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Topological state transfer in Kresling origami
Yasuhiro Miyazawa1, Chun-Wei Chen1, Rajesh Chaunsali 2, Timothy S. Gormley1, Ge Yin1,

Georgios Theocharis3 & Jinkyu Yang1✉

Topological mechanical metamaterials have been widely explored for their boundary states,

which can be robustly isolated or transported in a controlled manner. However, such systems

often require pre-configured design or complex active actuation for wave manipulation. Here,

we present the possibility of in-situ transfer of topological boundary modes by leveraging the

reconfigurability intrinsic in twisted origami lattices. In particular, we employ a dimer Kresling

origami system consisting of unit cells with opposite chirality, which couples longitudinal and

rotational degrees of freedom in elastic waves. The quasi-static twist imposed on the lattice

alters the strain landscape of the lattice, thus significantly affecting the wave dispersion

relations and the topology of the underlying bands. This in turn facilitates an efficient

topological state transfer from one edge to the other. This simple and practical approach to

energy transfer in origami-inspired lattices can thus inspire a new class of efficient energy

manipulation devices.
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In recent decades, mechanical metamaterials have been con-
sidered an ideal medium to design effective wave manipulation
systems, leveraging their high degree of freedom in design and

the tailorability of their mechanical properties1–3. Mechanical
metamaterials are primarily highlighted for their unconventional
dynamic responses that can offer rich applications, including
vibration isolation4–9, wave guiding10–13, and energy
harvesting6,14,15. More recently, the discovery of the topological
insulators has significantly influenced and extended the design of
wave-guiding mechanical metamaterials16,17. Topological insula-
tors are known for their robustness of the boundary states18,
which can lead to interesting wave properties for classical
systems19,20. In addition, inspired by the concept of Thouless
adiabatic quantized pumping21, which is based on an adiabatic
cyclic modulation of the one-dimensional (1D) potential para-
meters, diverse lattice models have demonstrated the efficient
transfer of the energy between the states, by employing the
spatially22–26 or temporally27–31 varying configurations.

In parallel, recent studies have explored protocols for exploit-
ing the topological properties of several systems, quantum32–36

and classical37, for the state transfer of localized states, a process
of great importance for quantum technologies. The key advantage
topology offers in such a process is the inherent protection of the
topologically protected boundary against disorder. This is a sig-
nificant improvement over the conventional systems, which
usually involve energy leakage due to the noises and fabrication
errors in the system. However, even in topological systems, most
systems suffer from inefficiency in energy management. They
either use pre-configured passive lattices that are not tunable after
assembly22–26 or use a complex setting of active elements span-
ning the entire structure29,31, which is cumbersome for practical
purposes.

To address such limitations, we employ a mechanical lattice
consisting of origami-based mechanical units, which offers a
simple strategy to tune wave dispersion relationships in-situ and
facilitate a robust state transfer. Origami has served as an efficient
design principle to tailor kinematic and static responses in
mechanical metamaterials. Lately, the origami-inspired metama-
terials have also been found to be effective in realizing the wave
manipulation in them, leveraging their high reconfigurability and
controllability38,39. Furthermore, origami lattices have also been
shown to support static (zero-frequency) topological edge
states40, suggesting the potential of origami lattices for topological
mechanical metamaterials.

In this study, we consider the 1D dimer lattice composed of the
origami unit cells to explore the tunable wave dispersion rela-
tionship and the emerging topological edge states at finite fre-
quency. The origami unit is based on the Kresling pattern with
opposite chirality, which shows the axial–rotation coupling and
nonlinear static responses41,42. Interestingly, due to this
axial–rotation coupling in our system, alternating chirality along
the length of the lattice itself leads to the opening of a lower band
gap. We find that this lower band gap is topologically nontrivial,
and we demonstrate experimentally that this lower band gap
hosts topologically protected edge states.

A more interesting mechanism is obtained when the lattice is
twisted, which incurs the change of the axial strain and effective
stiffness landscape along the lattice. As a result, the linear wave
dispersion relationships of the system are altered, and in this
process, we witness the emergence of another band gap in the
higher frequency regime. We report that this upper band gap
transitions from topologically trivial to nontrivial states by
changing the twist angle in time, and therefore, facilitates a robust
state transfer in the lattice from one side of the lattice to the other.
We numerically show such efficient boundary state transfer in the
higher frequency regime and evaluate the transfer fidelity.

Notably, we find that such state transfer observed in the upper
band gap cannot be achieved in the lower band gap, since it
preserves its topologically nontrivial characteristics at any twist
angle. This implies that by leveraging the coupled dynamics in
our origami system, we can realize very distinctive energy man-
agement capabilities in different frequency regimes. Thus, our
origami system hints at an efficient and controllable way to
manipulate multiple wave phenomena hosted within the single
topological mechanical metamaterial by combining the concepts
of topology and origami.

Results and discussion
Physical set-up and mathematical model. We employ the geo-
metrical and kinematic parameters shown in Fig. 1a to describe
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Fig. 1 The schematic illustrations of the system. a The unit cell is depicted
in side and top view with geometrical parameters and variables. b The
force–displacement relationship of the unit cell under pure axial
compression along z-axis is shown for the geometrical parameter
h0= 30mm, θ0= 70°, and R= 36mm. Red dashed line, the average force
of experimental result from 18 unit cells; red shaded area, standard
deviation; blue solid line, truss model curve. The inset figure shows the
slope of averaged experimental and analytical force–displacement curves.
c 1D dimer Kresling lattice with polygonal separators. Red-colored unit cells
have positive chirality θð1Þ0 >0, and the blue-colored unit cells have negative
chirality θð2Þ0 <0. d Coupled 1-dimensional phononic lattice as a model of
Kresling lattice. Polygonal separators are modeled as lumped mass m and
disc j. Lumped masses are connected with nonlinear springs, and so are the
discs. Adjacent masses and discs are connected with nonlinear springs as
well, denoted as dashed and dash-dotted lines.
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the Kresling-patterned unit cell41. The unit cell has two degrees of
freedom: translation along z-axis (u) and rotation about z-axis
(φ). As the unit cell gets compressed (i.e., u changes), the top
surface rotates (φ varies), therefore exhibiting coupled behavior.
The resultant force–displacement relationship under pure axial
compression (i.e., no external torque applied) in the experiment is
shown in Fig. 1b, denoted as a red dashed line.

To model this coupled folding behavior, we employ a truss
model39 by replacing the creases along segments AB and AC
(denoted by red and blue solid lines in Fig. 1a) with linear spring
elements, and segment AD (green solid line in Fig. 1a) with a
linear torsion spring. The model gives the total potential energy
expressed as

Π ¼ Np

2
kaða� a0Þ2 þ kbðb� b0Þ2 þ 2kψðψ � ψ0Þ2
h i

� Fu� Tφ;

ð1Þ
where Np is the number of vertices of the polygonal cross-section,
ka and kb are the linear spring coefficients of the axial spring
elements along AB and AC, respectively, and kψ is the torsion
spring coefficient of the element along AD. The a and b are the
lengths of the element AB and AC, and ψ is the angle between the
horizontal surface and the triangular facet (e.g., △ACD), which
are functions of u and φ (see Supplementary Note 1 for the
explicit expressions). The subscripted values a0, b0, and ψ0

correspond to their initial lengths and angle. F is the axial force
along z-axis, and T is the torque about z-axis.

By applying the principle of minimum potential energy, we
obtain F and T as a function of u and φ (see Supplementary
Note 1). This analytical force–displacement relationship is shown
in Fig. 1b, denoted as a blue solid line. Here, the spring
coefficients are empirically determined using the least-square
method to fit the model curve with the experimental curve. As a
result, we can see the model agrees well with the experimental
force–displacement curve. Note that the slopes of the experi-
mental and analytical force–displacement curves—representing
the stiffness of the system—are also in agreement as shown in the
inset figure of Fig. 1b.

Having the mathematical model for the unit cell, we now
consider the 1D dimer lattice consisting of two different types of
unit cells: one with positive chirality θð1Þ0 >0 and the other with
negative chirality θð2Þ0 <0. Figure 1c shows the dimer lattice, where
positive chirality unit cells (red-colored) and negative chirality
unit cells (blue-colored) are connected through the polygonal
separator, which has mass m and rotational inertia j about z-axis.
(See also the “Methods” section for the actual setup).

If Kresling unit cells serve as inter-polygonal springs while
having negligible mass and inertia compared to the separators
(see Supplementary Table 1), we obtain the equations of motion
of the dimer Kresling lattice,

m€un þ F2 un � vn;φn � ϑn
� �� F1 vn�1 � un; ϑn�1 � φn

� � ¼ 0;

ð2aÞ
m€vn � F2 un � vn;φn � ϑn

� �þ F1 vn � unþ1; ϑn � φnþ1

� � ¼ 0;

ð2bÞ
j€φn þ T2 un � vn;φn � ϑn

� �� T1 vn�1 � un; ϑn�1 � φn

� � ¼ 0;

ð2cÞ

j€ϑn � T2 un � vn;φn � ϑn
� �þ T1 vn � unþ1; ϑn � φnþ1

� � ¼ 0;

ð2dÞ
where un, vn and φn, ϑn are axial displacement and rotational
angle of the odd- and even-numbered polygonal separators

respectively. The subscripts 1 and 2 of the force and torque
functions correspond to the positive and negative chirality unit
cells. Figure 1d shows a schematic of the mathematical model of
this coupled system, where the mass and rotational inertia are
considered separately, such that the two lattices are connected to
each other with nonlinear springs to represent the coupled
nature.

Tunable wave dispersion relationship. From now on, we con-
sider the dimer Kresling lattice with opposite and equal magni-
tude chirality, namely odd- and even-numbered Kresling unit
cells exhibit θð1Þ0 ¼ jθ0j and θð2Þ0 ¼ �jθ0j. For the rest of the
geometrical parameters of the unit cells, we take them to be equal
among odd- and even-numbered units (hð1Þ0 ¼ hð2Þ0 ¼ h0 and
R(1)= R(2)= R). Our interest is the dynamics of small amplitude
elastic waves, and therefore, we start by linearizing Eq. (2):

m€un þ β11ðun � vnÞ � α11ðvn�1 � unÞ þ β12ðφn � ϑnÞ � α12ðϑn�1 � φnÞ ¼ 0;

ð3aÞ

m€vn � β11ðun � vnÞ þ α11ðvn � unþ1Þ � β12ðφn � ϑnÞ þ α12ðϑn � φnþ1Þ ¼ 0;

ð3bÞ

j€φn þ β21ðun � vnÞ � α21ðvn�1 � unÞ þ β22ðφn � ϑnÞ � α22ðϑn�1 � φnÞ ¼ 0;

ð3cÞ

j€ϑn � β21ðun � vnÞ þ α21ðvn � unþ1Þ � β22ðφn � ϑnÞ þ α22ðϑn � φnþ1Þ ¼ 0;

ð3dÞ
where α and β are the linear coefficients of the positive and
negative chirality unit cells, respectively (see Supplementary
Note 2 for the detail). Furthermore, we substitute the Bloch wave
solution in Eq. (3) and perform the Fourier transformation to get
the eigenvalue problem,

ω2
kuk ¼ D̂kuk ð4Þ

where k and ω are the wave number and angular frequency,
respectively; D̂k is the dynamical matrix and uk ¼
ð ffiffiffiffi

m
p

uk;
ffiffiffiffi
m

p
vk;

ffiffi
j

p
φk;

ffiffi
j

p
ϑkÞT is the eigenvector. The solution to

this eigenvalue problem gives the wave dispersion relationship
ω(k) vs. k.

First, we analyze the dispersion relationship of this lattice
under natural conditions, namely without any applied twist
(i.e., zero twist angle; see Fig. 2a). Figure 2c shows the wave
dispersion relationship with the unit cell geometrical parameters
h0= 30 mm, R= 36 mm, θð1Þ0 ¼ 70�, and θð2Þ0 ¼ �70� (see
Supplementary Note 2 for the value of α and β). The color
intensity of each branch represents the axial polarization factor Pu
of the corresponding eigenvector uk (see Supplementary Note 3
for further discussion).

In this coupled 1D system, we can observe four branches: two
lower and two upper branches (see the enlarged view in Fig. 2d;
two lower branches are almost collapsing onto each other)42.
Note that at k= π/h0 there is a degeneracy between the two lower
and the two upper branches. Between the upper and the lower
branches (i.e., second and third branches), we see a wide band gap
denoted as band gap 1 (BG1) in Fig. 2c. Notably, this band gap
emerges due to only the opposite chirality in our system [i.e.,
α12=−β12 in Eq. (4)], without the necessity of dimerizing axial
or rotational stiffness (i.e., without changing any geometric
parameters along the lattice to alter α11 and β11). Alternating
chirality itself introduces a band gap in the dispersion relation,
and this is a key feature of our system distinctive from previous
studies43,44.
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Now, we explore the in-situ tunability of the wave dispersion
relationship, without replacing or changing the unit cell design,
but by just twisting the lattice. Here, we assume that the lattice
has an even number of unit cells in total (see Supplementary
Notes 4 and 5 for more information). Interestingly, if we quasi-
statically twist the lattice along the z-axis without changing the
total length of the lattice (i.e., the fixed boundary at both ends),
we can change the strain landscape of the lattice. For instance,
starting from the natural configuration (Fig. 2a), as we twist the

lattice in the positive φ direction, we can see that the negative
chirality unit cells (blue-colored unit) are elongated and the
positive chirality unit cells (red-colored unit) are compressed, as
shown in Fig. 2b (see also Supplementary Note 4, Supplementary
Figs. 1 and 2, and Supplementary Movies 1 and 2 for further
insights). Notice that if the total length of the lattice is kept
constant, the lattice constant of the supercell (i.e., a pair of unit
cells) is also kept constant throughout the twisting process.

Recall that the unit cell exhibits a nonlinear static response.
Thus the elongated unit cells and the compressed unit cells show
different instantaneous stiffnesses, which alters the effective linear
stiffnesses α and β. This, in turn, results in the different linear
dynamics of the lattice without replacing the unit cells. Figure 2e
shows the linear wave dispersion relationships for three different
twist angles per supercell: φb ¼ ð�25�; 0�; 25�Þ. In the lower
frequency regime, either positively or negatively twisting the
lattice induces the first branch to shift slightly downward and
the second branch to shift significantly upward. As a result, the
degenerate point at k= π/h0 disappears, and the BG1 becomes
narrower. In the higher frequency regime, we see that an
additional band gap labeled band gap 2 (BG2) opens between the
third and fourth branches (see also Supplementary Movie 3).
Strikingly, the topological nature of these band gaps is highly
distinctive, as will be discussed next. We note in passing that the
analysis above is specific to the lattice with an even number of
unit cells, which shows symmetric behavior when twisted
positively and negatively. See Supplementary Notes 4 and 5,
Supplementary Figs. 1 and 2 for the comparison between the
lattices with even and odd numbers of unit cells.

Topological characterization. For the topological characteriza-
tion of the system, we first show that the dynamical matrix D̂k can
be written as

P̂D̂kP̂
�1 ¼ D̂�k; ð5Þ

where P̂ is the symmetry operator (please see Supplementary
Note 5 for the detail). In the absence of degeneracies, the Zak
phase of a band can be obtained by accumulating the phase
resulting from the corresponding eigenvectors all over the first
Brillouin zone (BZ; Fig. 2e). If we discretize the BZ with K points,
the Zak phase for mth isolated band is defined as45,46

ϕm ¼ � ∑
K�1

k¼0
Im lnhumk jumkþ1i: ð6Þ

Here, the band index runs from m= 1 to 4. Except for the case
of natural condition (i.e., zero twist angle; see below) the four
bands in the dispersion relation do not have a degenerate point
aside from the origin (k= 0). Therefore, we directly apply Eq. (6)
to obtain the Zak phases of the bands, which are labeled in the left
and right panels of Fig. 2e, respectively. Indeed the Zak phases of
the four bands take the values 0 or π, while interestingly enough,
these values are switched for the negatively and positively twisted
lattices. To topologically characterize the band gaps, we sum the
Zak phases below the corresponding band gaps47.

We find in Fig. 2e that for both negatively and positively
twisted lattices, the BG1 holds a sum of Zak phases π, which
indicates that it is a topologically nontrivial band gap, a property
that does not change with the value and sign of the twisting angle.
Special treatment is needed for the case of zero twist angle
because the bands degenerate at the end of BZ (k= π/h0) and
therefore Eq. (6) cannot be used. For such a case, we obtain the
topological index for the band's mth and (m+ 1)th (that are
degenerated at some point) together via many band Berry phases

Fig. 2 The dimer Kresling lattices and wave dispersion relationships. The
dimer Kresling lattice a under natural condition and b with supercells quasi-
statically rotated for 25°. Wave dispersion relationships of the dimer
Kresling lattice are also shown. c All four branches are shown with the
band gap (BG1) as a blue shaded area. d Enlarged view of the lower
two branches. The color map of the solid lines represents the intensity
of the axial component described by the polarization factor

Pu ¼ mjuk j2 þmjvk j2
mjuk j2 þmjvk j2 þ jjφk j2 þ jjϑk j2

. e The linear wave dispersion relationships for

negatively twisted lattice (left), natural condition (center, reprinted from
panel c), and positively twisted lattice (right). The twist angles for
negatively and positively twisted lattices are −25° and 25°, respectively.
The Zak phase for each band is labeled in green. Trivial and nontrivial band
gaps are shaded with pale red and pale blue, respectively. The geometrical

parameters are: h0= 30mm, R= 36mm, θð1Þ0 ¼ 70� and θð2Þ0 ¼ �70�.
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(Wilson-loop eigenvalues)46,48, such that

ϕm;mþ1 ¼ � ∑
K�1

k¼0
Im ln det

humk jumkþ1i humk jumþ1
kþ1 i

humþ1
k jumkþ1i humþ1

k jumþ1
kþ1 i

 !
: ð7Þ

In our system, we calculate that ϕ1,2= ϕ3,4= π under the
natural condition. We may thus conclude that BG1 is nontrivial
even for the case of zero applied twisting.

Now, for BG2, the sum of the Zak phase below BG2 is π for the
negatively twisted lattices and 0 for the positively twisted lattices.
This implies that the BG2 exhibit a topological phase transition
(from nontrivial to trivial) as the twist angle varies from negative
to positive. In the special case of zero twists, the gap closes. This
distinctive topological nature of the BG2 as a function of the
applied twisting angle enables the topological state transfer across
the lattice, as will be discussed and verified in the following
sections.

Emergence of boundary states in finite lattice under fixed
boundary conditions. Due to the principle of bulk-boundary
correspondence18, topologically nontrivial band gaps, identified
in the infinite lattice, host topologically protected boundary states
when the lattice is finite. To study the emergence of boundary
states at both BG1 and BG2, we calculate the eigenfrequencies
and eigenmodes of our dimer Kresling lattice, as a function of the
twisted angle φb, for an even number of unit cells (please see
Supplementary Note 6.2, Supplementary Fig. 3 for the odd
number of unit cell case.). Throughout the paper, we employ fixed
boundary conditions at both ends since only this choice can
guarantee that the total length of the lattice remains unchanged
under twisting and can also keep the lattice twisted at a certain
angle. For instance, if we twist the lattice and release one end such
that the boundary condition is fixed-free, then the lattice recoils
back to the natural condition where the lattice is not twisted.

Figure 3a summarizes the transition of the cutoff frequencies
and boundary state frequencies of the finite lattice with 16 unit
cells, as a function of twist angle φb 2 ½�30�; 30��. The color
intensity of the lines corresponds to the localization index (LI)
inspired by the inverse participation ratio (IPR)49 and the center
of mode (CoM)29:

LI ¼ IPR ´CoM ¼ Ku�2
� ��2��� ��� 2

N
wTKu�2

� �
; ð8Þ

where u is the eigenvector, K is the commutation matrix, and w is
the weighting vector (see Supplementary Note 6.1). The power ∘2
denotes Hadamard power. If the eigenmode is skewed toward left
(right), then LI→− 1 (LI→ 1). Note that each entry of u∘2 is
proportional to the axial and rotational component of the kinetic
energy of each polygonal separator. Therefore, the localization
index corresponds to the location of the energy intensity. To
closely examine the boundary states and their eigenmodes, the
enlarged views of the boundary states in BG1 and BG2 are shown
in Fig. 3b, c, respectively. Also, their eigenmodes are plotted in
both axial and rotational components in Fig. 3d–g.

In BG1, two boundary modes can be observed for all the values
of the twisting angle. This complies well with the fact that BG1 is
topologically nontrivial for all the values of twisting (i.e., does not
undergo a topological transition as a result of twisting). At the
special case of no twisting, φb ¼ 0, their frequencies are almost
identical and closely degenerate. Their eigenmodes for this case
are shown by labels (i) in Fig. 3d, e, where we see non-negligible
amplitude at both ends of the lattice. When the lattice is twisted
positively or negatively, one of the modes shows a decrease in
frequency while the other increases. If we extract these 15th and
16th modes along these transition curves as denoted in Fig. 3b, we
can see the highly localized boundary states at either end of the
lattice for any φb. Notice that for the 15th mode, the edge state is
at the right boundary for the negative twist angle (label (ii) in

Fig. 3 Emergence of boundary states in the finite lattice with 16 unit cells under fixed-fixed boundary conditions. a The cut-off frequencies of the four
branches in the coupled system, and the boundary state frequencies as a function of twist angle. From lowest to highest: upper cut-off frequencies of the
first and second branch; boundary state mode in BG1 (15th and 16th mode); lower and upper cut-off frequencies of the third branch, boundary state mode
in BG2 (23rd mode); lower and upper cut-off frequencies of the fourth branch. The color intensity of the solid lines represents the localization index LI
defined in Eq. (8). b, c show the enlarged view of the boundary state frequencies in BG1 and BG2: b 15th and 16th modes; c 23rd mode. The areas shaded
with the light-gray correspond to the bulk mode frequency regimes. d, e The 15th and 16th boundary modes in BG1 in axial (green background panel) and
rotational (red) components. For the 15th mode, (i) φb ¼ 0, (ii) −25°, (iii) 25°. For the 16th mode, (i) φb ¼ 0, (iv) −25°, (v) 25°. f, g The 23rd boundary
mode in BG2 in axial and rotational components. (vi) φb ¼ 0, (vii) −25°, (viii) 25°.
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Fig. 3d), and changes to the left boundary when twisted positively
(label (iii) in Fig. 3d). Similarly, for the 16th mode shown in the
right panel of Fig. 3d, the edge state changes its localization site
from left to right as the twist angle transitions from negative to
positive.

In BG2, see Fig. 3c, we observe one boundary mode localized at
the left boundary for negative twist angles, as shown in the
profiles labeled as (vi) in Fig. 3f, g. In contrast to the boundary
modes of the BG1, this mode is less localized, i.e., it has a smaller
localization length, due to the smaller width of the BG2.
Increasing the twisting angle φb, the mode becomes more and
more extended till we pass φb ¼ 0, where the band gap becomes
extremely narrow for the finite lattice (the band gap closes for the

infinite lattice). For the finite case, at this point, the mode
transforms into the bulk mode shown in the label (vi) in Fig. 3f, g.
Passing to positive twist angles, the mode starts again to be
localized, but this time on the right boundary of the lattice, see
(viii) in Fig. 3f, g. Since BG2 undergoes a topological transition
with the twist angle, we witness the appearance and disappear-
ance of the edge state for a particular boundary. The edge state
disappears from the left boundary and appears on the right as the
twist angle goes from negative to positive.

Experimental demonstration of lower frequency regime
dynamic response. To examine the practicality of our analysis,
we now experimentally observe the eigenmodes of the system,
especially in the lower frequency regime f∈ (0, 180] Hz, in which
the topological boundary mode frequencies lie within. The upper-
frequency regime f∈ (180, 220] Hz, which hosts the upper
brunches and the boundary modes of the BG2, is hindered by an
excessive amount of dissipation and their experimental observa-
tion was not possible. We construct the lattice consisting of 16
unit cells (8 positive and 8 negative chirality cells) made of
polyethylene terephthalate (PET) sheet (see the “Methods” sec-
tion, Supplementary Note 7, and Supplementary Fig. 4 for the
details). The initial conditions under consideration are: (i) natural
state where φb ¼ 0� and (ii) twisted state where φb ¼ 15�. The
chirp signal with different frequency ranges is applied via a
vibration shaker, and the polygonal separator motion is measured
and extracted through the digital image correlation technique.

In Fig. 4a–d, we show the dispersion relationships extracted by
performing the fast Fourier transform (FFT) to the experimental
results of the aforementioned two conditions, along with their
corresponding analytical predictions. The experimentally
obtained dispersion relationships coincide with the analytical
predictions denoted as red and blue dashed lines, regardless of the
twist angle. We can clearly see the expansion of the frequency
regime covered by the lower two dispersion curves, by comparing
Fig. 4a, b. Figure 4c, d show the FFT results of the excitation
within BG1, specifically at f∈ [100, 200] Hz. First, at the zero
twist angle, we can clearly see a high-intensity region near
f= 158 Hz (Fig. 4c), which is slightly higher than the eigenana-
lysis prediction at f ≈ 147 Hz, denoted as an open circle. Similarly,
at φb ¼ 15� shown in Fig. 4d, the high-intensity region of FFT lies
near f= 142 Hz. The eigenanalysis in this case predicts the mode
frequency to be f ≈ 144 Hz, which is slightly overestimated.
Although there are minute disparities in boundary mode
frequencies between analytical prediction and experimental
results, these FFT results still suggest the clear mode excitation
within the band gap. Moreover, the decreasing behavior of the
boundary mode frequency as a function of twist angle is present
in both eigenanalysis and the experiment.

For closer examination, we extract the axial displacement
component of the normal mode with an aid of dynamical mode
decomposition (DMD) based on the singular value decomposi-
tion (SVD)50. First, we extract the fourth mode of the natural
condition in Fig. 4e. When the lattice is under natural condition,
the experimental results (circle symbol with blue solid lines)
qualitatively follow the profile of analytical prediction (square
symbol with red solid lines), except for the spatial decay of the
amplitude toward the right end of the lattice. We believe that this
is due to the energy dissipation in the experiment, where the
lattice is excited at the left end (see Supplementary Note 8,
Supplementary Fig. 5 for a numerical investigation with a dash-
pot model). Similarly, in Fig. 4f, the experimental (analytical)
profile of the eighth mode under the twist of φb ¼ 15� is shown in
the blue (red) line, showing the agreement between experimental
and analytical results.

Fig. 4 Experimentally acquired dispersion relationships from chirp signal
response of the 16-unit-cell dimer Kresling origami lattice. The input
chirp signal is given for 10 s, sweeping the frequency from 0 to 180 Hz. For
each case, the lattice is quasi-statically twisted for a, c 0° (natural
condition), and b, d 15° twist. Red and blue dashed lines represent the
analytically predicted first and second branches, and the circle symbol
represents the 15th eigenmode (topological mode) within the band gap.
The axial displacement component of the normal modes is extracted for
both linear eigenanalysis prediction and experiment. e Natural condition,
the fourth normal mode. f Twisted condition, φb ¼ 15�, the eighth normal
mode. g Natural condition, the 15th mode (topological mode). The
experimental normal modes are extracted via SVD-based DMD.
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Within the band gap, the linear analysis predicts the
localization at the left end for the 15th mode (red line in Fig. 4g).
If we extract the normal mode near f= 158 Hz from the
experimental result (where FFT shows high intensity in Fig. 4c),
we see the equivalent localization phenomenon as the blue solid
line in Fig. 4g shows. Recall that our eigenanalysis in the previous
sections identified the mode inside the BG1 as topological mode
regardless of the twist angle. This implies that the experimentally
observed normal mode in Fig. 4g is a topological mode, which is
induced solely by dimerizing the coupled nature. For other
normal modes extracted from experimental results, see Supple-
mentary Note 8 and Supplementary Fig. 5.

Numerical investigation of topological state transfer. Now, we
explore the evolution of the topologically localized modes in BG1
and BG2 as the lattice is twisted over time. Inspired by the works
of state transfer in odd-sized quantum32 and classical37

Su–Schrieffer–Heeger (SSH) lattices, and the similar behavior of
the boundary modes in BG2, we consider the case of an odd
number of separators (even number of unit cells). The overall
objective here is to explore the possibility of the in-situ boundary
state transfer from one end of the lattice to the other as we apply a
twisting on the lattice. For that, we numerically solve the fully
nonlinear equations of motion of our dimer origami system
[Eq. (2)] consisting of 32 unit cells, pre-rotated for the total twist
angle of φb=−240° (equivalent to the supercell twist angle
φb ¼ �15�). The protocol we follow consists of two phases: (1)
the excitation and (2) the loading phase. First, we apply at the left
boundary a sinusoidal signal to excite the boundary mode in BG1
(BG2), which is located at f= 147.8 Hz (200.4 Hz). This excitation
phase lasts 10 s (i.e., t∈ [−10, 0]). In the loading phase, we halt
the boundary driving signal and gradually twist the lattice at
the assigned twist rate until the twist angle reaches φb= 240°
(φb ¼ 15�). (See Supplementary Table 1 for the detail of the
numerical values.) We employ a loading protocol that initiates
and terminates smoothly, to avoid the excitation of other modes.

The boundary angle profile φb is expressed as

φb;sinðtÞ ¼ φð0Þ
b þ φð1Þ

b � φð0Þ
b

� 	
sin2

πt
2T

� 	
; ð9Þ

where T is the total loading time, and the superscripts (0) and (1)
refer to the initial and final state. Note that C1 continuity at
φb ¼ φð0Þ

b and φb ¼ φð1Þ
b guarantees the smooth initiation and

termination of the loading. The loading phase, and thus the
function Eq. (9), is defined in the time domain t∈ [0, T]. Gen-
erally, we employ large loading times T (T= 80 s in this study) to
guarantee the quasi-adiabatic evolution which is necessary to
avoid the excitation of other modes during the process.

Figure 5a, b show the numerically solved velocity field in the
axial component (see Supplementary Note 9, Supplementary
Fig. 6 for rotational component) for BG1 and BG2 respectively.
For better visibility, we numerically estimate the envelope
function of the velocity field using the Hilbert transform (see
also Supplementary Note 9). For the case of BG1 (Fig. 5a), only
the first polygonal separator shows a large amplitude, while the
motions of the other separators are negligibly small regardless of
the twist angle. For the case of BG2 (Fig. 5b), however, we observe
the interesting phenomenon of the energy transfer through the
lattice, showing the high-intensity region traveling from the left to
the right end of the lattice as we gradually apply the rotation.

If we compare the mode shapes extracted at t= 0, 40, and 80 s
(corresponding to φb=−240°, 0°, and 240°), we can evidently see
the different behavior of the energy management between BG1
and BG2. For the extracted mode shapes of BG1 (denoted by blue
solid lines with open squares in Fig. 5c–e), we always observe the
localization of energy on the left end. This is in agreement with
the previous analysis in Fig. 3 (also reprinted in the inset panel of
Fig. 5a) that all these modes are sitting on the eigenmode
transition curve in the consistent red color, which represents the
preservation of the localization index LI (i.e., localization in the
left end).

In the case of BG2, however, we observe the transfer of the
edge mode from the left to the right boundary, as shown in
Fig. 5c–e (denoted as red solid lines with open circle). At

Fig. 5 Numerical calculation of the topological state transfer through the dimer Kresling lattice. Axial velocity envelope fields _uenvðtÞ for the case of
a BG1 and b BG2. Unit is m s−1. The first 10 s (t∈ [−10, 0] s) of the numerical solution is the excitation phase at 147.8 and 200.4 Hz, respectively. Within
t∈ [0, 80] s (therefore T= 80 s), the lattice is quasi-statically twisted in φb∈ [−240°, 240°]. The subplots schematically illustrate the transition of
excited eigenmodes as a function of twist angle (similar to Fig. 3b, c, but with 32 unit cells). Grey arrows point toward the corresponding instances in the
numerical simulations. The extracted normal modes of the axial velocity profiles during the quasi-static loading phase are plotted for c −240°, d 0°, and
e 240°. f The time evolution of the fidelity F defined by Eq. (10). In c–f, blue solid lines, BG1; red solid lines, BG2.
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φb=−240° and 240°, the boundary states clearly show the
localization on the left and right end of the lattice, respectively,
which decays exponentially as presented in Fig. 5c, e. As noted
before, during the transition between these two angles, the
normal mode can exhibit sinusoidal-like bulk mode profile
(Fig. 5d) when quasi-static torsion is absent (φb= 0°). This
normal mode is reminiscent of those shown through linear
eigenanalysis in Fig. 3f, and it is the mode that plays as a vehicle
to transfer the energy through the lattice between the two
localized modes. This can be confirmed by the eigenmode
transition curve in the sub-panel of Fig. 5b, where we evidently
see the change of the color—from red to blue, representing the
migration of the localization index LI—along the curve. (See also
Supplementary Movie 4 for the comparison between BG1 and
BG2 cases.)

To quantify and confirm the state transfer from one edge to
another, we define the fidelity F via the dot product32,51,

F ¼ jutarget � uðtÞj; ð10Þ
where u ¼ ðu1; v1;φ1; ϑ1; � � � ; uN ; vN ;φN ; ϑN ÞT is the normal
mode vector based on the envelope function extracted through
Hilbert transform (see Supplementary Note 9). The subscript
target refers to the analytically predicted normal mode at
φb= 240°, which corresponds to the excited eigenfrequency.
Note that when the numerically solved normal mode vector u is
similar to the analytical prediction utarget, we obtain F ! 1.

Figure 5f shows the fidelity as a function of time for the cases
shown in Fig. 5a, b in the loading phase, t∈ [0, 80] s. In terms of
transfer fidelity, we can even clearly see that the boundary state in
BG2 transfers robustly and efficiently from left to right (F ¼ 0 to
F ¼ 1, denoted as a red solid line). The fidelity smoothly
increases and saturates to F � 1. In contrast, as suggested by the
velocity field shown in Fig. 5a, the fidelity for the case of BG1 is
always zero throughout the simulation. Further investigations on
the fidelity in relation to the loading protocol and total loading
time can be found in Supplementary Note 9, Supplementary
Fig. 7.

This numerical investigation shows highly distinctive char-
acteristics of energy management between BG1 and BG2. Unlike
the boundary states in BG1, the emerging boundary state in
BG2 shows the continuous transition from localized and bulk
mode profiles, which in turn enables the topological state transfer

of the intended boundary mode. This is consistent with the
finding in the section “Emergence of boundary states in finite
lattice under fixed boundary conditions” that BG1 is topologically
robust without changing its nature, while BG2 shows topological
transition from non-trivial to trivial when the lattice is twisted.
We thus verify two distinctive wave dynamics phenomena that
can be achieved in the same setting of the versatile Kresling
origami platform: robust preservation vs. transfer of the energy
localization, simply by changing the boundary condition.

Conclusion
In conclusion, we have analytically, numerically, and experi-
mentally explored the wave dynamics of the dimer Kresling lattice
in relevance to the tunable wave dispersion relationships and
topological boundary states. By stacking two origami unit cells of
opposite chirality along a lattice, a topological band gap (BG1)
emerges in the dispersion diagram. We experimentally verify the
existence of topological edge modes inside the band gap. Fur-
thermore, under quasi-static torsion given to the lattice, each unit
cell exhibits the variable effective linear stiffness, which results in
the tunable linear wave dispersion relationships. Such in-situ
tuning opens an additional band gap (BG2) in the dispersion
diagram. While BG1 always stays open and topologically non-
trivial, BG2 transitions from a topologically nontrivial to a trivial
regime only by changing the twist in the lattice from negative to
positive. As a consequence, a finite length lattice shows the
appearance and disappearance of an edge state from the
boundary. We have utilized this fact to facilitate the topological
state transfer by varying the twist angle in time. The transfer
fidelity has shown to be extremely high, especially for the loading
protocol initiating smoothly and relatively in a gradual manner.
Interestingly, while efficient state transfer has shown in BG2, the
boundary state in BG1 stays on one end even under the quasi-
static torsion. Consequently, by the virtue of rich topological
characteristics, we have demonstrated two distinct wave manip-
ulation strategies in a single design of 1D lattice: highly robust
energy confinement capability in BG1, and the highly efficient
energy transfer in BG2. This has been achieved simply by
changing the boundary condition, without altering the pre-
configuration of the system or employing complex active
mechanisms. Therefore, our system combines the concept of
topology and origami to offer a unique way to harness the multi-

a b

c

d

Fig. 6 Unit cell prototype and the experimental set-up of the chirp signal vibration test. Unit cells with a positive chirality and b negative chirality are
assembled into c the dimer chain. d The dimer chain is mounted through the stainless steel shaft, connected to the shaker. A pair of high-speed cameras
capture the left half and the right half of the chain behavior. Green spherical markers are tracked using the digital image correlation technique, to extract
the horizontal and vertical motion of the polygonal separators.
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degree-of-freedom of an elastic metamaterial for the purpose of
extremely versatile and controllable energy management.

Methods
Fabrication and experiment. The Kresling unit cells are fabricated with a poly-
ethylene terephthalate (PET) sheet of 0.254mm thickness, cut into the petal-like
folding pattern (see Supplementary Note 7 and Supplementary Fig. 4 for further
information on the design) by the laser cutting machine (Universal Laser Systems, Inc.
VLS4.60). After the laser-cut, we fold and assemble the unit cell by hand (see Sup-
plementary Movie 5 for the detail of the fabrication process). Every crease line is
replaced with the compliant mechanism with the discorectanglular shape perforation
to accurately fold the crease lines (see Supplementary Note 7 for more detail).

Figure 6a, b, show the fabricated Kresling unit cells of positive and negative
chirality, respectively. We then assemble the dimer lattice with 16 unit cells as in
Fig. 6c, with spherical markers attached to the vertices of hexagonal separators. The
initial conditions under consideration are: (i) natural state where φb ¼ 0� , and (ii)
twisted state where φb ¼ 15� . Here, we choose φb ¼ 15� due to the limitation of
our experimental set-up design, which allows the total twist angle up to φ= 120°
for the 8-supercell lattice.

The assembled lattice is connected to the shaker (Büel & Kjær LDS V406
Shaker; see Fig. 6d) and controlled via a function generator (Keysight Technologies,
Inc., Agilent 33220A Function/Arbitrary Waveform Generator). The lattice under
vibration is then recorded with two high-speed cameras (Kron Technologies, Inc.,
Chronos 1.4), which capture the left-half and right-half of the lattice separately but
frames being synchronized. Note that the markers facing the front side are colored
green to facilitate motion tracking. The recorded videos are post-processed via
digital image correlation to extract the time series data of each marker.

Numerical methods. To obtain the numerical solutions, the fully nonlinear
equations of motion of the Kresling lattice [Eq. (2)] are solved numerically using
in-house FORTRAN-based simulation code. For time marching, we use the
Runge–Kutta–Fehlberg method with time step size dt= 10−6 s. All numerical
values are treated as double-precision floating-point values for accuracy. For other
numerical values used in the numerical simulation, see Supplementary Table 1.

Data availability
Data supporting the findings of this study are available from the corresponding author
on request.

Code availability
Computer code written and used in the analysis is available from the corresponding
author as per requested.
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