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Topological solitons as addressable phase
bits in a driven laser
Bruno Garbin1, Julien Javaloyes2, Giovanna Tissoni1 & Stéphane Barland1

Optical localized states are usually defined as self-localized bistable packets of light, which

exist as independently controllable optical intensity pulses either in the longitudinal or

transverse dimension of nonlinear optical systems. Here we demonstrate experimentally and

analytically the existence of longitudinal localized states that exist fundamentally in the phase

of laser light. These robust and versatile phase bits can be individually nucleated and canceled

in an injection-locked semiconductor laser operated in a neuron-like excitable regime and

submitted to delayed feedback. The demonstration of their control opens the way to their use

as phase information units in next-generation coherent communication systems. We analyse

our observations in terms of a generic model, which confirms the topological nature of the

phase bits and discloses their formal but profound analogy with Sine–Gordon solitons.
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D
issipative solitons have been observed in many nonlinear
optical devices, both in the dimension transverse to light
propagation and along the propagation dimension.

Numerous examples have been found in nonlinear optical
resonators with coherent forcing (they often receive the name
of spatial or temporal cavity solitons)1–6 but also in laser
systems7–10. In the latter case, the phase of the electric field is free
to evolve in the course of time and a paradigmatic model is the
cubic-quintic Ginzburg–Landau equation7,11–13. On the contrary,
the presence of an external field leads to the formation of
dissipative solitons whose phase is locked to this external forcing in
the second case, whose paradigmatic and first model is the
Lugiato–Lefever equation14. In spite of this important difference15,
the dissipative solitons observed in all of these systems are in
most cases explained by a double compensation of dispersion
(or diffraction) by Kerr nonlinearity and losses and gain11,12,15,16.

In this work, we report on the experimental observation of
dissipative optical localized states, which are fundamentally phase
objects. Contrary to well-known dissipative optical solitons
(phase-locked or not), the localized states we generate and
control cannot exist in either of the paradigmatic models and
their existence does not result from the usual double balance, but
from the phase space topology of the system that supports them.
Nevertheless, since they are attractors of a nonlinear and
dissipative system, they share with usual dissipative solitons their
discrete and robust character. These structures consist of self-
localized 2p phase rotations embedded in a homogeneously
locked background field and therefore draw their robustness from
their topological nature. Besides their fundamental novelty, their
nature of phase objects and the possibility to nucleate and
annihilate these states individually confer them exceptional
properties as phase bits (F-bits), counterparts of the usual
dissipative solitons as intensity bits. Owing to this, these F-bits
bring the plasticity and robustness of optical localized states to the
realm of phase information processing in coherent optical
communication networks17–19.

Results
Experiment. Our experiment is based on a semiconductor laser
with coherent optical injection in a regime called excitable20,21,
with the addition of a delayed feedback loop. A system is said to
be excitable when any perturbation, which is sufficient to
overcome the excitability threshold, elicits an always identical
response, whose details do not depend on the perturbation.
Paradigmatic examples include neural or cardiac cells22,23.

In this configuration and without feedback, the phase of the
semiconductor laser is stably locked to the external forcing,
except when responding to a sufficiently large external perturba-
tion24, which triggers a relative 2p phase rotation after which the
system locks again to the external forcing. We use the delayed
feedback as a spatial degree of freedom25–28 in which multiple
independently addressable F-bits can be stored indefinitely.

The experimental arrangement is shown on Fig. 1. It consists of
a single transverse and longitudinal mode semiconductor laser
(called ‘slave laser’) under the action of coherent external forcing
and delayed optical feedback. In order to obtain the desired phase
space topology, the slave laser is biased at very high pump value
(six to eight times the standalone lasing threshold, emitted power
B500mW) and the master laser is tuned such that the detuning
between both lasers is close to 5GHz. The power of the injection
beam (2–3 mW depending on realizations) is set such that the
slave laser is in a stable stationary state in which its phase is
locked to the external forcing. The injection beam detuning and
power, together with the bias current of the slave laser, are chosen
such that the system is excitable24. This parameter regime allows

to essentially confine the dynamics in phase space on a circle
whose radius is set by the emitted power and which contains two
fixed points, one stable and one unstable, representing two
different values of the relative phase of the slave laser with respect
to the forcing.

Perturbations can be applied to the system via a phase
modulator. In order to confer the system an analogue of spatial
degree of freedom, we place it inside an optical feedback loop.
This is achieved by directing part of the emitted intensity towards
a polarizer, quarter wave plate and high-reflectivity mirror that
constitute a feedback loop of 0.5–1% reflectivity. The mirror is
initially placed at a distance of B30 cm and its subwavelength
positioning is set via a piezoelectric actuator.

The detection apparatus comprises a Fabry–Perot inter-
ferometer for spectral monitoring and a 9-GHz photodetector
whose output is further amplified by a 14-GHz AC-coupled
amplifier whose output is acquired via a 12.5-GHz bandwidth
(100GS s� 1) real-time oscilloscope. The detection is isolated from
the experiment by a 30-dB optical isolator to prevent spurious
reflections towards the slave laser.

In absence of the optical feedback, the system responds to
suitable phase perturbations24 by emitting a single excitable pulse,
which is a homoclinic orbit in phase space20. This pulse consists
of the relative phase between slave and master laser completing a
full circle before settling again to the initial value24,29, in excellent
analogy with an overdamped pendulum submitted to a fluid
torque30 or excitable particles in an optical torque wrench31. Slow
(4200 ps) or wrongly oriented phase variations do not trigger the
excitable response24.

This response is detected as a small pulse in the emitted power
(10–25% of DC value depending on parameters).

Experimental results. In presence of very weak optical feedback
with adequate phase, we observe that a pulse with essentially
identical characteristics (amplitude and duration) is emitted, but
also regenerated after a delay very close to the delay time. This
observation is reported on Fig. 2a,b. Figure 2b shows the time
trace as measured by the detection apparatus; however, the tra-
jectory of the pulse in the feedback cavity is best observed in the
co-moving reference frame (see Methods), as shown in (a). On
this graph, the horizontal axis is a space-like coordinate x
(in nanoseconds) chosen such that the pulse is almost stationary
and the vertical coordinate x (in units of x) corresponds to the
temporal evolution of the system over many round-trips. At this
point, the possibility of using the spatial degree of freedom of the
system to store information becomes clear. We show the first
demonstration of this in Fig. 2c,d. The pulse created previously as
shown in Fig. 2 is now at position x¼ 1.5 ns at time x¼ 0 and
slowly drifting to the right. At round-trip number x¼ 60 and
space position about x¼ 1 ns, a phase perturbation is applied on
the injected beam via the phase modulator. As previously, this
perturbation triggers a pulse, which is regenerated periodically
due to the optical feedback. The mutual independence of these
pulses demonstrates their nature of ‘localized structures’. Of the
utmost importance, we underline that all the data shown in Fig. 2
consist of real-time data. This enables the measure of the speed of
the pulses in the feedback loop (see Methods).

We analyse the evolution of the shape of a single F-bit in the
course of time by plotting in Fig. 2e the superposition of a single
F-bit over 350 round-trips. The very well-defined shape indicates
the attractor nature of the F-bit.

Finally, we show in Fig. 2f the evolution of the distance
between the F-bits over successive round-trips. Again, the slow
evolution of the distance is a confirmation of the interpretation of
the F-bits in terms of mutually independent localized states and
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not simply a harmonic solution of the fundamental period set by
the feedback loop.

As becomes evident from Fig. 2, independent topological
localized structures can be juxtaposed only in a space which is
large enough, otherwise interactions may set in. In the latter case
all the peaks would move all together. This is illustrated in Fig. 3a.
In this case, seven F-bits have been stored in the memory. At
about round-trip 100, the central structure vanishes sponta-
neously because of electronic noise in the bias current control
system, which also perturbs the other F-bits. At that point, we
observe that upon cancellation of one of the structures, the other
structures smoothly reorganize, the fourth one drifting to the left,
later followed by the fifth one. We notice that this reorganization
does not consist of an abrupt reconfiguration of the ensemble, but

a rather a slow motion of each pulse confirming their weak
interaction. The fluctuating distances indicate the degrees of
freedom associated with the separations between pulses, which we
analyse theoretically as the last part of our results.

In order to minimize the interaction between structures, the
feedback loop must be much larger than many times the typical
interaction distance. The experimental set-up is therefore
modified to increase the available space and the feedback mirror
is set at a distance of B1.65m. We show in Fig. 3 the addressing
of many F-bits and show that they can exist at different distances
from each other. We start (Fig. 3b) with six F-bits previously
nucleated and co-existing in the cavity. At round-trip 50,
a perturbation is applied that nucleates a new bit. This new
structure is nucleated with a temporal separation of 570 ps from
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Figure 1 | Experimental set-up. The slave laser is submitted to optical injection by the master laser. Unidirectional coupling is ensured by an optical isolator

(OI) and phase perturbations can be applied to the slave laser via the fibre-coupled electro-optic phase modulator (EOM). The arrows show a schematic

view in the R(E), I(E) plane of several F-bits stored in the feedback loop.
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Figure 2 | Nucleation of two U-bits in space–time representation. (a) a phase perturbation is applied (black arrow) while the system is in a stable

stationary locked state. Following that perturbation, a pulse is nucleated and repeats with a periodicity close to the feedback delay time, as shown in b. The

space–time representation is chosen such that the pulse is almost stationary (see text). After some time a phase perturbation is applied again on the

system (black arrow), with the first F-bit already stored. The two F-bits now propagate in the feedback loop, without perturbing each other (c,d).

(e) superposition of a single F-bit waveform over 350 roundtrips. The very well-defined shape indicates the attractor nature of the F-bit. The ringing

following the pulse is attributed to the detection set-up. (f) Evolution of the distance between the two pulses in the course of time.
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another existing structure. Consequently, the new structure is
repelled from the nearest neighbour in a way that is strongly
reminiscent of the ultraweak force between temporal cavity
solitons32,33 but in the present case we can attribute this
interaction to the refractory time following excitable pulses34.
This interaction lasts B50 round-trips. At this point, the
structures have repelled to a temporal separation of B790 ps
after which no strong repulsion is observed and the distance is
essentially randomly fluctuating. The absence of interaction
between the pulse is clear on top of 3(b), in which the structures
are separated by arbitrary distances.

Finally, we demonstrate the nucleation and annihilation of
structures in Fig. 3c. To this aim, we repetitively apply phase
perturbations at a repetition rate of 31.3MHz, which trigger
excitable pulses in different points of the space–time diagram,
starting from an empty cavity (bottom of (c)). Some perturbations
(at coordinates (x, x)¼ (3.5;5), (2;8), (0.8;10), (10.5;12)) are
hardly visible and did not nucleate structures due to fluctuations
blurring the excitability threshold24,31. On the contrary, seven
successful nucleations then take place and equally spaced pulses
separated by B1.5 ns in the feedback loop are generated. The
eighth perturbation then appears again on the right of the
co-moving reference frame and nucleates an eighth F-bit. At this
point, we have demonstrated the co-existence of nine different
solutions holding from 0 to 8 F-bits. The ninth perturbation
arrives very close to an existing structure but does not perturb it
strongly. On the contrary, the following two perturbations reach
the system close enough to existing F-bits to annihilate them.
Subsequent phase kicks do not perfectly superimpose with
existing structures and therefore only perturb them without
destroying them. From round-trips 40–60, the system has been
switched to another existing state in which only 6 F-bits are
present in the cavity. This state differs from the other 6-F-bits
state that exists around round-trip 28 by the configuration of the
bits. This configuration can contain information. At round-trip
62 and 64 new structures are nucleated again in the space that was

previously freed by the cancellation achieved close to round-trip
40. It is of course difficult to annihilate these temporal localized
states since applying a perturbation to them requires accurately
aiming in time. In this case, we have achieved it by perturbing in a
repetitive way at a period that is not too far from a multiple of the
round-trip time. The result shown in Fig. 3 constitutes the first
demonstration of optical annihilation of temporal localized states,
and also a demonstration of the switching between many states
including from 0 to 8 F-bits in different configurations.

Theoretical analysis. The experimental observations can be
interpreted within the generic framework of the injected
Ginzburg–Landau equation extended to the influence of a delayed
feedback. The equation governing the evolution of the optical
field E reads.

dE

dt
¼ 1þ iað Þ 1� Ej j2

� �

EþY þ iDEþ Ze� iOEt: ð1Þ

In equation (1), time has been scaled to the photon lifetime in
the cavity times the excess pumping above threshold, while a and
D¼oL�oY stand for the linewidth enhancement factor and the
detuning between the solitary laser frequency oL and the injected
field oY, respectively. The optical feedback Et¼ (t� t) with time
delay t has an amplitude and a phase denoted Z and O,
respectively. The field amplitudes E and Y have been rescaled to
the one of the solitary laser and Y 2 R by definiteness. Although
such a model may not represent the whole complexity of the
system, it can be derived rigorously from standard laser equations
close to the threshold35. It is also one of the simplest paradigm
that is able to capture the physics of the problem and the
important ingredients of the phase space geometry. Importantly,
it allows us to connect with the experimental results by noting
that the output of the VCSEL consists of a superposition of the
emitted and reflected fields, which reads A¼ E� kY with
k¼ (1� r1r2)[(1� r1)(1þ r2)]

� 1
B1 with r1,240 the resonant
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Figure 3 | Control of U-bits. (a) Seven F-bits initially co-exist in the feedback loop. The six remaining bits reorganize in the course of time after

cancellation of the central one. (b) Six F-bits are present in the feedback loop. A perturbation (black arrow) is applied and nucleates a seventh F-bit.

The two nearest neighbour repel each other until they reach sufficient time separation (790ps) but the other existing F-bits are not affected.

(c) Many perturbations (black arrows) are applied successively in time and nucleate several F-bits starting from the homogeneous state. Existing

F-bits can be canceled if they are hit by a phase perturbation as shown at approximate coordinates (6;40) and (8;40). In this case, a nonmonotonous

sequence of 13 different 8-bit integers has been stored. The same perturbation parameters are used for nucleation and cancellation. Note that the

feedback loop is three times larger in b,c than in a.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6915

4 NATURE COMMUNICATIONS | 6:5915 | DOI: 10.1038/ncomms6915 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Reflectors. The value of k is deduced by solving exactly the wave
propagation within the linear empty regions of the VCSEL as in
ref. 36 (see Supplementary Note 3).

Our results are summarized in Fig. 4a,c,e,g in which we
represent the (residual) temporal evolution of the intensity as well
as the phase dynamics of the output field in good agreement with
the experimental results. We present as well in Fig. 4b,d,f,h the
stability of such periodic solutions. The stability information was
obtained via a partial diagonalization of the Monodromy operator
(see Methods). The monodromy Matrix M describes the
evolution of a perturbation after a full period. A solution is
stable if all the eigenvalues of M, the so-called Floquet
multipliers, correspond to damped motion, that is, Max|m|r1.
Owing to the infinite number of Floquet multipliers in a delayed
differential equation, we represented in Fig. 4b,d,f,h a histogram
of the multipliers N(m) for the sake of clarity. In any time-
invariant dynamical system, a periodic solution must present a
Floquet multiplier equal to the unity. Often termed the trivial
multiplier, it merely represents the translational temporal
invariance and physically amounts to ‘shifting’ the solution
without having to pay an ‘energetic’ cost. The details of the
temporal waveform (for example, with several peaks over one
period) are irrelevant. Such trivial multiplier is visible for the
single F-bit solution. However, we demonstrate in Fig. 4d,f,h that
the solutions with N F-bits are much more than a single
multipeaked periodic solution: they present not one but N
multipliers clustered around m¼ 1. This fact has a profound
impact on the dynamics as it implies that the N F-bits solution
possesses N neutral modes, which is actually what one would
expect for independent F-bits. We analysed the eigenvectors
associated with the various neutral multipliers and found that
they correspond to relative translations of each of the F-bits,
thereby confirming their independence.

For weak injection and detuning, one can, by applying a
multiple timescale analysis to equation (1), reduce the problem
even further to a single delayed equation for the phase (see
Supplementary Note 1) that reads

dy

dt0
¼ D0 � sin yþ w sin yt0 � y�cð Þ; ð2Þ

with y¼Fþ arctan a, c ¼ Oþ arctan a, w¼ Z/Y and
1=D0; t0; t0ð Þ ¼ 1=D; t; tð Þ= Y

ffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p� �

confirming that the
dynamics consists essentially of a phase phenomenon. Interest-
ingly, the same reduction to equation (2) is possible far from
threshold from a full Class-B laser model with nonlinear gain
compression in good correspondence with the experimental
conditions.

Such phase model allows us to exploit the strong link between
delayed systems and spatiotemporal dynamics that was estab-
lished in ref. 25. By applying a multiple timescale analysis to
equation (2) similar to the one in ref. 25 (see Supplementary
Note 2), we formally reduce equation (2) to the modified
Sine–Gordon equation

@y

@x
¼ sin y� sin yþ @2y

@x2
þ tanc

@y

@x

� �2

; ð3Þ

with sin y ¼ D0 � sinc, x the pseudospace variable and x a slow
temporal variable. When sin y ¼ tanc ¼ 0, analytical 2p homo-
clinic orbits corresponding to kink solutions of this equation are
known as

y xð Þ ¼ 4 arctan exp x: ð4Þ
In the general case, it was shown in ref. 20 that these

homoclinic loops verify the Melnikov condition and therefore are
robust in the limit sin y � 1 and tan c � 1. They therefore
persist in our case and we found that they seem to agree well with
the numerical solutions of equation (2) even far from such
perturbative limit.

Discussion
We demonstrated experimentally the optical control of indepen-
dent phase bits in an excitable system with time-delayed feedback.
We evidenced the nucleation of structures and analysed their
basic interaction, which is repulsive, consistent with the under-
lying refractory tail of excitable pulses. The duration of each F-bit
is close to 100 ps with typical interaction length less than 800 ps.
Pulse of 70-ps duration (bandwidth-limited) was also observed.
These values are basically set by the detuning between the slave
laser and the external forcing. Since the F-bits are essentially
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O¼0, k¼ 1 and t¼ 2,000.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6915 ARTICLE

NATURE COMMUNICATIONS | 6:5915 | DOI: 10.1038/ncomms6915 |www.nature.com/naturecommunications 5

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


phase objects, the semiconductor medium dynamics should not
have a strong impact, and we expect that much shorter pulses
could be realized with obvious benefits for information capacity.
Finally, the nucleation of the F-bits was performed via phase
perturbations; however, wavelength and intensity-phase conver-
sions can be expected since excitable pulses in injection-locked
semiconductor lasers can also be incoherently triggered37.

The theoretical analysis, which has been presented, based on a
generic model of a laser system with the addition of forcing and
delayed feedback confirmed the paradigm that is required for the
generation of F-bits, namely the presence of a saddle node on a
circle bifurcation with the addition of a delay term. Owing to the
simplicity of the model, we have been able to analyse numerically
the neutral modes associated to the relative translation of the
F-bits with respect to each other, which confirms their nature of
localized states beyond the co-existence of multiple solutions,
which was also observed. In addition, we exploited the strong
relation between delayed and spatiotemporal systems, which
allowed us to interpret the temporal F-bits as robust homoclinic
kinks of a modified Sine–Gordon equation. Owing to the
genericity of our results, we believe that next-generation photonic
sources such as quantum cascade38 or polariton39 lasers may
support F-bits with identical dynamical origin and features and
very attractive physical properties.

In conclusion, we have presented the first observation of
temporal localized structures, which are topological in nature and
thus essentially phase objects. These phase bits are attractors of an
out-of-equilibrium system and they can be controlled indepen-
dently of each other. As such, they can provide not only
information storage, but also pulse reshaping and discrimination
functionalities for the phase data which are the basis of coherent
optical communication networks.

Methods
Experimental set-up. The laser used in the experiment is a Vertical Cavity Surface
Emitting Laser (ULM980-03-TN-S46). It emits close to 980 nm in a single long-
itudinal and transverse mode and is linearly polarized up to 1.8mA with coherent
emission threshold at 0.2mA. It is driven by a 1-mA resolution power supply and
actively temperature-stabilized. The output of the Slave Laser is collected by a
4.5-mm focal length collimator. A half wave plate situated right after the collimator
allows to align the polarization of the Slave Laser with the vertical axis. A 10%
beam splitter is placed in front of it to serve as input for the Master Laser beam.
The master laser is a tunable edge emitting laser with external grating in Littrow
configuration. The amount of injected power can be precisely set via rotation of a
half-wave plate placed between the master laser and a polarizer. The detuning
between slave and master laser is set as D¼oL�oY40.

Phase perturbations can be applied to the system by applying voltage pulses to a
fibre coupled 10-GHz lithium niobate phase modulator, which is driven by a
100-ps (10–90%) rise time pulse generator. The feedback cavity is not actively
stabilized but is placed inside two layers of enclosure in order to avoid alterations of
the feedback phase condition due to air circulation.

Co-moving reference frame. In order to clearly visualize the data, we process it
such that the observer is in the co-moving reference frame of the F-bits. This is
achieved by acquiring a single long enough time trace (in this case up to 107 points)
and splitting this unique, perfectly synchronized time series into segments whose
length corresponds to the time taken by a pulse to go to and back from the
feedback mirror. The segments are then stacked on top of each other, so as to
constitute a space-time diagram often used to analyse data in time-delayed
dynamical systems25–28. In order for the pulses to be perfectly stationary, the length
of the segments x must be x¼ tþ d where t is the delay time. The additional delay
d results from the drift term of delayed dynamical systems25,26 and from the fact
that the F-bits, which are phase objects, may not propagate exactly at the group
velocity, which is used to define t. This procedure allows us to detect minute
changes in d that enables to observe, for instance, the synchronous change of
direction of motion of all F-bits in Fig. 3b. Although we cannot separate the two
terms contributing to d, its total value in the parameter regimes used here has been
found to be of the order of 12% of t. On the other hand, t was independently
estimated by observing beat notes in nonstationary regimes and the modal
structure of such aperiodic complex regimes could also slightly deviate from the
exact time of flight in the external cavity.

Numerical simulations. The delayed differential equation given by the
equation (1) was numerically integrated with a fourth-order Runge–Kutta method
with constant step size (dt¼ 10� 2) (ref. 40). The delayed contribution in
equation (1) demands a special care. To advance the solution with a step h from
tn¼ ndt to tnþ 1, the Runge–Kutta algorithm requires the values of E(t� t) at
intermediate points tnþ 1/2. These are not known and must be interpolated from
past values with an order of approximation consistent with that of the algorithm of
integration. Therefore, besides keeping memory of the past values of E we also
retain the past values of the time derivative _EðtÞ. Such a method allows building a
third-order Hermite polynomial approximation for E(t) between the time (tn� t)
and (tnþ 1� t). By evaluating this interpolating polynomial at (tnþ 1/2� t), we
ensure an overall fourth-order accuracy.

Stability analysis. The linear stability analysis of the periodic solutions of
equation (1) was performed via the reconstruction of the monodromy operator M.
Although a priori infinite dimensional, the operator reduces to a matrix of size t/dt
because of the discrete sampling incurred by the constant step-size numerical
algorithm. Taking one point of the periodic orbit, we insert a small perturbation in
all the degrees of freedom as represented by the mesh points in the delay time and
let the system evolve over one period. The deviation of the end point from the
unperturbed orbit yields a column of the operator M. This method bears some
similarity to the one developed in ref. 41 but here over a period and not a single
time step. Owing to the large size Mð Þ � 105 , the eigenvalues and eigenvectors
cannot be calculated from a complete decomposition using for instance the QR
method40. Instead, we exploited the sparsity of M and relied on the so-called
Implicitly Restarted Arnoldi Method42 searching for the eigenvalues of largest
modulus.
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