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Abstract The manufacturing industry is characterized by

large-scale interdependent networks as companies buy

goods from one another, but do not control or design the

overall flow of materials. The result is a complex emergent

structure with which companies connect to each other. The

topology of this structure impacts the industry’s robustness

to disruptions in companies, countries, and regions. In this

work, we propose an analysis framework for examining

robustness in the manufacturing industry and validate it

using an empirical dataset. Focusing on two key angles,

suppliers and products, we highlight macroscopic and

microscopic characteristics of the network and shed light

on vulnerabilities of the system. It is shown that large-scale

data on structural interdependencies can be examined with

measures based on network science.

Keywords Complex network � Supply � Manufacturing �
Robustness

1 Introduction and background

A supply network is created when companies buy and sell

goods to each other, transferring necessary parts down-

stream to create a final product. Often, companies do not

have visibility beyond their immediate buyers and suppli-

ers, which results that these networks are not designed but

emerge [10]. These networks can become large scale, with

many thousands of companies becoming interdependent

without their knowledge of being so. Due to these inter-

dependencies, disruptions in the network can cascade, and

the implications can be catastrophic. For example, the

March 2011 Tohoku earthquake caused the Japanese auto

industry to temporarily shut down, forcing European and

North American manufacturers to halt production as their

inventories from Japan were exhausted. Goldman Sachs

estimated that the shutdowns cost Japanese automakers 200

million USD a day [17]. Daily global automotive produc-

tion dropped by one-third, resulting in an overall loss of 5

million vehicles worldwide, out of the 72 million planned

for 2011 (*7 % loss). Both in terms of risk management

for the entire network, and from the perspective of indi-

vidual firms planning and coordinating with different

suppliers, a better understanding of interdependencies

would help create better strategies for robustness.

The field of supply chain planning has a long history of

creating sophisticated operational models that describe the

flow of materials between organizations. While these

models capture low-level dynamics with accuracy, they

increasingly lose accuracy and become hard to construct as

system size grows. Typical simulation and analytical

models include detailed state variables of each individual

production step such as inventory levels, bills of materials,

throughput, and lead times for production. In the context of

robustness to failures, several inventory and optimization
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models have been proposed [9, 26, 28]. However, these

models cannot be extended to include the whole system

because state variables are often not available because of a

lack of visibility and unwillingness of suppliers to share

data. Furthermore, these models are not practical for

implementation at large scales due to computational limi-

tations and the frequency with which state variables

change. Several researchers have stressed the need for

alternative methods to analyse system robustness that can

complement low-level dynamical analysis (an excellent

review can be found by Snyder et al. [24]). This inevitably

means letting go of local detail, and focusing on statistical

properties of the system.

In this respect, the last decade has seen the emergence of

a substantial body of techniques under the broad heading of

‘‘network science’’ ([27], [21]), which provides tools for

understanding the characteristics of large-scale networks

and complex systems. Network science abstracts systems

as a set of nodes and links, the former representing agents

(such as companies), and the latter interactions among

them (such as buy and sell relationships). In doing so, it

reveals structure and infers the governing rules of the

system. This development meant that supply networks

could now be analysed as a whole system rather than iso-

lated parts.

Choi et al. [10] pioneered the application of these ideas

to supply networks (see also [5, 8, 14]). Empirical studies

include Kim et al. [16] efforts to map part of the Honda,

Acura, and Daimler Chrysler, which consisted of 70

members; Lomi and Pattison [18] analysis of 106 auto-

motive firms in southern Italy; and Keqiang et al. [15]

examination of the Guangzhou automotive industry,

Saveedra et al. [23] study on the New York Garment

Industry, and Brintrup et al. [7] study on Airbus. These

studies examined network structure and proved that supply

networks are complex systems and that their robustness

properties would be affected by structure, but did not find

empirical consensus on universal properties ([12], Brintrup

et al. [7]).

The above studies on large-scale supply networks force

us to revisit long assumed models of isolated parts and

think about the bigger system picture when robustness is

examined. In this respect, Thadakamaila et al. [25] used the

preferential attachment model to generate a scale-free

network, from which they interpreted robustness proper-

ties. Nair and Vidal [19] examined robustness against

disruptions under random, small-world, and scale-free

network topologies using multi-agent simulation. Zeng and

Xiao [29] proposed network load entropy as a measure to

detect spreading dynamics of cluster supply chain networks

under cascading failures. Basole and Bellamy [3] applied

the classical SIR model from epidemiology for under-

standing risk diffusion in supply networks.

As previous researchers demonstrated, network science

is a promising approach in modelling whole system

robustness in supply networks. However, the extant liter-

ature ignored a crucial ingredient for modelling supply

network robustness, which is their dualistic topology,

containing (1) the structure with which suppliers connect to

each other and (2) the structure with which production is

distributed among suppliers. A supplier might be in a

periphery position in the network, but its product list might

contain products that are unique. Hence, network mod-

elling based only on supplier connections would not cap-

ture this supplier as an important node, although

disruptions in this supplier would halt the production of an

assembly. For a supply network to be robust, not only the

supplier connections should remain intact, but also all

products needed for an assembly should subsist.

In this article, we close this gap by proposing a com-

prehensive framework for the analysis of robustness in

supply networks. The framework borrows ideas from net-

work science extending them within the supply network

context for both static and dynamic assessment of robust-

ness. Firstly, the dualistic supplier–product perspective is

created. Then, a review of network disruption scenarios is

collated and modelled. This is followed by the develop-

ment of damage assessment measures, which help identify

the impact of disruption scenarios. The framework is then

tested using large-scale empirical data from the global

automotive industry.

2 A framework for robustness assessment

in supply networks

2.1 Two perspectives

The framework we propose includes two distinct modes of

analysis: structural and simulation based. The structural

analysis includes the examination of as-is topology,

whereas the simulation-based analysis includes subjecting

the topology to disruption scenarios and extracting statis-

tical properties relating to possible failure types. Both

structural and simulation-based analysis include examining

two key perspectives of supply networks, which are inter-

twined, but their connection has been hitherto ignored in

the literature.

2.1.1 Supplier network

As Kim et al. [16] point out, links in a supply network

can be of various forms, including contractual relation-

ships and material flow. It might be that companies have

a contractual obligation to an assembler to deliver certain

goods, but the physical goods come from another
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company. As our query is on the robustness of the net-

work, links of actual goods delivery are of interest. If

these companies fail, then the final assembly cannot be

completed. One can also argue that if a contracted com-

pany is disrupted, this would affect the flow of goods just

as much as the disruption at the physical goods producer,

as it essentially acts as an intermediary to deliver goods

downstream. In that case, the assembler needs to find the

producer and procure directly. Another argument would

be the consideration of the logistics network. More often

than not, producers rely on external logistics and ware-

housing providers to deliver goods downstream. If dis-

ruptions occur in these intermediaries, the supply network

would fail. The producers would need to find alternative

modes of transportation and storage. For the sake of

simplicity, in this paper we focus on the physical pro-

duction network between companies and capture the most

dramatic disruption mechanism—that of failures of pro-

ducers. Hence, in this network nodes represent production

companies, and directional links capture material flow

relationships between them. Each node is assigned a

vector of products that it offers. Topology of this network

defines its robustness to company failures. Let us call this

perspective a supplier network.

2.1.2 Product network

In a supply network, there are interdependencies between

components that make sub-systems, which themselves

make an assembly. An actual bill of materials map would

be the most accurate representation in understanding how

products traverse in the system and come together to make

up the assembly. However, in large-scale supply networks,

as companies entrust each other with sub-assemblies, they

do not necessarily have visibility of the entire sub-system

down to the component level. In the absence of such data,

other forms of representation must be used to approximate

interdependencies between products. We thus propose a

representation where each product category that exists in

the network is represented by a node. The more two

products occur within the same supplier, the more likely

these two products would be related and interdependent.

Nodes are connected to one another if they coexist in a

supplier’s product portfolio. The total weight w on a link

represents how many times the two products co-occur in

the same portfolios. In other words, w C 1, where w is an

integer. We shall use the term product as an all-encom-

passing term that includes sub-components and sub-sys-

tems (please see Table 4 for examples). Thus, this network

perspective helps us understand potential relationships

among product categories. Let us call this perspective a

product network.

Clearly, for robustness in a supply network the two

perspectives cannot be separated because each node pro-

duces one or more types of products and supplies them to

other firms, eventually ending with the manufacturer,

which assembles the products. For a supply network to

remain functional, both the supplier and product network

should be robust and contain redundancies at system level.

In subsequent sections, both these perspectives are used for

the assessment of robustness.

2.2 Structural analysis

The field of network science offers a toolset to analyse

topology with respect to robustness, using a minimal set of

parameters, in the form of nodes and links. In what follows,

we use and explain some relevant measures reported in the

literature and propose new ones to capture intricacies of

supply networks (Table 1). In both supplier and product

network perspectives, both the network (system) level and

the node (company or product) level are analysed. The first

present us with a macroscopic view of how the network is

interconnected, pinpointing structural vulnerabilities. The

second examines how key actors and their roles can be

identified using centrality measures, which help understand

suppliers that act as network connectors, integrators, and

mediators. In the case of the product network, the network

level helps understanding the interconnectivity and scarcity

of products, while the node level helps identify products

that are most frequently used for the assembly and bring

together various different sub-systems.

2.2.1 Supplier network metrics: in-, out-, total degree

centralities and distributions

These measures refer to the number and distribution of

relationships across firms in the network. Since supply

networks are directed networks, we can distinguish

between in- and out-degree centralities, with the first

being the number of suppliers a company has, and the

latter being the number of clients a company has. Nodes

with high in-degree centrality are integrators that assem-

ble components that go into a final product and are inte-

gral to the architectural design of the product, whereas

nodes with high out-degree centrality are concerned with

distributing limited resources among several customers

(Kim et al. [16]). High in-degree centrality relates to a

firm’s supply load, whereas high out-degree centrality

relates to its demand load (Kim et al. [16]). The total

degree is the number of clients and suppliers a node has.

Distributions are plots showing the frequencies of these

centralities across the network and are used to highlight

variations. A homogeneous distribution would show that
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most suppliers have similar numbers of relationships,

affecting the overall connectivity in similar ways. A

heterogeneous distribution would mean some suppliers

affect connectivity more than others. Degree, in-degree

and out-degree are defined as:

ki ¼
X

n

j¼1

Aij ð1Þ

kini ¼
X

n

j¼1

Aij ð2Þ

kouti ¼
X

n

i¼1

Aij ð3Þ

where Aij corresponds to the element (ith and jth) of the

adjacency matrix. The event, or probability of outcome, of

degree k can be represented by:

pk ¼
nk

n
ð4Þ

where nk is the number of nodes with degree k, and n is the

number of all nodes in the network. The degree distribution

can be analysed in a (k, pk) plot.

2.2.2 Average path length

The average path length is the sum of lengths of shortest

path between all nodes divided by the number of all pairs,

defined as [21]:

l ¼
1

n2

X

ij

dij ð5Þ

where dij is the shortest path length between vertices i and

j, and n is the number of nodes in the network. It can be

associated with the distance the products and materials

need to travel on average. Here a path refers to a geodesic

path, meaning the number of nodes one must traverse to

reach to a destination; and is not related to actual distance.

The shorter the average path length, the more efficient the

flow of materials will be (Kim et al. [16], [6]).

2.2.3 Clustering coefficient

This metric quantifies the extent to which two random

nodes with links between them are also connected through

common third parties and is defined as the ratio of the

number of existing links between a given node’s nearest

neighbours and the maximum possible number of such

links, averaged over all nodes in the network. Clustering

coefficient is defined as:

C ¼
1

n

k2 � k½ �
2

k3
ð6Þ

where n is number of nodes in the network, and kmh i is kth

moment defined as:

hkmi ¼
X

1

k¼0

kmpk ð7Þ

Table 1 Metrics used for structural analysis of the supplier and product networks

Supplier network Product network

Node Company Product

Link ‘‘Supplies to’’ ‘‘Jointly supplied by’’

Properties Directional, unweighted Bidirectional, weighted

Most relevant network-level metrics In-, out-, total degree distribution

Assortativity

Modularity

Average path length

Clustering coefficient

Weighted degree distribution

Most relevant node-level metrics In-, out-, total degree centrality

Betweenness centrality

Closeness centrality

Degree centrality

Betweenness centrality

Closeness centrality

Additional metrics proposed Product degree distribution (network level)

Product centrality (node level)
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where k is the degree of the network and pk is the degree

distribution. From a robustness perspective, the higher the

clustering coefficient, the more dependent suppliers are on

each other for production.

2.2.4 Modularity

Network structure can be affected from geographical and

industrial influences, forming into substructures called

communities. Modularity essentially investigates the good-

ness of specific subgroup formations in a network. Biological

and social networks have been shown to have high modu-

larity [20]. Communities are important in understanding the

dynamics of a network. For instance, in epidemiology the

resistance of connections between communities determine

the rate of transfer of diseases throughout the network of

humans. Similarly, in a supply network,modularity can point

to the extent where failures can be contained within com-

munities. Modularity is defined as:

Q ¼
1

2m

X

ij

Aij �
kikj

2m

� �

d ci; cj
� �

ð8Þ

where m is the number of edges, Aij is the element in the

adjacency matrix in the ith row and jth column, k is the

degree of the node, and d(ci,cj) is the Kroneker delta, which

is 1 if two nodes belong to the same community, 0 other-

wise. Modularity has its maximum at Q = 1, where all

nodes are separated into communities. If Q = 0, the whole

network becomes a single community. We use the popular

community detection method described by Girvan and

Newman [13].

2.2.5 Assortativity

Social networks have been observed to show ‘‘assortative

mixing’’, which means that high-degree nodes have a ten-

dency to connect to other high-degree nodes. The concept is

important as something that affects a single high-degree

node could quickly cascade to other high-degree nodes. For

example, in the field of epidemiology an assortative network

means that diseases will spread faster than disassortative

networks, whereas in the latter type of network targeting

vaccinations to high-degree nodes, i.e. persons with a large

social network, would be an effective strategy. To charac-

terize assortativity, the behaviour of the average nearest

neighbour’s degree of the firms of degree k is studied:

knnðkÞ �
X

k0

k0Pðk0jkÞ ð9Þ

where P(k0|k) is the conditional probability that a firm of

degree k is connected to a firm of degree k0. Here k includes

both suppliers and customers and thus considers all firms

connected to the node in question. If knn increases with k,

the network is assortative. If knn decreases with k, network

is disassortative. Assortativity could point to several

dynamics at play in a supply network. Firms with high

numbers of links could be managing sub-communities in

certain areas of production and then connect to other high-

degree firms doing the same thing, creating subassemblies

that they pass on downstream. Although efficient, the

structure also would mean that disruptions at any one of the

connector nodes could bring the whole network to a

standstill quickly, as they will quickly cascade to other

high-degree nodes.

2.2.6 Closeness centrality

This metric provides a measure of how close a firm is to

other firms in the network by counting the total geodesic

distance between a node and all other nodes in the network.

This could be used as a proxy for the speed with which

disruptions from a disrupted node can affect others.

Closeness centrality is defined as:

Ci ¼
n

P

j dij
ð10Þ

where n is the number of nodes and dij is the length of the

shortest path between vertices i and j.

2.2.7 Betweenness centrality

This metric measures how often a node will sit on the

shortest paths that connect different nodes to each other in

the network. Nodes with high betweenness centrality have

been shown to control the flow of materials and commu-

nication in the network (Kim et al. [16]). Consequently,

they can control the speed with which information and

material can be disseminated in the network and act as

bottlenecks during disruptions. Kim et al. [16] relate

betweenness centrality to a firm’s operational criticality. It

is important to point out that betweenness centrality counts

shortest paths, whereas all paths are in use in a supply

network as firms work towards a bill of materials. A more

refined measure should include all the paths; however, in

this paper we base our discussions on the conventional

definition of this measure so that comparisons with other

empirical work can be made by researchers. Betweenness

centrality is defined as:

xi ¼
X

st

nist
g

st

ð11Þ

where nist is 1 if vertex i lies on the shortest path between

s and t, and gst is the number of all shortest paths between

s and t.
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The following two metrics we propose complementing

the supplier network by examining how products are con-

nected to suppliers in the form of a bipartite network.

2.2.8 Product centrality

We propose that disruptions at companies with large num-

bers of product types would have a higher impact on the

network than companies with small numbers of product

types, and we propose to measure the number of product

types that each company has. Here a product is used to refer

to distinct product categories that make up an assembly,

rather than inventories of products. Product categorization

could be a rather subjective measure that reflects a scale

instead of distinct types. For example, a distinction can be

made between diesel and petrol engines, or between slightly

different enginemodels. The level of differentiation between

categories would need expert input and consideration of

substitutions between categories. For example, product cat-

egories that can be substituted between each other can be

bundled together to demonstrate redundancies in the net-

work. Product centrality can be defined as:

pci ¼
X

j

nij ð12Þ

where pci is the product centrality of vertex i, nij is 1 when

company i has product j, 0 otherwise.

2.2.9 Product degree distribution

We propose this measure to capture the variations among

suppliers’ product portfolio sizes. A homogeneous distri-

bution would show that most suppliers have similar num-

bers of products, affecting the overall assembly in similar

way. A heterogeneous distribution would mean some

suppliers affect the assembly more than others. Product

degree distribution is defined as:

ppc ¼
npc

n
ð13Þ

where npc is the number of companies with product cen-

trality pc and n is the number of nodes in the network.

A summary of each metric and its relevance is given in

Table 2.

Table 2 Description of metrics used for structural analysis

Metrics Description

Supplier network

In-, out-, total degree distribution A homogeneous distribution shows most suppliers affect overall connectivity in similar ways. A

heterogeneous distribution means some suppliers affect connectivity more than others

Assortativity Assortative network means disruptions at any one of the connector nodes can halt production quickly, as they

will quickly cascade to other high-degree nodes

Modularity Modularity can point to the extent where failures can be contained within communities

Average path length The shorter the average path length, the more efficient the flow of materials

Clustering coefficient The higher the clustering coefficient, the more dependent suppliers are on each other for production

Total degree centrality Integrators that assemble components

In-degree centrality Supply load

Out-degree centrality Demand load

Betweenness centrality The speed with which information and material can be disseminated in the network and suppliers that act as

bottlenecks during disruptions

Closeness centrality Speed with which disruptions from a disrupted node can affect others

Product degree distribution

(network level)

A homogeneous distribution shows most suppliers have similar numbers of products, affecting the overall

assembly in similar way

Product centrality (node level) Companies with large numbers of product types would have a higher impact on the network than companies

with small numbers of product types

Product network

Weighted degree distribution Ubiquity of products. Highly ubiquitous products are least likely to disappear, but can cause a lot of

disruptions, as many components including this product cannot be made

Degree centrality Redundancy of a product in the network

Betweenness centrality High betweenness centrality for a product highlights how commonly it is needed to bring sub-systems

together

Closeness centrality High closeness centrality relates to how soon product would be needed to create other products in the

network, and how soon its lack would affect the making of the assembly
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2.2.10 Product network metrics: weighted degree

distribution

We propose to examine the likelihood of a product to be

coupled with other products in a supplier’s portfolio. A

large weight represents a ubiquitous product, and although

its lack would affect many suppliers, its ubiquity means

there will be many instances of it across the network.

While least likely to disappear, if a product with a large

degree disappears, it can cause a lot of disruptions, as many

components including this product cannot be made. Here

the frequency of weights across the product network are

plotted to highlight variations.

2.2.11 Degree centrality

Similar to the supplier network, here we measure the

number of connections a node has. The connections refer to

the number of companies co-producing that product. If a

node has no connections, the product is made by only one

supplier. If it has many connections, the product is made by

multiple suppliers. The degree centrality therefore can be

an indicator of the redundancy of the product in the

network.

2.2.12 Betweenness centrality

In the context of the product network, this measure

accounts for the number of times a product sits on shortest

paths between products. As the paths represent interrelat-

edness in this network, the closer products are to each

other, the more interrelated they will be. High betweenness

centrality for a product can thus highlight how ubiquitously

it is needed to bring sub-systems together.

2.2.13 Closeness centrality

In the context of the product network, this measure

accounts for the distance a product is from other products.

A high closeness centrality would relate to how soon this

product would be needed to create various other products

in the network, and how soon its lack would affect the

making of the assembly.

2.3 Risk scenarios

Research has shown that supply networks face various

types of risks whose frequency and impact severity differ

widely [22]. Analysing the relationship between network

structure and risk scenario should therefore involve linking

risk scenarios into their structural impact and thus outlining

how the impact can be simulated.

Table 3 shows a variety of risk scenarios gathered from

the literature. Although this is not a comprehensive list, a

variety of examples can be considered in this vein. For

example, a natural catastrophe such as a volcano eruption

would affect a region or a country. To simulate the effect of

the eruption on the network, all companies that fall within

Table 3 Risk scenarios in the supplier network

Risk scenarios Impact level Simulation procedure Damage

assessment

Attack

scenarios

Humanitarian crisis

Political violence

Geopolitical conflicts

Climate catastrophe

Disease outbreak

Natural/environmental

catastrophe

Region/country Remove all companies in the country or countries and

associated product instances

LCC

APL

AC

CFP

CFC

Targeted

single

Financial issues

Reputation damage

Group of

companies

Remove all companies and associated product instances Random single

Hazard on premises Factory Remove company location and associated product instances Targeted

Financial issues

Quality issues

Reputation damage

Company Remove company and associated product instances

Machine breakdowns

Quality issues

Resource scarcity

Product

instance

Remove product instance from the network AC Progressive

Resource scarcity Product type Remove all product instances associated with a product type

from the network

Random

progressive
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the impacted region or country are removed from the net-

work along with the products they supply. Financial issues

such as bankruptcy can affect a group of companies that

belong to the same corporation. These can be simulated by

removing all companies that belong to the impacted cor-

poration. Similarly, problems at a factory such as a fire

hazard at a premise or at a company as a whole entity such

as damaged reputation can be simulated by removing sin-

gular premises or companies.

An important difference needs to be made between

product types and product instances. A product type is a

category of products that needs to exist in the network for

an assembly to be made. If a given product category no

longer exists in the network, the assembly cannot be made,

and hence, the production fails. A product instance, on the

other hand, is a specific realization of a product category

within a supplier’s portfolio of products. The more

instances of a product category there is in the network, the

more robust the network would be. When a supplier is

disrupted, the product instances that it holds in the network

are no longer available. On the other hand, it is possible

that a single product instance only is affected. For example,

problems in a single production line such as the breakdown

of a machine can mean that a certain product instance, say

a gearbox from a supplier, is not available; however, the

other products of the supplier are. It is also possible that a

product category, capturing all gearboxes in the network, is

no longer available, because a certain raw material neces-

sary to make the product can no longer be sourced. In this

scenario, all product categories that contain this raw

material would cease to exist in the network.

To evaluate the impact of the different risk scenarios, we

adopt a computational procedure which involves ‘‘stress

testing’’ the network by assessing how the system would

cope with failures, a summary of which is given in Table 3.

The stress testing involves triggering a potential crisis by

exogenously failing a node and investigates the spread of

this failure within the system. Failing a node does not

imply physical removal but that the node is dysfunctional

in some way. To investigate maximum impact, we make

sure the nodes that fail do not become functional, but

remain dysfunctional throughout the simulation period.

Simulation can be undertaken in many ways. In the

simplest case, a single attack is carried out at random.

Depending on the risk scenario under consideration, this

could be a company, a product instance, a whole product

category, a whole country, or group of companies. This

would help answer questions such as:

• Wouldmy network function if there was a freeze event in

northern Europe, disrupting all companies in this region?

Another option might be progressive removal. Here, the

network is repeatedly attacked by random removal of

nodes, until the network fails. This would help understand

the failure threshold of the network and answer questions

such as:

• How many companies need to be disrupted at random

before my network ceases to function?

A popular alternative to random removal is targeted

removal, during which a node or set of nodes are attacked

according to some criterion. The criterion could include a

ranking order with respect to a node’s centrality. Again,

under this attack type, removal can be progressive or tar-

geted at a single node. Targeted progressive removal would

put the network under the most pressure, as the network is

attacked using intelligent choices. Research has shown that

different network structures respond to attack types dif-

ferently. In scale-free networks, the network remains con-

nected in the face of random disruptions as these will most

likely affect those firms that connect to large hubs. If, on

the other hand, large hub firms are disrupted, the overall

network will most likely suffer, given that they are integral

to the functioning of the network (Barabási and Albert [2]).

2.4 Damage assessment

Following risk and attack scenarios, a procedure for

detecting network failure needs to be established. There are

several damage assessment measures that could be used to

detect when a network fails. Of these, most used are de-

crease of size of the largest connected component (LCC)

and increase of the average path length (APL) (Table 3).

A component is composed of nodes that are directly or

indirectly connected to each other. The LCC contains the

highest number of nodes that are connected to each other.

The criterion of size decrease therefore investigates how

fast a network becomes disconnected into isolated clusters,

and there is no longer a guarantee that two random nodes

will be connected through traversing intermediary nodes.

This metric is useful in networks such as the Internet or

social networks. In supply networks, the measure can be

useful to understand the extent of the contracted, estab-

lished network. However, unlike communication networks,

the existence of disconnected clusters does not mean that

companies cannot procure goods from them. Existing

contracts allow companies to simply rewire their network

to procure goods from elsewhere. The measure thus could

be useful to identify when, on average, the network will

need to be reorganized.

The second measure, APL, investigates how the average

path, which must be traversed by products to reach to the

assembler, increases in length, as nodes are deleted. If the

network is disconnected, APL becomes infinitely long.

This is a somewhat useful measure for supply networks, as

the addition of each node on the average path will mean an
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additional contract and thus increased transaction cost and

time for the procurement of products.

While informing to some extent, none of the above

measures readily capture the intricacies of supply networks

during robustness analysis. We thus introduce an additional

damage assessment measure, called assembly completeness

(AC) (Table 3), which is concerned with the product dis-

tribution on the network. To build a final assembly, in this

case a car, all product categories that are necessary for the

assembly to be built need to come together. Hence, there

needs to be at least one instance of each product category

that is necessary for the assembly in the network. This

criterion therefore analyses how quickly the network loses

the ability to build an assembly under sustained failure. Let

us define assembly completeness ci as:

ci ¼
p� pi

p
; ð14Þ

where p is the total number of product categories that are

needed in the network; pi is the number of product cate-

gories that supplier i produces.

LCC and APL could be examined during removal of

nodes that represent companies or products, as these

examine the connectance of the topology of the network,

whereas AC is applicable throughout.

Another consideration we propose is cascades of failures.

A cascading failure is a failure that can trigger the failure of

successive parts in a given system. In ours, a supplier’s

failure can cause other suppliers to fail in delivery of their

goods, cascading throughout the network. Two measures of

cascading failure can be considered here: cascading failures

of companies (CFC) and their products (CFP) (Table 3).

CFCmeasures howmany firms fail due to the disruption of a

single company. CFC can be considered by a company’s

level of impact on the environment, from first degree of

cascades, where the removed company affects its customers

and suppliers, second degree, where neighbours of neigh-

bours of removed company are considered, and so on. CPC

takes the products portfolios of these companies into

account, measuring the theoretical maximum number of

products that can be affected.We followed (Costa et al. [11])

to formulate the CFC and CFP concepts. Consider a bidi-

rectional network build from our direct network that is rep-

resented by g ¼
def

n
!

; l
!

;
p
!� �

, where n is the list of nodes, l is the

list of links, and p is the list of products. Such as, p1 is the list

of products belonging to the company n1. Hence, if we want

to analyse a cascading effect starting in node, n1, we have to

define first the radius Ri
k. Radius R

1
1 is the list of nodes sep-

arated by distance 1 of node 1:

R1
1 ¼ ni 2 g : d n1; nið Þ ¼ 1f g ð15Þ

Then, to determine the nodes at radius d = 2 from node n1,

i.e. R1
2, we need to remove all elements from R1

1:

R1
2 ¼ ni 2 gnRi

1 : d n1; nið Þ ¼ 2
� 	

ð16Þ

So in general, for a distance k from a node i:

Ri
k ¼ ni 2 gnRi

k�1 : d ni; nkð Þ ¼ k
� 	

ð17Þ

Now, to obtain a quantity for the number of cascading

failing companies, we just need to write the cascading

number C, for a cascade range of k layers starting at node i,

which is the sum of the number of elements of each radius:

Ci
k ¼

X

k

#Ri
k ð18Þ

In the same way, for the cascading of products, the union of

the lists of products in each set of companies belonging to

each radius is:

Pi
k ¼

[

j

pj : nj 2 Ri
k

� 	

ð19Þ

To write the full list of products that belong to all failing

companies put together, we have the union of products of

every company at distance k from node i. So, all cascading

products are the union of this union for all distances:

Pi ¼
[

k

Pi
k ð20Þ

and the total number of products unavailable, is then

simply #Pi.

In the product network described earlier, risk scenarios

can be represented in a similar vein. Each weight repre-

sents a product instance. By reducing weights from the

links, we can observe risks relating to the disappearance of

individual products from suppliers’ portfolios. To simulate

resource scarcity, we would need to delete a node. To

simulate disruptions at companies, the weights of all links

associated with products in a supplier’s portfolio are

reduced. If a product node becomes isolated, this means the

product is no longer reachable. However, in the product

network isolated company nodes cannot be observed

readily. Hence, we shall use the supply network for the

simulation of risk scenarios.

3 An empirical illustration: the global automotive

industry

In this section, we test a part of the risk assessment

framework proposed in the previous section using large-

scale empirical data. First, the dataset and network creation

are described, followed by topological and simulation-

based analysis.
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3.1 Data and methods

To illustrate the analysis proposed, the automotive industry

is mapped by querying a private industry database

(Marklines Automotive Information Platform). The data-

base collects data populated through surveys sent to about

40,000 automotive supplier firms and is primarily used by

member firms to search for suppliers and advertise their

capabilities. The data are agglomerative, in that once a

supplier has identified itself as a supplier to a certain firm,

it will remain so, unless either the customer firm or the

supplier firm requests a removal of the relationship from

the database. Therefore, the data are cross-sectional and

might show relationships that are not continuous, although

most data were gathered after 2007.

Data were downloaded from the databases during

August–October 2014. The search process involved

downloading data on products, customers and suppliers of

firms that advertise themselves on the database. The cus-

tomer and supplier data were then used to create links

between companies. Every supplier was coded with a

unique identification. Hence inter-tier linkages, and sup-

plier links to multiple clients could be identified. First, the

supplier network was constructed. Following data collec-

tion and the creation of the network, we isolated the largest

connected component, ignoring clusters of firms that are

not connected to the network. This resulted in 18,943

companies with 103,632 links between them. Of these,

16,469 are suppliers and the remainders are assemblers.

One of the challenges in modelling supply networks is to

define its boundaries. The companies on the network view

themselves as connected to the automotive industry, given

that they advertise their services to this particular industry.

This, however, could mean companies such as raw material

producers are missing from the network. The dataset also

does not include non-production suppliers (for example,

those providing maintenance, repair, and operating sup-

plies, or capital equipment).

After the construction of the supplier network, we

construct the product network by listing all distinctive

product categories advertised by the suppliers and then

creating linkages between the products with weights that

signify how many times a product pair appears in the same

portfolios of suppliers. There are a total of 934 product

types in the network, produced by 16,469 supplier firms.

The products listed by companies are chosen from

standard categories provided by the database and hence are

consistent. A product refers to one of the product categories

in the network, which are generic automobile components

and sub-systems, rather than model specific. These could

include categories such as gearbox, air conditioner, wiper

switch. Product categories are thus viewed as substitutable.

Generic processing capabilities such as forging and plastic

moulding were ignored. Our view is that suppliers that

create these generic product categories could be substi-

tutable as they have the general capability and tools to

produce a given product.

The networks constructed are shown in Fig. 1. The open

source graph visualization manipulation software Gephi

(available at http://gephi.org/) was used to visualize the

two networks. Gephi was used also to identify network-

and node-level metrics. The metrics proposed by the

authors and simulation scenarios were implemented using

the JGraphT library. The simulation experiments were

carried out on two 2.8 GHz Intel Core i5 Apple computers

with 8 GB 1600 MHz DDR3 memory. To achieve statis-

tically significant results, we compared topological metrics

with 100 random realizations of networks of the same

numbers of nodes and links. The random realizations are

created using Gephi, based on Erd}os and Rényi networks

(Erd}os and Rényi 1960). Of course, a random network is

likely to be a poor match with real supply chains.

Fig. 1 a Supplier and b product

networks constructed. Nodes are

colour-coded according to

communities

1 Page 10 of 17 Logist. Res. (2016) 9:1

123

http://gephi.org/


However, given that there is a lack of real-world

empirical data in the supply chain literature, it is not

appropriate to speculate on alternative null models without

having to resort to significant assumptions. Similarly, there

is no empirical example of the product network represen-

tation in the literature, and thus, no assumptions can be

made regarding its structure.

3.2 Structural analysis of the global automotive

industry

Table 4 shows metrics obtained for the automotive supplier

network. The network is assortative as there is a clear

increase in knn as k grows and the correlation between k and

knn is reasonably high (Fig. 3e). Assortativity could point

to several dynamics at play in a supply network. It could be

an artefact of a bill of materials flow. Firms with high

numbers of links could be leading their communities in

certain areas of production and then connect to other high-

degree firms doing the same thing, creating sub-assemblies

that they pass on downstream. From a robustness per-

spective, connection of hubs to hubs would mean disrup-

tions can cascade faster than a non-assortative network.

This would pinpoint a need to keep contingency plans in

place at hubs, such as inventories from vulnerable

suppliers.

Modularity is high in our network and close to that of

networks reported in the literature, including metabolic

networks, collaboration networks of scientists, and jazz

musicians [20]. We find 21 communities in the network

detected by the algorithm given in Blondel et al. [4].

Figure 1a shows the communities found. Although the

community detection algorithm does not have any

industrial intelligence embedded within it, it is able to

find logical patterns solely based on topological data. The

existence of communities in a network could act as a

buffer for disruptions as communities can prevent cas-

cades to leak outside.

Table 4 Supply and product network metrics

Global automotive industry Random network

Supply network

Network level

Assortativity

Modularity

Average path length

Clustering coefficient

Assortative (r = 0.52)

0.44

3.92

0.17

Disassortative

0.14 ± 1e-5

3.67 ± 0.001

0.001 ± 1e-7

Node level

In-degree centrality (supply load) Ford Motor Company (1), Toyota (0.93), Honda (0.88)

Out-degree centrality (demand load) Magna International (1), Robert Bosch GmbH(0.64), Denso Corporation (0.59)

Total degree centrality Ford Motor Company (1), Toyota (0.93), Honda (0.88)

Betweenness centrality (operational criticality) Toyota (1), Ford (1), Honda(1), General Motors(0.8), Nissan (0.7), China FAW (0.7)

Closeness centrality (informational independence) Mitsubishi Heavy Industries Philippines (1), Sanko Electronics America (1), Mitsubishi

Heavy Industries

Product centrality (assembly criticality) Magna International Inc.(1), Denso Corporation(0.95), Robert Bosch GmbH (0.84), TRW

Automotive Holdings Corporation (0.66), Delphi Automotive PLC (0.65), Aisin Seiki

Co. Ltd. (0.64)

Product network

Network level

Assortativity

Modularity

Average path length

Clustering coefficient

Assortative (r = 0.76)

Not highly modular (0.179)

1.51

0.76

Disassortative

0.023 ± 1e-5

1.43 ± 0.001

0.57 ± 1e-7

Node level

Degree centrality Pipe (1), Bearing (0.97), Fastener (0.97), Spring (0.97), Sensor (0.96), Seal (0.95), Wire

Harness (0.95)

Betweenness centrality Pipe (1), Spring (0.82), Bearing (0.76), Wire Harness (0.76), Sensor (0.66), Fastener

(0.74)

Closeness centrality Fuel Filter (0.94), Fuel Gallery (0.92), Automatic Choke (0.92), Interior Trim (0.92)

Companies and products scoring highest in centrality measures are shown with normalized measures given in parentheses
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The average path length is not shorter than what we

would expect to occur by chance, as comparison with the

random model reveals. The supply network does not appear

to be tightly knit, on the whole. Though of course, specific

communities, perhaps those of some assemblers, might be

more closely positioned than others. However, the clus-

tering coefficient is higher than that of random networks,

meaning that companies are indirectly connected to one

another. Rather than the unitary pathways that would define

a strictly hierarchical network, a firm may have many

dozens of potential routes, whereby its output can reach the

final customer. The overall average number of connections

is 9.2. But here the issue is not the average number of links,

but the distribution of links, as shown in Fig. 2.

The distributions of in- , out- , and total number of links

demonstrate that the number of relationships maintained by

firms in the network is not characterized by some random

value, such as the Poisson distribution that we would

expect for a random network (Erd}os and Rényi 1960).

However, contrary to some prior claims about supply net-

works ([25, 30]), we do not find a power-law degree dis-

tribution as would be the case in a scale-free network [2]. A

scale-free structure would imply that a significant propor-

tion of all relationships are associated with firms that act as

hubs. Instead, the supply network follows an exponential

degree distribution, with some firms maintaining signifi-

cantly more relationships than others, but a clear upper

bound on how many relationships a firm can maintain. An

exponential degree distribution is typically observed in

networks generated by a trade-off evolutionary process that

involves nodes incurring costs for obtaining links [1]. This

would put the supplier network somewhere in between a

random network and a scale-free network in terms of its

robustness to random and targeted failures. While the

Fig. 2 Supply network distributions of a out-degree, b in-degree, c degree, d product degree, e assortativity and f product network weight

distribution
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network would be more robust to random failures than a

random network, it would not be as robust as a scale-free

network. On the other hand, it would be more robust to the

failures of nodes with high numbers of links than a scale-

free network, but not as robust as a random network.

Probabilities associated with such attacks can be found

using the simulation approach.

Product degree distribution shows a pattern in which

some firms sell many products and most firms sell a few

products. Although we cannot generalize a pattern to the

distribution, given its low scale, we can assert that failures

on those few firms with many products in their portfolio

will likely affect the network more, provided that there is

little redundancy. There is an average of 129 suppliers per

product category out of 16,469 suppliers that supply

products. Of course, this number is artificially high, as the

product categories we work with are generic. The product

weight distribution on the product network shows a dif-

ferent perspective (Fig. 2f). It appears that most product

categories have multiple suppliers associated with them;

however, a number of products are single- or double-

sourced (2 %). These products need to be carefully

inspected, and contingency plans for their scarcity need to

be developed.

Next, we investigate centrality measures in both net-

works. In the previous section, we showed that the overall

structure of the network is composed of hubs, to which

most firms are connected. The network is vulnerable to

disruptions on these hub firms but resistant to random

disruptions. Furthermore, the network is composed of

several sub-communities. Given the assortative network

structure, we hypothesized that certain firms will connect

these communities, providing the glue, which holds the

network together. These firms will also act as bridges that

transfer information and materials in the network. In this

section, we identify these key actors by using network

centrality measures and discuss how they impact the net-

work. While network-level measures such as average path

lengths and density provide macroscopic views of how the

overall structure is organized, centrality measures provide a

node-level view and examine how a certain node is

embedded within a network, helping us identify firms with

significant roles. Table 4 shows the companies scoring

highest in out-degree, in-degree, betweenness, and close-

ness centrality measures. Following Kim et al. [16] ter-

minology, we relate these measures to demand and supply

load, operational criticality, and informational dependence,

respectively. Several well-known automotive companies

score highest in in-degree and total degree, forming the top

of the network boundary. Overall, the correlation between

the degree centrality of a company and its product cen-

trality is 0.71. Therefore, it is highly likely that a supplier

with many numbers of products in its portfolio will also be

a hub in the network. However, the high correlation results

from the out-degree and product centrality (0.70) rather

than in-degree and product centrality (0.17). Suppliers with

highest demand loads are multi-national corporations.

Many of these, such as Magna and Denso, are not only

highly connected, but also appear to be operationally crit-

ical. Magna has many links to many assemblers, but also is

connected to high-degree suppliers such as Fuji Heavy,

Cherry and Dongfeng. It consolidates many products from

small suppliers and delivers goods downstream. If Magna

was disrupted, the disruption would quickly cascade to

multiple OEMs. Interestingly, it does not score highly in

closeness centrality, possibly because of its assortative

nature linking it to other Tier 1s but placing itself a hop

away from Tier 3s. Magna needs to be closer to its

extended network to be better informed of disruptions.

Examination of measures in the product network is

revealing. This network has a slightly higher clustering

coefficient, but average path length is not shorter than a

random network. Many products in the network are cou-

pled to one another. From a systems perspective, the sys-

tem is not highly modular, meaning that there is little

tolerance to disruptions to be contained within sub-systems

before they reach other parts of the assembly. In terms of

centrality measures scoring highly are usual suspects such

as simple connectors and sensors. These are also the

highest scoring in redundancy. It emerges that those

products that are critical for many systems are also those

products that have many suppliers.

3.3 Simulation of risk scenarios in the global

automotive industry

Due to lack of data on groups of companies or factory

locations and to exemplify as diverse set as possible, we

opt for the simulation of two main attack scenarios out of

the scenarios proposed in Table 3. These are progressive

targeted disruptions at companies and targeted disruptions

in countries. Figure 3 displays results. In the first scenario,

we attempted to cause the most damage with the least

removal of the nodes and thus select a targeted procedure.

The nodes are ranked according to their total degree cen-

trality and then nodes removed starting with the highest

ranked node. When nodes are removed, all of its links are

also removed. The size of LCC is observed upon each

successive removal. As nodes with highest degree are

removed, the largest component decreases and disappears

at the removed fraction f = 0.28, deforming into discon-

nected clusters (Fig. 2a). This value is typical of expo-

nential networks and is higher than scale-free networks but

lower than random networks [2]. The network will thus be

more tolerant to failures of highly connected nodes than a

scale-free network but less tolerant than random networks.
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The same pattern can be observed with the increase in the

average path length, which increases with the removal of

highly connected nodes as alternative paths are eliminated

(Fig. 2b). After the LCC disappears, the APL will tend to

infinity. Figures 4 and 5 show CFC and CFP as companies

are deleted. In both scenarios, damage caused by deletion

of individual companies are shown in decreasing loga-

rithmic scale. In CFC, the number of affected buyers

(Fig. 4a) and number of affected suppliers (Fig. 4b) are

shown. In CFP, the number of affected buyers’ products

(Fig. 5a) and number of affected supplier products

(Fig. 5b) are shown. Although in all cases third-degree

cascades are exponentially larger in terms of impact, not all

company deletions cause third-degree cascades. For

example, the average number of products affected during a

disruption at an individual supplier is 12 (Fig. 5b). The

average number on the second-degree-cascade-affected

products increases to an average of 101, and on third-de-

gree cascade, this number increases to 768. However, out

of all the suppliers, only the disruption of 0.002 % would

cause a third-degree cascading failure although the third-

degree cascading failure results in the loss of a large

Fig. 3 a Reduction in largest connected component size as nodes

with highest numbers of connections are targeted. b Increase in

average path length as nodes with highest numbers of connections are

targeted. c Reduction in largest component size and corresponding

increase in average path length as companies from different countries

are disrupted. Marker size is proportional to the number of companies

removed from a country. d Number of suppliers failing versus

assembly completeness if they are lost. Disruptions of majority will

have little impact as most of the assembly can still be procured from

elsewhere

Fig. 4 Number of affected a clients and b suppliers, as companies are deleted
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number of products. Additionally, it is not necessarily the

damage done by the first-degree disruption that determines

the total amount of damage. For example, Magna’s dis-

ruption would cause the most clients to be disrupted at the

first degree because this company has the largest client

base in the network. But when we look at second-degree

damage, i.e. the clients of clients that are disrupted,

Kamax’s failure is the most damaging, and at the third-

degree level, most damaging are Gibbs Die Corporation

and Michigan Spring and Stamping. Interestingly, Magna

also causes the most CFP damage at the first-degree level,

but at the third-degree level, ZF Friedrichshafen AG,

Panasonic Corporation, and Cummins Inc are most dam-

aging. For network-level robustness, highly connected

suppliers and suppliers with highest CFC and CFP levels

need to be made more robust. For individuals in the net-

work, the degree of spillover damage would depend on the

containment measures taken at each successive supplier.

Equally interesting lessons emerge when countries are

targeted for failure (Fig. 3c). China causes the highest

damage to the LCC, but relative to its size, does not

increase the average path length as much as Germany and

Japan does. This means that China has many nodes the

removal of which cause the size of LCC to decrease;

however, these nodes are at the periphery of the network

and thus are not highly connected. In contrast, Germany,

USA, and Japan have fewer nodes, but those nodes provide

most of the cohesiveness to the network. No single coun-

try’s removal results in the disappearance of the LCC. Of

course, note that many automotive assemblers such as

Ford, Volkswagen, and Toyota are from these countries, to

which many suppliers around the globe are connected,

whereas companies in China are mostly sub-tier producers.

When the AC is observed, no country except Japan and

Germany causes any loss. Disruptions in Japanese and

German suppliers result in an AC level of 0.98.

Next, we examine assembly completeness. Again we

attempt to cause the most damage with the least removal of

the nodes, in order to observe how fast breaking point

would occur. This time suppliers are ranked according to

their product centrality rather than degree centrality, with

the assumption that the removal of suppliers with many

products, rather than highly connected suppliers, would

likely result in disappearance of products necessary to

make the assembly. High-ranking suppliers are removed

successively, and AC is noted. The plotted distribution

shows the frequency of suppliers removed and the resulting

AC. It is observed that removal of the vast majority of

companies have little effect, whereas only a handful of

suppliers cause the assembly to be severely incomplete.

There is much redundancy in the network, and AC remains

robust to majority of supplier failures.

4 Concluding remarks

4.1 Summary of findings

Supply chains emerge as large-scale complex networks, the

interwoven topology of which makes them vulnerable to

systemic risk. At large scales, accurate robustness analysis

using operational details is not possible, not only because

the variable space becomes infeasible to be solved ana-

lytically, but also because operational details such as buffer

sizes, capacities, or throughput frequently change, making

the analysis not worthwhile. In this paper, we proposed a

network science-based framework as a powerful abstrac-

tion tool that captures some of the macroscopic features of

disruption dynamics. This simplification captures what

happens at the level of the network, rather than within the

individual members of the population. Contrary to prior

works, we used two network perspectives, namely those of

suppliers and those of products, for a more complete

analysis. The framework includes both existing and new

metrics to capture static robustness and dynamic response

to disruptions. We tested the framework with empirical

data from the global automotive industry. Several conclu-

sions have been drawn:

Fig. 5 Number of affected product instances a clients and b suppliers, as companies are deleted
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• Topological analysis showed that at large scales, the

supply chain is structured as a complex network with

multiple pathways between suppliers, rather than

hierarchically organized simple chains. Thus, network

science-based tools are appropriate for robustness

analysis of the system.

• The network has an exponential degree distribution in

terms of suppliers’ in-, out-, total degrees as well as the

product distribution among suppliers. This makes the

network vulnerable to failures on companies with

proportionally large numbers of clients, suppliers, total

number of links, and products. The network, however,

will be robust to random failures. As a comparison, the

network will be more robust to failures on such hubs

than on a scale-free network, but more vulnerable than

on a randomly organized network.

• Assortative nature of both the product’s and the

supplier’s network means that hubs tend to connect to

hubs, making cascades of disruptions more damaging

than that of disassortative networks.

• The supplier’s network is organized into communities,

with bridging suppliers connecting them. Disruptions at

these central firms need to be prevented to contain

cascades.

• If hubs fail in the supplier network, the largest

connected component quickly disappears forming the

network into disconnected clusters. Of course, in real

life the network can be rewired; however, this will

mean contractual rearrangements, which might take

time, and result in increased costs.

• Considering the LCC mechanism, the removal of single

countries do not result in the disconnection of the

network; hence, topologically speaking, the network is

robust to this kind of critical phenomena. However, the

node-level damage of country removal and rewiring

rates to avoid major catastrophes have not been

analysed.

• Examination of cascades of disruptions in the supplier

network showed that not only first-degree cascades but

further degrees need to be taken into account as

companies that score highly in first-degree damage are

not necessarily the same companies that may result in

secondary or tertiary damage. The degree to which

cascades can happen may be estimated using opera-

tional variables such as buffers.

• Both the topology of the supplier network and distri-

bution of production on the topology are important

components of robustness. While the network may be

topologically still connected, products that need to be

procured for the car assembly might disappear. In this

respect, our analysis showed that there is a high amount

of multi-sourcing, making the network robust to

supplier failures.

• The product network showed the existence of certain

central products, such as fuel filters, which have high

closeness centrality. Disruptions to the delivery of these

products will affect the assembly of many products

quickly, and these need to be carefully monitored.

Products such as pumps have high betweenness and

degree centrality. Although they have high redundancy

in the network, disruptions to their delivery would

cause issues for sub-systems to be brought together.

4.2 Limitations

Our results should be taken as a suggestive example due to

limitations concerning the dataset. These are:

• Data correspond to a cross-sectional map, with com-

panies advertising themselves as automotive parts

manufacturers. Hence, at least the raw material layer

is missing from the network.

• Data are agglomerative in that once a supply relation-

ship or production capability is declared, it remains in

the dataset, although ties can be broken and production

capabilities may change over time.

• Analysis on product capabilities used standard product

categories given by the dataset provider, the granularity

of which might affect the resulting robustness analysis.

For example, gearboxes for all models are grouped

under one category, whereas products for different car

models might vary. Robustness analysis using the

framework should include expert input for product

categorization to enable more accurate examination.

• By its nature, the framework offers an abstract analysis

that develops statistical insights at large scales for

which detailed operational data are not available.

Therefore, the framework does not require exact bills

of materials and material flow. Rather, it is aimed to

complement operational analysis with a minimal set of

parameters. For example, detailed analysis on a specific

producer could include a discrete event simulation-type

analysis. Our framework could serve as a statistical tool

that informs such analysis with likely disruption

cascades and vulnerabilities in the extended network.

4.3 Future outlook

Several avenues for future research are envisaged. First of

these is an extension of this study to include other risk

scenarios presented earlier and comparison with other

industrial networks. Second is the automation of data col-

lection. Current developments in intelligent products,

automated supply chain management systems, and the

Internet of Things can pave the way for intelligent systems
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that automatically gather and analyse risk data from large-

scale supply networks in real time. Third, more studies

need to be conducted on the use of network science-based

analysis in supply chains. For example, after vulnerabilities

are highlighted at the large scale, operational details can be

introduced to pursue more in-depth questions such as levels

of inventory needed to prevent cascades of failures within

certain timeframes. Context-specific metrics that marry

network science and operations need to be developed for a

more complete understanding of robustness in supply

chains. Furthermore, while this study focused exclusively

on robustness properties of supply networks, the study of

resilience is also important. Longitudinal data would be

necessary to examine the relationship between structure

and dynamical response of supply networks to

perturbations.
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