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TOPOLOGICAL REPRESENTATION OF SEMIGROUPS 

A. B. PAALMAN - DE MIRANDA 

Amsterdam 

1. Introduction 

J. de Groot has proved in [3] that for every group G one can find a connected 
metric space M such that the group of all autohomeomorphisms of M is isomorphic 
to G : G ~ A(M). 

To represent semigroups in a similar way, we must replace the group of auto
homeomorphisms by a suitable semigroup of continuous mappings. The aim of this 
note is to prove that every semigroup S with identity element can be represented by 
the semigroup Q(M) of all quasi-local homeomorphisms of a metric space M into itself. 

Let X, Y be topological spaces. A mapping / : X -> Y is called a quasilocal 
homeomorphism if/ is continuous and if for each open set O a X there exists an 
open set V, V a 0 such t ha t / | Fis a homeomorphism of Vonto/(V). 

The proof of the theorem is essentially a modification of the proof for groups 
by J. de Groot in [3]. 

The semigroup Q(M) of all quasi-local homeomorphisms seems to be the most 
suitable to replace the group of all autohomeomorphisms A{M). We prove in 
section 4 the existence of a semigroup S such that there is no Hausdorff-space H 
such that S is isomorphic to the semigroup of all local homeomorphisms of H into 
itself. Neither can S be isomorphic to the semigroup of all open continuous mappings 
of H into itself. / : X -> 7 is a local homeomorphism if for each xeX there exists an 
open set O, x e 0 such tha t /1 O is a homeomorphism of O onto/(O). 

Analogous problems were treated by Z. Hedrlin and A. Pultr [6] and by L. 
Bukovsky, Z. Hedrlin and A. Pultr [ l ] . In [6] the following theorem was proved. 
Let S be a semigroup with identity element, then there exists a T0-space Tsuch that S 
is isomorphic to the semigroup of all local homeomorphisms of Tinto itself. 

In [1] it has been shown that every semigroup with identity element may be 
represented by the semigroup of all "quasi-coverings" of a Hausdorff space into 
itself. The "quasi-coverings" however are rather special mappings. 

Let for instance X be the subset of the real line R consisting of the point 0 and 
all x, x = 1. X = {x | x e R, x = 0 or x = 1}. 

Let / : X -> X and g : X -> X be defined respectively by 

w x f x if x = 0 , N f 1 if x = 0 
"*> = {>> T -4-n' 0 W = <L ., ^ n ' 

(2x if x =t= 0 [2x if x =t= 0 
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Both f and g are homeomorphisms of X into X,f however is a quasicovering off(X) 
but g is not a quasi-covering of g(X). 

2e Graph-representations 

Let S be a semigroup with identity element e and {sa} a system of generators 
of S. We now construct the Cayley-graph S' of S. S' is a coloured, directed graph 
such that each element a e S is represented by one vertex va of S'. Two vertices va 

and vb are joined by an edge with "colour" sa directed from va to vb whenever b = saa. 
S' is clearly connected (if a = saisa2... san, then ve and va are joined by a path along 
a set of consecutively adjacent edges with colour respectively san, san_1?..., sa2, sai). 
With each a e S we associate the inner right translation Qa 

Qa: x -> xa for all x e S . 

When applying products of mappings from the left to the right 

(x) Qa-Qb = (*Qa) Qb 

we see that S is homeomorphic to its regular representation Sr. This representation is 
faithful since S contains an identity element: S ~ Sr. Furthermore it can easily be 
seen that Sr is isomorphic to the semigroup of all transformations of the graph S' 
into itself which are colour and orientation preserving. 

If S is a semigroup with cancellation then all such transformations are one-to-one 
mappings of S' into itself. 

From S' we now construct an (uncoloured) directed graph S* such that the semi
group of all endomorphisms K(S*) of S* is isomorphic to S. For countable semigroups 
this has been done first by the author [7], for semigroups with cardinality less than 
the first unaccessible cardinal by Z. Hedrlin and A. Pultr [5] and for arbitrary semi
groups by P. Vopenka, A. Pultr and Z. Hedrlin [8]. They constructed for any 
cardinal m a directed graph X such that the identity transformation is the only endo-
morphism of X and such that the cardinal of the set of vertices of X is equal to m. 

The construction of S* given here is different from the one in [5], since the rigid 
graph X plays a completely different role. 

Construction. Let S' be the Cayley-graph of S and let m be the cardinal of the 
set of generators {sa} of S. We assume m __ 3 (the case of semigroups of order < 3 
can be treated separately in a simple way). Let D be the rigid graph constructed in 
[8], where D = {p | j8 _g co^ + 1, co^ the least ordinal with card co^ = m}. Finally 
let cj) be a one-to-one mapping of the set {sa} onto D. 

Suppose that a directed edge with colour sa leads from vertex va to vb. Replace 
the edge in S' by a graph (D, a, a, b) defined as follows: edges (va, p

a
ab), (p*>6, vb), 
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(jPa,*» (̂Ax)) an<i furthermore D. We do this for every edge of S\ but we take care that 
all graphs (/), a, a, b) are disjoint with the possible exception of their vertices va 

and vb. In this way S' is transformed into a graph S*. 

Theorem 1. E(S*) ~ S. 

Proof. L e t / e £ ( S * ) and let Dab be the copy of D contained in the subgraph 
(D, a, a, b) of S*. 

We first prove that/(D*>fc) c Z)*d for some y, c and d. 

Since Da
ab contains the edges 

(0fl%, I*,*,), (OS.6,2^) and (l^,2 a%) 

it follows that/(0*>5) cannot be a vertex of the form va or pa
ab of S*. Hence /(0*f6) c 

c. D£ d for some y, c and d. 
If pa

ab e Da
ab, then there is a finite chain of directed edges connecting 0x

ah and f%tb. 
From this it follows thztf(K$b) e Dy

c4, hence /(D*,6) <= D? d. 
From the rigidity of D it follows that/(j8^) = Py

Ctd. 
We next prove that/(p"fd) = py

td. 
Since pJJ>6 is connected with (j)(saX>b, we have/(p"ffr) = py

Ctd which implies y = a 

In this case /(p"f&) — Plfd f° r some /? e D /? < $(sa). Now let a' be chosen so 
that (j)(sa>) = & and let q = sa,b. Then it follows from the construction of S* that 
f(vb) e Dy

c4, h ence / (pQ e Z)^d and this implies f((j)(sa)Q = #(v)!.fd e Dy
cd. 

From the construction of D it then follows that jS < $(sa,) a contradiction. 
Thus each vertex of the form pa

ab of S* is mapped onto a vertex of the form pa
cd. 

From this it follows that each vertex of the form va is mapped onto a vertex of the 
form vb. 

It can now easily be seen that E(S*) is isomorphic to the semigroup of all trans
formations of S' into itself which are colour and orientation preserving. Hence 
E(S*) z> S. 

If S is a semigroup with cancellation then each transformation / e E(S*) is 
one-to-one. 

3. Quasi-local homeomorphisms 

Similarly as in [3] we shall replace every edge of S* by mutually homeomorphic 
topological spaces P and introduce a topology in the resulting set such that a space M 
will be obtained satisfying the following condition: 

Q(M) c* S. 
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An example of a Peano curve P which is rigid under topological transformations 
of P into P was given in [2]. We briefly mention its construction. 

Consider a circle C l in the plane and let {ak}itk be a double sequence of distinct 
natural numbers >2. Let {p\} be a countable everywhere dense subset of C1. Affixe 
to each p\ a chain C\ of a ] links, contained in the interior of C1 (p\ excepted) and 
mutually disjoint. Next we take a countable dense subset {p\} on the union of all C\ 
such that each p\ is of order two. Affixe to each p\ a chain C\ of a\ links contained 
in the interior of that link to which p\ belongs, and such that all new chains are 
mutually disjoint. Proceed by induction; we take care that the diameters of the C\ tend 
to zero, and take the closure P of the countable number of chains obtained in this 
manner. We remark that P is not rigid for topological transformations of P into P 
only, but also for quasi-local homeomorphisms. 

L e t / be a quasi-local homeomorphism and let {pk}* be the set of all points pk 

such that there is an open set O, pk e 0 wi th / | O a homeomorphism. The set {pk}* 
is everywhere dense in P. Since the p) are the only points of maximal order (order 6) 
in P, the set {p\}* is mapped into the set {p\}. To each p) is affixed a chain of ak links, 
all ak distinct. This implies that/(p*) =pk for all pk e {p\}*. Since {pk}* is dense in P, 
/ is the identity transformation. 

Now let a and b be two points on the circle C1 of order two. Each directed edge 

a = (xt, x2) of S* is replaced by a copy Pa of P, a replacing xt and b replacing x2-

We take care that all Pa are disjoint with the possible exception of the points a and b. 

Into the union of all P 

M = \JP, 
a 

we introduce a metric in the same way as in [3]. 

Theorem 2. Let S be a semigroup with identity element. Then there exists 
a connected metric space M such that S is isomorphic to the semigroup of all 
quasi-local homeomorphisms of M : S ~ Q(M). 

Proof. Let M be the metric space, obtained from the graph S*. M is clearly 
connected. 

If/* e E(S*), then it can easily be seen tha t /* can be extended to a quasi-local 
homeomorphism/of M into M. 

Now l e t / be a quasi-local homeomorphism of M into M. We shall prove t h a t / 

maps every copy of P identically onto a copy of P. Let Pa be such a copy of P. Pa is 
n 

compact and connected, hence /(Pa) is compact, which implies f(Pa) a \J Pp.. 

Let {p)}* be the set of all points p) e Pa such that there is an open set O, pk e 0 with 

/ | O a homeomorphism. Then {pk}* is mapped into the set of all points of maximal 
n 

order in (J Pp. together with the set of endpoints {afii, bPi}
n

izzi. 
i = l 
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Let {P*}1 cz {p)}* be the set of all points which are mapped into the set of all 
n 

points of maximal order in \J Pfii. Then {p]}1 is everywhere dense in Pa, and it is not 
i = l 

difficult to see that each point p\ e {p)}1 is mapped onto the corresponding point p\ 
contained in one of the P^.. From this it follows that every point x e Pa is mapped 
onto a corresponding point x contained in one of the P^. 

Since we have chosen the endpoints a and b of P to be points of order two and 
since S* contains no trivial cycles of order two it follows that Pa is mapped identically 
on another copy P^ of P. 

Hence/permutes the Pa's among themselves, and we may conclude from theorem 
1 that S ~ £(S*) ~ Q(M). 

Corollary. Let S be a semigroup with cancellation, with identity element. 
Then there is a connected metric space M such that S is isomorphic to the semigroup 
of all homeomorphisms of M into M. 

The proof follows easily from the fact that in this case each transformation 
/ * e £(S*) is one-to-one. 

Theorem 3. Let S be a semigroup with identity element. Then there exists 
a connected compact Hausdorff space H such that S is isomorphic to Q(H). 

Proof. Let M be the metric space such that S ~ Q(M), and let H be the Cech-
Stone compactification of M. Let / be a quasi-local homeomorphism of M into M 
and Pf its extension to H. Since M contains an open dense subset such that every 
point of this set has a neighbourhood with compact closure, it follows that for every 
open set O cz H there is an open set V, V cz 0 such that V cz M. This together with 
the fact that fif is continuous implies that pf is a quasi-local homeomorphism of H. 

Now let g be an element of Q(H). As g is a quasi-local homeomorphism there is 
for every open set O cz H an open set V cz M such that g | Vis a homeomorphism. 

Since M is metric, it satisfies the first axiom of countability and for every point 
x e V there is a countable sequence of different points xM e V converging to x, hence 
g(V) cz M. Next let x be an arbitrary point of M, then there exists a sequence {x„}, 
xn e M, xn -* x such that g(xn) e M. From the continuity of g it follows that g(xn) -» 
-» g(x) and hence g(x) e M. 

Thus g(M) cz M and g restricted to M is a quasi-local homeomorphism of M 
into itself. From this follows easily 

Q(H)~ Q(M), so Q(H)^S. 

Corollary. Let S be a semigroup with cancellation and identity element. Then 
there is a connected compact Hausdorff space H such that S is isomorphic to the 
semigroup T(H) of all topological transformations of H into H. Moreover T(H) = 

= e(fl). 
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4. Local homeomorphisms and open continuous mappings 

Let S be the semigroup {e9 a9 b} with identity element e and multiplication defined 
by ab = ba = aa = bb = a. 

Let H be a Hausdorff space and L(H) the semigroup of all local homeomorphisms 
of H into itself. 

O(H) will denote the semigroup of all open continuous mappings of H into H. 

Theorem 4. There is no Hausdorff space H such that S is isomorphic to L(H). 

Proof. Let 5 be isomorphic to L(H). Then L(H) = {e9f g} with s the identity 
mapping and / and g local homeomorphisms such that fg = gf = ff = gg = g. 
Let A be the subset of H such that for each a e A f(a) = g(a). Then A is closed. 
A 4= H and A 4= 0 since for each point b ef(H) we have/(b) = g(b). We now prove 
that A is open. Let peH \ A9 p e A. Let O be a neighbourhood of f(p) = g(p) such 
tha t / i s a homeomorphism on 0. 

Let Vbe a neighbourhood of p such that/(V) cz 0 and g(V) cz O. Since pe 
e H \ A9 there is a point x e H \ A9 xeV. Then it follows that f(x) 4= g(x) and both 
f(x) and g(x) are contained in O. 

Since ff = fg we have f(f(x)) = f(g(x)) and hence / is not one-to-one on O, 
a contradiction. 

Thus A is open and closed. 
Now let (j> be the mapping defined by 

for x <£ A 

](x) for x e A 

It is clear that $ is a local-homeomorphism of H. Since g(H) cz f(H) cz A9 we have 
<t> 4= / $ 4= g. Furthermore for each x ^ .4 we have /(x) <£ g(H), since otherwise 
/(*) = #(y) an<* ^nce g/(x) = g(x) = gg(y) = g(y) = f(x). Thus g(H) 4= f(H). 
Since $(4) = g(A) = g(H) 4= -4, we have <fi 4= £. This however is contradictory to 
the fact that each local homeomorphism $ of H is contained in L(H). 

Theorem 5. There is no Hausdorff space H such that S is isomorphic to 0(H). 

Proof. Let O(H) = {e9f9 g} with 8 the identity and / and g open continuous 
mappings such that fg = gf = ff = gg = g. If A = {x | x e H, f(x) = g(x)}9 then 
A =j= 0 and A is closed. Furthermore g(H) cz f(H) cz A9 f(H) and g(H) open. Let 
p e H \ A, peA9 then/(p) = g(p)eg(H) and hence there is an open set V, peVsuch 
that f(V) cz g(H). Let xeH \ A n V. Then /(x) eg(H) and hence/(x) = g(y). Thus 
g(/(x)) = #(x) = g(g(y)) = g(y) = f(x). From this it follows that x e A9 a contra
diction. 

The set A = {x | x e H9 f(x) = g(x)} is an open and closed set. In the same way 
as in the proof of Theorem 4 we now can construct an open continuous mapping <f> 
such that (j) i 0(H). 

ы 
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