, X(i)) contains an instance of C1 or C2 that is not in (G, X(i−1)), the algorithm does
not have to verify all configurations Nx(p), Ny(p), Nz(p), and N (p), for every point p ∈ G. Since
X(i) = X(i−1) ∪ S(i), it suffices to consider the points that are 26-adjacent to any point in N (q), or
equivalently, the points of the 4× 4× 4 grid

[q1 − 1, q1 + 2]× [q2 − 1, q2 + 2]× [q3 − 1, q3 + 2] ⊂ Z
3,

where (q1, q2, q3) are the coordinates of q. So, testing for newly created critical configurations in
(G, X(i)) can be done in constant time. Finally, for each newly created critical configuration, J (p),
in (G, X(i)), the point p is inserted into Q.
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Figure 5: Illustration of case A1 in Table 1. Points a and b are the two background points of
(G, X(i−1)) that belong to the instance of C1.

A pseudo code for the step of elimination of critical configurations is given below:

(01) P ← ∅
(02) while Q is not empty do

(03) q ← DEQUEUE(Q)
(04) if J (q) contains a critical configuration of (G, X ∪ P ) then

(05) compute B(q)
(06) choose S from B(q) according to the rule of choice
(07) endif

(08) for each p ∈ G such that J (p) contains a newly created critical configuration do

(09) ENQUEUE(p,Q)
(10) endfor

(11) let P ← P ∪ S
(12) endwhile

(13) return X ′ = X ∪ P

It remains to be discussed the fact that the queue Q will eventually become empty, which implies
the termination of the algorithm. Indeed, this fact follows from the following observations: (1) the
while loop is entered if, and only if, Q is not empty; (2) every loop iteration of the algorithm
removes exactly one point from Q and inserts none, one or more points into Q; (3) each point of
G can be inserted into Q at most four times. In particular, every time a point p of G is inserted
into Q, one element of J (p) is a newly created critical configuration in (G, X ∪ P ). But, each of
Nx(p), Ny(p), Nz(p), and N (p) can become a new critical configuration only once, as the color of
the points are changed from 0 to 1 only. So, Q will eventually become empty, and the algorithm
will terminate.
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Figure 6: Illustration of all occurrences of case A2 in Table 1. The foreground and background
points of (G, X(i−1)) that belong to the two instances of C1 are shown as open and solid circles,
respectively.
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Figure 7: Illustration of the sub-cases, (1) and (2), of case A3 in Table 1. The foreground and
background points of (G, X(i−1)) that belong to the two instances of C1 are shown as open and
solid circles, respectively.
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Finally, observations (1), (2), and (3) also imply that the loop cannot iterate more than 4 · |G|
times. Since each loop iteration runs in constant time, the time complexity of the algorithm is
O(|G|). The space complexity (i.e., the amount of memory usage) is also clearly O(|G|). It is worth
to remark that we can also obtain a well-composed image from (G, X) by executing our algorithm
on (G, G−X). However, the resulting well-composed image is not necessarily the same as the one
obtained by executing the algorithm on (G, X).
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Figure 8: Illustration of the sub-case (1) of case B in Table 1. Points a and b are the background
points of (G, X(i−1)) that belong to the instance of C2.
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Figure 9: Illustration of the sub-case (2) of case B in Table 1. Points a, b, c, d, e, and f are the
background points of (G, X(i−1)) that belong to the instance of C2.

5.2 How Effective is the Algorithm?

The randomized algorithm described in the previous section does not necessarily find a smallest set
P of background points of (G, X) such that (G, X ∪P ) is well-composed. Actually, the set P can in
principle be the entire set X0 of background points of (G, X). So, it is natural to ask ourselves how
effective the algorithm really is. Here, we derive a probabilistic upper bound for the expected size of
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the set P computed by the algorithm. The size |P | of P is bounded above by m+ t, where m is the
number of critical configurations in (G, X) and t is the number of critical configurations created by
the algorithm to generate the well-composed image (G, X ′), where X ′ = X ∪P . This is because the
number |S| of points of the set S ⊆ (X0 − P ) computed by the algorithm (see Line (06)) is always
smaller than or equal to the number of critical configurations in J (q). So, |P | cannot exceed m+ t.
We can view m as an intrinsic feature of (G, X). In contrast, we can view t as an intrinsic feature
of the algorithm, and hence we derive an upper bound for the expected value of t, E[t], in terms of
m.

Recall that before the while loop is entered, the queue Q contains all points q ∈ G such that
J (q) contains at least one instance of a critical configuration of (G, X). Let R be the set of points
of Q before the loop is entered. The size, |R|, of R is at most m. Let r(j) ∈ R be the point removed
from Q in the j-th iteration of the loop. Let C(r(j)) denote the number of new critical configurations
of (G, X(j)) created by the algorithm in the j-th iteration (i.e., the number of critical configurations
that are in (G, X(j)) but not in (G, X(j−1)).) Since Q is a queue, the point r will be removed
from Q before the removal of any point inserted into Q in the end of the j-th iteration. Since
Nx(p) 6= Nx(s), Ny(p) 6= Ny(s), Nz(p) 6= Nz(s), and N (p) 6= N (s), for any two points p, s ∈ G,
with p 6= s, the total number, t′, of critical configurations created by the algorithm until the |R|-th
iteration is then

t′ =

|R|
∑

j=1

C(r(j)) .

Let us consider C(r(j)) as a random variable. Then, the expected value, E[t′], of t′ is given by

E[t′] = E
[

|R|
∑

j=1

C(r(j))
]

=

|R|
∑

j=1

E[C(r(j))] ,

where E[C(r(j))] is the expected value of C(r(j)). By definition of expected value, E[C(r(j))] is
given by

E[C(r(j))] =
N

∑

i=0

i · P{C(r(j)) = i},

where P{C(r(j)) = i} is the probability that C(r(j)) is equal to i, and N is the largest value of C(r(j)).
So, if we are able to compute P{C(r(j)) = i}, for each i ∈ {0, . . . , N} and each j ∈ {1, . . . , |R|}, we
can compute E[t′].

Recall that the set S = S(j), computed by the algorithm in the j-th iteration of the loop, can
only contain points from the set N (r(j)). So, if any new instance of a critical configuration is created
in (G, X(i)), this instance must belong to the 4× 4× 4 grid,

G(r(j)) = [r
(j)
1 − 1, r

(j)
1 + 2]× [r

(j)
2 − 1, r

(j)
2 + 2]× [r

(j)
3 − 1, r

(j)
3 + 2] ⊂ Z

3 ,
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where (r
(j)
1 , r

(j)
2 , r

(j)
3 ) are the coordinates of r(j). So, to compute P{C(r(j)) = i}, we can restrict our

attention to G(r(j)). In what follows, we compute P{C(r(j)) = i} by making the following three
simplifying assumptions:

1) The restriction of the input image (G, X) to G(r(j)) is equally likely to be any of the 264

binary images in the set
H = {(G(r(j),W ) | W ⊆ G(r(j)} .

2) Any choice of B(r(j)) is equally likely to be selected by the algorithm to be the set S(j).

3) The random variables, C(r(1)), . . . , C(r(|R|)), are independent.

The first assumption implies that the probability, P{(G(r(j)) ∩ X) = W}, that the restriction of
(G, X) to G(r(j)) is equal to (G(r(j)),W ) is 1/|H|. The third assumption means that the elimination
of all critical configurations of C(r(j)) does not change the color of the points of (G, X) in the grids
G(r(j+1)), . . . , G(r(|R|)). In turn, this means that P{(G(r(j)) ∩ X(j)) = W} = P{(G(r(j)) ∩ X) =
W} = 1/|H|.

Let P{S(j)} denote the probability that a given set S of B(q) is chosen by the algorithm. Then,
for any 0 ≤ i ≤ N , the probability that the algorithm will create exactly i new critical configurations
in (G, X(j)) is

P{S(j)} · I(S(j),W, i),

where I(S(j),W, i) is an indicator random variable that is equal to 1 if the algorithm creates exactly
i new critical configurations in (G, X(j)), and is equal to 0 if no new critical configuration is created.
So,

P{C(r(j)) = i} =
∑

(G(r(j)),W )∈H

P{(G(r(j) ∩X(j)) = W} ·
(

∑

S∈B(r)

P{S(j)} · I(S(j),W, i)
)

.

By assuming that the third assumption holds, we built a computer program to calculate the values
of P{S(j)} and I(S(j),W, i) for all possible binary images (G(r(j)),W ) ∈ H, all sets of choices
S ∈ B(r), and all values of i, with 0 ≤ i ≤ N , where N = 36 is the largest value of C(r(j)), which
can also be determined by a computer program. This is because G(r(j)) has only 264 points, and
we can compute the above unknowns by case enumeration. Our program computed the following
values for P{C(r(j)) = i}: P{C(r(j)) = 0} = 0.837498, P{C(r(j)) = 1} = 0.0916715, P{C(r(j)) =
2} = 0.0411385, P{C(r(j)) = 3} = 0.0160874, P{C(r(j)) = 4} = 0.00726092, P{C(r(j)) = 5} =
0.0036895, P{C(r(j)) = 6} = 0.00173523, P{C(r(j)) = 7} = 0.00070917, P{C(r(j)) = 8} =
0.000186012, P{C(r(j)) = 9} = 2.32515× 10−5, and P{C(r(j)) = k} < 10−8, for all 9 < k ≤ 36. So,
we get

E[C(r(j))] =
N=36
∑

i=0

i · P{C(r(j)) = i} = 0.286775.
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Now, we can derive an upper bound for

E[t′] =

|R|
∑

j=1

E[C(r(j))]

in terms of m. Since |R| ≤ m and E[C(r(j))] = 0.286775, we have that

E[t′] =

|R|
∑

j=1

E[C(r(j))] = 0.286775 · |R| ≤ 0.286775 ·m <
m

3
.

The above upper bound for E[t′] can be used to find an upper bound for E[t], the expected number
of new critical configurations created during the entire execution of the algorithm. In order to
do that, we suppose that the assumptions 1), 2), and 3) also hold for the t newly created critical
configurations.

Since our repairing algorithm uses a queue to keep track of critical configurations, we can think of
the whole process of elimination of critical configurations as carried out in K steps, for some positive
integer K. More specifically, the first step consists of the elimination of all critical configurations
in the input image, (G, X). The second step consists of the elimination of all critical configurations
created as a result of eliminating the critical configurations of the first step, and so on. For each
h ∈ {1, . . . , K}, let mh denote the total number of critical configurations created in the h-th step.
Note that mh = 0 for h = K, as the resulting image (i.e., (G, X ′)) has no critical configurations.
We already know that E[m1] < m/3. So, let {1, . . . ,Mh} be all possible values of mh, and assume
that each mh, for 2 ≤ h < K, takes any value from {1, . . . ,Mh} with equal probability. Then, for
any integer i, with 2 ≤ i < K,

E[mi] =

Mi−1
∑

l=1

P{mi−1 = l}
(

∑

q∈Ql

E[C(q)]
)

where Ql consists of all points q in Q that are removed from Q during the i − 1 step, and J (q)
contains a critical configuration in the image produced by the while loop iteration that precedes
the iteration in which q is removed from Q. Since mi−1 is any of 1, . . . ,Mi−1 with equal probability,
we have that

P{mi−1 = l} =
1

|{1, . . . ,Mi−1}|
=

1

Mi−1

,

where |{1, . . . ,Mi−1}| = Mi−1 is the size of {1, . . . ,Mi−1}. So, the expected value E[mi] of mi is
given by

E[mi] =
1

Mi−1

Mi−1
∑

l=0

(

∑

q∈Ql

E[C(q)]
)

.
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Using the argument for deriving E[m1] again, we get

∑

q∈Ql

E[C(q)] = 0.286775 · |Ql| ,

where |Ql| is the size of Ql. Thus,

E[C(q)] ≤ 0.286775 · l <
l

3
and E[mi] <

1

3
·
∑

l∈{1,...,Mi−1}
l

Mi−1

.

But,
∑

l∈{1,...,Mi−1}
l

Mi−1

is precisely the expected value of mi−1. So, E[mi] < 1
3
· E[mi−1], and

E[t] = E
[

K
∑

k=1

mk

]

= E
[

K−1
∑

k=1

mk

]

=
K−1
∑

k=1

E[mk] <

K−1
∑

k=1

(1

3

)k

·m <

∞
∑

k=1

(1

3

)k

·m =
m

2
.

So, we have the following theorem:

Theorem 5.1. Let (G, X) be a 3D binary image with m critical configurations. If assumptions 1),
2), and 3) hold, then the expected value E[t] of the number t of critical configurations created by
our algorithm on input (G, X) is less than m

2
.

At first glance, the third assumption may not seem reasonable, but there are two reasons
for making this assumption. First, it makes it easier to compute a probability distribution for
P{C(r(j)) = i}. Second, as j gets larger, the probability that G(r(j)) ∩ X(j) has more foreground
than background points increases. So, P{C(r(j)) = i} will be larger for smaller values of i. Since we
are interested in an upper bound for E[t′], assumption 3) is reasonable for the purpose of obtaining
this upper bound. Finally, since the size, |P |, of the set P obtained by the repairing algorithm is
bounded above by m + t, Theorem 5.1 implies that the expected size E[|P |] of P is bounded above
by 3m

2
.

5.3 Topological Repairing and Morphological Operators

It is tempting to think that one can repair a 3D digital binary image, which is not well-composed,
using a combination of dilations and erosions. Unfortunately, such a morphological operation may
not work, as a new critical configuration may always arise as the result of the elimination of another
one. For the sake of clarity, we illustrate this fact using a 2D digital binary image (G, X) shown in
Figure 10(a), where G = [1, 7] × [1, 7]. Figure 10(b) shows the image resulting from a dilation of
the image in Figure 10(b) using a 2× 2 neighborhood as the structuring element, and Figure 10(c)
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shows the image resulting from an erosion of the image in Figure 10(a) using the same structuring
element.

Although the only instance of C1 in the image in Figure 10(a) has been removed from the dilated
image in Figure 10(b), another instance of C1 has been created. Similarly, the only instance of C1 in
the image in Figure 10(b) has been eliminated from the eroded image in Figure 10(c), but another
one has been created. Note that we can obtain the image in Figure 10(b) by dilating the image
in Figure 10(c). Note also that the images in Figure 10(a) and 10(c) are the same, which means
that the image in Figure 10(a) is invariant with respect to the composition of dilation followed by
erosion.

The counterexample just presented shows that the composition of dilation followed by erosion
cannot repair any given 2D digital binary images. A similar counterexample can be built to show
that the composition of erosion followed by dilation cannot repair any given 2D digital binary
images either. Finally, analogous examples can be given for a 3D digital binary images, which
can be thought of as consisting of three “stacked” copies of the 2D digital binary image shown in
Figure 10(a).

(c)(a) (b)

Figure 10: (a) A 2D digital binary image (G, X), where G = [1, 7]× [1, 7] ⊆ Z
2. (b) The 2D digital

binary image resulting from a dilation of the image in (a). (c) The 2D digital binary image resulting
from an erosion of the image in (b). Foreground and background points are represented by open
circles and solid circles, respectively.

6 An Algorithm for Repairing 3D Multivalued Images

This section describes an extension of the algorithm in Section 5 to repairing 3D digital multivalued
images, which are assumed to be the result of multi-object segmentations. More specifically, the
input for the algorithm is the grid G of a 3D digital multivalued image F : G → {c1, . . . , ck}, for
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some integer k, with k > 2, and the k sets X1, . . . , Xk, where Xi = {p ∈ G | F(p) = ci}, for every
i ∈ {1, . . . , k}. The output consists of k sets, X ′

1, . . . , X
′
k, where X ′

i = {p ∈ G | F ′(p) = ci} and
F ′ : G→ {c1, . . . , ck} is a 3D multivalued well-composed image, i.e., each binary image (G, X ′

i) is a
well-composed image.

The motivation for extending our repairing algorithm to 3D digital multivalued images is that
such images may represent the segmentation of other 3D digital multivalued images into more than
just background and foreground. This is particularly the case if fuzzy connectedness is employed as
the segmentation paradigm [37, 17]. So, it is natural to think of a repairing approach that modifies
the segmented multivalued image as a whole, so that the repaired image could enjoy the same
benefits as well-composed binary images. Unfortunately, the application of our repairing algorithm
in Section 5 to each binary image (G, X1), . . . , (G, Xm) does not necessarily yield well-composed
images, (G, X ′

1), . . . , (G, X ′
m). The reason is that the repairing of one binary image (G, Xi) may

affect a previously repaired image (G, Xj), for some i, j ∈ {1, . . . ,m}, with i 6= j. Furthermore,
the repeated application of the algorithm in Section 5 to repair the previously repaired images may
never terminate.

The idea behind our extended algorithm is to repeatedly apply a modified version of the algo-
rithm in Section 5 to the images (G, X1), . . . , (G, Xk), in this order. Every time the algorithm repairs
the image (G, Xi), for any i ∈ {1, . . . , k}, it can modify a previously repaired image, (G, Xj), for
some j ∈ {i+1, . . . , k}. When (G, X1), . . . , (G, Xk) are all well-composed images after the repairing
of any of them (which eventually happens), the algorithm lets X ′

i = Xi, for each i ∈ {1, . . . , k}, and
terminates.

While repairing (G, Xi), for each i ∈ {1, . . . , k}, the algorithm may insert or remove points from
Xi. Each point inserted into Xi is previously removed from a set Xj, where j ∈ {i + 1, . . . , k}.
Likewise, each point removed from Xi is later inserted into a set Xj, where j ∈ {1, . . . , i− 1}. We
can view these insertion/removal operations as changing the color assigned to a point from cj to
ci (or from ci to cj). This means that the resulting well-composed image depends on the order of
its colors in the sequence c1, . . . , ck. In particular, the components consisting of points assigned
the color c1 can only have their sizes increased, while the components consisting of points assigned
the color ck can only have their sizes decreased. So, before using the algorithm, the color sequence
c1, . . . , ck should be defined according to some rank of importance of the color components of the
input image.

The repairing of each (G, Xi) is carried out in two steps. The first step finds all critical configu-
rations of (G, Xi). More specifically, for each point q ∈ G, if J (q) contains a critical configuration
of (G, Xi) then q is inserted into a queue Qi, which is initially empty. So, (G, Xi) is well-composed
if, and only if, Qi is empty when the first step is over. If at least one of Qi is not empty when the
first step is over, the second step is carried out. Otherwise, the algorithm terminates with X ′

i = Xi,
for all i ∈ {1, . . . , k}. The second step is a slight modification of the algorithm in Section 5. The
goal now is to compute a subset X ′

i of G, for each i ∈ {1, . . . , k}, such that the binary image (G, X ′
i)

is well-composed. Each set X ′
i is made equal to Xi before the second step starts. To compute each
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X ′
i, the algorithm repeatedly considers the queues Q1, . . . , Qk, in this order. For each Qi that is not

empty, the algorithm iteratively removes one point q at a time from Qi, modifies Qi and some of
X1, . . . , Xk, and may eventually insert one or more points from G into any of the sets Q1, . . . , Qk.

Let Qi be the nonempty queue currently considered by the algorithm, for some i ∈ {1, . . . , k},
and let q be the point currently removed from Qi. If J (q) contains a critical configuration of
(G, X ′

i), then the algorithm computes the set B(q) in the same way the repairing algorithm for
binary image does. Next, the algorithm computes a subset of valid choices of B(q), denoted by
B′(q), and defined as

B′(q) = {S ∈ B(q) | (S ∩X ′
j) = ∅, for all j with 1 ≤ j < i}.

The set B′(q) contains only the members S of B(q) whose points are not foreground points of the
images (G, X ′

j), for all j ∈ {1, . . . , i− 1}. So, if the algorithm chooses a set from B′(q) to eliminate
the critical configurations of J (q), it will not change the color of a point from cj to ci with j < i.
Consequently, the images (G, X ′

j), for all j ∈ {1, . . . , i − 1}, will not be modified by the change of
colors.

Unlike the set B(q), the set B′(q) may be empty. This is the case if, and only if, every set
S of B(q) contains a point that belongs to a set X ′

j, with j < i. Whenever B′(q) is not empty,
the algorithm chooses a set S from B′(q) and lets X ′

i = X ′
i ∪ S; that is, every point of S has its

color changed to ci. Next, the algorithm removes the points of S from the corresponding sets X ′
h,

for h ∈ {i + 1, . . . , k}. The choice of S is made by the same rule of choice used by the repairing
algorithm for binary images. If B′(q) contains only one set, S is this set. If B′(q) has two or more
elements, the algorithms picks S such that (G, X ′

i ∪ S) does not contain any critical configuration
that is not also in (G, X ′

i). If there is a tie or if there is no such set, the algorithm picks S at
random.

If B′(q) is empty then there is no point whose color can be changed from cj to ci, with j > i,
in order to eliminate the critical configurations of J (q) in (G, X ′

i). So, we are left with the option
of changing the color assigned with points of X ′

i from ci to some cj, with j < i; that is, we remove
points from X ′

i, or equivalently, insert points into X ′
i. To do that, the algorithm computes B(q) for

the image (G, X ′
i). Since G is a rectangular grid, any critical configuration (G, X ′

i) is also a critical
configuration of (G, X ′

i), and vice-versa. Furthermore, every point of any set S ∈ B(q) is a point
of (G, X ′

i). So, the algorithm can use the same rule of choice used by the repairing algorithm in
Section 5. Next, the algorithm lets X ′

i = X ′
i − S and, for each critical configuration A of (G, X ′

i)
in J (q), the algorithm lets X ′

j = X ′
j ∪ S, where j is the largest integer in {1, . . . , i − 1} such that

(X ′
j ∩ A) 6= ∅.

The motivation for choosing j as the largest integer in {1, . . . , i − 1} such that (X ′
j ∩ A) 6= ∅,

for each critical configuration A of (G, X ′
i) in the set J (q), is two-fold. First, we avoid creating

“isolated” one-voxel, same-colored components. Second, we replace ci with a color cj with the least
degree of “importance” that is larger than the one of ci. This criterion is based on the assumption
that cj is more similar to ci than to any other color ch, with h < j. However, we can easily
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incorporate other criteria for choosing cj into the algorithm. For instance, we could choose cj to be
the color assigned to the majority of the points of A whose color index is smaller than i. However,
whatever criterion is chosen, the resulting well-composed image will depend on the ordering of the
colors determined by the criterion.

After modifying X ′
i and X ′

j, the algorithm finds all points p ∈ G such that J (p) contains a critical
configuration of (G, X ′

i) (resp. (G, X ′
j)), which did not exist before a point of S is inserted or removed

from X ′
i (resp. X ′

j). Next, the algorithm inserts p into Qi (resp. Qj). Like the repairing algorithm
for binary images, the search for p is limited to the grid [p1−1, p1+2]×[p2−1, p2+2]×[p3−1, p3+2],
where (p1, p2, p3) are the coordinates of p. So, each p can be found in constant time. Whenever
Qi becomes empty, (G, X ′

i) is well-composed, and the nonempty queue from {Q1, . . . , Qk} with the
smallest index is considered. In what follows, we present a pseudo code for the algorithm just
described:

(01) X ′
1, . . . , X

′
k ← ∅

(02) while any of Q1, . . . , Qk is not empty do

(03) let i be the smallest integer in {1, . . . , k} such that Qi is not empty
(04) while Qi is not empty do

(05) remove a point q from Qi

(06) if any J (q) contains a critical configuration then

(07) compute B′(q) for (G, X ′
i)

(08) if B′(q) 6= ∅ then

(09) choose S from B′(q) according to the rule of choice
(10) let X ′

i ← X ′
i ∪ S

(11) let X ′
j ← X ′

j − S for all j ∈ {i + 1, . . . , k}
(12) for each j ∈ {i, . . . , k}, for all p ∈ G, find all new critical configurations

of (G, X ′
j) in J (p), and insert p into Qj

(13) else

(14) compute B(q) for (G, X ′
i)

(15) choose S from B(q) according to the rule of choice
(16) let X ′

i ← X ′
i − S

(17) for each A ∈ J (q), find the largest l ∈ {1, . . . , i− 1} such that (X ′
l ∩ A) 6= ∅

(18) let X ′
l ← X ′

l ∪ S
(19) find all new critical configurations Nx(p), Ny(p), Nz(p), or N (p) in (G, X ′

j),
for j = l and j = i and p ∈ G, and insert p into Qj

(19) endif

(20) endif

(21) endwhile

(22) endwhile

(23) return X ′
1, . . . , X

′
k
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The algorithm above always terminates. This is obviously true if the input image F is already
well-composed. So, assume otherwise. The outer while loop (Lines (01)-(22)) is entered whenever
one of Q1, . . . , Qk is not empty. In each iteration of this loop, the nonempty Qi with the smallest
i ∈ {1, . . . , k} is selected, and the inner while loop on (Lines (04)-(21)) iterates until Qi becomes
empty. In each iteration of the inner loop, the algorithm removes a point from Qi and may eventually
insert one or more points in Qi. Since each point p inserted into Qi is a point from G and G is
finite, the algorithm cannot keep inserting points into Qi indefinitely if each point p is inserted into
Qi finitely many times only. The outer while loop is executed whenever one of Q1, . . . , Qk is not
empty. In each iteration of this loop, the nonempty Qi with smallest i ∈ {1, . . . , k} is selected, and
the inner while loop on line (03) iterates until Qi becomes empty. In each iteration of the inner
loop, the algorithm removes a point q from Qi and may eventually insert one or more points in Qi.
Each point inserted into Qi is a point from G.

A point p is inserted into Qi if, and only if, J (p) contains a critical configuration of (G, X ′
i).

Furthermore, once a critical configuration is eliminated from (G, X ′
i) by inserting or removing points

from X ′
i, it can no longer occur in (G, X ′

i). The reason is that the following insertion invariant
holds: every point inserted into X ′

i has been removed from a set X ′
j, with j > i, or dually, every

point removed from X ′
i is inserted into a set X ′

j, with j < i. So, each p ∈ G can be inserted into Qi

at most four times, each of which corresponds to one of Nx(p), Ny(p), Nz(p), and N (p) becoming
a critical configuration. Since G is finite and every iteration of the inner loop removes a point from
Qi, the queue Qi eventually becomes empty just before the end of the n-th iteration of the loop, for
some finite positive integer n. However, Qi may become nonempty again as a result of the repairing
of (G, X ′

j), for some j ∈ {1, . . . ,m}, with j 6= i, which will force the outer while loop to be entered
again. However, since each p ∈ G can be inserted into Qi at most four times, Qi cannot become
nonempty indefinitely, which means that the outer while loop will eventually terminate with all
the queues empty.

The time complexity of the algorithm is O(k · |G|). This follows from the fact that a given point
p ∈ G belongs to exactly one set X ′

i at any given time during the execution of the algorithm, and p
can be removed from a set X ′

i and inserted into a set X ′
j at most k times, for any i, j ∈ {1, . . . , k},

with i 6= j. So, the combined number of iterations of the outer and inner loops is O(k · |G|).
However, the space complexity (memory usage) of the algorithm is still linear in |G|. Although
the extended repairing algorithm was devised for multivalued images, it can be applied to binary
images as well. Given a 3D binary digital image (G, X), if we run the algorithm with X1 = X
and X2 = (G − X), the output will be the same well-composed image obtained by the repairing
algorithm in Section 5 when given (G, X).
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7 Experimental Results

This section describes and discusses some results obtained by running the algorithm in Section 5
and its extension in Section 6 on several 3D digital binary and multivalued images, respectively.
To produce the results, we used the open source and freely available implementations of our repair-
ing algorithms in the National Library of Medicine (NLM) Insight Segmentation and Registration
Toolkit (ITK)2. This toolkit also has an implementation of the repairing algorithm in [16] for 2D
binary images (see [38]).

For the purpose of describing the aforementioned results, we divided the images into three groups
as follows:

G1. This group contains only one image: a 3D digital multivalued image corresponding to a multi-
object segmented normal brain image produced by the brain web MR image simulator [39].
Each point of this image is assigned one of 10 colors from the set {0, 1, . . . , 9}.

G2. This group contains three 3D digital binary images, each of which was obtained from the
multivalued image in G1. In particular, the foreground of the first binary image is the set
of points of the multivalued image in G1 that are assigned color 1 (CSF segmentation); the
foreground of the second binary image is the set of points of the multivalued image in G1 that
are assigned color 2 (gray matter segmentation); and the foreground of the third binary image
is the set of points of the multivalued image in G1 that are assigned color 3 (white matter
segmentation).

G3. For each of the three binary images in G2, we created four binary images with varying levels
of noise as follows: For each image in G2 and each n ∈ {1, . . . , 4}, we created another binary

image by adding Gaussian noise with zero mean and standard deviation equal to (n+1)
10

, and
then thresholded the resulting image such that voxel values less than or equal to 0.5 were
reassigned a value of 0 and 1 otherwise. Figure 11(a)-(d) shows an axial slice of the four
binary, white matter segmented images in G3 obtained by adding noise and thresholding, as
described before.

Table 7 shows the total number of instances of C1 and C2 in each binary image from the
groups G2 and G3. By examining this table, we see that the total number of instances of C1 and
C2 in some images from group G3 can be as large as 15% of the number of points in the image
grid, while the total number of instances of C1 and C2 in any image from group G2 is no larger
than 0.24% of the number of points in the image grid. We ran the ITK implementation of our
repairing algorithms in Section 5 on each binary image from G2 and G3, ten times per image. For
each execution, we computed the minimum, maximum, and average values of the point-wise color
difference and Hausdorff distances between the input and output images. We also computed the
standard deviation of the average values. The results are shown in Table 3 and Table 4.

2http://www.itk.org.
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(a) (b)

(c) (d)

Figure 11: Axial slices of the binary, white matter segmented images in group G3, which were
obtained by adding noise with zero mean and standard deviation (a) 0.2, (b) 0.3, (c) 0.4, and (d)
0.5.
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If (G, X) and (G, X ′) are the input and output images, respectively, then the point-wise color
difference (PWCD) is equal to

PWCD(X,X ′) =
∑

p∈G

d(p)

where d(p) = 0 if p ∈ ((X ∩X ′)∪ ((G−X)∩ (G−X ′))), and d(p) = 1 otherwise, and the Hausdorff
distance (HD) is equal to

HD(X,X ′) = max(h(X,X ′), h(X ′, X)),

where
h(X,X ′) = max

p∈X
min
q∈X′

‖p− q‖,

and ‖p−q‖ is the Euclidean distance between p and q. Intuitively, if the Hausdorff distance between
(G, X) and (G, X ′) is δ ∈ R, then every point of X must be within a distance δ of some point in
X ′, and vice-versa.

Image Color or Noise #C1 #C2 #C1 + #C2 # Fore. # Points

G2, 1 1 12,939 3,883 17,778 371,945 7,109,137
G2, 2 2 10,708 2,831 13,539 902,912 7,109,137
G2, 3 3 3,038 633 3,671 674,777 7,109,137

G3, 1 0.2 17,709 5,549 23,258 411,345 7,109,137
G3, 1 0.3 120,219 52,674 172,893 677,089 7,109,137
G3, 1 0.4 418,152 159,883 578,035 1,043,984 7,109,137
G3, 1 0.5 792,005 245,073 1,037,078 1,380,349 7,109,137

G3, 2 0.2 17,467 4,946 22,413 935,915 7,109,137
G3, 2 0.3 129,109 53,136 182,245 1,157,080 7,109,137
G3, 2 0.4 437,460 158,859 596,319 1,463,816 7,109,137
G3, 2 0.5 811,702 242,952 1,054,654 1,743,108 7,109,137

G3, 3 0.2 7,485 2,350 9,835 710,587 7,109,137
G3, 3 0.3 108,457 50,470 158,927 950,657 7,109,137
G3, 3 0.4 406,008 158,954 564,962 1,283,543 7,109,137
G3, 3 0.5 784,443 245,995 1,030,438 1,589,396 7,109,137

Table 2: Color value (resp. standard deviation of Gaussian noise) defining the image foreground in
group G2 (resp. G3) (second column), total number of instances of C1 and C2 (third, fourth and
fifth columns), and number of foreground points and grid points (sixth and seventh columns) of the
binary images in the groups G2 and G3.

From Theorem 5.1, we know that the average point-wise color difference is expected to be no
larger than one and a half the number of instances of C1 and C2 in the input image. From Table 3
and Table 2, we can see that the average point-wise color difference for the binary images in G2
and G3 is actually smaller than the number of critical configurations of the input image for most
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of the images, and it never exceeds the upper bound in Theorem 5.1. Table 3 also shows that the
average PWCD is smaller than 5% and 0.25% of the number of foreground points and grid points
for the images in group G2. In contrast, the average PWCD can be as large as 91% and 18% of
the number of foreground points and grid points, respectively, for the G3 images with high level of
noise. This is particularly the case for the CSF segmented, binary image with high level of noise,
G3, 1.

Image Color or Noise Average Min. Max. St. Dev. % F. P. % G. P.

G2, 1 1 17,778.8 17,738 17,856 35.6 4.78 0.25
G2, 2 2 14,468.3 14,364 14,566 56.4 1.60 0.20
G2, 3 3 3,810.5 3,782 3,840 20.2 0.56 0.05

G3, 1 0.2 24,830.1 24,758 24,888 50.7 6.04 0.35
G3, 1 0.3 214,796.0 213,983 215,279 428.2 31.78 3.02
G3, 1 0.4 732,630.3 731,270 733,473 694.5 70.18 10.31
G3, 1 0.5 1,249,342.1 1,246,763 1,252,529 1,695.7 90.51 17.57

G3, 2 0.2 23,230.3 23,144 23,278 40.4 2.48 0.33
G3, 2 0.3 211,953.9 211,412 212,412 353.4 18.32 2.98
G3, 2 0.4 709,239.8 708,294 709,996 591.2 48.45 9.98
G3, 2 0.5 1,200,595.6 1,198,866 1,203,269 1,324.8 68.88 16.89

G3, 3 0.2 10,600.2 10,516 10,629 30.9 1.49 0.15
G3, 3 0.3 196,828.6 196,349 197,135 266.5 20.70 2.77
G3, 3 0.4 703,754.8 702,654 704,725 701.0 54.83 9.90
G3, 3 0.5 1,214,396.8 1,212,939 1,216,030 1,025.7 76.41 17.08

Table 3: Color value (resp. standard deviation of Gaussian noise) defining the image foreground in
group G2 (resp. G3) (second column), average PWCD (third column), minimum PWCD (fourth
column), maximum PWCD (fifth column), and standard deviation (sixth column) for the images
in Table 2. The seventh and the eighth columns show the average PWCD divided by number of
foreground points and by the number of grid points, respectively, multiplied by 100.

From Table 4, we can see that the maximum Hausdorff distance between any image in G3 and
its well-composed counterpart is no larger than

√
3. Since the grid spacing of all images used in our

experiments is 1, we have that every point added to the foreground of the output image must be
26-adjacent to some foreground point of the input image. Furthermore, it is highly unlikely that the
algorithm introduced a “hole” in the surface of the well-composed images. For the images in group
G3, the maximum Hausdorff distance may reach 2.24. So, in this case, the repairing algorithm is
likely to introduce undesirable topological artifacts, such as small cavities or holes” in the well-
composed image. However, the distance value is still small, and it basically does not scale up with
the level of noise. This is an indication that the addition of a large amount of noise to an image
does not force the repairing algorithm to relabel many points of the image in order to generate a
well-composed one.

Although the CSF segmented image (image G2, 1 in Table 2) has about half the number of
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foreground points as the white matter segmented image (image G2, 3 in Table 2), the former
image has about five times more critical configurations than the latter image. Consequently, the
ratio between the average PWCD and the number of foreground points is about five times larger
for the CSF segmented image (see Table 3). The large number of critical configurations of the
CSF segmented image (compared to its number of foreground points) is due to the fact that the
cerebrospinal fluid has very limited thickness, and therefore its topology can often be incorrectly
captured by the digitization process. This also explains why the CSF segmented images with varying
levels of noise have the larger statistical measures for the PWCD and HD in Table 3 and Table 4,
respectively.

Image Color or Noise Average Minimum Maximum St. Dev.

G2, 1 1 1.45 1.41 1.73 0.10
G2, 2 2 1.45 1.41 1.73 0.10
G2, 3 3 1.41 1.41 1.41 0.00

G3, 1 0.2 1.57 1.41 1.73 0.17
G3, 1 0.3 2.17 2.00 2.24 0.11
G3, 1 0.4 2.17 2.00 2.24 0.11
G3, 1 0.5 2.24 2.24 2.24 0.00

G3, 2 0.2 1.65 1.41 2.00 0.27
G3, 2 0.3 2.09 2.00 2.24 0.12
G3, 2 0.4 2.24 2.24 2.24 0.00
G3, 2 0.5 2.24 2.24 2.24 0.00

G3, 3 0.2 1.54 1.41 1.73 0.16
G3, 3 0.3 2.12 2.00 2.24 0.12
G3, 3 0.4 2.24 2.24 2.24 0.00
G3, 3 0.5 2.24 2.24 2.24 0.00

Table 4: The average Hausdorff distance (HD) between the images in Table 2 and their well-
composed counterparts.

Figure 12 shows the surface of the continuous analog of the foreground of the well-composed
image obtained from image G3, 3. The faces of the voxels corresponding to points whose assigned
colors were changed by the repairing algorithm are shown in yellow. Note that the “yellow” voxels
are grouped together in small neighborhoods, which are scattered throughout the surface. This
tells us that the elimination of any given critical configuration from the input image did not give
rise to a long sequence of change of color of neighboring points. This observation supports the
adoption of assumption 3) in the probabilistic analysis of our repairing algorithm for binary images
(see Section 5.2).

Table 5 shows the average frequency of cases A1, A2, A3, B(1), and B(2) of the rule of choice of
the repairing algorithm (see Section 5) when given the images in groups G2 and G3. By examining
this table, we see that the number of times that A1 is applied is larger than the total number of
times that the remaining cases are applied. Furthermore, we verified that the average number of
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instances of C1 and C2 eliminated and created by each application of case A1 is typically about 1.15
and 0.21, 1.23 and 0.18, and 1.12 and 0.12 for the CSF, gray matter, and white matter segmented,
binary images in G2, respectively. Since each application of case A1 changes the color of only one
point, we can say that our algorithm either generates a well-composed image that is very close to
the “optimal” one (i.e, that minimizes the PWCD) or it is very conservative regarding the number
of critical configurations eliminated per change of color. In Section 8, we discuss simple heuristics
to increase (resp. decrease) the number of critical configurations eliminated (resp. created) per
change of color.

Figure 12: Continuous analog of the digital boundary between foreground and background of the
well-composed image generated by our repairing algorithm for the white matter segmentation of
the normal brain image in group B1. The faces of the voxels corresponding to points whose colors
have been changed by the algorithm are shown in yellow.

Table 5 also shows that the frequency of case B(2) increases as the level of noise increases. This
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is because an increase in the level of noise introduces several foreground points scattered throughout
the background of the image (see Figure 11), which in turn increases the likelihood that each 2×2×2
neighborhood, J (p), of a grid point, p, contains an instance of C2 with two foreground points and
six background points.

Image A1 (%) A2 (%) A3 (%) B(1) (%) B(2) (%)

G2, 1 61.67 4.16 0.39 13.21 3.09
G2, 2 68.19 4.78 0.64 17.97 8.42
G2, 3 70.70 4.22 0.56 20.53 3.99

G3, 1 64.80 3.87 0.47 22.80 8.37
G3, 1 69.48 3.94 0.68 3.96 23.15
G3, 1 69.11 4.03 1.10 4.17 21.59
G3, 1 69.04 5.18 1.44 5.90 18.44

G3, 2 69.61 4.51 0.62 14.04 11.22
G3, 2 69.83 3.04 0.74 4.76 21.62
G3, 2 69.22 4.14 1.13 5.14 20.36
G3, 2 69.03 5.29 1.46 6.68 17.53

G3, 3 71.05 3.56 0.49 10.77 14.13
G3, 3 69.80 2.51 0.66 3.27 23.76
G3, 3 69.03 3.94 1.12 4.46 21.46
G3, 3 68.94 5.17 1.45 6.28 18.15

Table 5: Frequency of occurrence of the cases of the rule of choice of the algorithm in Section 5
when given the images in G2 and G3.

To evaluate the effect of our repairing algorithm on the global topology of the input image,
we compared the continuous analog of the digital surface between the foreground and background
of the input image with the continuous analog of the digital surface between the foreground and
background of its well-composed counterpart. To do so, we first approximated the former continuous
analog by a surface and then compared the Euler characteristics of this surface with the Euler
characteristics of the surface corresponding to the latter continuous analog. This is because the
continuous analog of the digital surface between the foreground and background of the input image
is not a surface. Thus, the notion of Euler characteristic is not applicable to it. Although we are
not using the “true” continuous analog in this comparison, the approximate surface should give
us a good idea of the topology of the large structures in the image. To generate the approximate
surface and to extract the surface from the well-composed image, we used the Marching Cubes
(MC) algorithm [4].

Table 6 shows the number of components, vertices, edges, faces, and holes of the approximate
(triangulated) surfaces generated by the MC algorithm from the CSF, gray matter, and white
matter segmented, binary images in group G2. The other components of the surfaces are really
small compared to the largest ones. Furthermore, almost all of the remaining components are
homeomorphic to a sphere. In turn, the Euler characteristics of the surfaces extracted by the MC
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algorithm from the well-composed counterparts of the images in G2 (in each of the ten executions
per image) disclosed two facts:

1. The number of vertices, edges, faces, and holes of the largest component of the extracted
surfaces is smaller than the corresponding numbers in the largest component of the approxi-
mate surfaces. This is particularly the case for the surfaces extracted from the well-composed
counterparts of the CSF segmented, binary image, as the number of holes of the largest com-
ponent is about three times smaller than the number of holes of the largest component of the
approximate surface.

2. The number of connected components of the extracted surfaces is larger than the one of the
approximate surfaces. In particular, the extracted surfaces contains several small connected
components (e.g., an average around 55, 123, and 15 connected components for the surfaces
extracted from the well-composed images obtained from the CSF, gray matter, and white
matter segmented, binary images in group G2, respectively.) These “extra” components are
very small (e.g., 6 vertices, 12 edges, 8 faces, and 0 holes) and are all homeomorphic to a
sphere.

The first fact indicates that the repairing algorithm thickens and smooths out the connected
components of the input image (see Figures 13 and 14). The second fact tells us that the algorithm
tends to introduce small “sphere-like components” in the resulting image. Luckily, these “sphere-
like components” are really small, and they can be easily filtered out from the resulting image using
an algorithm for removing small connected components. Such an algorithm will never introduce
critical configurations back in the image. So, we can definitely incorporate such an algorithm as a
post-processing step in our repairing algorithm.

Image # CC # Vertices # Edges # Faces # Holes

G2, 1 34 467,678 1,417,236 944,824 2,368
G2, 2 31 719,096 2,164,974 1,443,316 1,282
G2, 3 11 393,798 1,183,266 788,844 313

Table 6: The number of connected components of the approximate surfaces obtained by the MC
algorithm when given the images in group G2 (second column), and the number of vertices (third
column), edges (fourth column), faces (fifth column), and holes (sixth column) of the largest con-
nected component.

The number of instances of C1 (resp. C2) in the multivalued image in group G1 is 169,828
(resp. 26,858), which give us a total of 196,686 critical configurations. This total number of critical
configurations is equal to the sum of the number of instances of C1 and C2 in each binary image that
can be obtained by letting the foreground be the set of points of the multivalued image assigned
the same color. On computing the total number of instances of C1 and C2, the instances that
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occur in more than one binary image are counted only once. Note that the total number of critical
configurations in G1 is about 2.77% of the number of points in the image grid, which is equal to
7,109,137.

Figure 13: Approximate surface produced by the MC algorithm [4] from the CSF segmented, binary
image in group G2.

We ran the ITK implementation of our repairing algorithm for multivalued images (see Section 6)
on the image in group G1 using six distinct sequences for the rank of colors of the image. For each
distinct sequence, we ran the algorithm ten times and computed the average PWCD and the average
HD with respect to the input image and its resulting well-composed counterpart. Since the CSF,
gray matter, and white matter are the most “important” structures in the image G1, each of the
six color sequences started with a permutation of the values in {1, 2, 3}, which are the CSF, gray
matter, and white matter values in G1. The order of the remaining colors in the sequence was the
same for all sequences, namely, 8, 5, 7, 4, 9, 6, 0. Table 7 shows the name of the structure associated
with each color of the image in G1, the number of grid points assigned each color, the number of
critical configurations in each binary image obtained from G1 by letting the foreground be the set
of points associated with one color, and the ratio of the two previous quantities. Recall that the
same instance of a critical configuration may show up in more than one of these binary images.
So, the total number of critical configurations is not equal to the sum of the figures in the fourth
column of Table 7.

Table 8 shows the average, minimum, and maximum PWCD for the ten executions of our
algorithm on the image in G1 with color sequence 1, 2, 3, 8, 5, 7, 4, 9, 6, 0. Table 8 also shows the
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standard deviation from the average PWCD and the ratio PWCD divided by the number of grid
points associated with each color. From Table 7 and Table 8, we can see that the average PWCD
depends mostly on (1) the rank of the color in the input color sequence (the larger the rank the
larger the average PWCD), and (2) the ratio in the fifth column of Table 7 (the larger the ratio the
larger the average PWCD.) More specifically, a structure whose associated color has a larger rank
will “lose” points during the repairing. Moreover, the larger the number of critical configurations
of a structure associated with a color, c, the larger the amount of grid points whose assigned color
changes to or from c.

Figure 14: Surface extracted by the MC algorithm [4] from a well-composed image, which was in
turn obtained by the repairing algorithm in Section 5 from the CSF segmented, binary image in
group G2.

The results obtained by executing our repairing algorithm with the remaining five permutations
were very similar to the ones in Table 8, with respect to the structures with colors 8, 5, 7, 4, 9, 6,
and 0. So, we only show the same measurements of Table 8 to the structures associated with the
colors 1, 2, and 3 (see Table 9). By examining Table 9, we can notice an intricate effect of the
strategy of color change used by our algorithm: the average PWCD for the white matter structure
is smaller for the results associated with permutation 1,2,3 than it is for the results associated
with permutation 1,3,2. Since color 3 ranks second in 1,3,2 and third in 1,2,3, this may seem odd.
However, recall from Section 6 that whenever the algorithm eliminates a critical configuration in a
2×2×2 neighborhood, J (p), without creating new ones, the algorithm changes the color of a point
in J (p) to its “nearest” input sequence color among the colors assigned to all points in J (p). So,
when the algorithm takes in the color sequences with permutation 1, 3, 2, the critical configurations
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associated with the CSF structure will be mostly eliminated by changing color values from 1 to 3
and from 3 to 1.

Structure Color # points # CC % (# CC / # points)

Background 0 3,001,960 384 0.012
CSF 1 371,945 16,822 4.523
Grey matter 2 902,912 13,539 1.500
White matter 3 674,777 3,671 0.544
Fat 4 146,514 6,087 4.155
Muscle/Skin 5 617,482 75,783 12.273
Skin 6 726,649 63,245 8.704
Skull 7 362,561 9,271 2.557
Glial matter 8 5,987 3,292 54.985
Connective 9 298,350 51,002 17.095

Table 7: Each of the ten structures of the multivalued image in group G1 (first column), the color
associated with each structure (second column), the number of grid points associated with each
color (third column), the number of critical configurations in the binary image obtained from G1
by considering the foreground the points assigned the color in the second column (fourth column),
and the ratio corresponding to the quantity in the fourth column divided by the quantity in the
third column (fifth column).

Color Average Minimum Maximum St. Dev. %( PWCD / # Points)

1 17,871.0 17,741 17,871 38.76 4.79
2 20,085.5 19,988 20,206 59.37 2.22
3 11,760.8 11,688 11,794 30.69 1.74
8 2,649.1 2,632 2,662 11.86 44.25
5 114,303.8 114,009 114,545 184.98 18.51
7 37,186.9 36,940 37,396 138.96 10.26
4 9,622.6 9,525 9,713 59.28 6.57
9 73,038.1 72,793 73,413 196.06 24.48
6 102,122.8 101,837 102,390 207.59 14.05
0 18,441.9 18,281 18,624 94.62 0.61

Table 8: The average (second column), minimum (third column), and maximum (fourth column)
PWCD between each structure in the image in group G1 and the same structure in the well-
composed image generated by our repairing algorithm using the color sequence 1, 2, 3, 8, 5, 7, 4, 9, 6, 0;
the standard deviation (fifth column); and the ratio of the average PWCD and the number of grid
points associated with the color (first column) of each structure in the image in group G1 (sixth
column).

From Table 9, we can also see that the average PWCD for the grey matter structure is much
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smaller for the permutation 3,2,1 than it is for the permutation 1,2,3, even though color 2 ranks
second in both permutations. This is because the algorithm never changes a color value from 2 or 3
to 1 when given a color sequence with permutation 3, 2, 1. So, for this permutation, many critical
configurations associated with color 1 must have been eliminated by changing color values from 1
to c and from c to 1, where c > 3. Moreover, since the number of critical configurations associated
with the white matter structure (color 3) is much smaller than the one associated with the color 1
(CSF structure in Table 7), the number of changes of color from 2 to 3 is smaller than the number
of changes of color from 2 to 1 in the executions of the algorithm that take in permutations 3,2,1
and 1,2,3, respectively.

Color Perm. Average Min. Max. St. Dev. %( PWCD / # Points)

1 1,2,3 17,871.0 17,741 17,871 38.76 4.79
2 1,2,3 20,085.5 19,988 20,206 59.37 2.22
3 1,2,3 11,760.8 11,688 11,794 30.69 1.74

1 1,3,2 17,790.4 17,709 17,824 39.30 4.78
2 1,3,2 20,760.8 11,688 11,794 92.09 2.29
3 1,3,2 12,303.1 12,200 12,425 83.39 1.82

1 2,1,3 21,228.5 21,148 21,299 50.19 5.71
2 2,1,3 14,623.4 14,567 14,662 32.63 1.62
3 2,1,3 8,823.0 8,751 8,905 50.84 1.31

1 2,3,1 21,289.8 21,187 21,399 75.99 5.72
2 2,3,1 14,606.2 14,528 14,662 53.64 1.62
3 2,3,1 8,828.3 8,729 8,896 48.25 1.31

1 3,1,2 18,008.2 17,929 18,099 50.62 4.84
2 3,1,2 20,609.1 20,458 20,730 87.50 2.28
3 3,1,2 12,300.3 12,156 12,408 89.66 1.82

1 3,2,1 24,615.6 24,546 24,705 53.97 6.62
2 3,2,1 15,532.4 15,474 15,652 50.99 1.72
3 3,2,1 6,335.0 6,294 6,391 28.32 0.94

Table 9: The color of the structure (first column), the permutation, π, of the the colors 1, 2,
and 3 (second column), the average (third column), minimum (fourth column), and maximum
(fifth column) PWCD between each structure in the image in group G1 and the same struc-
ture in the well-composed image generated by our repairing algorithm using the color sequence
π(1), π(2), π(3), 8, 5, 7, 4, 9, 6, 0; the standard deviation (sixth column); and the ratio of the average
PWCD and the number of grid points associated the color (first column) of each structure in the
image in group G1 (seventh column).

From the above discussion, we can conclude that the results of our repairing algorithm for
multivalued images also depend on the adjacency relations of the structures in the image and their
number of critical configurations. So, in many cases, it might be very hard, if not impossible, to
specify an input color sequence that will enable the algorithm to produce a well-composed image
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that minimizes the PWCD and yet favors certain structures. Furthermore, while the average PWCD
for the CSF, grey matter, and white matter structures are still small (see Table 9) and relatively
close to the average PWCD for the binary images with the same structures (see Table 3), the
average PWCD for the structures associated with larger color ranks may be too large for certain
applications. This is the case for structures with a large number of critical configurations (compared
to their number of points) and with medium to high color ranks, e.g., the glial matter structure
(see Table 7 and Table 8).

Table 10 shows the average, minimum, and maximum HD, as well as the standard deviation, for
the ten executions of our algorithm on the image in G1 and color sequence 1, 2, 3, 8, 5, 7, 4, 9, 6, 0.
Unlike the average PWCD, the average HD gets larger very quickly as the color rank gets larger.
However, it is also mostly dependent on the color rank and the number of critical configurations
of the structure (relative to its number of points). The effect of the “change to the nearest color”
strategy used by our repairing algorithm can also explain why the average HD gets larger very
quickly as the color rank gets larger. Once a grid point has its assigned color changed to a color,
say c, the color c may become an option for the set of color choices in a 2×2×2 neighborhood that
did not have any point assigned c. So, the algorithm may create a small path of points assigned
the color c, diverging from the color component associated with c. Since the HD measure is very
sensitive to the presence of such paths, we observe the large variations in the averages shown in
Table 10.

Color Average Minimum Maximum St. Dev.

1 1.45 1.41 1.73 0.10
2 2.53 1.45 2.83 0.16
3 12.33 12.12 12.53 0.21
8 3.47 3.00 3.74 0.25
5 14.34 14.18 15.00 0.35
7 7.81 7.81 7.81 0.00
4 9.66 8.25 11.18 0.85
9 7.60 7.55 8.06 0.16
6 7.07 7.07 7.07 0.00
0 20.83 20.64 21.02 0.20

Table 10: The average (second column), minimum (third column), and maximum (fourth column)
HD between each structure in the image in group G1 and the same structure in the well-composed
image generated by our repairing algorithm using the color sequence 1, 2, 3, 8, 5, 7, 4, 9, 6, 0; and the
standard deviation (fifth column).

The results obtained by executing our repairing algorithm with the five remaining permutations
were very similar to the ones in Table 10, with respect to the structures with associated colors
8, 5, 7, 4, 9, 6, and 0. Therefore, in Table 11, we only provide the measurements associated with the
colors 1, 2, and 3 (see Table 11). Note that the values of the average HD and the values of the
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average PWCD (see Table 9) for the CSF, grey matter, and white matter structures agree: the
larger the average PWCD the larger the average HD. Figure 15 shows an axial slice of the resulting
well-composed image from one of the ten executions of the algorithm on the image in G1 and color
sequence 1, 2, 3, 8, 5, 7, 4, 9, 6, 0.

Color Perm. Average Min. Max. St. Dev.

1 1,2,3 1.45 1.41 1.73 0.10
2 1,2,3 2.53 1.45 2.83 0.16
3 1,2,3 12.33 12.12 12.53 0.21

1 1,3,2 1.41 1.41 1.41 0.00
2 1,3,2 4.99 4.12 5.92 0.91
3 1,3,2 3.19 2.83 4.12 0.50

1 2,1,3 1.41 1.41 1.41 0.00
2 2,1,3 4.95 4.24 5.83 0.77
3 2,1,3 1.88 1.41 2.45 0.28

1 2,3,1 5.15 4.47 5.83 0.72
2 2,3,1 1.77 1.41 2.24 0.25
3 2,3,1 9.61 8.54 12.12 1.72

1 3,1,2 1.71 1.41 3.16 0.55
2 3,1,2 4.84 3.61 5.83 1.00
3 3,1,2 3.20 2.45 4.12 0.55

1 3,2,1 5.37 4.36 7.21 1.21
2 3,2,1 4.51 3.61 5.10 0.65
3 3,2,1 2.64 2.24 3.16 0.39

Table 11: The color of the structure (first column); the permutation, π, of the the colors 1,
2, and 3 (second column), the average (third column), minimum (fourth column), and maxi-
mum (fifth column) HD between each structure in the image in group G1 and the same struc-
ture in the well-composed image generated by our repairing algorithm using the color sequence
π(1), π(2), π(3), 8, 5, 7, 4, 9, 6, 0; and the standard deviation (sixth column).

8 Conclusion and Future Work

We described a new repairing algorithm for generating a 3D well-composed image from a given 3D
digital binary image. Our algorithm is randomized and its time and space complexities are linear
in the size of the input image grid. The algorithm produces its output by iteratively modifying the
input image, changing the color of its background points so that these points become foreground
points. Each color change eliminates a critical configuration from the currently modified input
image. We derived an upper bound on the expected number of background points of the input
image that are made into foreground points in the output image. This upper bound is a theoretical
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guarantee for the similarity between the input and output images. We also showed the results of an
experiment in which our algorithm was executed on human brain images with and without varying
levels of noise.

Figure 15: The top left image is an axial slice of the multivalued image in G1 whereas the top
right image is the same slice in the well-composed image produced by our repairing algorithm in
Section 6 from the image in G1. The bottom images are close-up views of the ventricles in the top
images.

We also introduced an extension of our algorithm for the repairing of 3D digital multivalued
images. This extended algorithm can be used for generating a 3D well-composed multivalued image
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from a given 3D digital multivalued image, which is assumed to be the result of a multi-object
segmentation of another 3D digital multivalued image [17]. We also presented results from an
experiment in which our extended repairing algorithm was tested against a 3D multivalued digital
image of the human brain.

The applicability of both algorithms depends on how sensitive the target application is to the
point-wise color difference between the input and output images. On the one hand, our experiments
showed that our repairing algorithm for binary images seems to produce images for which the point-
wise color difference is about the same as the number of critical configurations in the input image.
Since the number of instances of C1 and C2 in images encountered in practical applications is
typically a small percentage of the image grid size, we strongly believe that our algorithm can
be successfully used by many practical applications that can be simplified or optimized for speed
whenever the input is a well-composed image. On the other hand, our repairing algorithm for
multivalued images seems to largely modify the image structures associated with least “important”
colors. So, it may be more appropriate for a situation in which the input image has only a few
important structures (e.g., the human brain), and we do not care for the modifications in the least
important ones.

As we mentioned in Section 5, there is a trivial algorithm for producing the most similar 3D
well-composed image from a given 3D digital binary image, but its time complexity is exponential
in the size of the input image grid, which rules out its practical use. So, it is natural to ask if there
is a polynomial time algorithm that computes the most similar well-composed image. Currently,
we do not know if such an algorithm exists, and we still have not ruled out the possibility that
the equivalent decision problem may be NP-complete: given a 3D digital binary image and a
positive integer k, is there a 3D well-composed image whose point-wise color difference from the
given image is less than or equal to k? We are currently looking at this decision problem. Recall
that our repairing algorithm for binary images can only change the color of background points.
The purpose of this restriction is to guarantee the termination of the algorithm. If we remove this
restriction and find a way of guaranteeing the termination of the modified algorithm, the resulting
well-composed images may have smaller point-wise color difference than the ones generated by our
current algorithm.

There are two simple heuristics that can be incorporated into our algorithms to increase (resp.
decrease) the number of critical configurations eliminated (resp. created) by one change of color.
First, to increase the number of critical configurations eliminated by one change of color, we can
scan the image grid for background points only. Then, for each background point, p, such that (1)
p is part of a critical configuration and (2) no new critical configurations is created by changing
the color of p to 1, we place p in a dynamic max-heap, where the key of p is the number, n(p),
of critical configurations eliminated by changing the color of p to 1. Finally, we remove a point
from the heap at a time, change its color, and then update the key of each point, q, in the heap
for which n(q) changed. So, we change the colors of the background points that eliminate more
critical configurations first, and yet do not create any new critical configuration. This heuristic

43



is not randomized. Second, to decrease the number of new critical configurations created by one
change of color, we can use a branch-and-bound strategy that looks ahead at the number of new
critical configurations created by the algorithm in a bigger grid neighborhood. Then, the algorithm
can choose among a small set of “sequences” of color changes, as opposed to small sets of points.
We plan to incorporate both heuristics in the next version of the current implementations of our
algorithms in the ITK library [38].

We also believe that the application of a topology simplification algorithm (e.g., [33]), followed
by the application of a repairing algorithm, may produce a well-composed (binary) image with very
few topological artifacts. The reason is that the application of a topology simplification algorithm
will produce a binary image with a few (or none) topological artifacts (i.e., very tiny handles), and
our repairing algorithm is very unlikely to add tiny handles to the image, as shown by the Hausdorff
distance measurements in Table 4. We intend to perform some experimental tests to validate our
assumption.

A major drawback of both of our repairing algorithms is that they are solely based on topological
information. Furthermore, they make decisions regarding the elimination of critical configurations
that do not take into account neither the local nor the global topology of the color components of the
image. Some of the most recent algorithms for correcting topology [27, 28] incorporate statistical,
topological and geometric information into their decision making process. We believe that our
repairing algorithms can leverage some of the features of these algorithms. In particular, the first
author of this manuscript is currently collaborating with some other researchers on the modification
of the segmentation algorithm in [17]. The goal is to incorporate the topological repairing into the
segmentation process, so that we can generate well-composed images as a result of the segmentation
process. By using the statistical and geometric information available for the algorithm in [17], we
hope to improve the decision making process of the repairing. Some preliminaries results have
already been obtained.
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