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We study the robustness of the paradigmatic kagome resonating valence bond (RVB) spin liquid and its

orthogonal version, the quantum dimer model. The nonorthogonality of singlets in the RVB model and the

induced finite length scale not only makes it difficult to analyze, but can also significantly affect its physics,

such as how much noise resilience it exhibits. Surprisingly, we find that this is not the case: The amount of

perturbations which the RVB spin liquid can tolerate is not affected by the finite correlation length, making

the dimer model a viable model for studying RVB physics under perturbations. Remarkably, we find that this

is a universal phenomenon protected by symmetries: First, the dominant correlations in the RVB are spinon

correlations, making the state robust against doping with visons. Second, reflection symmetry stabilizes the spin

liquid against doping with spinons, by forbidding mixing of the initially dominant correlations with those which

lead to the breakdown of topological order.

DOI: 10.1103/PhysRevB.101.115101

I. INTRODUCTION

Topological spin liquids (TSL) are exotic phases of matter

where a system does not order magnetically despite strong

antiferromagnetic interactions, but rather topologically, i.e.,

in its global entanglement. The interest in these systems

stems from their unconventional properties, such as anyonic

excitations with fractional charge and nontrivial statistics,

and a ground space protected by its global entanglement

[1–3]. However, TSLs are notoriously difficult to identify,

both in theory and in experiment, as candidate systems of-

ten exhibit close competition between a number of differ-

ent phases. In order to robustly realize these phases, it is

therefore essential to understand how sensitively they react

to perturbations which can induce a breakdown of topological

order.

The paradigmatic example of a spin liquid is the resonating

valence bond (RVB) wave function on the kagome lattice,

which consists of a “resonating” superposition of all possi-

ble ways to cover the lattice with nearest-neighbor singlets

[4,5]. It forms a physically motivated low-energy ansatz for

Heisenberg-type models, and appears as the exact ground

state of a local model with topological order [6,7]. However,

the nonorthogonality of different singlet configurations makes

RVB models hard to analyze. To mitigate this difficulty, dimer
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models have been studied instead, where different singlet

configurations are taken to be orthogonal [8]. The resulting

kagome dimer model is an RG fixed point and thus signif-

icantly easier to analyze [9]. However, it is unclear to what

extent results derived for the dimer model still apply to the

RVB state, where the nonorthogonality of singlets induces

a finite correlation length, making it doubtful whether the

robustness of the RVB state can be understood from studies

performed on the dimer model.

In this paper, we study and compare how sensitively the

RVB spin liquid and the quantum dimer model react to noise,

and which level of perturbations they can tolerate before their

topological order breaks down. We consider both magnetic

fields and lattice anisotropies, corresponding to doping with

the two elementary topological excitations: spinons and vi-

sons. We find, rather surprisingly, that in both cases the RVB

model exhibits essentially the same stability as the dimer

model despite its nonzero correlation length. This suggests

that the dimer model is more accurate in modeling spin liquid

physics under perturbations than one might have naively

assumed.

To understand the mechanism behind this unexpected re-

sult and its range of applicability, we microscopically analyze

the structure of anyon correlations using tensor networks.

Diverging anyon correlations indicate a closing gap, driving

a phase transition through anyon condensation; the finite

spinon correlations in the RVB would thus indeed suggest a

decreased robustness. However, as our analysis reveals, there

is a universal mechanism underlying the surprising robustness

of the RVB model: It arises from symmetries which protect

specific correlations, and is thus independent of the specific

perturbation but rather a universal feature of the RVB spin

liquid.
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FIG. 1. (a) Dimer pattern (blue) and its arrow representation

(red); arrows point into the triangle with the dimer. (b) The difference

between any allowed arrow pattern (green) and the reference pattern

(red) is in one-to-one correspondence to loop patterns. (c) Construc-

tion of “dual tension” doping; cf. text.

Concretely, we find that the nonorthogonality of singlets

induces dominant spinon correlations without a separate vison

correlation scale; since vison doping only increases the latter,

the response is unaffected by the spinon length scale. The

reason for the robustness to spinon doping is more subtle; we

assess it through a combination of analytical and numerical

study. It reveals that the spinon correlations exhibit a twofold

degeneracy in addition to the spin doublet. It originates in the

two different ways to construct spinon correlations—either

through the overlap of two states with one spinon each, sepa-

rated by some distance ℓ, or through the overlap of the original

doped RVB with a state with two additional spinons placed at

a separation ℓ. We show that the reflection symmetry of the

RVB rules out any correlation between spinons of opposite

spin, also at finite doping. This, together with the symmetry

of these overlaps under ket ↔ bra exchange, implies that the

fourfold multiplet splits under doping into sectors labeled by

(i) their spin ± 1
2

and (ii) a fixed relative phase ±1 between

the spinon at either position being in the ket or bra vector in

the overlap, respectively. As we show, this ±1 phase label

is protected by the reflection symmetry of the lattice and

thus stable to perturbations which respect that symmetry. We

find that the correlations which are initially enhanced by

magnetic fields and those which drive the phase transition

live in different sectors which are protected by the lattice

symmetry; that explains why the presence of initial spinon

correlations in the RVB state has no effect on its robustness

to magnetic fields.

II. RVB AND DIMER MODEL

The RVB state is constructed as follows. First, we define

a dimer covering as a full covering of the lattice with pairs

of adjacent vertices, termed dimers [blue in Fig. 1(a)]; we

denote dimer coverings by D, and the set of all coverings

(with PBC) by D. Next, replace each dimer by a singlet

|σ 〉 = 1√
2
(|↑↓〉 − |↓↑〉) (with counterclockwise orientation

around triangles), we call the resulting state |σ(D)〉. The RVB

wave function is then |RVB〉 =
∑

D∈D |σ(D)〉. In studying

the physics of RVB wave functions, so-called dimer models

|dimer〉 =
∑

D∈D |D〉 are frequently used, where the {|D〉}D∈D
define an orthonormal basis [8]. Replacing singlet configura-

tions by orthogonal dimer configurations makes these models

easier to analyze, but can also affect their physics. One way

to explicitly construct a dimer representation is to start from

the RVB wave function and attach arrows to each vertex [10]

which for any dimer configuration D point into the triangle

where the adjacent dimer lies [Fig. 1(a)]. These arrows can

be treated as quantum degrees of freedom or “arrow qubits”

with basis states {|a↑〉, |a↓〉} (arrow pointing into either of

the two adjacent triangles); denoting the corresponding global

arrow configuration by |A(D)〉, we obtain a local represen-

tation |dimer〉 =
∑

D∈D |σ(D)〉|A(D)〉 of the dimer model.

One advantage of this representation is that it allows one

to continuously interpolate between the dimer model and

the RVB state, by choosing a nonorthogonal arrow basis

|a↑/↓〉 = (1 ± λ)|0〉 + (1 ∓ λ)|1〉 and tuning λ ∈ [0; 1]. It can

be proven that along the whole interpolation, the system has a

parent Hamiltonian with a fourfold degenerate ground space

with topological features, and numerical study shows that the

correlation length along the interpolation stays finite, placing

both models in the same (topological) phase without any

conventional order [6].

The dimer model can be proven to be a topological fixed

point model using the arrow representation introduced above.

First, given any classical configuration |A(D)〉, we can disen-

tangle the singlets |σ(D)〉 by local unitaries (conditioned on

the adjacent arrow qubits) and bring them to a fiducial state,

leaving us with a superposition
∑

A∈A |A〉 of all allowed arrow

configurations A ≡ A(D); these are precisely those with an

even number of inpointing arrows (a Z2 constraint) [10]. By

fixing a “reference configuration” A0 of arrows [and thus a

reference configuration D0 of dimers; Fig. 1(a)], every arrow

configuration A ∈ A is characterized by those vertices where

the arrows in A differ from A0. These vertices satisfy a Z2

Gauss law on each triangle and thus describe closed loops

L on the dual honeycomb lattice [Fig. 1(b)]; this establishes

a one-to-one correspondence between loop configurations L

and arrow configurations A. The dimer model is thus locally

equivalent to an equal-weight superposition of all loop con-

figurations on the dual honeycomb lattice, which is nothing

but the topological Z2 toric code model [11]. In fact, we can

think of the dimer and RVB model as being constructed from

a loop model to which we apply a sequence of local operations

which replace the loops by arrows, add singlets as prescribed

by the arrows, and finally (partially) erase the arrow pattern

by applying Eλ = (
1 + λ 1 − λ

1 − λ 1 + λ
) to each arrow qubit; note that

while the first two steps are local unitaries/isometries, the last

step Eθ is a nonunitary (“filtering”) operation which induces

a finite correlation length and in the limit λ → 0 becomes

singular.

III. DOPING THE RVB WAVE FUNCTION

Subjecting the RVB or dimer model to external fields in-

duces doping with elementary excitations: spinons or visons.

Spinons are obtained by breaking up a singlet (or dimer) and

replacing it by two separate spins (w.l.o.g., two up-spins),

which can subsequently separate due to a kinetic term. Visons,

on the other hand, correspond to a local disbalance in the

relative weight of different singlet (or dimer) configurations

(equivalently, loop configurations).
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In order to study how a finite density of excitations affects

the topological order in the RVB or dimer model, we extend

the ansatz to include a tunable quasiparticle doping. Let us

start with vison doping: Here, we select a reference dimer pat-

tern D0 [=arrow configuration A0, Fig. 1(a)], and adiabatically

increase the relative weight of the reference configuration

through a filtering Fθv
= 1 − θv|r̄〉〈r̄| (with |r̄〉 the opposite

of the reference state) applied to each arrow qubit before the

application of Eλ. This directly translates to a “string tension”

(
1 0

0 1 − θv

) in the underlying loop model (defined relative to

D0) which suppresses longer loops and gives rise to doping

with magnetic (vison) excitations; for the dimer point λ = 1,

the two doping models are unitarily equivalent.

For spinon doping, we introduce two ansatzes. The first—

termed “dual tension”—maps to electric excitations (broken

loops). This corresponds to flipped arrows, obtained by ap-

plying Gθ ′
s
= 1 + θ ′

sσx Two inpointing arrows are mapped to

a singlet, and one (three) to |↑〉 (|↑〉⊗3) [Fig. 1(c)]. How-

ever, the resulting ansatz does not correctly reproduce the

effect of a local field in lowest order—breaking a singlet

into a pair of spinons—as it also yields four-spinon terms.

We therefore introduce a second ansatz (“spinon pairs”) by

replacing the singlets in |σ(D)〉 with a pair of spinons |↑↑〉,
i.e. changing each singlet to 1√

2
(|↑↓〉 − |↓↑〉) + θ2

s |↑↑〉. At

the dimer point, each spinon is tagged by a third (orthogonal)

state |as〉 of the arrow qubit [i.e., 1√
2
(|↑↓〉 − |↓↑〉)|a↑, a↓〉 +

θ2
s |↑↑〉|as, as〉], which can be continuously erased through a

filtering Ẽλ = 3λ1 + (1 − λ)P, Pi j = 1 ∀ i, j. Unlike the other

ansatz, this correctly captures the expected behavior in lead-

ing order. We have also found that it performs significantly

better as a variational ansatz for the Heisenberg model with

magnetic field. We therefore focus on it, and discuss the other

ansatz in Appendix B.

IV. RESULTS AND ANALYSIS

We will now study the response of the RVB spin liquid

to different fields. For all simulations, we have expressed

the wave functions as projected entangled pair states (PEPS)

[6,12–14]; see Appendix A. We use standard numerical PEPS

methods (boundary MPS [15–17]) which allow us to evaluate

physical observables in the thermodynamic limit, as well as

to extract a correlation length from the boundary MPS. Using

the techniques in Refs. [17,18], we can moreover extract cor-

relation lengths for each anyon sector, which label the decay

of correlations between a pair of anyons of a certain type. This

allows us to microscopically analyze how the system is driven

into a trivial phase due to doping with some anyon a, causing

it to condense—in this process, the mass gap of a decreases

until it eventually vanishes and it becomes favorable to have a

macroscopic number of a anyons in the ground state: Anyon a

has become condensed, leading to a breakdown of topological

order [19]. In order to probe the anyon mass ma, we can study

the anyon-anyon correlation length ξa ∼ 1/ma; a diverging ξa

thus indicates condensation of anyon a.
We start by considering doping with visons due to lattice

anisotropies which drive the system into a vison condensed
phase [i.e., a valence bond crystal (VBC)] [20]. Figure 2(a)
shows the phase diagram as a function of λ and the anisotropy
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FIG. 2. Effect of vison doping (left) and spinon doping (right)

(joint x axes). (a) and (d) Phase diagram, driving the system into

(a) a VBC phase and (d) a spin-polarized phase, respectively, where

the plot shows the logarithm of the correlation length. In both cases,

the transition point shows only weak dependence on the RVB-dimer

interpolation. (b) and (e) Response of the wave function to doping

for RVB and dimer point, again showing very similar behavior.

(c) and (f) Anyon correlations for the RVB as a function of doping,

providing an explanation for the robustness (see text). (g) Zoom into

(f) including subleading correlations, with y axis σ = e−1/ξ .

θv . We find that the critical point θ crit
v

(λ) is essentially in-
dependent of the interpolation λ between the dimer and the
RVB model. Figure 2(b) shows the response to a doping θv ,
defined as the difference � between the Heisenberg energies
on inequivalent edges, confirming that the RVB and the dimer
model behave essentially the same way. We can understand
this behavior by considering the correlations (mass gaps) for
the different anyon types in the RVB state as a function of
θv [Fig. 2(c)]. We find that at the RVB point, the dominant
length scale is given by spinon-spinon correlations ξs [21].
Vison correlations ξv , while present, are only on the order
of the topologically trivial correlations ξt ≈ ξv , which in
turn are roughly ξt ≈ ξs/2, and thus understood as arising
from correlations between two pairs of spinons (which are
topologically trivial). That is, the dominant length scale in
the system arises from spinons, while visons do not exhibit
independent correlations on their own. As we increase the
doping θv , genuine vison correlations start building up, but
the overall correlation length remains dominated by the spinon
correlations, which do not respond to the vison doping; only
very close to the phase transition (θv ≈ 0.18), the vison cor-
relations start to exceed the spinon correlations and diverge at
the phase transition.
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FIG. 3. Spinon correlations. Figures show ket-bra overlaps

(ket=full symbols, bra=empty symbols). (a) and (b) Correlations

between spinons in (a) ket-bra and (b) ket-ket. Each pattern has a

reflection symmetric twin with same (opposite) sign, so that only

the ket-bra correlations in (a) survive. (c) Doping with pairs of

spinons (red squares) inverts the sign pattern, giving rise to ket-ket

correlations. In both cases, only correlations of spins with same Sz

are possible.

Next, we consider the effect of magnetic fields, amounting

to doping with spinons (the “spinon pairs” ansatz). Figure 2(d)

shows the phase diagram as a function of the doping θs and the

dimer-RVB interpolation λ. Surprisingly, we find that despite

the dominant spinon correlations in the RVB state, the phase

boundary stays almost constant (the RVB is even slightly more

robust). Again, studying the response mz = 〈 1
N

∑
σz〉 vs θs,

Fig. 2(e), we find two very similar curves, and the RVB shows

a smaller response in the relevant regime; as expected, the

phase transitions coincide with maximal susceptibility.1

These findings are rather counterintuitive, given the domi-

nant spinon correlations in the RVB. To analyze this, we con-

sider the correlations by anyon type [Fig. 2(f)]: We find that

the spinon correlation dominates throughout, but it decreases

after an initial increase, and exhibits a sharp kink around θs ≈
0.99 after which it diverges. To study this further, we consider

the full spectrum of correlations in Fig. 2(g), where we make

two noteworthy observations. First, the leading spinon corre-

lation is fourfold degenerate, where one would have naively

expected a spin- 1
2

doublet. Moreover, the correlation in this

quadruplet which dominates at small doping is different from

the one which finally drives the phase transition—the two

lines exhibit a sharp crossing at θs ≈ 0.99, suggesting they are

distinguished by some symmetry. Indeed, such a symmetry

protection could explain the surprising robustness of the RVB

model, since the correlations in the sector driving the phase

transition initially decrease under doping.

To analyze this further, we first consider the origin

of spinon correlations. Correlation functions are overlaps

〈ψ ′|ψ〉, where both |ψ〉 and 〈ψ ′| are RVB states possibly

doped with spinons—that is, they are a sum of all singlet

coverings, except for one or two static locations where |↑〉
spinons are placed. We will call |ψ〉 the “ket layer” and 〈ψ ′|
the “bra layer.” Spinon-spinon correlations are obtained by

summing over all overlaps of singlet patterns with the two

spinons fixed (Fig. 3), where each pattern yields an amplitude

determined by the loop lengths, and the sign follows from the

singlet orientations. There are two types of such correlations:

1Note that mz does not directly measure the spinon density for the

RVB, since nonzero contributions also arise from pairs of spinons

connected by singlets in 〈ψ |σz|ψ〉.

A ↑ket spinon (i.e., a single up-spin in the ket layer) can be

correlated either to a ↑bra spinon [Fig. 3(a)], or a ↓ket spinon

[Fig. 3(b)] (since Sket
z,total = Sbra

z,total), and correspondingly for

a ↓ket spinon. We can now explain the fourfold degeneracy:

In the Stotal
z = + 1

2
sector, either a ↑ket spinon is correlated

with α↑bra + β↓ket in a fixed superposition, or independently

↓bra with a superposition α↓ket + β↑bra. This yields a twofold

degeneracy, while another factor of 2 arises from the spin- 1
2

doublet.

However, there is more structure to the spinon-spinon

correlations: Every overlap pattern in Figs. 3(a) and 3(b) has

a “twin” under reflection about the indicated vertical axis.

For the singlet orientation chosen, all singlets are flipped

under reflection: Thus, overlaps for odd length paths—which

connect ket-ket and bra-bra spinons—change their sign under

reflection and thus cancel:2 In the RVB state, only spinons

with same Sz (equivalently, in opposite layers) can be cor-

related. Remarkably, this property is preserved under doping

[Fig. 3(b)]: Since spinon pairs are symmetric under reflection

and do not flip the spin, the paths containing an odd (even)

number of spinon pairs which don’t cancel with their reflec-

tions are exactly those which correlate spinons with the same

Sz in the same (opposite) layer. Together with the ket↔bra

symmetry, this implies that the spinon-spinon correlations can

be labeled by sectors ↑± := ↑ket ± ↑bra and ↓± := ↓ket ± ↓bra

(that is, sectors which have overlap only with the correspond-

ing superposition of spinons). At the RVB point, they all

appear with equal amplitude but opposite phase such that the

equal-layer correlations cancel. Crucially, as shown above,

this symmetry label is protected by reflection symmetry even

at finite doping, preventing mixing. Our analysis is confirmed

by numerically computing the matrix elements of �± with the

different correlation sectors.3 Moreover, analysis of the data

shows that the correlations which increase initially are in the

�− sectors, while those in the �+ sectors decrease, whereas

the phase transition is driven by a diverging correlation length

in the ↑+ sector. However, coupling between the two sectors

is prohibited by reflection symmetry. This explains why the

system responds to spinon doping with an increased correla-

tion length, and yet, this does not come with a decrease in

robustness of the topological phase: The two phenomena take

place in different symmetry sectors. A qualitatively similar

behavior is observed for the “dual tension” doping: The

spinon correlation spectrum again splits in the �± basis, and

we find only a very weak effect on the robustness.

While our analysis is based on a specific doping model, this

is in fact a universal behavior, since any perturbation which

results in a breaking of singlets into pairs of spinons will have

the same effect to leading order. This implies that the initial

splitting will again be in the �± basis, with the �− correlations

being dominant for small doping, while the ↑+ correlations

drive the phase transition. As long as the perturbation respects

the lattice symmetry, these correlation sectors cannot mix,

and we therefore expect a qualitatively similar behavior for

a general perturbation which induces doping with spinons.

2Closed loops have even length and thus never change their sign.
3� denotes the two cases ↑ and ↓ jointly, analogous to ±.
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V. CONCLUSIONS

We have studied the robustness of the RVB and the dimer

model on the kagome lattice to perturbations using PEPS.

We have found that despite the nonorthogonality of different

singlet configurations, the RVB spin liquid exhibits the same

robustness to perturbations as the dimer model. For lattice

anisotropies (doping with visons), we traced this back to the

fact that the length scale induced by the nonorthogonality of

singlets gives rise to spinon correlations but does not directly

affect the physics of visons. For magnetic fields (doping

with spinons), we showed that the robustness arises from a

protection of the RVB state due to the reflection symmetry

of the lattice, which separates the initially dominating spinon

branch from the branch which ultimately drives the phase

transition. Our results reveal a surprising universal robustness

of the RVB spin liquid against perturbations, highlighting its

role as a candidate for the realization of a stable gapped spin

liquid.
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APPENDIX A: TENSOR NETWORK IMPLEMENTATION

OF DOPED RVB

Here we describe how the different doping mechanisms

introduced in the paper can be described as tensor network

states, also termed projected entangled pair states (PEPS).

1. String tension and dual tension

Let us first describe the PEPS for the RVB with vison and

spinon dopings constructed from doping of the underlying

loop (or arrow) model, i.e., string tension or dual string ten-

sion. This construction will consist of three layers, stacked on

top of each other. The lower layer is a PEPS for the loop model

with the corresponding (dual) tension. On top of that layer, we

apply a projected entangled pair operator (PEPO) which trans-

forms this loop model into the corresponding dimer model.

Finally, in a last step we apply local filtering operations (as

introduced in the main text) to the arrow degrees of freedom

in the dimer model, which allows one to interpolate to the

corresponding RVB state.

The PEPS for the first layer—the loop model with

tension—consists of two types of tensors: one vertex tensor

(without physical legs) and an on-site tensor (which carries

the physical index). The vertex tensor has three legs, each of

dimension two. We use a computational basis to express the

presence or absence of a loop string on the link, and due to the

Z2 constraint, the vertex tensor is restricted to four nonzero

FIG. 4. (a) A tensor network of the loop model on the honey-

comb lattice with filtering (blue bubble) on each site. (b) PEPO for

mapping the loop model to a dimer or RVB model. The on-site

tensors are oriented as prescribed by the reference arrow pattern. The

incoming (gray) indices are contracted with physical indices in (a).

entries,

= δi0δjk1 + δj0δik1 + δk0δij1 + δijk0. (A1)

We use δi1i2..in to denote an entry of the δ tensor with n indices,

and the entry is one iff all the indices are equal. The on-site

tensor on every link syncs up indices of adjoining vertex

tensors and the physical index of the loop model,

= δija
(A2)

After blocking the vertex and the on-site tensors (A2), we get

the tensor network of the loop model on an infinite lattice

[Fig. 4(a)]. We can filter different loop configurations in the

diagonal and dual basis by applying a deformation of the form,

=

(

1 θ′s
θ′s 1− θv

)

(A3)

on physical legs. (In the main text, we restrict to the cases

where one of the θ• ≡ 0).

The second layer is a PEPO which maps loop configura-

tions on the honeycomb lattice (including broken loops in the

case of dual tension) to dimer configurations on the kagome

lattice (including monomers in the case of broken loops). It

again consists of two types of tensors. The first is a triangular

tensor without physical index, which has three indices of

dimension three each:

= σijδk2 + σjkδi2 + σkiδj2 + δijk2+

δi0δjk2 + δj0δik2 + δk0δij2 + δijk0 ,

(A4)

where the tensor σ = diag( 1√
2
(
0 −1

1 0 ), 0) models an oriented

singlet and the last four terms correspond to different spinon

configurations. The second tensor acts on each site: It takes

the loop configuration as an input in index a, and outputs a
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physical spin p and an arrow index d , and is built such as to

pick the physical qubit from either of the two adjacent virtual

indices [and thus triangular tensors (A4)], as prescribed by the

reference configuration:

(A5)

By design, this tensor is not symmetric in the virtual indices i

and j, and we use an arrow pointing to the index j to label its

orientation. The PEPO [Fig. 4(b)] is now obtained by assem-

bling (A4) and (A5) in a hexagonal structure (yielding spins

on a kagome lattice), where the arrows need to be oriented

such that setting a ≡ 0 yields the reference configuration.

The tensor network for the doped dimer model is now

obtained by stacking the two tensor networks in Fig. 4(a)

(for the honeycomb loop model) and Fig. 4(b) (for replacing

loops with dimers), where the gray indices (labeled a) are con-

tracted. The resulting tensor network allows one to tune the

doping with spinons and visons by changing the parameters

θ ′
s and θv in the deformation tensor (A3).

Finally, by applying a filtering,

(A6)

on the arrow qubits d , we can continuously interpolate be-

tween the dimer and RVB models also with doping.

2. Doping with spinon pairs

The tensor network to implement the “spinon pair” doping

is obtained by modifying the second layer of the preceding

construction. There is no longer a need for the first layer (the

loop model), since the loop constraint is already contained

in the dimer model (see also the original construction for the

RVB and dimer PEPS [6]). First, the tensor (A4) is modified

such that each index has dimension four:

(A7)

Here, the tensor σ = diag( 1√
2
(
0 −1

1 0 ), 0, 1) encodes either a

singlet (in the first two basis states) or the presence of a spinon

pair (in the new fourth degree of freedom). Correspondingly,

the on-site tensor is also changed to project to the spinon

degree of freedom with a tunable weight of θs, accompanied

by a third state d = 2 of the arrow qubit (the basis state |as〉):

(A8)

where the arrows are oriented as before. In order to interpolate

to the RVB state, we can erase the information on the dimer

FIG. 5. Spinon doping: “dual tension” model. (a) Comparison

of variational energies for “spinon pairs” and “dual tension” ansatz

as a variational wave function for the Heisenberg model with field

[Eq. (B1)]; the “spinon pairs” ansatz performs clearly better for most

of the parameter regime. Here and in (b), the dashed lines indicate the

respective phase transitions. (b) Comparison of Heisenberg energy vs

magnetization for the two models. This illustrates that the two mod-

els already differ in the perturbative regime (close to the origin); only

the “spinon pairs” ansatz correctly captures the physics of breaking

a singlet into a nearest-neighbor pair of spinons in leading order.

(c) Correlation functions by spinon sector for the “dual tension”

spinon doping; we observe the same characteristic features as in

Fig. 2(f), which are protected by the same symmetries (in particular

lattice reflection) as discussed in the main text. (d) The phase diagram

of the dimer-RVB interpolation θ ′
s for the “dual tension” doping λ

again exhibits only a weak dependence of the phase transition on

changing orthogonal dimers to nonorthogonal singlets.

indices by applying a deformation,

(A9)

The final tensor network is identical to Fig. 4(b), but without

the gray indices.

APPENDIX B: SPINON DOPING WITH “DUAL TENSION”

In this Appendix, we report the results for the model with

spinon doping constructed through dual string tension.

Figure 5(a) provides a comparison of the variational energy

for the “dual tension” and the “spinon pairs” ansatz for the

Heisenberg Hamiltonian with a transverse field,

H =
∑

〈i j〉

Si · S j − h
∑

i

Sz
i (B1)

(with eigenvalues Sz
i = ± 1

2
). We find that the energy for the

“spinon pairs” ansatz is significantly lower, providing a first

reason why we chose to consider it as our primary ansatz for

spinon doping. Figure 5(b) provides further insight into this.

It shows the relation between Heisenberg energy 〈Si · S j〉 and

magnetization 〈Sz
i 〉: We see that for the same magnetization,
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the “dual tension” ansatz has a significantly higher Heisenberg

energy, which qualitatively means that it requires to break

up a correspondingly larger number of singlets to achieve

the same magnetization. This effect can be clearly observed

in the perturbative regime, i.e., small magnetizations, where

the “dual tension” ansatz has a significantly higher slope.

We can understand this effect qualitatively in a semiclassical

picture: Breaking up a singlet into a pair of spinons leads

to a change �E = 1 in Heisenberg energy, since one singlet

is replaced by a |↑↑〉 state. On the other hand, the scenario

in the “dual tension” construction where flipping an arrow

yields four spinons (three on a triangle, and one adjacent

vertex) gives rise to a total of four Heisenberg terms hav-

ing an energy + 1
4
, while before, half of them had energy

0 and half − 3
4
, implying �E = 2.5 (or 1.25 per pair of

spinons).

Despite these differences, the study of correlations by

anyon sectors, Fig. 5(c), yields a qualitatively very similar

behavior to the case of “spinon pair” doping. In particu-

lar, we again observe an additional twofold degeneracy in

the spinon sector (on top of the spin- 1
2

multiplet) which is

protected by the lattice symmetry, and which separates the

correlations responsible for the phase transitions from those

initially responding to the doping; this highlights the fact that

this, as we have shown, is a universal effect. Yet again, this

symmetry protection is reflected in a rather weak dependence

of the phase transition on interpolating between the doped

orthogonal dimer model and the doped RVB state [Fig. 5(d)].
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