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We introduce partially-parity-time ðpPT Þ-symmetric azimuthal potentials composed from individual
PT -symmetric cells located on a ring, where two azimuthal directions are nonequivalent in a sense that
in such potential excitations carrying topological dislocations exhibit different dynamics for different
directions of energy circulation in the initial field distribution. Such nonconservative ratchetlike structures
support rich families of stable vortex solitons in cubic nonlinear media, whose properties depend on the
sign of the topological charge due to the nonequivalence of azimuthal directions. In contrast, oppositely
charged vortex solitons remain equivalent in similar fully-PT -symmetric potentials. The vortex solitons
in the pPT - and PT -symmetric potentials are shown to feature qualitatively different internal current
distributions, which are described by different discrete rotation symmetries of the intensity profiles.
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The evolution of nonlinear waves carrying topological
phase dislocations is a physical problem of fundamental
importance attracting attention in various areas of physics,
including optics, matter waves, hydrodynamics, cavities,
and electron beams. Such waves are of particular interest
because of the salient role they play in numerous classical
and quantum phenomena [1,2]. The propagation of vortex-
carrying beams is especially intriguing in the presence of
transverse modulation of the refractive index of the material
[3]. Conservative potentials arising due to such modula-
tions play a strong stabilizing role for vortex states in
nonlinear media. They arrest collapse for two-dimensional
beams in cubic media and suppress azimuthal modulation
instabilities of bright vortex solitons that are ubiquitous
in uniform media with focusing nonlinearity [4,5]. The
intensity distributions of vortex solitons in inhomogeneous
media reflect the symmetry of the underlying potentials
[6,7]. While in some potentials stable vortex solitons may
maintain simple ringlike shapes [8], they become strongly
modulated in conventional periodic systems, such as
square [9,10], hexagonal [11], and honeycomb [12] optical
lattices, and in photonic crystals. The discrete rotation
symmetry of such potentials imposes restrictions on the
available topological charges of most compact symmetric
vortex states [13], which may not hold for extended
excitations [14]. The common feature of such conservative
potentials is the equivalence of two azimuthal directions,
manifested in the identical parameters of vortex solitons
with opposite topological charges.
A class of nonconservative parity-time (PT )-symmetric

potentials has a remarkable feature: the transition from a
purely real to a complex eigenvalue spectrum, referred to

as PT -symmetry breaking, occurs at a critical depth of the
imaginary part of the structure [15]. Such a transition
manifests itself in the qualitative modification of wave
evolution. Optical guiding structures with a transversally
symmetric refractive index and antisymmetric gain and loss
landscapes provide unique platforms for the exploration
of the effects associated with the PT -symmetry breaking,
since they allow the realization of potentials where the
PT -symmetry condition RðrÞ ¼ R∗ð−rÞ holds [16]. The
breakup of PT symmetry in localized linear potentials
was demonstrated in [17], and the concept is extended to
periodic structures [18] and nonlinear states in such systems
as isolated PT -symmetric waveguides [19], nondispersive
and dispersive couplers [20], oligomers [21], and discrete
arrays [22,23] as well as to continuous nonlinear [24], linear
[19,25], and mixed [26] lattices. The spectrum of the
complex potential may remain real even if the potential is
notPT -symmetric [27] in one-dimensional or only partially-
PT -symmetric [28] in multidimensional problems.
In contrast to conservative systems, where vortex-free

modes do not feature internal currents, in PT -symmetric
potentials such currents are necessary to achieve stable
beam propagation. Thus, although PT -symmetric poten-
tials may support stationary states with symmetric intensity
distributions, there exists a certain selected direction in
them, defined by the local currents. This phenomenon is
responsible for the removal of degeneracy of vortices in
discrete arrays with an embedded PT -symmetric defect
[23]. In this Letter, we use this property to construct
partially-PT -symmetric continuous azimuthal potentials

from fully-PT -symmetric cells placed on a ring, where
azimuthal directions become nonequivalent. We address
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vortex solitons in such structures (for discrete arrays, see
[23,29]) and show that, due to the nonequivalence of two
azimuthal directions, the properties of vortex solitons
depend not only on the absolute value of their topological
charge, but also on its sign.
We consider the evolution of paraxial beams in a

focusing cubic medium with simultaneous transverse
modulation of the refractive index and of the gain and
losses, that is described by the dimensionless Schrödinger
equation for the field amplitude q:

i
∂q
∂ξ

¼ −
1

2
∇2q − ½preRreðη; ζÞ − ipimRimðη; ζÞ�q − qjqj2:

ð1Þ

Here ∇2 ¼ ∂2=∂η2 þ ∂2=∂ζ2 is the Laplacian, η, ζ are
the transverse coordinates, ξ is the normalized propagation
distance, and the depths of the real pre and imaginary pim

parts of the complex potential R ¼ preRre − ipimRim

are determined by the complex refractive index profile
δnre − iδnim, where δnre ∼ preRre and δnim ∼ pimRim.
We build a complex azimuthal potential (see [30] for a
conservative counterpart) by placing N Gaussian wave-
guides that individually respect PT symmetry, equidis-
tantly on a ring of the radius ρ:

Rre ¼
X

N

k¼1

e−½ðη−ρ cosϕkÞ
2þðζ−ρ sinϕkÞ

2�=a2 ;

Rim ¼
X

N

k¼1

σk−1ðζ cosϕk − η sinϕkÞ

× e−½ðη−ρ cosϕkÞ
2þðζ−ρ sinϕkÞ

2�=a2 ; ð2Þ

where σ ¼ �1, ϕk ¼ 2πðk − 1Þ=N, and a is the waveguide
width. When σ ¼ −1, the potential is PT -symmetric, i.e.,
Rðη; ζÞ ¼ Rð−η; ζÞ ¼ R∗ðη;−ζÞ ¼ R∗ð−η;−ζÞ, mean-
ing that the potential is even along the horizontal direc-
tion and PT -symmetric along the vertical direction,
while for σ ¼ þ1 it is still PT -symmetric vertically, but
the invariance under the horizontal inversion is replaced
by the invariance under simultaneous inversion of η

and ζ: Rðη; ζÞ ¼ R∗ð−η; ζÞ ¼ R∗ðη;−ζÞ ≠ R∗ð−η;−ζÞ
(Fig. 1). In the latter case, the potential is referred to as
partially-PT (pPT ) -symmetric [28]. Such potentials have
different orders of discrete rotation symmetries. We con-
sider even values of N for which the PT -symmetric
potential belongs to the CN=2;v point group ofN=2 rotations
by the angles ϕσ¼−1 ¼ 4π=N and N=2 mirror reflections,
while pPT -symmetric potentials belong to the CN group of
N rotations by the angles ϕσ¼þ1 ¼ 2π=N. It is convenient
to define the order of the rotational symmetry N0, so that
N0 ¼ N for σ ¼ þ1 and N0 ¼ N=2 for σ ¼ −1.
The essential difference between the potentials stems

from their imaginary parts: in the pPT -symmetric poten-
tial, waveguides are oriented such that local currents from

amplifying [bright spots in Fig. 1(b)] to absorbing [dark
spots in Fig. 1(b)] domains inside each waveguide are
pointed clockwise (such currents are most pronounced
inside waveguides, where light intensity is larger, and
are much weaker between waveguides), making this
azimuthal direction nonequivalent to the counterclockwise
direction. The profile of such potentials as a function of
polar angle ϕ at fixed radius r resembles a one-dimensional
PT -symmetric lattice with a ratchetlike gain-loss land-
scape. In the PT -symmetric potential, gain and loss
domains are exchanged in the neighboring waveguides
[see Fig. 1(c)]; hence, current directions inside waveguides
also alternate, making clockwise and counterclockwise
directions equivalent.
The difference in the discrete symmetries has a pro-

found impact on the spectra of the linear eigenmodes
qm ¼ wmðη; ζÞ expðib

mξÞ, where bm ¼ bmre þ ibmim is the
eigenvalue and m ∈ ℤ distinguishes the eigenmodes. The
basic rotations by ϕσ¼þ1 ¼ 2π=N or by ϕσ¼−1 ¼ 4π=N,
that leave unchanged the arrangements in each symmetry
group, imply the existence of the nondegenerate fundamen-
tal state w0ðr;ϕÞ ¼ w0ðr;ϕþ ϕσÞ corresponding to a real
eigenvalue b0. Higher-order eigenmodes can be represented
as angular Bloch waves wmðr;ϕÞ¼eimϕUmðr;ϕÞ, where
Umðr;ϕÞ ¼ Umðr;ϕþ ϕσÞ. Their eigenvalues, either real
or appearing as complex conjugate pairs, are always degen-
erate. Let us introduce the operator ℋ ¼ ℋ0 þ ipimRim

in Eq. (1), where ℋ0 ¼ −ð1=2Þ∇2 − preRre is Hermitian.
For σ ¼ −1, the operator ℋ is PT -symmetric (i.e.,
PT H ¼ HPT ). If its eigenvalue bm ðℋwm ¼ bmwmÞ
is real, then HðPT wmÞ ¼ bmðPT wmÞ, i.e., PT wm ¼
ð−1Þwe−imϕU�

mðr;ϕþ πÞ is also an eigenmode correspond-
ing to the same degenerate real bm. The same is true
for the pPT -symmetric operator. For a complex bm, it is
the state PT wN0−m ¼ ð−1ÞN

0−me−iðN
0−mÞϕU�

N0−mðr;ϕþ πÞ
that gives the second eigenmode for the same bm. ℋ0 also

possesses degenerate pairs of eigenvalues ~bmðm ≠ 0; N0=2Þ.
The evolution of the two highest pairs of degenerate

eigenvalues of ℋ with an increase of the imaginary part of
the potential can be understood by using the simplified
model accounting only for those two levels. Let us define

FIG. 1 (color online). Profiles of real (a) and imaginary (b) parts
of the pPT -symmetric potential, and (c) imaginary part of the
PT -symmetric potential with N ¼ 6. The real parts of potentials
are identical. Here and in all contour plots, the profiles are shown
within the η, ζ ∈ ½−4.3;þ4.3� window.
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eigenmodes ~wm and eigenvalues ~bm of ℋ0 ðℋ0 ~wm ¼
~bm ~wmÞ and build matrix representation h ~wmjℋj ~wni for
complex operator ℋ. The elements of the resulting matrix

are given by Hmn ¼ ~bmδm;n þ ipimh ~wmjRimj ~wni. Using ϕσ

periodicity of the Bloch modes and potential Rim, one
obtains that h ~wmjRimj ~wni ¼

R

∞
0

R

2π
0

~w�
mRim ~wnrdrdϕ ¼

δm−n;N0Rm;n, where the coefficients Rm;n depend only on
Rim and Um;nðr;ϕÞ shapes within the angular interval
ϕ ∈ ½0;ϕσ�. This implies that coupling of linear states with
different vorticity m, n is possible with an increase of pim

only for jm − nj ¼ N0. Thus, in the pPT -symmetric case
with N ¼ N0 ¼ 6, the growing imaginary part ipimRim

does not result in coalescence of the eigenvalues associa-
ted with m ¼ �1 and n ¼ �2. In contrast, in a similar
PT -symmetric potential with N0 ¼ 3, coalescence of the
eigenvalues is possible. In this approximate model, the
modified eigenvalues can be found from the matrix

H¼

2

6

6

6

6

6

4

~b1 0 0 ipimR1;−2

0 ~b1 ipimR
�
1;−2 0

0 ipimR1;−2
~b2 0

ipimR
�
1;−2 0 0 ~b2

3

7

7

7

7

7

5

ð3Þ

and are given by b1;2 ¼ ð ~b1 þ ~b2Þ=2� ½ð ~b1 − ~b2Þ2=

4 − p2

imjR1;−2j
2�1=2. Increasing pim leads to equality of

two double degenerate eigenvalues at pcr
im ¼ ð ~b1 − ~b2Þ=

2jR1;−2j, that remain double degenerate after that point
but move into the complex plane at pim > pcr

im. At pim ¼ pcr
im

the matrix H cannot be represented in diagonal form but
allows representation in the Jordan-block form H ¼ I ⊗ h,
where I is a 2 × 2 identity matrix and h is a 2 × 2matrix with

elements h11 ¼ h22 ¼ ð ~b1 þ ~b2Þ=2, h12 ¼ 1, and h21 ¼ 0.
This is an indication of the coexistence of two exceptional
points at pim ¼ pcr

im [31], where two pairs of vortex states
with m ¼ �1 and m ¼ �2 simultaneously coalesce.
The numerically calculated spectra, shown in Fig. 2 for

potentials with N ¼ 6, support the above conclusions.
In the PT -symmetric potential, one observes coalescence
of two double degenerate real eigenvalues leading to the
appearance of two double degenerate complex conjugate
eigenvalues at pim ¼ pcr

im (we show only eigenvalues that
can lead to symmetry breaking). In contrast, no such
coalescence is observed in the pPT -symmetric potential,
where noticeable imaginary parts b�m

im do not appear up to
the point where the corresponding real parts b�m

re approach
the edge of the continuous spectrum [Fig. 2(b)]. Such
behavior suggests that stable vortex modes may form in the
pPT -symmetric potential, where two azimuthal directions
are nonequivalent, even in the regime where symmetry is
already broken in the PT -symmetric case.
Vortex solitons have the form q ¼ uðrÞ exp½iϕðrÞ þ ibξ�,

where r ¼ ðη; ζÞ and u, ϕ are the field modulus and phase,

respectively. The latter defines the topological charge
m ¼ ð2πÞ−1

H

∇ϕdl, where the integral is calculated over
any closed contour surrounding the phase dislocation
at r ¼ 0. Equation (1) then yields bu ¼ ð1=2Þ∇2u −
j2=2u3 þ preRreuþ u3 and ∇ · j ¼ 2pimRimu

2, where
we introduced the current j ¼ u2∇ϕ. Although the imagi-
nary part of the potential enters only the equation for
current, the latter does affect the soliton shape via the first
equation. The rigorous simulations reveal that the charge

rule jmj ≤ N=2 − 1 (for even N) established in [13] and
connecting the maximal topological charge of compact
solitons with the order of discrete rotation symmetry of
potential holds in the pPT -symmetric case. Furthermore,
we consider a representative pPT -symmetric potential
with N ¼ 6 supporting vortex solitons with charges up to
jmj ¼ 2. We set pre ¼ 5, a ¼ 0.5, and ρ ¼ 0.3N and use
pim as the main control parameter. Examples of solitons
supported by such potentials are depicted in Figs. 3 and 4.

FIG. 2 (color online). Real (black curves) and imaginary (red
curves) parts of the eigenvalues of linear eigenmodes of the PT -
symmetric (a) and pPT -symmetric (b) structures versus pim at
pre ¼ 5. Superscripts �m indicate topological charges of beams
that can be constructed by using linear combinations of corre-
sponding eigenmodes.

FIG. 3 (color online). Field modulus u (first row) and phase ϕ
(second row) distributions for a soliton with in-phase spots (a),
for the m ¼ þ1 vortex soliton (b), and for a multipole soliton
(c) in the pPT -symmetric structure. In all cases b ¼ 1.8, pre ¼ 5,
and pim ¼ 10.
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All of them feature N pronounced bright spots. Solitons
with in-phase and out-of-phase spots and m ¼ 0 are
presented in Figs. 3(a) and 3(c), respectively. For
pim ≠ 0, even these simplest m ¼ 0 solitons possess non-
trivial phase distributions. Solitons with nonzero topologi-
cal charges are shown in Figs. 3(b), 4(a), and 4(b).
The central physical result of this Letter is that the

nonequivalence of two azimuthal directions in the pPT -
symmetric potential causes substantial differences in the
shapes and properties of oppositely charged vortex solitons
with equal propagation constants. This is in sharp contrast
to all previously reported findings on vortex solitons in
conservative potentials, where two oppositely charged
states are degenerate. The difference is illustrated in
Figs. 4(a) and 4(b) for the m ¼ �2 states. These are the
most stable vortex solitons in the pPT -symmetric structure
with N ¼ 6. The intensity and local phase modulations are
substantially deeper for m ¼ þ2 than for its m ¼ −2

counterpart. The origin of the difference is visible from
phase distributions in the second row. Vortex solitons are
characterized by the presence of a global current associated
with vorticity. Such a current is counterclockwise for
m > 0 and clockwise for m < 0. Upon stationary propa-
gation, the net gain and loss experienced by the solitons has
to vanish; hence, local currents directed from amplifying
into absorbing domains should appear in each waveguide.
The direction of local currents is indicated in Fig. 4 with
short gray arrows. While for m > 0 the angular directions
of all local and global currents are opposite, for m < 0 they
coincide—see the vector current maps jðrÞ in the last row.
The difference in directions of local and global currents
implies a difference in the current magnitudes jjðrÞj (third
row), which, in turn, affect the field modulus distributions
and lead to different soliton properties for a fixed b. In
PT -symmetric potentials, the difference between states
with opposite charges does not occur, because there the
directions of local currents alternate in neighboring wave-
guides, so that, even if in one waveguide local and global
currents have opposite directions, in the neighboring wave-
guide they coincide [second and fourth rows of Fig. 4(c)].
This leads to an additional azimuthal modulation of the
current and field modulus distributions [first and third rows
of Fig. 4(c)]. The current modulus distribution now con-
tains two alternating types of spots. The field modulus
distribution for the m ¼ −2 vortex soliton can be obtained
from that for the m ¼ þ2 state simply by its rotation by an
angle 2π=N; i.e., energy flows of such solitons remain
identical—a consequence of the equivalence of two
azimuthal directions in the PT -symmetric potential. The
presence of additional azimuthal modulation reduces dis-
crete rotation symmetry of the field modulus distributions
in the PT -symmetric structure in comparison with its
pPT -symmetric counterpart.
Vortex solitons in the pPT -symmetric structure are

characterized by their energy flows U ¼ ∬ jqj2dηdζ, whose
dependencies on b are shown in Fig. 5(a). Solitons exist
above a cutoff identical for opposite charges. The energy
flow grows with b and saturates at b →∞. Solitons with
negative charges carry higher energy flows than solitons
with positive charges. The difference δU ¼ Um¼−2 −
Um¼þ2 acquires its maximal value for intermediate values
of the propagation constants and then gradually vanishes
when the soliton transforms into N strongly localized
almost noninteracting bright spots concentrated within
individual waveguides [Fig. 5(b)], consistent with physical
expectations. A similar behavior was found for all studied
pairs �m of nonzero topological charges. The difference
in energy flow δU between oppositely charged solitons
always grows with the imaginary part of potential pim, and
it can become comparable with U [Fig. 5(c)]. At large pim

values, vortex solitons were found to exhibit considerable
shape transformations. For example, N spots can fuse into
almost uniform ring at pim ≫ pre.

FIG. 4 (color online). Field modulus u (first row), phase ϕ

(second row), current modulus jjj (third row), and vector current
map (fourth row) for vortex solitons with m ¼ þ2 (a) and
m ¼ −2 (b) in the pPT -symmetric structure and for a vortex
soliton with m ¼ þ2 (c) in the PT -symmetric structure. In all
cases b ¼ 1.8, pre ¼ 5, and pim ¼ 10. A white circle with an
arrow in the phase distributions indicates the direction of the
global current associated with vorticity, while short gray arrows
indicate the direction of the local currents inside waveguides.
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The nonequivalence of the azimuthal directions is
manifested also in different stability properties of oppo-
sitely charged solitons. We found that m ¼ �2 vortex
solitons are stable in a limited interval of propagation
constants blowcr ≤ b ≤ b

upp
cr , but such an interval differs

substantially for solitons with positive and negative topo-
logical charges [compare domains of stability located
between red dots in Figs. 6(a) and 6(b) and obtained by
direct integration of Eq. (1) with perturbed inputs propa-
gated up to ξ ¼ 104]. The stability domain is nearly 3 times
wider (in terms of pim) for m ¼ þ2 solitons than for
m ¼ −2 ones. For small values of pim, the lower border of
stability domain blowcr nearly coincides with the cutoff bco

for existence shown in Fig. 6 by black dots. For m ¼ þ2

solitons, the value blowcr starts departing from bco at pim > 6,
and at one point the lower border of stability domain fuses
with upper border buppcr . Beyond this point, solitons become
unstable for any b. A similar scenario is found for m ¼ −2
solitons. The stability domain drastically expands when one
approaches the conservative limit pim → 0. We also found
that m ¼ 0 solitons with in-phase spots and m ¼ �1

solitons are unstable, while multipole modes, like those
depicted in Fig. 3(c), can be stable.
In summary, we introduced pPT -symmetric potentials

where two azimuthal directions are nonequivalent and
uncovered the important implications of such an effect
in the properties of vortex solitons. The properties of the
vortex soliton states supported by such potentials were
found to depend on both the absolute value of their
topological charge and on its sign, in complete contrast
to all conservative potentials studied so far, where oppo-
sitely charged vortex solitons always exhibit equal proper-
ties. Note also that the potentials constructed here represent
the first example of a PT -symmetric ratchet featuring a
purely real spectrum in a certain parameter domain.
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