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Topological sound
Xiujuan Zhang1, Meng Xiao 2, Ying Cheng3,

Ming-Hui Lu1 & Johan Christensen4

Recently, we witnessed a tremendous effort to conquer the realm of acoustics as a possible

playground to test with topologically protected sound wave propagation. In this article, we

review the latest efforts to explore with sound waves topological states of quantum matter in

two- and three-dimensional systems where we discuss how spin and valley degrees of

freedom appear as highly novel ingredients to tailor the flow of sound in the form of one-way

edge modes and defect-immune protected acoustic waves. Both from a theoretical stand

point and based on contemporary experimental verifications, we summarize the latest

advancements of the flourishing research frontier on topological sound.

I
n condensed-matter physics, the distinctive phases of matter are characterized by their
underlying symmetries that are spontaneously broken. In other words, two phases that
cannot be smoothly connected by any path in parameter space have difference in their

symmetry properties1. For example, the crystal solid ice differentiates itself from the liquid water
by breaking the translation symmetry. Using such a way to classify the phases of matter remains
a recurring theme until the discovery of the quantum Hall effect (QHE)2. In 1980, Von Klitzing
found that a two-dimensional (2D) electron gas sample, subjected to low temperature and strong
magnetic field, has a quantized Hall conductance, which is independent of sample size and
immune to impurities. It was later demonstrated that the state responsible for such phenomena
is characterized by a completely different classification paradigm based on the notion of topo-
logical order3,4, which describes phases of matter beyond the symmetry breaking (that means
two different phases can have the same symmetry), therefore opening a new research branch.

The topological description on phases of matter concerns the fundamental properties of the
system that are insensitive to continuous perturbations of material parameters and change only
under a quantum phase transition. For the QHE, the Hall conductance is such a fundamental
property. Its quantization originates from the non-trivial topological properties of the energy
bands, which are featured with a non-zero topological invariant, the Chern number, according to
the Thouless–Kohmoto–Nightingale–den Nijs (TKNN) theory4. The Chern number char-
acterizes the geometric phase (commonly known as the Berry phase5) accumulation over the
Brillouin zone, and thus is closely related with the behaviors of the energy bands in the
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momentum space. It has been shown that a periodic magnetic
flux, which breaks the time-reversal symmetry (unlike the tradi-
tional definition of the phases of matter, this symmetry breaking
itself does not define the topological order), is able to produce
non-zero Chern number6. The resulting topologically non-trivial
system supports a gapless edge state in the bulk energy gap,
exhibiting an interesting electronic property that is insulating in
the bulk but conducting on the edge. This is essentially different
from a normal insulator, where the Chern number is zero (see
Box 1).

Additional to applying a magnetic field, it was quickly found
that the inherent spin-orbital coupling of a material can also give
rise to non-trivial topological phases7–12. Kane and Zhang et al.
found in systems with spin-orbital coupling, a pair of gapless edge
states emerges in the insulating band gap. The edge states carry
conjugate electronic spins and exhibit spin-dependent

propagation behaviors, as sketched in Box 1. This is the so-called
quantum spin Hall effect (QSHE). In this case, the total Hall
conductance is zero, so is the Chern number, implying the time-
reversal symmetry is intact. In fact, it is exactly the time-reversal
symmetry that protects the spin-dependent edge states. Though
the total Hall conductance is zero, the spin Hall conductance is
non-zero and can be described by a Z2 topological invariant or
the spin Chern number13.

Recently, another discrete degree of freedom, namely the val-
ley, has also been proposed to realize a topological state, known as
the quantum valley Hall effect (QVHE), which is related to val-
leytronics14,15. Valley refers to the two energy extrema of the
band structure in momentum space, at which the Berry curvature
exhibits opposite signs and therefore its integral over the full
Brillouin zone is zero, while the integral within each valley is non-
zero. As a result, the system shows a valley-selective topologically
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non-trivial property. It is worth mentioning that the QVHE also
maintains intact time-reversal symmetry. Regardless of the nature
of abovementioned topological phases, they share the same
property that the edge states span the bulk band gap and separate
domains with different Chern numbers. In parallel with these
gapped topological phases, topological semimetals, which are
featured with topologically protected gapless band structures and
accompanied by gapless surface states, have recently emerged as a
new frontier16–18. Among them, Weyl semimetals have received
particular attention, as their quasiparticle excitation is the Weyl
fermion, which has not yet been observed as a fundamental
particle in vacuum. In a Weyl semimetal, the Weyl points sepa-
rated in momentum space carry opposite chiral charges and are
connected across the domain boundaries by a surface state, i.e.,
the Fermi arc, upon which the Weyl fermions are robust while
carrying currents.

The abovementioned topological states and their associated
exotic phenomena could promise potential applications in the
next generation of electronic devices and topological quantum
computing. However, realizing the topological phases poses great
challenges that are difficult to overcome in electronic systems,
such as the inevitable material defects as well as the validity of the
single electron approximation, which is the essential basis of most
topological descriptions. Thus, it is not surprising that many of
the quantum topological states have been extended to photonic
and phononic systems, benefiting from their large scale in both
time and space, which makes the control of fabrication and the
measurement process much easier and more accurate compared
to the electronic systems. Additionally, the photonic/phononic
systems are not restricted by the Fermi levels, and therefore any
appropriate regions of the spectrum can be of interest. Never-
theless, emulating the topological phases in condensed-matter
physics to the classical regime might not be straightforward, due
to the key difference between electrons and photons/phonons.
For instance, the photons/phonons do not carry a half-integer
spin and therefore cannot directly interact with the magnetic

field. Breaking the time-reversal symmetry in these systems
requires additional effort. Moreover, the difference between fer-
mions and bosons might also provide new angles to the quest of
topological phases of matter, which may have potential applica-
tions in the design of low loss photonic/phononic devices.
Compared to photonic systems, acoustics differ substantially
since longitudinal sound waves lack a transverse polarization
degree of freedom that can be used to construct pseudo spins to
mimic the spin up and down in electronic systems and breaking
the time-reversal symmetry requires additional complexities, both
of which are essential in realizing the quantum effects leading to
topologically robust sound propagation and involve new physics.
This review offers a detailed exposition on some of the recent
advancements of the topological states in classical regime, mainly
focused on the airborne sound.

The organization of the remainder of this review is as follows.
First, we elaborate the main breakthroughs of the analogue QHE
and QSHE in acoustics, followed by the development of QVHE.
The next section is devoted to the Weyl semimetal. Then, the
possibility to extend the topological phases to mechanical waves is
discussed. The last section presents our perspectives on possible
future directions.

Analogue quantum Hall effect and quantum spin Hall effect
The QHE provided the first example of the topological phases of
matter. Observing the QHE, a 2D sample subjected to low tem-
perature and a strong magnetic field exhibited the behavior of an
insulator in the bulk and a metal along the edges where the
electrons move unidirectionally without backscattering or dis-
sipation. The associated Hall conductance takes the quantized
values of σxy= Ce2/h, which are unaffected by impurities. Here, h
represents the Plank constant, e is the charge of an electron and C
is the Chern number. As mentioned above, it characterizes the
topology of the electronic wave functions in the momentum space
and is independent on the material properties3,4. This is essen-
tially the reason why the QHE is topologically robust against
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impurities. For a 2D system, the Chern number can be evaluated
by

C ¼ 1

2π

Z

FðkÞ � ds; ð1Þ

where F(k)=∇k × A(k) is defined as the Berry curvature and A
(k)= 〈un(k)|i∇k|un(k)〉 is the Berry connection. un(k) represents
the periodic part of the Bloch state on the nth energy band with
momentum k. Under the symmetry operations, the Berry cur-
vature obeys the rules of PF(k)= F(−k) and TF(k)=−F(−k),
where P and T denote the parity and time-reversal operators,
respectively. Note that when the system breaks T symmetry but
preserving the P symmetry, the integral in Eq. (1) (which runs
over the entire Brillouin zone) acquires a non-zero value, so does
the Chern number. Non-zero Chern number corresponds to a
topological non-trivial phase while zero Chern number corre-
sponds to a topological trivial phase. The topological phases with
non-zero Chern number offer intriguing wave transport proper-
ties like one-way edge propagation and robustness against
impurities, which might have promising applications in the next-
generation of electronic devices and quantum computing.

Driven by their development in electronic systems, the topo-
logical phases were quickly transferred to the classical realms,
with the analogue QHE in photonics firstly proposed and
experimentally realized at microwave frequencies19,20. The con-
sidered system is a 2D photonic crystal, comprising a gyromag-
netic material subjected to a magnetic field that breaks the T
symmetry. Consequently, topologically protected edge states were
constructed, featured with one-way wave transport behaviors that
are robust against defects and bends. In acoustics, however,
breaking the T symmetry is quite challenging, usually involving
additional complexities, such as using magneto-acoustic materials
or introducing nonlinearity. These possibilities either require
large volumes or introduce inherent signal distortion, which are
typically impractical. Inspired by the magnetic bias producing
electromagnetic nonreciprocity in gyromagnetic materials, Fleury
et al. proposed a feasible method to break the T symmetry in
acoustics, relying on moving airflow in ring cavities21. The
imparted airflow, taking the role of magnetic bias, splits the
degeneracy of the two counter-propagating azimuthal resonant
modes in the ring cavities, as shown in Fig. 1a, therefore inducing
acoustic nonreciprocity. More specifically, consider the following
wave equation for sound propagating in a circulating airflow with
velocity V22,

½ð∇� iAeff Þ2 þ ω2=c2 þ ð∇ρ=2ρÞ2 � ∇
2ρ=ð2ρÞ�ϕ ¼ 0; ð2Þ

where ϕ is the velocity potential, ω is the angular frequency, c is
the sound speed and ρ is the mass density of air. For non-zero V,
the term Aeff=−ωV/c2 gives rise to an effective vector potential,
which generates an effective magnetic field Beff=∇ ×Aeff that
breaks the T symmetry.

Based on this principle, several designs of analogue QHE in
sonic crystals have been reported22–26. In Fig. 1b, c, a hexagonal
lattice and a honeycomb lattice, respectively, are illustrated as
examples. The inset in Fig. 1c illustrates how the effective mag-
netic field is generated to break the T symmetry. Due to the
intrinsic lattice symmetry, a pair of Dirac-like points determi-
nistically appears at the Brillouin zone boundary for V= 027–29;
when the airflow is introduced, the Dirac-like degeneracies are
lifted as a consequence of the T symmetry breaking22,23. This is
characterized by a band gap opening, as illustrated in Fig. 1d. The
evaluated Chern number for the bands below and above the
opened gap acquires non-zero values (C= 1 for the lower band
and C=−1 for the upper band), implying the systems are in the
topologically non-trivial phase. According to the principle of the
bulk-edge correspondence, a signature of such topologically non-
trivial system is the presence of one-way edge states along its
boundaries when truncated by other topologically trivial systems

(i.e., C= 0). Correspondingly, acoustic wave propagation exhibits
unidirectional behaviors, which are topologically protected and
robust against various defects and sharp bends, as demonstrated
by Fig. 1e, f.

To experimentally implement the above discussed airflow-
based designs, uniformly biased circulators are required, which
impose serious challenges, such as nonsynchronous rotation and
flow instability. This makes the practical implementation elusive
until recently, Zhu et al. proposed a rotating chiral structure
based on ring resonators that support high-order whispering
gallery modes with high Q factor30. This special design allows the
system to produce giant acoustic nonreciprocity at small rotation
speed, and therefore a stable and uniform airflow can be gener-
ated. On the other hand, using active liquids that can flow
spontaneously even without an external drive has also been
explored to break the T symmetry31,32. This might relax the
experimental requirements and bring new opportunities to
topological phases of matter in active materials, for which,
uniquely inherent material properties like microscopic irreversi-
bility may help to achieve functionalities that are absent using
only passive materials.

In addition to the QHE that requires breaking of the T sym-
metry, it is naturally interesting to explore topological phases
under preserved T symmetry, i.e., the QSHE, also known as the
topological insulators (TIs)11,12. The QSHE can be regarded as
the effect of two coupled quantum Hall states. Differently, the
spin-orbit coupling plays an essential role in the QSHE where the
coupling between spin and orbital angular momentum causes the
moving electrons to feel a spin-dependent force, even in the
absence of magnetic materials. As a result, the electrons with
opposite spin angular momenta (often referred as spin up and
spin down) will move in opposite directions along the edges. The
topological order that characterizes this phenomenon is described
by the so-called spin Chern number (or the Z2 topological
invariant), which is defined as33

C± ¼ 1

2π

Z

F± ðkÞ � ds; ð3Þ

where F±(k)=∇k × 〈u±(k)|i∇k|u±(k)〉 is the Berry connection,
similar as that in Eq. (1). The electron states are unambiguously
decomposed into two sectors, u+(k) and u

−
(k), representing the

spin up and down components, respectively. The spin Chern
numbers defined in Eq. (3) have been proved to be true topolo-
gical invariants, which are robust against the presence of finite
disorder scatterings, including spin nonconserving symmetry-
breaking perturbations. In other words, any non-magnetic
impurities will not eliminate the metallic edge states, as the
electrons are never completely reflected when scattered, even if
the impurity becomes stronger and the description with respect to
well-separated scattering events is invalid.

The QSHE with edge states that are spin-locked and protected
by the T symmetry also found its counterparts in photonics and
phononics, but not straightforward. It is well known that for
fermions with half-integer spin, like the electrons, the T sym-
metry operator satisfies T2

f ¼ �1, and hence guarantees the
Kramers degeneracy, which is crucial for the QSHE12. However,
for bosons with integer spin, like the photons and phonons, the T
symmetry operator obeys T2

b ¼ 1, which is essentially different
from the fermions. Consequently, to realize analogue QSHE in
bosonic systems, it is necessary to construct fermion-like pseudo
spins and pseudo T symmetry34. In photonics, different polar-
izations were used to construct pseudo spins as TE+ TM/TE−
TM (where TE and TM are the transverse electric and magnetic
polarizations)35, as TE/TM36 and as left/right circular polariza-
tions34. In acoustics, however, due to the lack of various polar-
izations (sound propagates longitudinally only), it is even more
challenging to realize analogue QSHE. A possible solution was
addressed based on using coupled resonators that support
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clockwise and anticlockwise resonant modes, which impart the
pseudo spins37,38. Recently, another approach was proposed
utilizing two degenerate Bloch modes, instead of two polariza-
tions or two resonant modes, to create the pseudo spin states39.
Specifically, by expanding a primitive unit cell to a larger cell, the
Dirac-like cones at the K and K′ points in the original Brillouin
zone are folded at the Γ point in the new Brillouin zone, forming
the doubly degenerate Dirac-like cones. By tuning the composite
material or geometric parameters, a band inversion can happen
near the degenerate point, associated with a topological transition
(Fig. 2a). The harmonic polarized electromagnetic (EM) modes39

or the scalar acoustic modes40,41 exhibit electronic orbital p-like
and d-like wave shapes, which essentially give the correspondence
between the EM or acoustic wave functions with positive and
negative angular momenta and the spin-up and down states of
the electrons. Later on, an accidental degeneracy technique42 was
also implemented to create the doubly degenerate Dirac-like
cones and the pseudo spins43,44, taking the advantage of the large
index and impedance contrast of the composite materials, which
is especially common in acoustics.

Here, we demonstrate in detail how the acoustic analogue
QSHE can be realized in a honeycomb lattice consisting of steel
rods in air, based on the accidental degeneracy43. Due to the 2D
irreducible representations of the C6v symmetry, the honeycomb
lattice supports two pairs of degeneracies at the Γ point, the
dipolar modes px/py and the quadrupolar modes dx2�y2=dxy ,

which can hybridize to emulate the pseudo spins. By decreasing
the filling ratio of the steel rods, the two pairs of dipolar and
quadrupolar modes, separated by a band gap, will move in fre-
quency and exchange their positions (the so-called band inver-
sion). In between, there is a point where the band gap is closed
and the two pairs accidentally touch together, forming the doubly
degenerate Dirac-like cones (essentially different from the zone
folding mechanism). This gap-opened, closed and re-opened
process is sketched in Fig. 2b, which leads to a topological tran-
sition from the trivial (ordinary) state to the non-trivial (topo-
logical) state. The transition point is exactly the double Dirac-like
point. In the topological non-trivial state, a pair of edge states
appear, carrying opposite group velocities to emulate the spin-up
and down states. Correspondingly, the spin-dependent sound
propagation can be expected, which is depicted in Fig. 2c. More
studies in Fig. 2d reveal that the spin-locked edge state propa-
gation is immune to various defects, including cavities, disorders,
and bends, essentially different from a regular waveguide. It is
worth mentioning that as the C6v symmetry is not perfectly
preserved at the interface between the trivial and non-trivial
lattices, the two counter-propagating pseudo spin states are
slightly mixed and a tiny gap exists at the center of the Brillouin
zone. As a result, the backscattering of the edge states is not
completely suppressed. Fortunately, by engineering the rod size,
this gap can be sufficiently reduced. Recently, the accidental
degeneracy technique also spurred the development of topological
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phases in the elastic realm, where an elastic analogue QSHE was
experimentally demonstrated in a phononic crystal plate with
perforated holes45. This might have potential applications in
chip-scale acoustic devices, such as waveguide and splitter.

Acoustic valley-Hall and pseudo spin effect
The discrete valley degree of freedom15,46–50, labeling quantum
states of energy extrema in momentum space, is attracting rapid
growing attention because of its potential as a new type of
information carrier like spins in spintronics. Transferring the
valley concept to classical wave systems, it has been shown that
the existence of valley-like frequency dispersions, engineered in
articial crystals, has been made possible with photonic crystals51–
67 and sonic crystals (SCs)27,68. Soon after that, the QVHE69,70

and corresponding valley-protected edge states71–77 were theo-
retically predicted and experimentally observed in two-
dimensional acoustic systems.

Lu et al.69,71 firstly introduced the concept of valley states to
SCs for acoustic waves. The hexagonal SC consists of triangular
rods in a 2D waveguide, of which symmetries can be character-
ized by the rotation angle α (Fig. 3a). It has been pointed out that
the existence of a two-fold Dirac degeneracy at the corners of the
1st Brillouin zone (BZ) for any SC with α= nπ/3 is protected by
the C3v symmetry, whereas the degeneracy would be lifted for any
other rod orientation breaking the mirror symmetries68. As

shown in Fig. 3b, the dispersion relations for the SCs with α= 0°
and −10° are illustrated. The vortex revolution at each valley (i.e.,
clockwise and anticlockwise) plays the role of the valley degree of
freedom in a 2D acoustic system, as shown in insets of Fig. 3c.
Figure 3c shows the tuning of the acoustic valley-Hall (AVH)
phase transition in a SC by variation of the rotating angle
α. When α < 0°, the vortex chirality of the lower (upper) state is
clockwise (anticlockwise), which appears exactly inverted when
α > 0°. The AVH phase transition that is accompanied by the
crossing of these two pseudo spin states can be captured by an α-
dependent continuum Hamiltonian. Derived from the k ⋅ p the-
ory, the unperturbed Hamiltonian H k?ð Þ � H0 δkð Þ near the

Dirac points can be written as7,78 H0 δkð Þ ¼ vD δkxσx þ δkyσy

� �

,

where vD is the group velocity, δk= (δkx, δky)≡ k⊥− kD is the
distance from the Dirac points with kD ¼ ± 4π

3α0
ex for the K and K′

points, and σi(i= x, y) are Pauli matrices of the vortex pseudo
spins. The perturbation matrix is diagonalized: HP ¼ mv2Dσz .
Consistent with the above band inversion picture (Fig. 3c), the

sign of the effective mass m ¼ ωqþ � ωq�

� �

=2v2D characterizes

two different AVH insulators separated by the Dirac semi-metal
phase with m= 0 in the phase diagram. The massive Dirac

Hamiltonian δH produces a nontrivial Berry curvature Ω δkð Þ ¼
1=2ð ÞmvD δk2 þm2v2D

� ��3=2
in the first band. The time-reversal
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symmetry leads to the Chern number C= 0, which is the integral
of Berry curvature over the full BZ. On the contrary, the Berry
curvature exhibits strong peaks at the gap minima near K and K′

points of the BZ for small perturbation m. The integral of the
Berry curvature over an individual valley (one half of the BZ) is
accurately defined and the non-vanishing valley-Chern indices
can be determined by CK ¼ sgn mð Þ=279. As a result, the differ-
ence in the topological charge across the interface is quantized,
which maintains a chiral edge mode according to the bulk-
boundary correspondence79,80. To verify this, two distinct SC
interfaces are studied: one is constructed out of SCs with α= 10°
and 50°, of which the dispersion relation is illustrated in the top
panel of Fig. 3d, and the other is constructed out of SCs with α=
−10° and 10°, of which the dispersion relation is shown in the
bottom panel. In the former case, the spectrum of relevance is
completely gapped due to the presence of identical valley-Hall
phases within the facing SCs. However, in the latter case, topo-
logical edge states fall within the bulk band gap as indicated by
the green lines, which originate from AVH phase-inversion across
the interface. Similar to the QSHE, edge states associated to the
AVH effect appear robust against bends and crystal defects.
Figure 3e shows a negligible weak backscattering of the topolo-
gical valley-projected edge mode propagating along an interface
containing two sharp bends. The experimentally measured pres-
sure amplitudes in the output channel of the interface with and
without sharp bends are illustrated in Fig. 3f demonstrating that
the transmitted pressure of the edge states with bends almost
entirely coincides with the one from a straight path within the
topological band gap. Hence, although lattice-scale defects and
obstacles may induce inter-valley scattering73,78 with the sup-
pressed transmission, sharp bends as illustrated in Fig. 3e indicate

that backscattering-immune sound guiding in valley-Hall insu-
lators is readily possible.

As we mentioned earlier, the QVHE enables exciting possibi-
lities using the valley degree of freedom for valleytronics appli-
cations. Along the lines of technical implementation, a great
challenge is posed by the lack of tunability and adaptation to
functional needs concerning the AVH effect. Inspired by the
proposal of delay lines in topological photonics59,62, Zhang
et al.73 experimentally realized topologically protected broadband
delay lines based on engineered phase delay defects (PDDs) that
constitute a new platform for acoustic devices. The structure
consists of three-legged rods (TLRs) arranged into a triangular
lattice providing an enlarged topological band gap through an
optimized shape of these rods. The tunability of the unit cell is
obtained through computer-controlled motors, which can con-
figure the topologically protected pathway consequently. Sound
waves transmit either through Port 1 or Port 2 (see Fig. 4b),
depending on the rotation angle selected to be −30° or 30°,
respectively. This configurability of the TLRs to any desired angle
further promise vast possibilities of functional devices. Short
pulses can transmit through them due to the broadband response
character, and their dynamic response can be engineered at will.
The tremendous advantage of signal transmission without any
reflection even in the pathway with sharp bends enables the
acoustic delay lines by means of topologically protected transient
edge states. The PDDs in the form of square-shaped detours with
four sharp bends along the interface can generate a time delay
(see Fig. 4)62.
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where ∂φi is the phase of the sound wave, i is the number of
detours, and ∂φ0 is the phase through a straight pathway. By
stacking multiple detours successively, the time delay can be

increased very flexibly. The time delay time τ ¼ P

2

j¼1

sj
cj
can be

determined by Eq. (4), where sj is the length of the transmitted
line, cj= 2π (df/dk)j is the sound velocity with j= 1, 2 repre-
senting different kind of interfaces. Figure 4d shows the time
delays through a single and a double PDD, which is confirmed by
the measured signal in Fig. 4e. This design may pave the way
towards building a multi-stage broadband topologically protected
delay line capable of buffering multiple acoustic pulses.

Beyond valley-Hall phases within a single SC, layer-mixed and
layer-polarized topological valley Hall phases were recently pro-
posed by Lu et al.81, using a unique design of bilayer sonic crystals
(BSCs). Figure 5a illustrates the schematic of the unit cell of the
BSC, which is composed of two layers of finite SCs sandwiched
between a pair of rigid plates and separated by a plate that is
pierced with a honeycomb array of circular holes. Each layer
consists of a hexagonal array of regular triangular rods. As a
result, the degree of freedoms of orientations is broad with respect
to the relative angle α and the common angle β. Figure 5b depicts
a phase diagram in the entire angular domain, illustrating straight
and curved lines, which are associated with ring and point
degeneracies, respectively. The shaded regions represent the
nontrivial AVH phases that are characterized by the quantized
topological invariant CK

V associated to the single-layer system,
whereas the remaining regions of the phase diagram represent
nontrivial acoustic layer-valley Hall (ALH) phases, characterized
by CK

L . To observe the differences between those phase, dispersion
relations of ribbon-shaped BSCs are studied: first, a BSCs is

composed with rod orientations (0, ±20°), which belong to dif-
ferent AVH phases ΔCK

V ¼ 2
� �

. As shown in Fig. 5c, two edge
modes with positive group velocities appear at the K valley (red
curves) and two other edge modes with opposite group velocities
(blue curves) appear at the K′ valley due to the time-reversal
symmetry. The eigenfields are located in both layers (see insets).
Second, a BSCs is composed with rod orientations (±10°, 3°),
which belong to different ALH phases ΔCK

L ¼ 2
�� �

. Compared to
the AVH scenario, the group velocities of the two edge modes at
the K valley are opposite. The eigenfield concentrates pre-
dominantly in either the upper layer or the lower one (Fig. 5d).
That is to say, for the edge state projected by the same valley,
sound waves propagate towards one side in the upper layer and
towards another side in the lower layer without any interference
with each other, which is equivalent to spin-orbital couplings in
electronic systems. As shown in Fig. 5e, an efficient inter-layer
converter can be constructed by four distinct BSC phases that
support ALH (bilateral) and AVH (middle) edge modes along the
interfaces in the x-direction. Most of the sound energy radiated
from a point source located at the left side of the upper layers can
be transferred to the lower layer as the wave reaches another ALH
interface.

Three dimensional topological acoustics
Parallel to developments of TIs, topological semimetals have
emerged as a new frontier in the quest of new topological phases
in the past few years16,17. Topological semimetals are identified as
topological materials in the sense that the gapless band structures
are topologically protected and are accompanied by robust gap-
less surface states18. Weyl semimetal, as an important member of
the topological semimetals, has received quite a bit of attention
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recently with the theoretical discovery and experimental realiza-
tions in electronic and photonic systems82–86. Soon after that,
acoustic Weyl metacrystals were discovered in coupled resonators
and waveguides87,88 and experimentally demonstrated very
recently89–91. In addition to airborne sound waves87–91, Weyl
points have also been investigated in elastic waves92,93. To illus-
trate the physics, we focus on airborne sound waves.

Weyl semimetals are periodic systems that possess Weyl
points94, which are topological robust band degeneracy points.
The Hamiltonian which describes a Weyl point with a topological
charge of +1 or −1 is given by

ĤðqÞ ¼ f ðqÞσ0 þ
X

i;j ¼ x;y;z

qivi;jσ j; ð5Þ

where q= (qx, qy, qz) and qi is the wave vector originating from
the Weyl point, f(q) is an arbitrary real function of q, v is a 3 × 3
constant matrix, σ0 is the 2 × 2 unit matrix, and σx, σy, σz are the
Pauli matrices. The charge of the Weyl point in Eq. (5) is given by
C= sgn(det v). Weyl points can also exhibit higher topological
charges95. For simplicity sake, we restrict our discussion here to
Weyl points of charge +1 and −1. Weyl points are robust against
any perturbations which keep the wave vectors as good quantum
numbers. This can also been seen from the fact that the Weyl
Hamiltonian contains all the Pauli matrices and hence local
perturbation can only serve to shift the Weyl point in momentum
space but cannot open a band gap. A Weyl point can only be
“annihilated” by another Weyl point which carries the opposite
topological charge and a band gap can be opened if Weyl points
carrying opposite charges collide in momentum space.

Acoustic Weyl metacrystals were discussed in 2015 in a system
composing of coupled resonators and coupled waveguides87.
Fig. 6a shows the schematic picture of a tight-binding model that
explains the formation Weyl points in the reciprocal space for
that particular system. This tight-binding model can be regarded
as an AA stacking of graphene lattice along the z-direction, where
the red and blue spheres represent different sublattices and the
black bonds represent intralayer hopping with hopping strength
t0. Interlayer hopping is represented by the cyan bonds and with
hopping strength tc. In this tight-binding model, time-reversal

symmetry is preserved and hence both t0 and tc are real constants.
The Hamiltonian Ĥ of this tight-binding model is given by:

Ĥ ¼
X

hi;ji
t0b

y
i;kaj;k þ

X

hhi;jii
tc a

y
i;kþ1aj;k þ b

y
i;kþ1bj;k

� �

þH:c:; ð6Þ

where a(b) and ayðbyÞ are the annihilation and creation operators
on the sublattice cites. Each lattice site is labeled by i, k, wherein
the first denotes the coordinate inside each layer and the second
denotes the layer number. 〈i, j〉 in the first summation represents
intralayer nearest neighbor and 〈〈i, j〉〉 in the second summation
represents interlayer next nearest neighbor. The corresponding
Bloch Hamiltonian H(k) is given by

ĤðkÞ ¼ ðtÞcgðkzÞt0hðkx; kyÞt0½hðkx; kyÞ�
�tcgð�kzÞ ð7Þ

where
gðkÞ ¼ 2cosðkxaþ kzdhÞ þ 4cosð

ffiffiffi

3
p

kya=2Þcosðkxa=2� kzdhÞ
and hðkx; kyÞ ¼ expð�i

ffiffiffi

3
p

kya=3Þ þ 2cosðkxa=2Þexpði
ffiffiffi

3
p

kya=6Þ
with a and dh being the lattice constants of the graphene lattice
and along the z-direction, respectively.

The first Brillouin zone of this tight-binding model is shown in
Fig. 6b with some high symmetry points also being labeled. The
band structures along some high symmetric directions are shown
in Fig. 6c with the red curve, where the hopping parameters are
taken to be t0= 1 and tc= 0.2. The band dispersions are linear
near the points K and H along all the high symmetric directions,
which indicates that this tight-binding model possesses Weyl
points at K and H as well as K′ and H′. To see this point, we
expand the Hamiltonian in Eq. (6) around K= (0, 4πa/3, 0).
Keeping only to the lowest order, we get

ĤðqÞ ¼ �3tcσ0 þ 3
ffiffiffi

3
p

tcqzσz �
ffiffiffi

3
p

2
t0ðqyσy � qxσxÞ: ð8Þ

The first term in Eq. (8) represents an energy shift which does
not change the topological charge of the Weyl point. And hence
the charge of the Weyl point at K is −1. The system exhibits C6

rotational symmetry along the z-direction, and time-reversal
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symmetry implies that the system possesses another Weyl point
at the K′ point and with the same charge. One can also follow the
same procedure and concludes that the charge of the Weyl point
at H is +1. This fact also illustrates an important property of
Weyl crystals: the total charge inside the first Brillouin zone of a
periodic system should vanish. This distribution of the Weyl
points and their associated topological charges are shown in
Fig. 6b.

In this system, kz is a good quantum number, and hence one
can define the Chern number of any two-dimensional subsystems
with a fixed kz. In Fig. 6d, we show the Chern number as a
function of kz with the red curve. The Chern number only
changes when it comes across a kz plane with nonzero topological
charge. In this system, the Chern number is +1 for kz > 0 and −1
for kz < 0. According to the bulk-edge correspondence, there
should be one-way edge states provided that kz is preserved. Such
one-way edge states should be present for any kz ≠ 0 or π which
then forms a Riemann surface like structure and the iso-energy
contour of it is known as the Fermi arc17.

Weyl points are not the only object in the reciprocal space that
possesses a topological charges96. A nodal surface, which is a
surface degeneracy between two bands, can also possess a non-
zero topological charge. The nodal surface is protected by non-
symmorphic symmetry G2z � T ~C2z and is located at kz= π/dh
with arbitrary kx and ky, where T denotes the time-reversal
operation and ~C2z represents the two-fold screw rotational sym-
metry along the z-direction. The band dispersion is linear in the
vicinity of the nodal surface. Note here that G2z symmetry only
protects the presence of the nodal surface, whether it is topolo-
gically charged or not depends on the system parameters96. A
tight-binding model that exhibits this symmetry and also pos-
sesses a charged nodal surface can be obtained by simply shifting
one of the sublattice in Fig. 6a along the z-direction by dh/2, and
the resulting tight-binding model is shown in Fig. 6e. Here, the
intralayer hopping is also slightly modified to preserve the G2z

symmetry. The band structure of this tight-binding model is
shown in Fig. 6c with the blue curve. Here the intralayer hopping
(denoted by the black bonds) and interlayer hopping (denoted by
the cyan bonds) are set as t0= 1 and tc= 0.2, respectively. We see
that the two bands become degenerate on the kz= π plane and
the dispersion is linear away from this nodal surface. The Weyl
points at K and K′ still are preserved while the Weyl points at H
and H′ are merged into the nodal surface and hence the nodal
surface should possess topological charge +2. The charge dis-
tribution of the tight-binding model in Fig. 6e is shown in Fig. 6f,
where the red plane represents the nodal surface with topological
charge +2. The Chern numbers as a function of kz remain the
same as that in Fig. 6d.

One advantage of using acoustic metamaterial as a platform to
explore the physics of topological material is that real samples can

be made more straightforwardly than quantum materials. Indeed,
experimental realizations of acoustic Weyl metacrystals were
performed soon after the theoretical proposal89,90. We focus on
the experiments in ref. 89. In this work, the authors realized an
acoustic Weyl metacrystal, measured the Fermi arc and demon-
strated the robustness of the surface states. Figure 7a shows the
experimental sample and the insets show the front (lower left)
and back (lower right) views of the unit cell. The sample was
fabricated by 3D printing technology, and the printed structure
can be treated as sound hard where the sound waves cannot
penetrate. The detail geometric parameters can be found in ref. 89.
In this system, the Weyl points with opposite charges are not
related by any symmetry and hence their frequencies can be
different. The frequencies of the Weyl points under consideration
at K and H are 15 kHz and 16 kHz, respectively. Figure 7b shows
the surface Brillouin zone on the kx−kz plane and projection of
Weyl points as denoted by the green and purple spheres. The
solid and dashed curves represent the “Fermi arcs” on the positive
and negative x−z surfaces, respectively. The working frequency is
chosen to be 15.4 kHz which is between the frequencies of these
two Weyl points. At this frequency, the equi-frequency contours
of the bulk bands around the Weyl points project to elliptical
disks as outlined by the purple curves. The Fermi arcs connect
these elliptical disks. Experimentally, one can measure the surface
wave field distributions which can be Fourier transformed to
obtain the Fermi arc. The experimental results are shown as color
code in Fig. 7b, where red represents maximal value and blue
represents minimal value. The experimentally measured results
agree quite well with the numerical simulations. As discussed
before, such systems support one-way surface states against kz
preserved scatterings, which are also experimentally
demonstrated89,90.

Topological mechanical waves
In the preceding sections, we reviewed the entire landscape of
topological states in both time-reversal symmetric and asym-
metric acoustic structures. It is thus evident that these quantum
topological phenomena, similar to photonic systems, find their
counterparts in engineered sonic structures and lattices. But does
this apply to mechanical waves as well? Throughout this review,
we have hinted towards it, first of all however, we need to dis-
tinguish between zero frequency nontrivial topological modes
that are insensitive to smooth deformations and actual mechan-
ical vibrations. In this section, we embark to discuss on the latter
whereas topological zero modes and states of self-stress have been
extensively discussed elsewhere97. The study into topologically
protected mechanical waves at finite frequencies has been largely
triggered by the search of related phenomena for other areas of
classical physics98,99. Hence, for elastic vibrations and mechanical
waves, equivalent to the preceding sections we discriminate
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between systems of intact and broken time-reversal symmetry,
which will ultimately give rise interface-supporting modes in the
form of helical spin-polarized and chiral one-way edge states,
respectively. Gyroscopic lattices are prominent candidates capable
to form forbidden regions, band gaps, in which bulk vibrations
are inhibited. The opening of such gap is induced by breaking the
T symmetry through rotating gyroscopes permitting waves to
sustain only in the form of unidirectional and topological robust
chiral edge states along finite sample interfaces100,101.

In order to mimic with mechanical waves the QSHE and
launching helical edge vibrations at interfaces one can revert to
passive systems, i.e., T symmetric structures in no need for an
external bias to violate reciprocity. In order to keep the T sym-
metry intact, two opposite counter-propagating spins have to
coexist at the same frequency according to Kramers degeneracy
theorem. Hence, helical edge states have been detected in pendula
lattices102,103 and predicted for Lamb and flexural waves in
structured plates104,105 and granular crystals106.

As detailed above, in addition to the pseudo spin, sound waves
are capable of emulating a valley degree of freedom. Rather than
pursuing novel carriers of information and energy similar to their
electronic counterpart, recent efforts in the literature have
demonstrated that valley Hall polarized mechanical states can
give rise to topological protected vibrations. In order to gap the
Dirac cones of phononic lattices, the inversion symmetries were
broken by introducing a hexagonal boron nitride-like geometry of
unequal masses within the unit cell. It was shown that these
elastic systems contain topologically nontrivial band gaps hosting
backscattering suppressed edge states107,108. Similar efforts have
been devoted to observe topologically valley-polarized states in
bilayers, slender veins connected rod-crystals, thin plates, and
diatomic waveguides75,109–111.

Recently, on the nanoscale, chiral phonons were observed in
monolayer tungsten diselenide whose broken P symmetry splits
clockwise and counterclockwise motions into nondegenerate
states, which has great potential for the realization of phonon-
driven topological states and controlled intervalley scattering112.
These topological states are based on atomic-scale lattice vibra-
tions that differ substantially from the previously mentioned
states in macroscopical artificial crystals with lattice constants in
the mm to cm range. Along the same frontier, Weyl phonons have
been predicted in magnetic- and transition metals. In the latter
case, double Weyl points are hosted throughout the phonon
spectrum thanks to the noncentrosymmetric but T symmetric
crystalline structure113. In contrast, in the former case, it was
shown that strong circular phonon dichroism can be induced in
Weyl semimetals with both of broken P and T symmetry114.
These findings have the possibility to open doors for topological
phononics at the atomic scale comprising engineering surface
phonons and heat transport related to the phonon Hall effect115.

Other exciting explorations along the mechanical research
frontier of topological insulators show how smooth deformations
can provide topological phase transitions, pseudomagnetism for
sound is created, and how mechanical quadrupole topological
insulators sustain corner states78,116,117. Conclusively, these tre-
mendous efforts demonstrate that man-made artificial crystals
serve as a fruitful playground to test with mechanical vibrations
topologically protected wave propagation.

Future directions
We have reviewed recent efforts in putting topological acoustics
on the map of an overall attempt in building the bridge between
quantum physics and topological insulators for classical waves.
Artificial macroscopic lattices in the form of sonic and phononic
crystals pose only little fabrication challenges as compared to
photonic systems that are built on much smaller scales at which
imperfections matter. Concerning this, it did not take much time
for the frontier of topological acoustics to flourish from 2D to 3D

where theoretical predictions quickly turned into experimental
proofs of concepts.

The strategy to move forward could potentially rest on looking
into the current state-of-the-art comprising electronic and pho-
tonic topological systems. Doing this will certainly provide a
platform for research into exotic sound propagation and
mechanical vibrations to spearhead novel basic wave physics.
Topics such as higher-order topological insulators (HOTI)117

sustaining corner and hinge states, experimental progress in non-
Hermitian and PT symmetry topological insulators118, and ana-
logies of Majorana-like bound states at finite frequencies will fall
into this category making topological acoustics relevant among
condensed-matter physicists. However, it is of substantial sig-
nificance to actually look at the specific targets of research in
acoustics and elasticity together with their more technological
oriented challenges. Realizing topological robust and defect
insensitive wave guiding, signal buffering and splitting could
provide new avenues for improved surface acoustic waves sen-
sors, on-chip filters in mobile phones, enhanced coupling effi-
ciency in touchscreens, and potentially improve the robustness of
bio-chemical sensing. Along this line, efforts in the near future
must therefore revolve around shrinking topological acoustical
but also mechanical properties into the micro scale in order to be
of relevance to the aforementioned technologies.

Conclusively, while many of the reviewed results and break-
through findings, for the most part, can be categorized in terms of
academic research, based on the unconventional way sound and
vibrations are tailored, one can only look forward to unprece-
dented routes and possibilities for phononic technologies that
fully take advantage of topologically robust wave control.

Data availability
The related data are available from the corresponding authors on
request.
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