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1. Overview and Motivation

A starting point for studying string theory in a non-trivial space time geometry M is the non-

linear σ model. The correlation functions, for simplicity we consider the partition function Z first,

are given by a variational integral

Z(M) =
∫

Dh

Vol diff.weyl.
DxeiS(x,h,M) (1.1)

over all embeddings of the world-sheet Σ inM

x : Σ → M (1.2)

and the world-sheet metric h. The dependence of such correlation functions on the topology and

geometry of M, which is treated here as a classical background, might be taken as a first step to

describe stringy geometry. It is of direct practical importance as it determines the effective action

in 4d for string compactifications on M. Of particular interest will be the dependence of terms in

the low energy effective action on the geometric moduli of M. Understanding that this depends on

the geometry is a prerequisite for quantizing the latter.

However in the generic case correlation functions like (1.1) are far too complicated to handle.

Here we want to study the exceptions. One can be found within super symmetric compactifications

of critical string theory. Using diffeomorphism andWeyl invariance, maintained for the critical case

in the first quantized version, the dependence on the degrees of freedom of the world-sheet metric

h simplifies drastically even in the quantum theory. The world-sheet super symmetry gives rise

to nilpotent operators Q, which define a theory whose physical operators are cohomology classes

w.r.t. Q. It is called topological string theory. The reader might wonder how formal the expression

(1.1) is. Certainly we have suppressed all fermionic degrees of freedom in S. The full actions will

be spelled out in Sec. 3. However even if we kill some suspense let us remark that the expression

for the integration over h, which is just as in the bosonic string in (1.1), is surprisingly accurate for

our purpose. It turns out the fermions, which we need to add play merely the rôle that the ghost

system plays in the bosonic string.

Physically this reduction to the topological sub sector of the theory can be thought as a semi-

classical approximation of (1.1) in which the variational integral is replaced by integral over the
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moduli space M of the classical solutions δS/δx = 0. E.g. for the Polyakov action these are

the minimal area maps. The path integral measure collapses to a measure onM , which depends

merely on the topological properties of the map (1.2) and on the cohomology classes of the inserted

operators. This defines so an intersection theory onM . The intersection numbers are topological

invariants of the classical solutions. Examples are the Gromov-Witten invariants, which are sym-

plectic invariants of M. σ models with (2,2) world-sheet super symmetry, realized on Calabi-Yau

manifolds M6, allow for two possibilities to pick Q, leading to what is known as the A and the

B topological string model[156]. Exchanging this choice underlies the mirror duality and which

leads to two different ways to solve both models. The B-model approach is more effective. Open

topological string theory exists as well. Preservation of at least one world-sheet Q operator re-

stricts the boundary conditions on Calabi-Yau three folds with SU(3) holonomy either to special

Lagrangian branes for the A-model and holomorphic submanifolds for the B-model. It had been

observed in 1992 that the open topological models are reductions of open string field theory and

that this reduction leads to Chern-Simons theories on the branes [148].

The remarkable fact is that in super string theories the restriction to the classical solutions leads

to exact calculations of certain low derivative terms in the effective supergravity action in 4d. This

ability to perform exact calculations including non-perturbative effects is typically reflected by non-

renormalization in the effective theory. For example in N = 2 super symmetric gauge theories the

protected terms are the kinetic of the moduli fields t, which give the exact t dependence of the gauge

coupling as well as of the masses of the BPS states. Both terms are calculated by genus zero g = 0

topological string amplitudes. In N = 2 supergravity theories one obtains from g > 0 topological

string amplitudes the exact moduli dependence of the coupling of the self-dual graviphoton field

strength F+ to the self-dual part of the Ricci curvature R+, i.e. the coupling Fg(t)R
2
+F
2g−2
+ . In N = 1

theories one can get the superpotential from disk amplitudes and the gauge kinetic terms from the

annulus amplitudes. Reconstruction of these exact terms in the low energy effective action of a

field theory by solving the topological string theory in a suitable chosen geometry M is called

geometrical engineering.

In general one would like to understand emergence of nearly flat 4d space-time M3,1 within

M9,1 dynamically. Often one considersM9,1 = M6×M3,1 as ansatz. In generalizations like wrapped

geometries [137] or compactifications with RR/NS background fluxes onM [127], which preserve

at least N = 1 supersymmetry one can still use topological string methods to calculate the protected

terms. M6 being compact leads to traditional compactifications including non-trivial supergravity

solutions, as e.g. black hole solutions on M3,1. The gauge sector in M3,1 can be studied even for

non-compactM6 if gravity can be consistently decoupled. This is similar to the decoupling of bulk

gravity in brane world scenarios with non-compact transversal directions.

The second class of exactly solvable examples are critical string theories [63][39]. Here the

understanding of the infinite symmetries is much more advanced and has lead to the solvability of

the string theories with c ≤ 1 or equivalently d ≤ 2 dimensions, including the Liouville direction,
for the bosonic case. Supersymmetric versions exists as well. For the critical case the quantization

of the two dimensional metric degrees of freedom gives rise to the Liouville sector, which augments

(1.1) in the quantum theory. The theory consist of ghost-, matter- and Liouville sector and has an

nilpotent operator Q with an induced cohomological structure[151], which is strikingly similar

to the one in the topological sector of the critical string. The choices of matter are (p,q) minimal
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models for c < 1 and the free boson for the c = 1 limiting value[93]. The infinite symmetries which

underly the solvability of non-critical string are well understood. An elegant way to summarize the

structure is to say that log(Z(t)) is the τ(t) function associated to a vacuum orbit in an infinite

Grassmanian, which is physically described by an infinite 2d fermion system.

Major insights in c≤ 1 strings have been obtained via the double scaled matrix model [63][39].
The finite N×N matrix model, for which i.g. several realizations exist, provides a discretization of

the string world sheet σ in terms of ribbon graphs. A vertex of valence p represents a regular p-gon

in the dual discretization of Σ and it is simplest to fix p = 3. More importantly the dual p-gons of a

graph give a discretization of the space of metrics on Σ modulo isomorphism. The continuum limit
can be understood as an improving approximation of the world-sheet and its metric by graphs with

an increasing number V of the vertexes. The key intuition is that for a larger number V of p-gons

the metric is approximated increasingly accurately by the deficit or surplus angles in gluing the

tiles and moreover that the number of graphs which approximate a metric in a given isomorphism

class becomes a good measure on the space of metrics. Therefore integrating over metrics can

eventually be replaced by counting contributions of the sum of graphs, just as the Feynman graph

expansion of the matrix model. The continuum limit requires a regularization procedure in which

one takes N to infinity while tuning the coupling(s) of the matrix model to a critical value g → gc so

that a parameter t = N(g−gc)
(2−γ)
2 stays finite[39] [152]. The double scaling limit regularizes the

total area, whose unregularized value goes like 〈A〉 = 〈V 〉 ∼ 1
(g−gc)

[13] as the number of p-gons

goes to infinity. One can show[13] that a genus g contribution is suppressed with N χ as N → ∞ and
enhanced with (g−gc)

(2−γ)/2χ as g → gc, where χ = 2−2g. The double scaling definition of t is

chosen to counterbalance these effects and to get a finite all genus expansion in t.

A qualitative different relation to matrix models is provided by the Kontsevich model [152][99].

It describes the (2,1) pure 2d gravity case1 by an hermitian matrix model whose ribbon graphs

model the cell decomposition of the moduli space Mg,n of the world-sheet with n descendant op-

erator Oi insertions. The matrix model partition function calculates correlators 〈O1 . . .Or〉 as topo-
logical intersections numbers on Mg,n. The cell decomposition replaces close string insertions by

holes and strongly resembles the formalism of open string field theory. The couplings tk of the

operators Ok are given in terms of symmetric functions of the hermitian matrix eigenvalues, i.e by

the Miura variables tk = trXk. Results for a given correlator 〈O1 . . .Or〉 are exact as long as the rank
N of the matrix X is large enough to provide enough independent symmetric functions for the tk.

Exact calculations in higher dimensional topological strings have been boosted by mirror sym-

metry [25] and in critical string theory by the double scaled matrix model approach and the Kont-

sevich type matrix model. The subjects have never been independent as one needs to couple the

topological A and B theories to worldsheet gravity to get the Fg amplitudes for g > 1, see [11] for

the B-model. The solution of pure 2d gravity is used explicitly in the calculation of the A-model

amplitudes by localization [100] together with Hodge integrals[51][95]. A more surprising link

between the topological string on the conifold and the c = 1 string at the selfdual radius [75] has

been pointed out in [64].

Two more recent developments motivate to revisit this connection. Dijkgraaf and Vafa ob-

served in 2002 that the exact terms in the effective action of N = 2 and N = 1 supersymmetric

1It has an extension to the coupling of 2d gravity to (1, p) matter [99][154][153].
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gauge theories can be calculated also by an hermitian matrix model. Even though this has been

explained in the meantime within the supersymmetric field theory framework, it is natural to relate

it to topological string calculations by geometrical engineering and in fact it was discovered in this

way. This leads to a matrix model descriptions of the topological string on non-compact Calabi-

Yau and the quest for an unified description of the integrable structure behind topological strings

in various dimensions[2].

A second motivation comes from the study of open/closed string duality. In the context of non-

critical string theory the Kontsevich model has long been considered to be the simplest example of

gauge theory/string duality. The gauge theory part describing the open string sector is played by the

finite N-Kontsevich matrix model, while the closed string part is played by the critical topological

string coupled to (1, p) matter. Recent progress in solving the Liouville approach to critical string

theory and classifying its boundary conditions revealed that the Kontsevich matrix model emerges

as the action on the FZZT brane. This was anticipated from the B-model description of open string

theory on local Calabi-Yau spaces[2]. It can also be shown by calculating the exact loop-operator

in the double scaling limit of the matrix model[110] [78] or by doing a reduction of cubic string

field theory[60] on FZZT branes.

An simple example of open/closed string duality in the case of critical topological string the-

ory had been proven by Gopakumar and Vafa in 1999. The closed string side is played by the

topological string on the non-compact Calabi-Yau geometry of two complex line bundles over the

compact space P1 namely E ′ = O(−1)⊕O(−1) → P1. The topological open string geometry is

reached from E ′ by contracting the volume t of the P1 and then deforming complex structure of the

emerging singular geometry to the smooth cotangent bundle E = T ∗S3 of S3. The latter is a La-

grangian submanifold L in E w.r.t to a natural symplectic structure on E and Witten’s picture [148]

of open topological string relates it to Chern-Simons theory on S3. Exact solvability of topological

Chern-Simons gauge theory on S3 is provided by its relation to the 2d WZW model[150]. The

closed topological string on E ′ can be solved exactly by localization [51]. This solvability on both
sides provides a luxury, which is not readily available in the analogous situation in the ADS5/CFT

string/gauge theory correspondence, namely to check explicitly that the partitions functions of

gauge- and closed string theory are the same in the large N expansion of Chern-Simons theory

when the volume of the P1 is identified with t = Ng2CS.

Beside the partition function, which is a topological invariant of a three manifold L, Chern-

Simons gauge theory is famous for calculating topological invariants associated to Wilson line

expectation values along knots or links inside L. What is the topological string question answered

by these quantities and what are the new parameters associated to the Wilson line ? A particular

answer for the unknot in S3 are open string amplitudes ending on a non-compact brane K which

meets the P1 of E ′ in an S1 [123]. The new parameter is the area of minimal disk ending on the

S1, which is non-contractible within K. The geometry of E ′ and K has a systematic generalization.

E ′ contains the algebraic torus T = (C∗)3 as an open subset (one C∗ for each line bundle and one
for the P1). Moreover (C∗)3 acts on E ′ with the natural extension of the multiplicative action of
(C∗)3 on itself. Varieties with this property are called toric varieties[59][121] [36][33], here in three
complex dimensions. They are characterized by the degeneration of the T action, representable here

as linear trivalent graphs embedded in three real dimensions. The vertices represent C3 patches and

the graph carries the information about the transition functions. K is characterized by the property
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Figure 1: Dualities relevant for the topological string of type II on backgrounds with two and heterotic string

in backgrounds with four covaraint constant spinors.

that it is a Lagrangian which is invariant under (C∗)2 ∈ T . Non-compact toric Calabi-Yau manifolds

with invariant non-compact special Lagrangian branes are a simple natural class of backgrounds

on which all open and closed topological string amplitudes be calculated by localization w.r.t. the

torus action. The question how to understand these general amplitudes comes back to Chern-

Simons gauge theory. The answer is provided by the trivalent topological vertex, which solves the

problem for the open topological amplitudes among three stacks of invariant non-compact special

Lagrangian branes in a C3 patch, and gluing rules for connecting these amplitudes on a patch to

global amplitudes compatible with the global T action. As maybe expected the answer for the

vertex is related to the amplitude of a link of three unknots in S3.

The exact calculations in the topological sector of string theory have been an indispensable

guide to the non-perturbative behavior of critical string theory. Virtually everything known about

dualities involving strong coupling regimes is known from the analysis of the topological sub sec-

tors of the corresponding theories. An overview over the dualities in this context is given below

Topological theories come with integrable structures, which reflect their often not immediately

apparent symmetries. M-theory gives hints, but the non-perturbative formulation of string theory is

illusive. Exploring possible non-perturbative completion of the topological string is a very serious

chance in this context. On various aspects of the duality depicted here there have been recently

very good lectures. In particular on the connection between matrix models and topological string

in [113] and on the connection to Chern-Simons theory and aspects of open/closed duality in [114].

Older physical application of topological string theory using many of the above connections are

review in [94] and newer can be found in [117]. Most of the material presented here can be studied
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in more detail in [76]. [146] is an introduction with the virtue of assuming very few prerequisite.

2. Semi-classical approximation and super symmetric localization

Let us sketch the reduction of supersymmetric critical string theory to its topological sector.

The two dimensional σ -model action S(x,h,M) =
∫

Σg
d2σL (x,h,G,B, . . .) depends generically on

the metric G of M, the NS-two form field B on M and eventually other background fields. A

possible attempt to make sense out of (1.1) is to expand the action around the classical solution of

the equation of motion δS
δx

∣∣∣
x=xcl

= 0

S(x,h,M) = S(xcl,h,M)+
(δx)2

2

δ 2S
δ 2x

∣∣∣∣
x=xcl

+ . . . . (2.1)

The quadratic semi-classical approximation in δx in (1.1) leads then

Z(M) =
∫

Dh

Vol diff.weyl.
DxeiS(x,h,M)

= ∑
xcl ,hc

eiS(xcl ,hc,M)
∫

Dδxe
i
(δx)2

2

δ2S(xcl ,hc,M)

δ2x

= ∑
xcl ,hc

eiS(xcl,hc,M)det−
1
2

δ 2S(xcl,hc,M)

δ 2x
.

(2.2)

Here we have assumed that the determinant can be regularized and we have to consider all clas-

sical solutions, which are minimal embeddings of the world-sheet into M. It is useful to organize

these contributions in a sum over different topological classes of such embeddings as indicated in

(2.2). In the closed string case these classes are labeled by the genus of the domain Σg and the

cohomology class H2(M,Z) of the image [x(Σg)]. However depending on the case it might be that

there are families of classical solutions of a given topological type parametrized by moduli of the

minimal embedding and eventually the complex structure of h called hc . In this case one has to

integrate over a suitable measure over this moduli space, which is not indicated in the sums in (2.2).

Naturally if the semi classical approximation will be good all the configurations “localize” close to

extrema of the classical action.

It is a general fact that in supersymmetric extensions of (2.2) there is an exact localization to

classical configurations for correlation functions with a suitable fermion zero mode structure. This

has its origin simply in the rules of Grassmann integration over the fermionic fields Ψk

∫
Ψ1 . . .ΨndΨ1 . . .dΨn = 1,

∫
Ψ1 . . .Ψ̂ j . . .ΨndΨ1 . . .dΨn = 0 . (2.3)

For a field configurations for which the supersymmetric variations do not vanish for all variations

of the fermionic fields one can use the supersymmetry transformation to eliminate fermions from

the action. By the second identity in (2.3) the fermionic measure will then produce a 0. Putting

the argument around the only contributing field configurations are the ones for which the fermionic

variations are stationary, but these are the classical configurations as we will see.
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2.1 A simple supersymmetric index

This mechanism is independent of the dimension and can be demonstrated already in the 0d

case, i.e. for an ordinary integral Z =
∫
dxdΨ1dΨ2e−S(x,Ψ1,Ψ2) over the bosonic variable x and

Grassmann variables Ψ1 and Ψ2. The action

S(x,Ψ1,Ψ2) =
1

2
(∂h)2−∂ 2hΨ1Ψ2, (2.4)

where h(x) is an arbitrary function of x. One checks easily that action δS = 0 and measure

δ (dxdΨ1dΨ2) = 0 are invariant under the following supersymmetric transformations

δx = ε1Ψ1+ ε2Ψ2
δΨ1 = ε2∂h

δΨ2 = −ε1∂h .

(2.5)

Away from the fixed points of the fermionic transformations, i.e. for ∂h 6= 0, we can set ε 1 = ε2 =

−Ψ1
∂h
and use the supersymmetry transformation to eliminate the first fermion, i.e. with x̂ = x+δx

and Ψ̂i = Ψi +δΨi, i = 1,2 one gets S(x̂,0, Ψ̂2) = S(x,Ψ1,Ψ2). So in the hatted variables there is no
Ψ̂1 to “soak up” the dΨ̂ integration and the integral vanishes. To be more explicit we transform the
integration measure also to the hatted variables. Since the transformation is singular we consider

a nearby transformation ε2 = (α(x)− 1)Ψ1
∂h
, ε1 = −Ψ1

∂h
and send α → 0 after transforming the

integral. Note that
∫

ΨdΨ = 1 is invariant under Ψ → Ψ̂ = α(x)Ψ, therefore dΨ̂ = 1
α dΨ. In

the transformed integral one finds beside terms which go to 0 with α only a term which is total
derivative w.r.t. dx integral and vanishes at the boundary.

Since the integral gets contributions only from the critical points of h′(xc) = 0, we can collect

the contributions near those points by considering h(x) = h(xc) + κc

2
(x− xc)

2, with κc = h′′(xc),

which yields a Gaussian integration. The partition function

Z = 1
2π

∫
dxdΨ1dΨ2e−S(x,Ψ1,Ψ2) = ∑x=xc

1
2π

∫
dxdΨ1dΨ2 e−

1
2

κc(x−xc)
2+κcΨ1Ψ2

= ∑xc

h′′(xc)
|h′′(xc)| .

(2.6)

becomes a primitive version of a supersymmetric index. It counts sum of zeros of h′(x) weighted
with +1 (−1) for positive (negative) slope at h′(xc). If h′(x) is continuous a +1 zero of h′(x) can
only disappear together with a −1 zero under deformations of h′(x), which leave the behavior of
h′(x) for |x| → ∞ invariant. That means that Z is an invariant under such deformations and can be
thought as a topological invariant of h(x).

3. Supersymmetric nonlinear σ -models

Essential features of the 0d topological toy model carry over to super symmetric field theories.

In general we search also for field configurations which are fixpoints under some super symmetry

transformation. The super symmetry generators become nilpotent operators Q on the Hilbert space

of the field theory. The cohomology of Q is a natural structure to extract topological invariants of

the classical bosonic configuration space. In more interesting situations indices can occur, which

are invariant under some deformations, but are family indices w.r.t. others. Physically the family
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indices can be particular correlation functions. Their dependence on certain geometrical deforma-

tion parameters, e.g. of the target space metric, can often be exactly calculated e.g. in an all genus

string loop expansion. This is the main physical benefit from topological theories.

The original references for the following are [155][105] and especially [156]. We have adopted

the conventions from the review [76]. The 2d- σ model is defined by a map x : Σ → M from the

worldsheet Σ to the targetspace M. There is a well known dictionary between properties of the

worldsheet theory and properties of M. In particular to have (2,2) worldsheet supersymmetry M

has to be a Kähler manifold [164]. In order to have superconformal invariance M has to be a

Calabi-Yau manifold. A Calabi-Yau manifold is Kähler manifold with vanishing first Chern class

of its tangent bundle c1(T M) = 0. This is equivalent to the statement that there exists a hermitean

metric g for which the Ricci curvature vanishes Ri j̄ = 0. This in turn is equivalent to the statement

that the holomomy group of M is contained in SU(3). We call a Calabi-Yau threefold a manifold

where the holonomy is the full SU(3) (or a least SU(2)×Z2), which implies that there are exactly

two covariant constant spinors on M. This leads to N = 2 supergravity theories in 4d for the

compacification of type II on M. Many of the above facts and concepts are reviewed in detail in

Sec. 7. We will start the discussion of the symmetries of the actions at the classical level and

comment then on the potential anomalies and their cancellation.

3.1 N = (1,1) nonlinear σ -model

Let us first treat the N = (1,1) case. For this case the target space needs to have just a Rieman-

nian metric. We parametrize the map x :Σ→M by xI , where I . . . ,d where d is the real dimension of

M. The worldsheet is parametrized by z, z̄, hence x is given in local coordinates as xI(z, z̄) The fields

of the σ model have the following transformation properties under worldsheet and targetspace
reparametrizations. With K and K̄ the canonical and anti-canonical bundle of Σ and T M the com-

plexified tangentbundle ofM one has WS-fermions which transform as ψ I
+ ∈ Γ(K̄

1
2 ⊗x∗(T M)) and

ψ I
− ∈ Γ(K

1
2 ⊗ x∗(T M)), where Γ denotes sections of the indicated bundles. The Lagrangian of the

non-linear σ -model is then given by

L = 2t
∫

Σ
d2z

(
1

2
gIJ(x)∂zx

I∂z̄x
J +

i

2
gIJψ I

−DzψJ
− +

i

2
gIJψ I

+Dz̄ψJ
+ +
1

4
RIJKLψ I

+ψJ
+ψK

−ψL
−

)
. (3.1)

The covariant derivatives Dz̄ (Dz) are obtained using the pullback of the Levi-Civita connection

fromM as

Dz̄ψ I
+ =

∂
∂ z̄

ψ I
+ +

∂xJ

∂ z̄
ΓI

JKψK
+ (3.2)

and RIJKL is the Riemann-Tensor ofM. Here we assumed a flat world-sheet or a local trivialization

of K
1
2 , so that no spin connection appears in (3.2). Soon global properties of K

1
2 and K̄

1
2 become

all important.

With Grassmann valued supersymmetry parameters ε− ∈Γ(K− 1
2 ) and ε+ ∈Γ(K̄− 1

2 ) one checks

at the classical level the following supersymmetry transformation

δxI = −ε−ψ I
+ + ε+ψ I

−

δψ I
+ = iε−∂xI + ε+ψK

−ΓI
KMψM

+

δψ I
− = −iε+∂xI + ε−ψK

+ΓI
KMψM

− .

(3.3)
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These equations (3.3) are quite similar to (2.5) and we would like to define nilpotent operators

from the supersymmetry transformations. The obstruction is that there are no global trivial sections

of K
−1
2 or K̄− 1

2 unless g = 1. This means that there no global supersymmetry transformations on

the worldsheet unless2 g = 1.

In the case of the worldsheet beeing a torus one can chose globally defined sections ε− ∈
Γ(K− 1

2 ) and ε+ ∈Γ(K̄− 1
2 ) to obtain globally defined supersymmetry generatorsQ2− = 0 andQ2+ = 0

on the Hilbert spaceH . E.g. we can chose ε± both to be in trivial sections of K− 1
2 and K̄− 1

2 re-

spectively. In view of 3.3 we have to chose corresponding trivializations forψ I
+ ∈ Γ(K̄

1
2 ⊗x∗(T M))

and ψ I
− ∈ Γ(K

1
2 ⊗ x∗(T M)) and this simply means that the fermions will have periodic boundary

conditions on T 2. These boundary conditions are called twisted boundary conditions. Q− and Q+

are globaly defined and Q+|Ψ〉 = Q−|Ψ〉 = 0 for Ψ ∈ H forces the cohomological states to be in

the E = 0 super symmetric ground state of the Hamiltonian H = 1
2
{Q+,Q−}= 1

2
(dd∗+d∗d) [157].

This reduces the model to constant maps, i.e. supersymmetric quantum mechanics. The σ model
cohohomology is equivalent to de Rham cohomology ofM, much in the same way as we will made

explicit in Sec. 5.1 and 6.1. The only non vanishing correlator in the double twisted model is the

Witten index, which is easily shown be equal to the Euler number ofM [157]. It is simplest written

in the Hamiltonian formalism

χ(M) = Tr(−1)FqH+ q̄H− = Tr(−1)F , (3.4)

where F = F+ +F− and F+/F− count the left/right moving fermion numbers so that {(−)F± ,Q±}=

0 while [(−)F∓ ,Q±] = 0. Note that (−1)F = (−1)F++F− can be defined even if the individual

fermion numbers are anomalous.

A much more interesting situation arises if one choses only ε+ to be in a trivial section. The

corresponding index is called the elliptic genus3

E (M) = Tr(−1)F+qH+ q̄H− = Tr(−1)F+qH− . (3.5)

Here only the left moving states are forced in the left moving groundstate. The trace over the right

moving states explores information which goes far beyond cohomological information ofM. It can

be defined for 2d supersymmeric field theories and is conformally invariant even if the underlying

field theory is not [160]. It requires (−)F+ not to be anomalous, which is essentially equivalent

to M being spin [162]. It carries information, which is robust under certain deformations. In the

case of the σ model on M E (M) is the Dirac index of the loop space of M [158, 159]. This index

varies with the volume parameters of M, but is independent of the complex structure of M and is

the first example of the promised family indices. There are further simple refinements possible, if

as below in the N = (2,2) theories F− comes from an U(1)L current F− =
∮

JL. If the latter is not

anomalous one can insert (−1)θF− in the trace in (3.5) and even if theU(1)L is broken to ZK (3.5)

with exp( iπ
k

F−) inserted is still an index. A theme of the lecture is to explore more sophisticated

family indices mainly in the N = (2,2) context and even at genus one there are further refinements

such as (6.111).

2The quest for covariant constant spinors is familiar on the target space in order to obtain spacetime supersymmetric

compactifications. It requires restricted holonomies, see section 7.6, which is equivalent to the familiar c1(T M) = 0

condition for N = 2 (N = 1) II (heterotic) compactifications 6d internal manifolds.
3Unfortunately there are many notations common to distinguish the left- and right moving sectors in this context

unbarred/barred for euclidean worldsheets, R/L, +/− and without tilde/with tilde are maybe most often used.
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3.2 Compactifications with N = (2,2) world sheet supersymmetry

The additional structure that allows to define more general family indices for the (2,2) world-

sheet theories are right and left U(1)R/L symmetries, so called R-symmetries. Since the nilpotent

Q operators are derived from the supersymmetry transformations and since there are no covari-

ant constant spinors for world sheets of genus g 6= 1 there will be no well defined supersymmetry
operators on general Σg without further modifications. For the topological theory to make sense

at all genus g we “change” the transformation properties of the fields, so that the supersymmetry

transformation becomes a scalar operator on the world sheet. This modification is implemented by

twisting the world sheet Lorentz group either by the vector U(1)V = U(1)L +U(1)R or the axial

U(1)A = U(1)L −U(1)R symmetry. To do this we first gauge the R-symmetries. Then we combine

theU(1) gauge connection with the spin connection to a twisted world sheet spin connection. Con-

trary to the U(1)V the U(1)A current develops a quantum anomaly proportional to
∫

Σ x∗(c1(T M)).

Therefore the B model, which is obtained by twisting with the U(1)A connection, is only well de-

fined on Calabi-Yau manifolds (c1(T M) = 0), while the A model, which is obtained by twisting

with theU(1)V connection can be considered on any Kähler manifold.

3.3 The (2,2) non-linear σ -model

Let us now see this mechanism in Kähler case, which has at the classical level a N = (2,2)

supersymmetry and hence the necessaryU(1) symmetries. The action is given by

S = 2t
∫

Σ
d2z

(
−gi j̄∂µxi∂ µx j̄ + igī iψ ī

−Dzψ i
− + igī iψ ī

+Dz̄ψ i
+ +Riī j j̄ψ i

+ψ ī
+ψ j

−ψ j̄
−

)
. (3.6)

Here we have split the index I into i and ī according to the Kähler decomposition. A Kähler metric

can locally be written as gi j̄ = ∂i∂ j̄K(xi,xı̄) and its Levi-Civita connection in Kähler geometry is

pure in the indices Γi
jk = gi j̄∂ jgk, j̄ as discussed in more detail in Sec. 7.2. On a non-flat Riemann

surface Σ one has the connection

Dz̄ψ i
+ = ∂z̄ψ i

+ + i
2
ωz̄ψ i

+ +Γi
kl∂z̄x

kψ l
+

Dzψ i
− = ∂zψ i

−− i
2
ωzψ i

+ +Γi
kl∂zx

kψ l
− ,

(3.7)

where ωz and ωz̄ are the components of the spin connection of Σ.
In superfield formalism can can write L = 2t

∫
dθ 4K(Xi, X̄ı̄), where the chiral field Xi has

components xi,ψ i
±,F i. F i is an auxiliary field that has has no kinetic terms and can be eliminated

from the action by its equation of motion F = Γi
i jψ

j
+ψk

−. This offshell superfield formalism is
particularly useful when one couples a holomorphic superpotential W (xi) to the action, which is

only possible for non-compact target spaces M. This formalism is worked out in detail including

the off-shell supersymmetry transformations in [105] and reviewed in [76]. For notational brevity

we restrict ourselves to the onshell formalism.

Classically there are now twice as many super symmetries, one set for the holomorphic and

one set for the antiholomorphic space time indices. They generated by ε+ ∈ Γ(K
1
2 ), ε− ∈ Γ(K̄

1
2 )

and ε̄±. The latter are sections of the same bundles but have opposite charges under U(1)A and
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U(1)V

δxi = −ε−ψ i
+ + ε+ψ i

−

δxī = ε̄−ψ ī
+− ε̄+ψ ī

−

δψ i
+ = 2iε̄−∂+xi + ε+ψ j

+Γi
jmψm

−

δψ ī
+ = −2iε−∂+xī + ε̄+ψ j̄

−Γī
j̄m̄

ψ m̄
+

δψ i
− = −2iε̄+∂−xi + ε−ψ j

+Γi
jmψm

−

δψ ī
− = 2iε+∂−xī + ε̄−ψ j̄

−Γī
j̄m̄

ψ m̄
+ .

(3.8)

The relation between the existence of the two has been discussed first by [164]. Decomposition

of the exterior derivative on Kähler manifolds into a holomorphic and antiholomorphic derivative

d = ∂̄ + ∂ , which gives rise to Hodge decomposition of cohomology groups into H p,q(M). The

fields xi, xı̄, ψ i
± and ψ ī

± transform as before under WS transformations. W.r.t. the spacetime
transformations one has now simply a splitting of T MC into T 1,0M ⊕ T 0,1M with i referring to

T 1,0M and ı̄ referring to T0,1M, so e.g. ψ i
+ ∈Γ(K̄

1
2 ⊗x∗(T 1,0M)) e.t.c. All transformation properties

are summarized in table 1.

The action of the U(1)V and U(1)A are conveniently formulated in superfield formalism, i.e.

expand any field in Grassmann valued θ +,θ−, θ̄+, θ̄− complex fermionic spinor coordinates on
which complex conjugation is given by (θ±)∗ = θ̄± . The WS Lorentz transformation acts on
t = x0 and s = x1 (with (1,1) signature) and on spinors as

(
x0

x1

)
→
(
coshγ sinhγ
sinhγ coshγ

)(
x0

x1

)

θ± → e±
γ
2θ±

θ̄± → e±
γ
2 θ̄±

(3.9)

Since the fermionic variables anticommute w.r.t. to each other the Taylor expansion in them con-

tains only 24 terms

Φ(x,θ±, θ̄±) = x(t,s)+θ+ψ+(t,s)+θ−ψ−(t,s)+ θ̄+ψ̄+(t,s)+ θ̄−ψ̄−(t,s)+θ+θ−A+−s, t + . . .

(3.10)

In this sense one can think of superspace as a thin space in the fermionic directions, which contains

no second order derivative information in a given fermionic direction. The relation to calculus with

differential forms is very obvious. The action of the vectorU(1)V and axialU(1)A symmetries on

all component fields is induced from

eiαFV : Φ(x,θ±, θ̄±) 7→ eiαqV Φ(x,e−iαθ±,eiα θ̄±)

eiβFA : Φ(x,θ±, θ̄±) 7→ eiβqAΦ(x,e∓iβ θ±,e±iβ θ̄±) .
(3.11)

Let us denote now the four supersymmetry operators corresponding to ε± and ε̄± transforma-
tions Q∓ and Q̄∓ respectively. A general supersymmetry transformation is then generated by the
operator

δ̂ = iε+Q−− iε−Q+− iε̄−Q̄− + iε̄+Q̄+ , (3.12)
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where (Q±)† = Q̄± and δ̂ † = −δ̂ .
More generally for any infinitesimal field transformation δQφ we will denote the infinitesi-

mal transformation on the field operator δOφ by δQOφ = [Q,Oφ ]±, where Q is the corresponding

generating operator. Let M be the generator of two dimensional Lorentz rotations SO(1,1). It is

convenient to make the Wick rotation x0 =−ix2 and we callME = iM the generator of the compact

Euclidean rotation group U(1)E . Beside the supersymmetry generators one has on the WS H the

generator of (euclidean) time translations, P generator of translations. Furthermore there are the

R-charge operators associated to theU(1)V andU(1)A currents called FV and FA. These generators

fulfill the algebra

Q2+ = Q2− = Q̄2+ = Q̄2− = 0,

{Q±, Q̄±} = H ±P, {Q̄+, Q̄−} = {Q+,Q−} = {Q−, Q̄+} = {Q+, Q̄−} = 0,

[ME ,Q∓] = ∓Q±, [ME , Q̄±] = ∓Q̄±,

[FV ,Q±] = −Q±, [FV , Q̄±] = Q̄±,

[FA,Q±] = ∓Q±, [FV , Q̄±] = ±Q̄±,

(3.13)

It becomes soon important that Q± and Q̄± have opposite charges under the R symmetry groups.

As already stated FA is present at the quantum level only for Calabi-Yau manifolds, the conformal

case, while FV is generically present. See [105] for a further discussion of this algebra.

4. Twisting the N = (2,2) theories and cohomological fi eld theories

Twisting amounts to a modification of the Euclidean rotation group U(1)E by a generator of

the global U(1) R-symmetry groups and define the new generator of the Euclidean rotation group

U(1)E ′ asM′
E = ME +R.

Another way of saying this is that one gauges the U(1)-R symmetry group and adds the

corresponding gauge connection AR
µ to the spin connection, so that the transformation property of

the spinor fields depend now on their R charge. Denote the gauge current, which corresponds to

the gauge variations δAR
µ by JR

µ . It will modify the energy momentum tensor to

T̂µν = Tµν +
1

4

(
ελ

µ ∂λ JR
ν + ελ

ν ∂λ JR
µ

)
. (4.1)

In the action of the gauged theory there is a coupling

∆S =
∫

Σ
Jµωµ =

1

2

∫
Σ

Jω̄ + J̄ω =
1

2

∫
Σ

Rφ + total der. , (4.2)

to the spin connection ω . In the second equality we bosonized the U(1)R current ∂φ = J and

integrated partially. Contact terms of operators with the this expression will play a rôle determining

properties of the correlation functions.

Because of different signs under which the different chiral components of the spinors transform

theU(1)A, the axial current develops an anomaly proportional to the Dirac index, which is related

by the Atiyah-Singer index theorem to the index, which is calculate with the Hirzebruch-Riemann

Roch theorem in Sec. (7.3) to be
∫

Σg
x∗(c1(T M)). Path integral methods for deriving the anomaly
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Section before wisting Section (+) twist Section (−) twist

x x∗(T M) x∗(T M) x∗(T M)

ψ i
− x∗(T 1,0)⊗K

1
2 x∗(T 1,0) x∗(T 1,0)⊗K

ψ̄ ı̄
− x∗(T 0,1)⊗K

1
2 x∗(T 0,1)⊗K x∗(T 0,1)

ψ i
+ x∗(T 1,0)⊗ K̄

1
2 x∗(T 1,0) x∗(T 1,0)⊗ K̄

ψ̄ ı̄
+ x∗(T 0,1)⊗ K̄

1
2 x∗(T 0,1)⊗ K̄ x∗(T 0,1)

Table 1: Space time transformation of the non linear σ -model fields after+ and− twist. Classically and in
non-anomalous theories one can chose the twisting on the left movers ψ i

−,ψ ı̄
− and the right movers ψ i

+,ψ ı̄
+

independently.

are reviewed in [57]. The U(1)V vector current is always non anomalous at quantum level. For a

discussion of theU(1)A anomaly in the linear σ -model context see [162].
The most desired effect of this twisting is that some of the Q± and Q̄∓ can be made to trans-

form as scalars underU(1)E ′ . These “scalar” operators are then globally defined on worldsheets of

arbitrary genus and can be used to define a cohomological theory on an arbitrary Riemann surface.

The term twisting is familiar in the orbifold context, where it means to modify the boundary condi-

tions of a field along cycles of the worldsheet by an element g of a global symmetry group G, e.g.

for the torus with a A cycle of length 2π a field is periodically identified by φ(x + 2π) = gφ(x).

The analogy is appropriate since also in the above case we change the boundary conditions of

some fermionic fields to become periodic. We encountered such twisting already in the discussion

of Witten index and the elliptic genus. The twisting changes the WS transformation properties of

the fields. The table below records this for the so called + and the − twist.
In the (2,2) theory we have two fundamentally different possibilities to twist

A−Twist : ME ′ = ME +FV

B−Twist : ME ′ = ME +FA .
(4.3)

In the above notation of table 1 the A twist corresponds to a (−,+) twist, i.e. to a combination

of the (−) twist on ψ−, ψ̄− and the (+)-twist on ψ+, ψ̄+, while the B twist is (+,+) twist, i.e. a

combination of the (+) twist on ψ−, ψ̄− and the (+)-twist on ψ+, ψ̄+. There are the possibilities

of an (+,−) twist and an (−,−) twist making Q̄A and Q̄B nilpotent operators. They lead to the

definition of conjugated cohomological sectors and correspond to no new theories. However as

explained in Sec. 4.5 the combined geometry of the sectors conjugated to each other leads to an

interesting geometry, the so called tt∗ geometry.
The effects on the fields and the supersymmetry transformation can be summarized in the

tables 2 and 3 respectively.

As it is clear from the table 3 and (3.13) the following combinations

QA = Q− + Q̄+

QB = Q̄− + Q̄+

(4.4)

are now scalar, nilpotent operators which can be used to define two different cohomological theo-

ries, the topological A- and the topological B-model respectively. Mirror symmetry exchanges the
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Before Twisting A twist (−,+) B twist (+,+)

U(1)V U(1)A U(1)E spin U(1)′E spin U(1)′E spin

x 0 0 0 1C x 0 1C x 0 1C

ψ i
− −1 1 1 K

1
2 χ i 0 1C ρ i

z 2 K

ψ̄ ı̄
+ 1 1 −1 K̄

1
2 χ ı̄ 0 1C − 1

2
(θ ı̄ +η ı̄) 0 1C

ψ̄ ı̄
− 1 −1 1 K

1
2 ρ ı̄

z 2 K 1
2
(θ ı̄ −η ı̄) 0 1C

ψ i
+ −1 −1 −1 K̄

1
2 ρ i

z̄ −2 K̄ ρ i
z̄ −2 K̄

Table 2: Space time transformation of the non linear σ -model fields and charges after A and B twist. We

also indicate the names of the fields in the A and B model.

Before Twisting A− twist B− twist

U(1)V U(1)A U(1)E spin U(1)′E spin U(1)′E spin

Q− −1 1 1 K
1
2 0 1C 2 K

Q̄+ 1 1 −1 K̄
1
2 0 1C 0 1C

Q̄− 1 −1 1 K
1
2 2 K 0 1C

Q+ −1 −1 −1 K̄
1
2 −2 K̄ −2 K̄

Table 3: Space time transformation of the supersummetry generators after the A and B twist

− twist with the+ twist on the ψ−, ψ̄− side. Even before twistingQA andQB define cohomological

theories on the plane the torus, where covariantly constant spinors exist. One can also choose to

twist only the say ψ−, ψ̄− side. The indices of so called half-twisted models are the closest analogs
of the elliptic genus (3.5) at higher genus [156][161]. This indices are shared between the A and

the B model and contain information about the couplings of 1,27, 2̄7 in the heterotic string with

standard embedding.

4.1 Generalities on physical observables

One calls an operator a chiral operator or (c,c) operator φ if

[QB,φ ] = 0 . (4.5)

Chiral and twisted chiral superfields play an important rôle in formulating the general (2,2) world-

sheet theory, see [162]. The lowest component φ of chiral superfield Φ obeys [Q̄±,φ ] = 0 and is

hence a chiral operator. An operator φ is called twisted chiral or (a,c) if

[QA,φ ] = 0 . (4.6)

The lowest component v of a twisted chiral superfield Σ obeys [Q̄+,v] = [Q−,v] = 0 and is hence

a twisted chiral operator. [Q̄−,φ−] = 0 and [Q−,φ−] = 0 define left chiral- and antichiral operators

while [Q̄+,φ+] = 0 and [Q+,φ+] = 0 define right chiral- and antichiral operators.

The key concept is now to define a cohomological theory whose observables are the equiva-

lence classes [φ ] of Q closed operators. To be closed the operators have to fulfill [Q,φ ] = 0 and the
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equivalence relation is as usual up to exact operators E = [Q,Λ]±, i.e.

φ ∼ φ +[Q,Λ]± . (4.7)

If the vacuum is annihilated byQ, which is the case ifQ comes from a unbroken symmetry as above,

then the correlation function of the Q closed operators does not depend on the representative of the

class
〈φ1 . . .(φk +{Q,Λ}) . . .φn〉 = 〈φ1 . . .φn〉±〈0|φ1, . . .φk−1Λφk+1 . . .φnQ|0〉

∓〈0|Qφ1, . . .φk−1Λφk+1 . . .φn|0〉
= 〈φ1 . . .φn〉

(4.8)

The analogy of the definition of topological correlators with cohomological intersections
∫

M ω1∧
. . .∧ (ωk + dλ )∧ . . .∧ωn =

∫
M ω1 ∧ . . .∧ωk ∧ . . .∧ωn is not just formal in the case of the (2,2)-

sigma model as we will see.

An important property of these operators is that they form position independent rings. Using

the algebra (3.13), the properties of the twisted chiral operators and [{A,B},C] = {[A,C],B}+

{A, [B,C]} it is easy to see that e.g.

i
2

(
∂

∂x0
+ ∂

∂x1

)
φ = [(H +P),φ ] = [{Q+, Q̄+},φ ] = . . . = {QB, [Q+,φ ]}

i
2

(
∂

∂x0
− ∂

∂x1

)
φ = [(H −P),φ ] = [{Q−, Q̄−},φ ] = . . . = {QB, [Q−,φ ]}

(4.9)

and similar for the Amodel. Combining (4.8) and (4.9) one sees that the correlation functions of the

twisted chiral operators do not depend on the position of the insertions of the operators, which is

also true for the chiral operators. The ring structure comes from the operator product expansion. It

is obvious that the OPE of two (twisted) chiral fields is (twisted) chiral again and by (4.9) position

independent. One defines the structure constants of the ring in a basis of the ring φk as

φiφ j = Ck
i jφk +[Q,Λ]± , (4.10)

i.e. identifying an element on the right hand side up to exacts term. The ring satisfies the usual

associativityCm
jlC

l
ik = Cm

lkC
l
i j. The unit φ0 = 1 is always (twisted) chiral, soCk

0 j = Ck
j0 = δ k

j .

The position independence (4.9) and its realization on p-form operators can be formulated in

a covariant way as the so called descend equations, see [40] for a review. If O (0) = φ is a Q closed

position independent 0-form operator, one can define the following non-local n-form operators

0 = [Q,O(0)]

dO(0) = {Q,O(1)}
dO(1) = [Q,O(2)]

dO(2) = 0 .

(4.11)

Using (4.9) and the corresponding relation for the A-model one can find the descend operators

explicitly noting that Q−dz (Q̄−dz) and Q+dz̄ (Q̄+dz̄) are covariant combinations

A−mod. O
(1)
A = idz[Q̄−,O

(0)
A ]− idz̄[Q+,O

(0)
A ], O

(2)
A = dzdz̄{Q+, [Q̄−,O

(0)
A ]},

B−mod. O
(1)
B = idz[Q−,O(0)]− idz̄[Q+,O

(0)
B ], O

(2)
B = dzdz̄{Q+, [Q−,O

(0)
B ]} .

(4.12)
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The descent equations truncate, because of the anti symmetrization in the world-sheet indices. The

Q̄B and Q̄A operators define the (a,a) and (c,a) ring states which we call Ō
(0)
B and Ō

(0)
A respec-

tively. Their descendants Ō
(1,2)
B and Ō

(1,2)
A are defined as in (4.12) with the barred and unbarred Q

operators exchanged. As an easy exercise one checks that O
(2)
B (Ō

(2)
B ) and O

(2)
A Ō

(2)
A are Q̄B (QB)

and Q̄A (QA) exact.

The significance of the descendant p-form operators is that one can integrate them over closed

p-cycles Cp of the WS (or more general the topological field theory space-time) to obtain non-

local operators O(Cp) =
∫

Cp
O(p), which are automatically Q closed, because of Stokes theorem

[Q,O(Cp)]± =
∫

Cp
[Q,O(p)]± =

∫
Cp
dO(p−1) =

∫
∂Cp

O(p−1) = 0. Reversed use of Stokes theorem

shows that the topological equivalence class of O(Cp) depends only the homology class of Cp.

For a p− 1 chain S with Cp −C′
p = ∂S the difference O(Cp)−O(C′

p) =
∫

∂S O(p) =
∫

S dO
(p) =

[Q,
∫

S O(p+1)]± is Q exact. As we shall see we have O
(0)
W(1,1)

= wi j̄χ iχ j̄ operators in the A model as-

sociated to elements in H1,1(M) (5.3,5.4), which have according to table 2 (U(1)V ,U(1)A) charges

(0,2). These charges are offset by Q+, Q̄−, as seen from table (3) so that O
(2)
W(1,1)

is neutral. Simi-

larly the operators associated to elements in A ∈ H1(M,TM) (6.9) in the B-model O
(0)
A = wi

j̄
η j̄θi

have (U(1)V ,U(1)A) charges (2,0) which is offset by Q+,Q− so that O
(2)
A is neutral. Neutrality of

these operators means that we can add them in arbitrary numbers to correlations functions without

affecting the selections rules.

4.2 A first look at the metric (in)dependence and topological string theory

In a topological theory the correlation functions are not only formally position independent,

but decouple formally from variations of the worldsheet metric hµν . Classically the energy mo-

mentum tensor Tµν = 1√
h

δS
δhµν is the generator of those variations. From the first order variation of

the weight factor eS one gets a dependence of a correlation function on metric variations δhµν

δh〈O〉g = 〈O
∫

Σg

√
hd2σδhµνTµν〉g. (4.13)

In a topological theory δh〈O〉g = 0 does not require that Tµν = 0 but in virtue of (4.8) that it is exact

Tµν = {Q,Gµν} . (4.14)

This structure ensures general covariance or topological invariance. It plays a key role in covariant

quantization of string theory, where Q2 = 0 is the BRST operator and the part of Gµν is played by

the antighost field bµν . It is also the starting point of closed string field theory formulations [148].

One can have topological invariance independently of conformal invariance and also independently

of the decoupling between ghost and matter sector [148]. For instance the A model relies on

this structure and can be defined on Kähler manifolds on which the σ model is not conformally
invariant.

In string theory we integrate the world-sheet metric h of Σg over all possible choices Hg.

[126] is the standard extended reference for the following short review of the metric dependence.

Classically the integral over h is invariant under diffeomorphism and Weyl- and conformal trans-

formations of the metric h̃ab(σ̃) = exp[2ω(σ)] ∂σ c

∂ σ̃a

∂σd

∂ σ̃b
hcd . These “gauge” invariances are present
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at quantum level in critical string theory, which does not require an anomaly cancellation for the

latter. The integral over the metric hence contains a gauge orbit over the diffeomorphism- and the

Weyl group, which requires a gauge fixing. After this gauge fixing the reduced moduli space is4

Mg = large gauge transf.\Hg/(diff×Weyl)g . (4.15)

Large gauge transformations refer to diffeomorphism of Σg not connected to the identity, i.e. the

mapping class group, which does not affect the dimension or other local properties of Mg. Let

us focus on the latter, which are described by those infinitesimal transformations δ̃hab which are

orthogonal to the infinitesimal Weyl and diffeomorphism transformations

δhab = 2δωhab −∇aδσb −∇bδσa , (4.16)

in the sense that
∫

Σg
dσ2

√
hδ̃habδhab = 0. It is not hard to see [55],[126] (Vol. I) that these de-

formations of the metric correspond to elements µ z
z̄dz̄

∂
∂ z

∈ H1(T Σ). As explained in Sec. 6.2 this

cohomology group describes the independent first order complex structure deformations of Σ. We
have to take the cohomology group to exclude changes of the metric by reparametrizations. On the

other hand there are certain reparametrizations, which do not change the metric. Reparametriza-

tions are locally described by vector fields and currently we are looking for those that do not

change the conformal class of the metric. These are the conformal Killing fields, elements in

H0(T Σ). They are canceled from the denominator of (4.15). Hence the expected dimension ofMg

is h1(T Σ)− h0(T Σ), which we calculated in Sec. (7.3) to be 3g− 3. To avoid the peculiarities of
h0(T Σ) 6= 0 (3 and 1 for g = 0 and g = 1) consider g > 1 and let za =: ma, a = 1, . . . ,3g− 3 the
complex structure variables of Σ. We can describe then a first oder deformation of the metric mod-
ulo Weyl and diffeomorphisms [55] as

∫
Σ d
2σ

√
hδ̃habTab =

∫
Σ d
2zµ(a)z

z̄ δmaTzz + µ̄a z̄
z δ m̄aT̄z̄z̄ and if

we insert that in (4.13) we conclude that

∂
∂ma

〈O〉g = 〈O
∫

Σ
d2zµaz

z̄ Tzz〉g =: 〈OT a〉g (4.17)

and similarly ∂
∂ m̄a = 〈OT̄ a〉g. Eq. 4.14 is strictly true, so the argument that cohomological states

and the vacuum are Q closed would make topological string theory completely metric independent

and therefore trivial! However the argument involving the invariance of the vacuum fails, because

the measure on the moduli space of higher genus Riemann surfaces, which is part of the vacuum

definition is not Q closed. It is a real 6g−6 form µg for surfaces of g > 1 and the argument fails in

a very specific way. If we act with Q on it, it gives an exact form, as we will see in detail in Sec.

6.11. This is like a descent equation, but with exterior derivative in the moduli space direction. By

Stokes or rather Dolbeaults theorem the contribution to the integral can then only come from the

boundary ofMg, which represents degenerate Riemann surfaces. If the vacuum is not Q closed

we cannot trust the argument about position independence either. In the moduli spaceMg,n with

insertion of n operators the codimension one locus, where two operators coincide, is part of the

boundary components. Its contributions has to be taken into account by so called contact terms.

Most of what topological string theory is about is organizing the contributions of these boundaries.

4In case of n operator insertions the moduli space is extended through the positions of the points by n complex

dimensions toMg,n.
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The question which boundaries do give contributions leads to the stable compactifications onM g,n

in which only the boundary components are included, which are in complex codimension one.

These facts will govern the coupling of the A and the B-model to WS gravity as discussed in Sec.

5.2 and 6.11.

4.3 A first look at the deformation space

What is of importance is that integrals of the two form operators
∫

Σ O
(2)
i defined in the Sec.

4.1 can be added to the topological action as deformations

S =
∫

Σ
dz2L0+

r

∑
i=1

t i

∫
Σ
O

(2)
i . (4.18)

This might extend the theory to a family of theories and we expect that the neutral operators we

discussed at the end of the last section lead to non-trivial deformation families. The reason is that

arbitrary derivatives of a correlation function w.r.t. ti might be non-trivial. Such derivatives bring

down U(1)A/V neutral operators in the path integral which do not affect the U(1)A/V selection

rules and may all not vanish. An early world-sheet argument for the existence of such deformation

families was given in [45].

In conformal field theory operators O (1,1) having conformal dimension (h, h̄) = (1,1) are

called marginal operators. (h, h̄) = (1,1) is a first order condition in t for (4.18) to define a con-

formal theory. It is far from trivial that this is the case for finite deformations in t. Operators for

which this is the case are called exactly marginal. It should be stressed that the topological models

allow in our context for more general perturbations then the CFT. The reason is that by (4.28) all

operators that obey the relation h = |Q|
2
between itsU(1) charge Q and its conformal dimension h,

can become a scalar operator O (0) w.r.t. T̂ after a suitable twist. Then an O (2) can be associated

to it by the descend relations. However not all such deformation operators started out as marginal

operators O(1,1) in the CFT. In this lecture we will focus on the deformations, which preserve the

conformal symmetry on the WS. As we will see in Sec.s 5.1 and 6.1 these are only a subset of the

O(2) operators in the cohomological field theory. Perturbation w.r.t. the full set of perturbations

has been considered in [9].

It is interesting to recover this first order condition of the CFT from the spacetime point of view,

see [23, 22]. We know that the geometrical background has to be Calabi-Yau manifold to allow

for a conformal field theory 5. The exactly marginal deformations O (1,1) must correspond hence

to deformations of the geometry, which preserve the Calabi-Yau condition. I.e. to deformations of

the background metric gµν +δgµ,ν (and B-field bµν +δbµν ), which do not change the Calabi-Yau

condition6 Rµν(g) = 0, i.e.

Rµν(g+δg) = 0 . (4.19)

In analyzing this equation we have to eliminate the δg, which come from coordinate transforma-

tions. Coordinate transformations or equivalently diffeomorphism of M are generated by vectors

5There is an interesting extension of these considerations for non-conformal N = (2,2) σ -models involving massive
(non-marginal) deformations.

6Strictly speaking one should ask for perturbations, which leave the Ricci-form R in the c1(M) = 0 cohomology

class. Though the representatives of the deformations in the cohomology classes would be different, the counting would

be the same, see Sec. 7.5.
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fieldsV µ , compare Sec. 6.2. An actual change of the metric δgµν is orthogonal to diffeomorphism

generated by the vector field in the following sense
∫ √

gδgµν(∇µVν + ∇νVµ)dmx = 0, which is

equivalent to the gauge condition ∇µδgµν = 0. Expanding with this constraint (4.19) to linear

order around R(g) = 0 one gets

∇ρ∇ρδgµν −2R κ σ
µ ν δgκσ = 0 (4.20)

Using the splitting of a Kähler metric in holomorphic and holomorphic indices one can analyze

δgi j̄, and δgi j separately. Note that δgi j̄ is real, while δgi j with δgi j = δgı̄ j̄ is complex. From

(7.27) it follows that δgi j̄ is ∆d harmonic and δgi = δgi
j̄
dz j̄ = gik̄δgk̄ j̄dz

j̄ is ∆∂̄ harmonic. In other

words the first order deformations factorize and correspond to elements inH1,1(M) andH1(M,TM)

respectively. These are also among the deformations of the A- and B-model as mentioned above

and further discussed in the following Sec. 5.1 and 6.1.

Let us first discuss the two moduli space associated to H1,1(M). In a basis of (1,1)-forms

ω(k)
(1,1), we expand a Kähler form

ω =
h11

∑
k=1

tkω(k)
(1,1) (4.21)

in terms of the real Kähler parameters tk > 0. The range of tk is bounded by the inequalities, which

ensure positivity of the volumes of curvesC, divisors D andM, i.e.

∫
C

ω > 0,
∫

D
ω ∧ω > 0,

∫
M

ω ∧ω ∧ω > 0 . (4.22)

These conditions describe a real cone in Rh1,1

+ , which is called the Kähler cone. The parameters tk

are identified with the areas of dual curvesCk to ω(k)
(1,1), which shrink to zero area at the boundaries

of the Kähler cones7. In the σ -model (5.1) it is natural to complexify the parameter tk to tσ
k =∫

Ck
(ω − iB) by adding the integral of the antisymmetric tensor field B ∈ H1,1(M) to tk. Moreover

due to mirror symmetry one has a natural choice of the complex parametrization of the complexified

Kähler moduli spaceMK , simply the complex structure parameters of the mirror t
m
k
8

As it is clear from the fact that the deformations δgi j,δgı̄ j̄ change the (i, ı̄ ) type of the metric,

the moduli space H1(M,TM) is associated to complex structure deformations. It is fair to say

that most of what we know about the moduli space of (2,2) theories comes from the theory of

complex structure deformations. In particular it can be shown that the first order deformations of

the complex structures elevate to finite deformations. This is more thoroughly discussed in the Sec.

6.2 and 6.3.

Let us conclude the description of emerging picture of the deformation spaces. We have found

that the U(1)A/V neutral world sheet two form operators O
(2)
ω(1,1)

with ω1,1 ∈ H1,1(M,Z) and O
(2)
A

with A ∈ H1(M,TM) correspond geometrically to complexified Kähler and complex structure de-

formations of the Calabi-Yau metric and are expected to be exactly marginal from the CFT point of

view. In the low energy effective action of type II A/B string theory these marginal deformations

7At the boundary of the Kähler also a divisor may collapse. In this case tk is still the area of a curveCk in D.
8As a corollary all singularities ofMK occur at complex codimension one and the cone structure disappears com-

pletely.
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arise as vacuum expectation of complex scalar fields labeling the vacuum manifold of the N=2 su-

pergravity in 4d. The general structure of this vacuum manifold for abelian gauge groups U(1)#V

and U(1)#H is that it is locally of the formM2#V ×Q4#H , whereM is a complex special Kähler

manifold for the scalar fields in the vector multiplets[37][38][35] andQ is a quaternionic manifold

[28] for the scalar fields in the hypermultiplets. The subscripts indicate the real dimension of the

moduli space. Its relation to the perturbative sector of the II A/B string compactifications on a

Calabi-Yau 3 foldM is as follows

M
IIA
tot (M) = M

IIA
2h1,1(M)×Q

IIA
4(h2,1(M)+1) M

IIB
tot (W ) = M

IIB
2h2,1(W )×Q

IIB
4(h1,1(W )+1) . (4.23)

One very far reaching definition of the mirror conjecture is that type IIA and type IIB com-

patifications are completely identically if M and W are mirror pairs. This in particular implies

M IIA
tot (M) = M IIA

tot (W ). The best studied object isM IIB
2h2,1(W )

since it is literally the complex moduli

space of W . The enhancement of the Calabi-Yau metric moduli space from the complex to the

quaternionic space Q of Kähler multiplets is due to the moduli of Ramond forms. The additional

quaternionic dimension in Q comes from the universal dilation, whose scalar components (S,C)

contain in particular the type II dilation S.

4.4 Conformal Field Theory point of view

Amost remarkable fact is that for all 145 Calabi-Yau threefolds defined in weighted projective

space subject to the constraint (7.61) and for which the defining polynomial is of Fermat type

P =
5

∑
i=1

aix
mi (4.24)

with miwi = d, ∀i and ∑5i=1wi = d there is a well founded conjecture for an exact conformal field

theory description, which captures the full perturbative sector and not just the topological part of it.

The CFT description is based on an orbifold of tensor products of minimal N = 2 super conformal

field theories found by Gepner [61]. The description is valid only at one point in complex struc-

ture and complexified Kähler structure moduli space the so called Gepner point. In the complex

moduli space the constraint (4.24) literally describes this special point. In the complexified Kähler

moduli the point can also be described by (4.24) after dividing by phase symmetry groups such as

(6.56,6.65), which identifies (4.24) with the mirror manifold. It is far away from the large volume

limit.

The purpose of the present section is to describe the topological sub sectors in CFT language

and to link them to the full perturbative spectrum of the string.

As it is well known [126] Vol. II N = 2 supergravity and N = 1 heterotic string E8×E8 string

compactifications with standard embedding require an N = (2,2) supersymmetry. Only a N =

(1,1) symmetry is gauged. The N = 2 chiral part of a superconformal algebra on the worldsheet

has beside the chiral component of energy momentum tensor9 T (z) = ∑n∈Z
Ln

zn+2 with conformal

9The standard notation in CFT is quite different than the one common in the discussion of σ models that we used
in Sec. 3. One uses in CFT z = σ 1+ iσ2 and z̄ = σ1+ iσ2 where σ2 = iσ0 is the euclidean time. Correspondingly
one indicates the left moving sector which carried a + index in Sec. 3 by quantities without bar and the right moving

carrying before − with quantities with bar. Moreover the unbarred or barred super charges are now distinguished by −
and + respectively, e.g. Q+ ↔ G−

0
, Q̄+ ↔ G+

0
, Q− ↔ Ḡ−

0
and Q̄− ↔ Ḡ+

0
.
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Figure 2: ???

dimension and U(1) charge (h,Q) = (2,0) an U(1) current J(z) = ∑n∈Z
Jn

zn+1 with (h,Q) = (1,0)

and two super currents G± = ∑r∈Z±ν
G±

r

z
r+ 3
2

with (h,Q) = ( 3
2
,±1). The shift ν can take arbitrary real

values. The short distance operator expansion is

T (z)T (0) = c
2z4

+ 2
z2

T (0)+ 1
z
∂T (0),

T (z)G±(0) ∼ 3
2z2

G±(0)+ 1
z
∂G±(0),

T (z)J(0) ∼ 1
z2

J(0)+ 1
z
∂J(0),

G+(z)G−(0) ∼ 2c
3z3

+ 2
z2

J(0)+ 2
z
T (0)+ 1

z
∂J(0),

G+(z)G+(0) ∼ G−(z)G−(0) ∼ 0,

J(z)G±(0) ∼± 1
z
G±(0),

J(z)J(0) ∼ c
3z2

,

(4.25)

Let us recapitulate the standard procedure in 2d QFTwhich recovers the algebra of charge operators

from an operator algebra such as (4.25). To the operator A(z) we assign charge operators Aξ =∮
C0
dz ξ (z)A(z), where C0 is a contour around the origin 0 and

∮
C0
dz :=

∫
C0
dz
2πi
. In particular for

ξ (z) = zn+h(A)−1 the charges are the modes An of A(z). The transformation of the operator B(w)

under (δAξ ) is generated by the commutator with Aξ . In radial time ordering the commutator is

given by the following contour integrals

(δAξ )B(w) = [Aξ ,B(w)] =
∮

C0
|z|>|w|

dz ξ (z)A(z)B(w)−
∮

C0
|z|<|w|

dz ξ (z)A(z)B(w)

=
∮

Cw

dz ξ (z)A(z)B(w) ,
(4.26)

see Fig. 2. The spatial transformations δξ corresponding to conformal transformations
10 z →

z + ξ (z) are generated by T (z), i.e. δξ = δTξ . One can integrate (4.26) with
∮

C′
w=0
dw zm+h(B)−1 to

10These are holomorphic in 2d.
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recover as residue the mode algebra from

[Lm,Ln] = (m−n)Lm+n + c
12

m(m2−1)δm,−n,

[Lm,G±
r ] =

(
m
2
− r
)

G±
m+r,

[Lm,Jn] = −nJm+n,

{G+
r G−

s } = 2Lr+s +(r− s)Jr+s + c
3

(
r2− 1

4

)
δr,−s,

{G+
r ,G+

s } = {G−
r ,G−

s } = 0,

[Jn,G
±
r ] = ±G±

r+n,

[Jm,Jn] = c
3
δm,−n,

(4.27)

with L†n = L−n, J†n = Jn and (G±
r )† = G∓

−r. In case that the N = (2,2) CFT theory is the internal

part of a string compactification it must have c = c̄ = 9 to cancel the Weyl anomaly. It represents

the internal manifold M. In fact d := dimC(M) = c
3
. The generalized GSO projection restricts the

internalU(1) charges to odd integer values for space time bosons and half integer values for space

time fermions, see [61, 126] for more details.

If we consider now the (+,−) twisting11 [49][40]

T̂ (z) = T (z)±′ 1
2

∂J(z) → L̂0 = L0±′ 1
2

J0 (4.28)

then the modifications of (4.25) occur in the following short distance expansions

T̂ (z)T̂ (0) ∼ 2
z2

T̂ (0)+ 1
z
∂ T̂ (0)

T̂ (z)G±(0) ∼ 3±′∓1
2z2

G±(0)+ 1
z
∂G±(0)

T̂ (z)J(0) ∼ 1
z2

J(0)+ 1
z2

∂J(0)∓′ c
3z3

,

G+(z)G−(0) ∼ 2c
3z3

+ 2
z
J(0)+ 2

z
T̂ (0)+ 1∓′1

z
∂J(0).

(4.29)

Let us point out the salient features of the operator product expansions in (4.29)

• Since the central term in the first OPE vanishes no ghost system is required to quantize the
world sheet theory.

• By the second OPE either G+ (+-twist) or G− (−-twist) become a spin one currents, so
either Q = G+

0 =
∮

G+ or G−
0 =

∮
G− becomes conformal, i.e. scalars that are defined on

every genus world sheet. The opposite super currents G− (+-twist) orG+ (−-twist), become
spin 2 fields.

• The above conformal zero modes are recognized as building blocks for nilpotent operators
QA/B. QA = G+

0 + Ḡ−
0 in the case of the (+,−) twist defining the (c,a) twisted chiral ring as

cohomology. QB = G+
0 + Ḡ+

0 for the (+,+) twist defining the (c,c) chiral ring. The relation

11±′ marked by a prime are correlated in (4.1,4.29).
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to geometry ofM is12 for the A-model QA ↔ d and the for the B-model QB ↔ ∂̄ as discussed
in more detail in the Sec. 5.1, 6.1.

• The third OPE shows that J(z) has an anomalous transformation. By arguments familiar from

the BRST quantization of the bosonic string this gives rise to an anomaly in the divergence

of the current, which can be covariantly written as

∇µJµ = − d

2π
√

hR = −dc1(Σg) = d(2g−2). (4.30)

For d = c
3

= 3 this comes precisely with the same anomalous coefficient −3 as the ghost
current in the BRST quantization of the bosonic string jg = − : bc :, see [126]. Integrating

the anomaly in the divergence of the current leads to aU(1)-charge violation of d(2g−2) on
a genus g Riemann surface.

• The last OPE finally is like the one between the BRST current and the b ghost. Integration

around a contour to isolate G+
0 , yields for the + twist

{Q,G−(z)} = T (z) , (4.31)

which echos the main equation {QBRST ,b(z)} = T g+m(z) in the BRST quantization of the

bosonic string. We have seen already that G− has (h,Q) = (2,−1), which are precisely the
conformal dimension and ghost charge of the b(z) ghost.

To summarize we have for the (+,+) twist [11] exactly the same structure as in the bosonic string

if we identify

(G+(z),J(z),T (z),G−(z)) ↔ (JBRST (z), jg = − : bc : (z),T m+g(z),b(z)) (4.32)

and similar for the anti chiral half. This implies also QB ↔ QBRST and the ghost number becomes

U(1)A charge.

The degenerate ground states in the Ramond-Ramond sector fulfill [108]

G±
0 |ψ〉 = 0. (4.33)

These Ramond-Ramond ground states have by (4.27)

h =
c

24
=
3

8
. (4.34)

An operatorO with charge Q in the theory can be decomposed into a part Ô which is neutral under

theU(1) current and a charge carrying part, i.e. O = ÔeiQ
√
3
c

φ , where we bosonize the current as

J =
√

c
3
∂φ [130, 108]. Hence there is a natural operation, which shifts the U(1) charge of every

operator eiQ
√
3
c

φ → ei(Q−a)
√
3
c

φ . It is easy to see that this operation induces a family of algebra

automorphisms known as spectral flow [130]

Ln → L′
n = Ln +aJn + 1

6
a2cδn,0

Jn → J′n = Jn + 1
3
acδn,0

G±
r → (G±

r )′ = G±
r∓a .

(4.35)

12For Calabi-Yau manifolds this identifications can be viewed as convention and is reversed in [11].
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The Ramond ground states are related by (4.35) with a = ±′ 1
2
to states in the NS sector with

G±
r |ψ〉 = Ln|ψ〉 = Jn|ψ〉 = 0, r > 0, n > 0, and G±′

− 1
2

|ψ〉 = 0 (4.36)

Only the ±′ in (4.36) correlates with the one in a = ±′ 1
2
and one has (+) for chiral and (−1) for

anti chiral states. It is easy to see that (4.36,4.27) imply

h = ±1
2

Q, |Q| ≤ c

3
= d . (4.37)

Massless space-time scalars have (Q, Q̄) = (±1,±1). The states in the chiral- and anti chiral rings
with this property are related to the cohomology of M. The (c,c) ring corresponds to H 2,1(M) and

the (c,a) ring corresponds13 to H1,1(M). The above spectral flow operators with a = ± 1
2
relate

space time superpartners with each other and are identified with internal part of the spacetime susy

operators [61].

The main point in Gepners construction is to identify the internal c = c̄ = 9 theory with an

orbifold of a tensor product of minimal (2,2) superconformal field theories. The factor theories are

constructed as cosets of supersymmetric, WZW models, see [92] for a general discussion. WZW

models and cosets are an important source of rational CFT beyond c > 1. In the simplest case based

on a (SU(2)×U(1))/U(1) coset the central charge is

ck =
3k

k +3
, k ∈ N . (4.38)

Primary states |l,q,s〉 of the algebra (4.25) are labeled in the minimal models by integers which
have the following standard range14

0≤ l ≤ k,

0≤ |q− s| ≤ l

s =

{
0,2 Neveu−Schwarz− sector
±1 Ramond− sector

}

l +q+ s = 0 mod 2

(4.39)

and have conformal dimension and charge

h =
l(l +2)

4(k +2)−q2
+

s2

8
, Q = − q

k +2
+

s

2
. (4.40)

Above we discussed only the right moving part of the theory. There is a remarkable A−D−E

classification, behind the question how to combine the χl,q,s and χl̄,q,s characters to a modular

invariant one loop partition function [20]. Note that above only l 6= l̄. That is because all possible

shifts of q,s w.r.t. q̄, s̄ are obtainable in a separate step by orbifold constructions w.r.t. to simple

current symmetries. The simplest way to get a modular invariant theory is to start with a left right

symmetric theory with states |l,q,s; l,q,s〉, this corresponds to the A-series. Considering only this

13The (a,a) and (a,c) rings correspond to conjugated fields and contain no independent information.
14For the orbifold procedure the following equivalences are important q ∼ q mod 2(k + 2), s = s mod 4 and

|l,q,s; l̄, q̄, s̄〉 ∼ |k− l,q,s;k− l̄, q̄+ k +2, s̄+2〉.
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series there are 145 possibilities to build a tensor product theory with c̄ = c = ∑5i=1 cki
= 9. Note

that at most one k j is allowed to be zero, because of the c = 9 condition. This is the same number as

c1(TM) = 0 Fermat hypersurfaces inWCP4, i.e. with ∑i=1wi = d, see Sec. 7.7. In fact identifying

mi = d/wi = ki + 2 it is easy to see that both enumerations lead to the same diophantic problem.

The simplest possibility is ki = 3 for i = 1, . . . ,5. This leads to d = 5, wi = 1, i = 1, . . .5, the Quintic

in P4. Gepners orbifold construction divides the symmetric tensor product by a symmetry group

which is generically the subgroup G = Zleast com. mult.{ki} × (Z2)
r+1 among the group generated

by the simple currents and constructs a modular invariant orbifold. The effect is that the factor

theories and the space-time part are either all in the NS-NS sector or all in the R-R sector and that

the charges in the internal NS-NS sector become odd integers [61, 62]. It is then easy to see that

states in (c,c) ring from the invariant sector15 of the orbifold are of the form
⊗

i |li, li,0; li, li,0〉. For
the tensor product model that corresponds to the quintic this leads in view of (4.39) to 101 elements.

The counting is the same that leads to the 101 independent complex structure deformations under

Eq. (6.55), which are identified with elements in H2,1(M). All states in the (a,c) ring are from

the twisted sector. They are more complicated to count but one checks that they yield the number

of independent elements in H1,1(M). It is also straightforward to identify the orbifold action,

like e.g. (6.56,6.65), that leads to the mirrors W of the manifolds M in (4.24) in the conformal

field theory context and to check that it indeed exchanges the (c,c) with (c,a) ring [69, 56]. A

fascinating idea has been to use Cardy states [128] to classify D-branes as boundary conditions

in the rational CFT at the Gepner-point and compare with geometric pictures of D-branes [18] in

particular the triangulated category of coherent sheaves overM for the B-branes or the category of

special Lagrangian submanifolds of M for the A-branes respectively.

4.5 tt∗ equations, special geometry and contact terms

The tt∗ equations describe the geometry of the ground states of N = (2,2) two dimensional

theories. The construction does not require necessarily conformal invariance, but rather the follow-

ing structure. A nilpotent operator Q and its adjoint Q†

{Q,Q†} = H (4.41)

and a conserved fermion number. Q and its adjoint Q† define rings of cohomological operators R

andR∗ respectively. To make contact with the previous sections this can be realized as

Q =

{
QA = Q− + Q̄+, R = (a,c)

QB = Q̄− + Q̄+, R = (c,c)
Q† =

{
Q
†
A = Q̄− +Q+, R∗ = (c,a)

Q
†
B = Q− +Q+, R∗ = (a,a)

(4.42)

As explained we have to twist the theories by identifying the corresponding AR gauge connection

with the spin connection. Since only the fermion number must be conserved [31] one needs only

a Z2 anomaly free subgroup of the U(1)R-currents. The tt∗ geometry is applicable to N = (2,2)

2d field theories with marginal (conformal) but also relevant (non-conformal) deformations. While

these theories might not have a geometrical target space realization, it is still16 useful to think of a

15In general there might be (c,c) states in the twisted sectors but for the smooth hypersurfaces, such as the quintic,

there are none.
16For σ model onM this formal correspondence becomes an actual correspondence.
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formal correspondence to the deRham (Dolbeault) cohomology on a manifoldM with (Q,Q†,H)∼
(d,d∗,∆)

The Ramond-Ramond vacuum states, compare (4.33), are defined by

Q|α〉 = Q†|α〉 = 0 . (4.43)

Such states play the rôle of harmonic forms. We call the space of vacua H . The operator state

correspondence of 2d QFT associates to every operator φ ∈ R acting on a any vacuum state α a
state |φ〉 = φ |α〉. In order to avoid too many indices we call the zero-form operators O (0) = φ
and the two form operators O (2) = O . Since |φ〉α = φ |α〉 is closed, Hodge decomposition (7.24)
applies |φ〉α = |φ0〉α +Q|φ−〉α +Q†|φ+〉α and by that we get a map

Πh : |φ〉α 7→ |φ0〉α (4.44)

from R toH . If α is fixed and as will soon see there is preferred choice we can find a canonical
map from the ringR to the Ramond-Ramond groundstates. Moreover every φ ∈ R induces a map

Φ : |α〉 7→ |φ0〉α (4.45)

from H to H . Everything we said from Eq. (4.43) on, could have been said verbatim for the

conjugated sector defined by Q†. In particular we get for the same choice of α a second basis of
H , which we call |ı̄ 〉, j̄ = 1, . . . ,r. If one has unbroken U(1)R/L symmetries as in Sec. 4.4 one

could single out |α〉 as the lowest charge state in the Ramond-Ramond groundstate.
The following path integral argument requires only conserved fermion number. In the operator

approach[3][40] to 2d field theory one defines a state of the Hilbert space H of 2d theory by the

path integral over a half sphere HS2 bounding an S1. Parametrize the S1 by θ and denote the fields
generically by φ(θ). The path integral is a functional of the boundary field configuration φ(θ)∈ L2

on the S1 and defines a state |φ〉 in H as in (4.47). Anti periodic boundary conditions for fermionic

states on contractible loops as S1 on HS2 are the natural boundary conditions in the path integral

so that (4.47) does not yield periodic Ramond-Ramond states in H. However the connection AR
µ

of the gaugedU(1) R-symmetry couples to the fermion number with charge 1
2
, i.e. acts like a spin

connection ωµ . When one transports the fermion along the S1, the connection is integrated to a

Wilson loop phase rotation acting on the fermionic state as

eπi
∮

S1
ωdx = eπi

∫
HS2
dω = eπi

∫
HS2

R
2πi

√
h = eπi

∫
HS2

c1(T ) = −1, (4.46)

which rectifies the periodicity.17 A projection to the Ramond-Ramond groundstates at the boundary

can now be achieved by attaching a cylinder of length T to HS2, see Fig. 3. Call the combined

surface HT S2. The “evolution” of a state |φ〉 defined by the original boundary S1 of HS2 to the

far boundary is described by e−HT |φ〉. If the length T of the cylinder goes to infinity only the

groundstates inH survive, because they have 0 as energy eigenvalue of H, cff (4.34).

After this preparation we can define the path integral version of a projector (4.44)

|i〉 =
lim

T → ∞

∫
Dφe

−∫
HT S2

L(φ)φi = Πp(φi) . (4.47)

17A discussion of the axial anomalies of 2dU(1) gauge theories can be found in Chap 19.1 of [124].
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T 8 T 8

i

Φi

0

Figure 3: Path integral projectors to the Ramond-Ramond ground statesH

The T → ∞ limit makes the projector only sensitive to cohomological information of ring states
φ ∈ R or φ̄ ∈ R∗. Exact pieces have non-zero energy and are completely suppressed. Note that
Π(1) = |0〉 defines a preferred vacuum state. We call the image of a basis φi ∈ R, i = 0, . . . ,r with

Φ0 = 1 inH the topological basis |i〉 = Πp(φi). By the operator state correspondence we can also

represent the rings (4.10) on the vacuum states

φi| j〉 = Ck
jk|k〉 (4.48)

The path integral (4.47) with insertions of φ̄i ∈ R∗ defines the anti-topological basis |ı̄ 〉 =

Πp(φ̄i). The two basis ofH namely |i〉 and |ı̄ 〉 must be related by a linear transformation, the real
structure,

|i〉 = M ı̄
i |ı̄ 〉 . (4.49)

The CPT theorem of the 2d field theory states that the effect of complex conjugating all expressions

in (4.47) sends |i〉 → |ı̄ 〉, i.e. |ı̄ 〉 = M
j
ı̄ | j〉 which implies MM∗ = 1. One has a topological bilinear

pairing

〈i| j〉 = ηi j (4.50)

and an hermitian bilinear pairing called the tt∗ metric

〈ı̄ | j〉 = ḡı j , (4.51)

which are in an obvious way related by the real structure

gl̄iηi j = M l̄
j . (4.52)

Note that 〈i| 6= (|i〉)†. Both bilinear pairings can be defined by the path integral as in Fig. 4. These

T

Φ Φ ji
η

i j i j=

T 8

Φ Φ
i j
_

_
i jg

ji
_ _

=

Figure 4: Path integral representation of the topological pairing ηi j and the topological-antitopological

pairing gı̄ j.

objects are topological to different extent. Changing the representative of the Q cohomology class

|i〉 7→ |i〉+ Q|λ 〉 or 〈 j| 7→ 〈 j|+ 〈λ |Q will do nothing in 〈i| j〉 as | j〉 and 〈i| are Q closed. Due
to (4.9) the pairing ηi j is independent of the position. That is true for all length/diameter ratios

of the cylinder, i.e. the cylinder is not needed at all in the definition. For the pairing g ı̄ j with
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〈ı̄ | 7→ 〈ı̄ |+ 〈λ |Q† and |i〉 7→ |i〉+ Q|λ 〉 the argument does not apply as | j〉 is not Q† and 〈ı̄ | not Q

closed. However from (4.41) andQ|λ 〉 6= 0 (〈λ |Q† 6= 0) follows that these exact states have positive
energy. The only states with zero energy are R-R vacua. I.e. in the case of g ı̄, j we need the T → ∞
limit to define a topological quantity.

Locally the tangent space of the (t, t∗) moduli space is spanned by elements from R(t) and

R∗(t∗). It is clear that the pairing ηi j depends only on the t moduli. Moreover one shows that as

metric it is completely flat, i.e. all components of the curvature tensor vanish similar as in d < 1

strings [42]. One can therefore find coordinates which make the metric ηi j constant. This defines

the moduli dependent basis ofR. As it is clear from the construction of the basis |i〉 and |ı̄ 〉 via the
projection of moduli dependent elements in the rings R and R∗ they will depend on the moduli
m = (t, t∗). In the Landau-Ginzburg approach [143] ηi j is explicitly defined in terms of the Landau

Ginzburg superpotential as

ηi j = Res[φiφ j] =
1

(2πi)n

∫
Γ

φ(X)dX1∧ . . .∧dXn

∂1W . . .∂nW
= ∑
dW

φ(X)det−1[∂i∂ jW ] . (4.53)

Another approach to define ηi j is via the supersymmetric Schroedinger equation [29]. We will not

dwell deeper into the derivation of (4.53), except for remarking that it is a zero dimensional analog

of the Griffith residuum expressions (6.57,6.71) used in Sec. 6.7 to define the periods, with the

identificationW = P.

The tt∗ equations describe how the vacuum states inH vary over the moduli space parametrized

bym. One calls the corresponding bundle alsoH . Let eγ be a basis, i.e. a section inH , and denote

its connection

Aα
βγ = gακ〈eκ |∂β |eγ〉. (4.54)

If the basis ofH changes by a “gauge” transformation |eγ〉 7→ |e′γ〉 = Λγδ |eδ 〉 then the connection
undergoes a gauge transformation A 7→ Λ−1AΛ+Λ−1dΛ. Let us consider the perturbation

S =
∫

Σ
d2zL0+∑

i

t i

∫
Σ
d2zOi +∑̄

ı

t̄ ı̄

∫
Σ
d2zŌi , (4.55)

where the two-form descendants are called Oi := O
(2)
i . It is easy to show that the following mixed

indices of this connection vanish in the holomorphic basis. Consider e.g. Ai
ı̄ j using (4.52) we

can write Ai
ı̄ j = gik̄〈k̄|∂ı̄| j〉 = η ik〈k|∂ı̄| j〉. By (4.12) we can write

∫
Σ Ōı̄ = [Q,Λ] and since φ j is Q

closed we can write ∂ı̄| j〉 = Πh([Q,Λ]φ j) = QΠh(Λφ j) = Q(Λ| j〉). Since 〈k|Q = 0 is closed this

expression vanishes

Ai
ı̄ j = 0 . (4.56)

Similarly one shows that Ai
k j̄

= η il〈l|∂k| j̄〉 = 0.

The metric connection is characterized by

0= Dkgi j̄ = ∂kgi j̄ − (∂k〈i|)| j̄〉−〈i|∂k̄| j̄〉 = (∂k〈i|)| j̄〉 . (4.57)

From this and the D̄k̄ derivative, we get formulas for A
j

km and A
j̄

k̄m̄

A
j

km = g j j̄∂kgm j̄, A
j̄

k̄m̄
= gm j̄∂k̄gmm̄ . (4.58)
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as hermitian connection of g. Indeed the topological basis |i〉 and the anti-topological basis |ı̄ 〉 form
holomorphic and antiholomorphic sections of the vacuum bundle over the moduli m and one gets

the vanishing of the following components of the curvature

[Di,D j] = [D̄ı̄, D̄ j̄] = 0 . (4.59)

The most important relation comes from analyzing the [Di, D̄ı̄] curvature term. Let us do

this for definiteness for the B model. Since the twisting (4.29) is so that Q̄+(z) ∼ G+(z) and

Q̄−(z) ∼ Ḡ+(z) have dimension one, we can define

Q̄+ =
∮
dzG+(z), Q̄− =

∮
dzḠ+(z) . (4.60)

Here we adopt the notation to use the CFT conventions for the twisted currents. The commutators

and anticommutators in the definition of the descendants (4.12) can be represented by (4.26) as

Oi : = O
(2)
i = {Q+, [Q−,φi(u)]} ∼

∮
Cu

dzG−(z)
∮

C′
u

dwḠ−(w)φ̄ı̄(u) ,

Ōı̄ : = Ō
(2)
ı̄ = {Q̄+, [Q̄−, φ̄ı̄(u)]} ∼

∮
Cu

dzG+(z)
∮

C′
u

dwḠ+(w)φ̄ı̄(u)
(4.61)

We calculate [Di, D̄ı̄] in |l〉 basis i.e.

[Di, D̄ j̄]
l
k = ∂iA

l
j̄ k
−∂ j̄A

l
i k = η l p[(∂i〈p|)∂̄ j̄|k〉− (∂̄ j̄〈p|)∂i|k〉]

= η l pΠ
(

φp

∫
HS2L

{Q+, [Q−,φi]}
)

Π
(∫

HS2R
{Q̄+, [Q̄−, φ̄ j̄]}φk

)

−η l pΠ
(

φp

∫
HS2L

{Q̄+, [Q̄−, φ̄ j̄]}
)

Π
(∫

HS2R
{Q+, [Q−,φi]}φk

)

= η l p
[
Π
(

φp

∫
HS2L

∂ ∂̄φi

)
Π
(∫

HS2R
φ̄ j̄φk

)
−Π

(
φp

∫
HS2L

φ̄ j̄

)
Π
(
(
∫

HS2R
∂ ∂̄φi)φk

)]

= η l p
[
Π
(

φp

∫
HS2L

φ̄ j̄

)
Π
(∫

CR
(∂τ2φi)φk

)
−Π

(
φp

∮
CL

∂τ2φi

)
Π
(
(
∫

HS2R
φ̄ j̄)φk

)]

= η l p
[
Π
(

φp

∫
HS2L

φ̄ j̄

)
Π
(
(
∮

Γ H(z)
∮

CR
φi)φk

)
−Π

(
φp

∮
Γ H(z)

∫
CL

φi

)
Π
(
(
∫

HS2R
φ̄ j̄)φk

)]

(4.62)

the contours of G−(z), Ḡ−(z) G+(z), Ḡ+(z) are as in Fig. (5). Moreover we consider operators φ in
the (c,c) and φ̄ in the (a,a) ring, e.g. φ is Q̄+ and Q̄− closed. In the language of current algebras
that means that the short distance expansion of φ(v) with Q̄+(z) ∼ G+(z) and Q̄−(w) ∼ Ḡ+(z) has

no pole and φ(v) can be ignored when deforming Γz and Γw. The contours e.g. of the term in the

third line can be deformed as in fig. 5 and the contours of G−(z), Ḡ−(z) encircling G+(z), Ḡ+(z)

give the L−1 and L̄−1 acting as ∂ and ∂̄ derivatives on φi by (4.9). Similar manipulations apply to

the term in the second line of (4.62). Applying Gauss’s law in both terms gives the integral over

the normal derivative −∂τ2 . The minus sign is due to the orientation of τ2. The normal direction
is “time” evolution by H, i.e. ∂τ2 = ∂nφi = [H,φi], which is used in the last line of (4.62), where

H(z) is integrated around φi. From now on we exploit the topological nature of the theory and take

ordered limits of Σ
first : TR,TL → ∞, second : T → ∞ (4.63)

as depicted Fig.6. The tubes are all normalized to have perimeter 1. Elongation TR and TL projects
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Figure 5: Contour manipulation on Σ in the evaluation of [Di, D̄ j̄]
l
k .

Φp j
_Φ
_
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C
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L
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Φp Φk
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Φi j
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_

−
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Figure 6: Limits taking in the evaluation of [Di, D̄ j̄]
l
k .

φp and φk to the Ramond-Ramond vacuum state 〈p| and |k〉 respectively. The procedure of the
limits is a prescription how to deal with short distance singularities and the only such issue in

topological field theory are contact terms see (4.71) and (5.32).

The action of H on these states yields zero. The two terms in the last line of (4.62) are trans-

formed into each other by exchanging the left- and right infinity. We discuss the−Π
(

φp

∫
HS2L

φ̄ j̄

)
×

Π
(
(
∮

Γ H(z)
∮

CR
φi)φk

)
explicitly. Vanishing of H|k〉 means that H may considered as acting on

the full state Π
(
(
∮

CR
φi)φk

)
. In Hilbert space notation it is denoted as H|(∮CR

φi)|k〉 and similarly
Π
(

φp

∫
HS2L

φ̄ j̄

)
as 〈p|∫HS2L

φ̄ j̄|. We can move the H integral to the left and since φp is projected to

the groundstate the non-vanishing contribution comes from its action on
∫

HS2L
φ̄ j̄. If the insertion of

φ̄ j̄ is on the leftmost part in fig (6) it will also be projected to the groundstate in the T → ∞ limit and
annihilated by H. Therefore it remains to consider the contribution from integral over the middle

tubes whose length is parametrized by T . This integral is
∫

Tu φ̄ j̄ =
∫ T
0 dτ2

∮
CL
dθφ̄ j̄. H creates τ2

translations, so [H, φ̄ j̄] = −∂τ2 φ̄ j̄ and the integration over τ2 becomes trivial. Note that only the
lower boundary τ2 = 0 contributes. The upper boundaries, where φ̄ j̄ is near φi in both contributions

see Fig. 6, cancels. Therefore

[Di, D̄ j̄]
l
k = η l p lim

TL/R→∞

[
Π
(

φp

∫
HS2L

φ̄ j̄

)
Π
(
(
∮

Γ H
∮

CR
φi)φk

)
−Π

(
φp

∮
Γ H

∫
CL

φi

)
Π
(∫

HS2R
φ̄ j̄φk

)]

= η l p[〈p|
(∫

Tu φ̄ j̄

)
H
(∮

CR
φi

)
|k〉−〈p|

(∫
CL

φi

)
H
(∫

Tu φ̄ j̄

)
|k〉]

= η l p lim
T→∞ [〈p|

(∮
CL

φ̄ j̄

)
e−HT

(∮
CR

φi

)
|k〉−〈p|

(∫
CL

)
φie

−HT
(∮

CR
φ̄ j̄

)
|k〉]

= (C̄ j̄Ci)
l
k − (CiC̄ j̄)

l
k = −[Ci,C̄ j̄]

l
k

(4.64)

This is the main identity within the tt∗ equations. The others are easier to derive and all are sum-
marized below in the topological basis

[Di, D̄ j̄] = −[Ci,C̄ j̄]

[Di,D j] = [D̄ı̄, D̄ j̄] = [Di,C̄ j̄] = [D̄ı̄,C j] = 0

DiC j = D jCi D̄ı̄C̄ j̄ = D̄ j̄C̄ı̄

(4.65)
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We can now define a flat [∇i,∇ j] = [∇i, ∇̄ j̄] = [∇̄ı̄, ∇̄ j̄] = 0 connection

∇i = Di +αCi, ∇̄ j̄ = D̄ j̄ +α−1C̄ j̄ . (4.66)

The sections of the vacuum bundle are identified with the periods in the Calabi-Yau σ model
context. The above flat connection goes by the name Gauss Manin connection. In this context,

see Sec. 6.5. Since it is flat it seems that the theory is trivial! However flat connections can still

have monodromies, over non simply connected manifolds, see Fig. 16,17, which are the essential

data of our theories. Where do these monodromies come from? The key is that (4.23), which is

based on a local consideration of the tangent spaces of metric deformations at a generic point of

the moduli space fails at singular degenerations of the space time Calabi-Yau manifold. At these

loci charged Ramond-Ramond states become light, the simplest example is the charged black hole

at the conifold [134], which sits in a hyper multiplet. In the presence of massless charged states

the supergravity argument for the factorization (4.23) into hyper- and vector multiplets does not

apply either. In fact the logarithm in third period that produces the monodromy M1 in (6.75) can

be interpreted as the one loop correction of the vector multiplet gauge coupling due to the massless

hypermultiplet.

The tt∗ equations describe the essence of the WS super symmetry constraints on the topolog-
ical correlators. These equations have in general to be supplemented with information about the

structure constants Cl
i j and boundary conditions. But already with some U(1) i.e. R symmetry

charge constraints they become powerful. E.g. for d < 1 (4.37) implies |Q| < 1 moreover these
theories are rational and have finitely many chiral primaries in this charge range. We assign to

the t i of say the (c,c) ring (4.55) the weight wi = (1−Qi) > 0. The last equation (4.65) called

associativity guarantees the existence of a potential F with Ci jk = DiD jDkF . As discussed one

can chose flat coordinates, which we call for convenience also t i such that Ci jk = ∂i∂ j∂kF Charge

conservation implies that F is homogeneous of degree 2 in the weights wi of the t i, i.e. a finite

polynomial and associativity determines its coefficients up to an overall normalization. These con-

straints imply indeed that there is a completely solvable discrete infinite set of d < 1 N = (2,2)

theories with an ADE classification. For d ≥ 1 there are zero and negative weight t i and this simple

way of approaching the problem loses its grip.

However if d ∈ Z and the R charges are also integer, we expect from Sec. 4.4 that beside

WS super symmetry also ST supersymmetry constrains the correlators. Let us show that (4.65)

implies for the Calabi-Yau σ models on threefolds d = 3 and odd integer R charges special Kähler

geometry. In the holomorphic basis we use (4.56) to write [Di, D̄ j̄]
k
l = −∂̄ j̄A

k
il = −[Ci,C̄ j̄]. With

(Ck
il)
† = C̄l̄

īk̄
and henceCk

j̄m
= gkk̄Cm̄

j̄k̄
gm̄m we write

∂̄ j̄A
k
il = [Ci,C̄ j̄]

k
l = [Ci,g

−1C†j g]kl . (4.67)

In the case of Calabi-Yau σ model the R charge conservation law forbids many correlators, see

sections 5.1 and 6.1. In particular g0k̄ = g0k̄ = 0 for k̄ 6= 0̄ and Ck
i0 = δ k

i and Ck̄
ı̄0̄

= δ k̄
ı̄ . If we
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specialize (4.67) to k = l = 0 we can write

∂̄ j̄A
0
i0 = ∂̄ j̄(g

0k̄∂ig0,k̄) = [Ci,g
−1(C j)

†g]00

∂̄ j̄∂i log(g00̄) = −g00̄Ck̄
j̄0̄

gk̄i

= −
g j̄i

g00̄
.

(4.68)

As follows from the identification (6.5,6.6) in the B-model and (6.23) or Serre duality (7.54) the

vacuum states |0〉 and |0̄〉 are associated to the holomorphic (n,0) and anti-hololomorhic (0,n)

forms. In particular

e−K = i

∫
M

Ω∧ Ω̄ = 〈0̄|0〉 (4.69)

and comparing (6.47, 6.48) with (4.68,4.69) we identify the Weil-Peterson metric with a sub-block

of the tt∗ metric

Gi j̄ = gi j̄e
K . (4.70)

In (4.64) we have related the curvature of gi j̄ to a bilinear in the 3-point functions and with (4.70)

this becomes the special geometry relation (6.53). In other words tt∗ in genus 0 implies special
Kähler geometry, but the main virtue of the formalism is that it generalizes readily special Kähler

geometry to higher genus. This will become essential to solve the B-model.

It is worth mentioning the closely related contact term approach to the definition of the con-

nection (4.57), see e.g. [104] for a short introduction. It does use conformal invariance and restricts

the analysis to exactly marginal ring operators. If the operators are exactly marginal for all values

of t = {t, t̄} of marginal perturbation parameters as (4.55) then the most general short distance
expansion in the basis eγ of them is

Oα(z)Oβ (0) ∼
Gαβ

|z|4 +Γγ
αβ δ 2(z)Oγ(0) . (4.71)

Clearly this expansion is compatible with dimensional analysis, δ 2(z) = ∂
∂ z
1
z̄
. Marginality implies

in first order in t that
∫
d2z〈Oα(z)Oβ (1)Oγ(0)〉 gets only contributions from z = 1 and z = 0, which

explains that only the δ -function appears on the right of (4.71) in this order. Exact marginality
means that scale independence, i.e. vanishing β functions, are maintained to all orders in t. To next

order follows the closing on exactly marginal operators, as opposed to arbitrary (1,1) operators, on

the right in (4.71). The Zamolodchikov metric is defined as the sphere correlator

Gαβ = 〈Oα(1)Oβ (0)〉 (4.72)

and because of conformal invariance it does not require a limit as in the tt∗ case. Taking the
derivatives with respect to perturbations one gets

∂Gαβ

∂ tγ
=

∫
d2z〈Oα(z)Oβ (1)Oβ (0)〉 = Γδ

αγGδβ +Γδ
γβ Gδα , (4.73)

which establishes Γδ
αγ as connection of the Zamolodchikov metric. So far the discussion of the

contact terms has been about a general ansatz and in particular all Γδ
αγ could have been zero.
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However [68] observed first that in order to ensure marginality in superconformal theories with

non trivial triple couplings Ck
ik the contact terms have to be present, which is of course required to

get (4.65). The virtue of the tt∗ equations is to generalize this analysis to all ring states replacing
Γδ

αβ with Aδ
αβ and non-conformal theories.

As an exercise one may derive the special geometry relation in N = (2,2) SCFT using the

contact term approach as a specialization of the derivation of the tt∗ equations. The decompo-
sition of α,β into j j̄ comes from the possibility of picking the holomorphic basis in N = (2,2)

WS theories. Of course the real challenge is to understand the occurrence of the monodromies,

which we identified as the data of the theory, which however requires to understand the spacetime

Ramond-Ramond states.

5. The topological A-model

As mentioned above the gaugedU(1)V symmetry becomes not anomalous and this topological

model can be defined on any Kähler manifold.

5.1 A model without worldsheet gravity

In this section we want to describe the operators and correlation functions of topological A

topological and their relation to the geometry of the target space M. We call the anticommuting

scalars from table 2 χ i := ψ i
− and χ ı̄ := ψ̄ ı̄

+ and the one forms i.e. sections of K and K̄ are denoted

by ρ ı̄
z = ψ̄ ı̄

− and ρz̄ := ψ i
+. The action is then

L = 2t
∫
d2z

(
gi j̄∂νxi∂ νx j̄ + iεµνbi j̄∂µxi∂νx j̄ − igi j̄ρ j̄

z Dz̄χ i + igi j̄ρ i
z̄Dzχ j̄ − 1

2
Rik̄ jl̄ρ

i
z̄χ jρ k̄

z χ l̄

)
,

(5.1)

where we added the term involving the antisymmetric 2-form bi j̄ ∈ H2(M,Z), which plays an im-

portant rôle in the bosonic sector of the topological A model. Supersymmetry δ = ε̄−Q̄+ + ε+Q−
acts by

δxi = ε+χ i, δxı̄ = ε̄−χ ı̄

δρ i
z̄ = 2iε̄−∂z̄x

i + ε+Γi
jkρ j

z̄ χk, ∂ χ ı̄ = 0

δ χ i = 0, δρ ı̄
z = −2iε̄+∂zx

ı̄ + ε̄−Γı̄
j̄k̄

ρ k̄
z χ j̄

(5.2)

with δ 2 = 0. There is a fixpoint of δ on fermionic zero mode configuration with xi a holomorphic

map x : Σg → M, i.e. ∂zx̄
j̄ = ∂z̄x

i = 0, on which the path integral will localize by the fermionic zero

mode integration, so that the bosonic integration reduces to an integration over the moduli spaceM

of such holomorphic maps18. This moduli space will be labeled by the following topological data:

the genus of g and the homology class [x∗(Σg)] ∈ H2(M,Z) of the image of Σg in M. The 0-form

correlation observables are combinations of xi,xı̄ and χ i,χ ı̄ the latter anticommutating operators

can be identified with the forms on M, i.e χ i ↔ dxi and χ ı̄ ↔ dxı̄ One checks that under this

correspondence Q− and Q̄+ are identified with the exterior derivatives of Dolbault cohomology

∂ and ∂̄ . Since then Q = Q− + Q̄+ is identified with the deRham operator d = ∂ + ∂̄ one can

18In considering only QA = Q̄+ + Q−, i.e. setting ε+ = ε̄− one neglects structure, which would give information
about the individual cohomology groups ofM .
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summarize the correspondence between the BRST cohomology ofQA and the deRham cohomology

of M as follows. For each form

W = wI1,...,In
(x)dxI1 ∧ . . .∧dxIn (5.3)

onM there is a topological operator

O
(0)
W (P) = wI1,...,In

(x)χ I1 . . .χ In(P) (5.4)

of the A-model and the operation of QA is identified with the exterior derivative

{QA,OW} = −OdW , (5.5)

where the form degree n ofW is identified with the ghost number of OW , since χ has ghost number
+1.

The action can be written as

S = it

∫
Σ
d2z{Q,V}+ t

∫
Σ

x∗(ω), with V = gi j̄

(
ρ ı̄

z∂z̄x
j +∂zx

ı̄ρ j
z̄

)
(5.6)

and ∫
Σ

x∗(ω) =
∫

Σ
d2z
(

∂zx
i∂z̄x

j̄gi j̄ −∂z̄x
i∂zx

j̄gi j̄

)
= ω ·β ≥ 0, (5.7)

where ω is the Kähler form ω =−igi j̄dz
idz j̄ and β is the cohomology class [x∗(Σ)] of the image of

Σ and the positivity holds if ω is in the Kählercone. If the antisymmetric tensor field B is non-zero

we replace ω by a complexified Kähler form ωc = ω + iB = i(bi j̄ − igi j̄)dz
idz j̄.

The correlation function of the physical operators

〈
n

∏
i=1

Oi〉β = e−itβ ·ω
∫

Mβ

DxDχDρe−it{Q,
∫

V}
n

∏
i=1

Oi (5.8)

depends on the metric of M only via the Kähler class ω (or on the complexified Kählerclass ωC).

Other metric dependence in particular on the complex structure ofM as well as on Σg appears inV .

However this dependencies appears only as a Q exact expression in (5.8) and decouples by (4.8).

Moreover taking the derivative w.r.t. t implies by (4.8) that the second factor is independent of t

and the correlation can be calculated for ω in the Kählercone for Ret > 0 in limit of infinite t i.e.

at the classical minimum of the action. If we write

SB =
∫

Σ gi j̄

(
∂zx

i∂z̄x
j̄ +∂z̄x

i∂zx
j̄
)

= 2
∫

Σ gi j̄∂z̄x
i∂zx

j̄ +
∫

Σ x∗(ω)
(5.9)

it is obvious that this minimum is taken at holomorphic maps ∂z̄x
i = ∂zx

j̄ = 0, which is another

way to understand the supersymmetric localization. As mentioned the path integral collapses by

this mechanism to a finite dimensional integrals over an in general infinite series of components of

moduli spaces of holomorphic maps which are labeled byMg,β (M).

Let us now discuss the selection rules for correlators 〈∏n
k=1OWk

〉β . We note from table 2

and the identification of χ i and χ ī that χ i has charge ql = −1 and qr = 0 under the left and right

U(1)l/r respectively, while χ ı̄ has ql = 0 and qr = 1. Because of the splitting of the tangent bundle
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of M = T (1,0) ⊕ T (0,1) we can associate to OWk
an element in the Dolbeault cohomology group

H(pk,qk). Since the vector U(1)V is unbroken in the quantum theory we get a charge conservation

constraint qV = ∑n
k=1 pk −∑n

k=1 qk = 0 for the correlator to respect vector charge conservation. For

the classical axial charge we would get naively qA = ∑n
k=1 pk +∑n

k=1 qk = 0. However theU(1)A is

anomalous. Its anomaly is given by the index of the Dolbault operator and can be calculated by the

Hirzebruch-Riemann-Roch theorem, see Sec. 7.3

qA = #(χ zero modes)−#(ρ zero modes) = 2(h0(x∗(T M))−h1(x∗(T M)))

= 2
∫

Σ
ch(x∗(T M(1,0)))td(T Σ) = 2(c1(T M) ·β +dimCM (1−g)) .

(5.10)

Combining the constraints we get

n

∑
k=1

qk =
n

∑
k=1

pk = c1(T M) ·β +dimC M(1−g) . (5.11)

In particular for g = 0 we can have a non-vanishing coupling 〈OWi
OW j

OWk
〉, where allWl are (1,1)-

forms.

With two non-degenerate pairings we can associate a divisor Dk ∈ H4(M) to eachW
(k)
(1,1). One

has
∫

M W
(k)
(1,1) ∧W(l) (2,2) = δ k

l as well as
∫

Di
W( j) (2,2) = δ i

j. If β denotes the cohomology class of

the image C of the worldsheet in M then we can write the product β ·ω = 2π ∑h1,1

k=1 tkdk, where

dk = C∩Dk is the number of intersections ofC with Dk or the degree ofC w.r.t. Dk. The map with

dk = 0 for all k is special. It maps the three punctured sphere σ0,3 to a point inM. One always find

a representative of w
(k)
(1,1) that has δ -function support on Dk. This implies that the point in Owk(Pk)

maps toDk. If Σ0,3 maps to a point inM the path integral collapses hence to the intersection number

of Di ∩D j ∩Dk. We define qk = e−2πitk then the correlation function19 is

Ci jk(t) = 〈OWi
OW j

OWk
〉 = Di ∩D j ∩Dk + ∑

{di}6={0}
r

g=0
{di}(Di,D j,Dk)

h1,1

∏
i=1

q
di

i . (5.12)

This deformed intersection is piece of the structure known as quantum cohomology ring of M.

It is a deformation of the classical cohomology ring on M by the parameters qk. One needs in

general the deformations of all pairings [m] :H⊗n → H indexed by m ∈ H∗(M0,n+1), see [111] and

[32] for a review, which we can be provided on the mirror side. Note that the relation to classical

intersections in the limit picks a natural normalization of the operators OW and of their two-point

functions.

One collective effect of the instantons corrections is that structure functions Ci jk(t) behaves

smoothly at singularities in codimension two inM as for instance through flop transitions [162][5].

We note from table 2 and 3 and from (4.12) that theU(1)V as well as theU(1)A charge of the

operator O
(2)
W j
vanishes. In view of (4.18) this means that non-vanishing derivatives of C jkl(t) such

as
∂

∂ t i
〈Ow jOwkOwl 〉

∣∣∣∣
t i=0

= 〈Ow jOwkOwl

∫
Σ
O

(2)
wi 〉 (5.13)

19We abbreviate ∏h1,1

i=1 q
di

i = qβ in the following.
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�✁

✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂
✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂
✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂
✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂
✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂
✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂
✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂
✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂
✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂
✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂✄✂

☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎
☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎
☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎
☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎
☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎
☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎
☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎
☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎
☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎
☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎✄☎

✆✄✆✄✆✄✆✄✆✄✆✄✆✄✆✄✆✄✆✄✆✄✆✝✄✝✄✝✄✝✄✝✄✝✄✝✄✝✄✝✄✝✄✝✄✝ ✞✄✞✄✞✄✞✄✞✄✞✟✄✟✄✟✄✟✄✟✄✟

✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠✄✠
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Figure 7: This figure shows instanton corrections to the coupling C123 with D1∩D2∩D3 = O(1) and C124

with D1∩D2∩D4 = 0. From the left to the right we pictured an instanton of degree 0 contributing of O(1) to

C123, an instanton of degree d1 = 5,d2 = 3,d3 = 4 contributing ∼ q5
1
q3
2
q4
3
to C123 and an instanton of degree

d1 = 5,d2 = 4,d4 = 3 contributing ∼ q5
1
q4
2
q3
4
to C124. Roughly speaking for large radii second the coupling

C124 is expected to be exponentially supressed against the first C123. The precise statement depends on the

growth of r
g=0
{di}

(Di,D j,Dk). Such collective effects of the intantons can be analyzed best in the B-model.

do exist according to the selection rules. This non-vanishing correlators signal that a non-trivial

deformation family exist, but do not contain new information once c jkl(t) is known as function

after summing up all intantons or easier from a B-model calculation. By SL(2,C) invariance on S2

there is a symmetry between fixing any three of the {i, j,k, l} points and integrating over the fourth.
This implies that

∂iC jkl(t) = ∂ jCikl(t) (5.14)

which is the integrability condition for the existence of a functionF (0)(t) with the property that

Ci jk(t) = ∂i∂ j∂kF
(0)(t) , (5.15)

where we defined ∂i = ∂
∂ t i . This is in perfect accordance with facts concerning F (t) from the

analysis of the vector moduli space of N = 2 supergravity in 4d, which is identified in type IIA

compactifications with complexified Kähler moduli space. This facts can also be established in the

complex structure deformation space, see Sec. (6.5), which again is identified by mirror symme-

try with the complexified Kähler moduli space of the A-model. We should finally note that eqs.

(5.13-5.15) are not written covariantly, but rather in special coordinates. Covariant derivatives are

discussed in the B-model section.

5.2 Coupling the A model to worldsheet gravity

While we have prepared our topological theories by the twist to make sense on any genus Rie-

mann surface, we have ignored the degrees of freedom of the worldsheet metric in our discussion

so far. As explained in Sec. 4.2 in string perturbation theory one has to integrate over the complex

structure of the worldsheet and the position of the insertion points, in other words over the moduli

space of Riemann surfaces with n insertion of operators Mg,n. We have rightfully ignored that

in the genus zero correlator (5.12), because fixing three points kills the SL(2,C) invariance of S2

which has no complex structure deformations, so thatM0,3 = point. Despite the fact that (5.11)

predicts a nontrivial zero point function for g = 1, without integrating over the complex structure

of Σ the answer for the correlation function F (1) would be generically vanishing. As an intuitive

examples consider maps from Σ = T 2 toM = T 2, allowed by the selection rule (5.11). If we fix the
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complex structure of Σ and M there would be, by definition of inequivalent complex structures, no

holomorphic maps unless we hit with the complex structure parameter τΣ the one of τM . Including

all multicoverings [10] the answer F (1) = − log(η(τM))δ (τM − τΣ) begs to be integrated over τΣ

as it is natural in string theory as explained below. For higher genus (5.11) predicts vanishing of

the correlation functions. That means if we fix the worldsheet metric there are just no holomorphic

maps from a genus g > 1 Riemann surface toM.

5.3 Topological gravity

The simplest example of string theory where integration over the the moduli space discussed

in Sec. 4.2 is required is pure topological gravity. This is an good warm up example in which

M is replaced by a point. It plays a pivotal rôle for the A- as well as for the B-model coupling to

gravity. The calculation of the expected dimension (7.42) was for smooth curves, which represent

an open top dimensional subset of the moduli space of all curves. In order to integrate of Mg

we need some compactification ofMg. Including nodal curves, but so that the the automorphism

group, which is finite for smooth curves of g > 1, stays finite is called the stable Deligne-Mumford

compactification Mg. Genus zero curves have a SL(2,C) automorphism and g = 1 curves an

z→ z+c automorphism. These can be killed either by the position of a node or a puncture. Because

of the latter fact it is convenient to extend the discussion right away to punctured Riemann surfaces.

Inserting a so called puncture operator 1 at the point x∈ Σ in the path integral means that we want to
restrict the diffeomorphism group in (4.15) to a subgroup which preserves that point x. We call the

moduli space with n puncturesMg,n. Its dimension is enhanced by n complex dimensions relative

toMg. Intuitively one may picture the movement of the point as additional dimension ofMg,n.

The more accurate picture is complementary. The restriction of the diffeomorphism group by the

part, which moves the point in the denominator of (4.15) enhances the dimension.

Let us call punctures and ordinary double points (nodes) special points of Σ. The Deligne-
Mumford compactification Mg,n is the appropriate compactification to define good measures on

Mg,n in topological string theory. [151, 145]. It allows the above special points under the condition

that they do not meet. The further conditions that

• (i) every irreducible component of genus 0 has at least three special points

• (ii) every irreducible component of genus 1 has at least one special point

guarantee that there are no continuous automorphism groups acting on Mg,n. Finite automor-

phism groups Aut are like gauge symmetries which are divided out. The resulting orbifold is the

connected, irreducible, compact, non-singular Deligne Mumford stack of dimension 3g− 3+ n,

denoted also byMg,n.

The positive dimension of this space appears as an anomalous negative ghost number violation

in the BRST quantization. In topological gravity it is compensated by insertion of descendant

fields σn(x) whose form degree is counted as positive ghost number. These descendant fields are

constructed geometrically as the first Chern class of the complex line bundle Li = x∗i (ω) overMg,n

in the universal curve C Mg,n , which is induced from the restriction of the holomorphic cotangent

bundle T ∗Σg|xi
of Σg to xi. The universal curve is the fibration over Mg,n whose fibers are the

Riemann surfaces with n punctures described by the point [Σ,x1, . . . ,xn] ∈ Mg,n. ω = KC /M is
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Figure 8: This figure shows a stable degeneration of a genus 2 curve with 5 marked points inM2,5 as actual

configuration above and as dual graph below.

roughly the cotangent bundle along the fibres. More precisely since nodal singularities are allowed

it is the corresponding relative dualizing sheaf. Li are line bundles overMg,n, see Fig. 9.

The first Chern class ψi = c1(Li) might be represented by the (1,1) curvature form (7.33)

ψi = − i

π
∂ ∂̄ log |σxi

|2 (5.16)

onMg,n, where σxi
is a meromorphic section of Li. It can be wedged to define the descent operators

σn(xi) := ψn
i of form degree or ghost number 2n. We can also consider the insertion of σ0(x) =

ψ0(x), the above mentioned puncture operator. What this means is that we change the moduliMg

to oneMg,1 in which the diffeomorphism group in (4.15) is restricted to fix one point without doing

anything else. The selection rule for a non vanishing correlator

〈σd1 . . .σdn
〉 =

∫
Mg,r

ψd1
1 ∧ . . .∧ψdn

n (5.17)

is now given simply by counting form degrees of insertions against the dimension ofMg,n, which

yields the condition [151, 145]
n

∑
i=1

(di −1) = 3g−3 . (5.18)

Two easy and universal properties of the correlators (5.17), called topological recursion relations

[149], are the puncture equation, referred also to as the string equation

〈σ0σd1 . . .σdn
〉 = ∑

di 6=0
〈σd1 . . .σdi−1 . . .σdn

〉 (5.19)

and the dilaton equation [149]

〈σ1σd1 . . .σdn
〉 = (2g−2+n)〈σd1 . . .σdn

〉 . (5.20)

Let us give the original arguments [149] that lead to (5.19, 5.20). The argument can be made

mathematically rigorous see [77]. In equations both a puncture is removed from the left relative

to the right side and the nontrivial relation comes from loci inMg,n+1, where this removed point
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x0 is together with exactly one other x j in a genus zero component S
2
j of the degenerate curve (the

bold fibre in Fig. 9), so that its removal destabilizesMg,n. We will discuss the generic case and

leave the special g = 0, n = 2 and g = 1, n = 1 situations to the reader. The key point is now that

Li = x∗i (ω) overM g,n+1 and L′
i = x∗i (ω ′) overM g,n, i = 1, . . . ,n are related in a non trivial way. If

it would be the case that Li = π∗(L′
i) then starting with the right hand side we could argue that the

left hand side in (5.19, 5.20) vanishes due to (5.18).

These relevant issues occur at the divisors D j in M g,n+1 (in Fig. ? we show just D1). The

forgetful map π :M g,n+1 → M g,n is a fibering map, whose fiber describes the position of the

point x0, which is essentially Σ. Its lift to the universal curves πC : C M g,n+1 → C M g,n not

a fibering as πC also contracts the unstable S2j . There is however an isomorphism α between
α :M g,n+1

∼= C M g,n. It is just not compatible with the fibering π :M g,n+1→ M g,n. Now if s

is a section of ω ′ then the evaluation x∗j(s) at x j pulls back under π∗ to section π∗x∗j(s) of ω over
Mg,n+1. A simple local model near the contracted S2j shows that π∗x∗j(s) vanished with order one
at D j. This implies L j = π∗(L j)⊗O(D j) with ψ j = c1(L j) and the properties about characteristic

classes summarized in Sec. (7.3) one gets

ψ j = ψ∗
j +[D j] . (5.21)

The algebraic identity

ψn
j = (ψ∗

j )
n +[D j]

n−1
∑
k=1

ψk
j (ψ∗

j )
n−k−1 (5.22)

simplifies to ψn
j = (ψ∗

j )
n +[D j](ψ∗

j )
n−1 as ψ j = c1(L j)[D j] = 0, because L j is trivial overD j as the

sphere S
j
2 with its three special points is rigid.

So we can evaluate

〈σ0σd1 . . .σdn
〉 =

∫
M g,n+1

1∧n
i=1ψdi

i =
n

∑
j=1

∫
M g,n+1

[D j]∧n
i=1 (ψ∗

i )di−δi j

=
n

∑
j=1

∫
M g,n

ψd1
1 ∧ . . .ψd j−1

j . . .∧ψd1
1 =

n

∑
j=1

〈σd1 . . .σd j−1 . . .σdn
〉

(5.23)

Here we used [Di] · [D j] = 0 which follows from the definition and in the third equality we

have integrated over the fiber of π :M g,n+1 where [D j] represents a section with a simple zero.

Very similarly one concludes that L0 = α∗(ω ′)⊗n
j=1O(D j) is a degree 2g−g+n section of a line

bundle over the fibre of π . We evaluate then again by integration over the fibre

〈σ1σd1 . . .σdn
〉 =

∫
M g,n+1

ψ0∧n
i=1ψdi

i = (2g−2+n)〈σd1 . . .σdn
〉 (5.24)

With the recursive relations (5.19,5.20) and the initial conditions that the moduli space of a

three pointed sphere is a point 〈σ0σ0σ0〉 = 1 and 〈σ1〉 one can solve as an exercise all g = 0,1

correlators. It seems natural to try next to consider maps which “forget” nodes to get a recursion

among correlations with different genera. From the algebraic point of view taken above this turns

out to be surprisingly difficult.

Let now {di} the set of all nonnegative integers and define

Fg(t0, t1, . . .) = ∑
{di}

〈∏τdi
〉g ∏

r>0

tnr
r

nr!
, (5.25)
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Figure 9: Universal Curve C Mg,n+1 and the forgetful map. The nodal and reducible fibre are displayed,

because there are such fibres, but they plays no rôle in the derivations of the string and dilaton equation.

They would play a rôle in recursion relations among different genera, which is hard from the algebraic point

op view.

with nr = Card(i : di = r) and

F =
∞

∑
g=0

λ 2g−2Fg , (5.26)

the free energy of 2d topological gravity. Where we rescaled the operators τn = (2n + 1)!!σn

for latter convenience. [149] conjectured that the partition function Z = eF satisfies the Virasoro

constraints

LnZ = 0, n ≥−1 with [Ln,Lm] = (n−m)Ln+m (5.27)

with

L−1 = −1
2

∂
∂ t0

+
1

4
t20 +

∞

∑
i=1

2i+1

2
ti

∂
∂ ti−1

,

L0 = −1
2

∂
∂ t1

+
∞

∑
i=0

2i+1

2

∂
∂ ti

+
1

16
,

Ln = −1
2

∂
∂ tn−1

+
∞

∑
i=0

2i+1

2
ti

∂
∂ ti+n

+
λ 2

4

n

∑
i=0

∂ 2

∂ ti−1∂ tn−i

,

(5.28)

As an exercises one may check that (5.19,5.20) are equivalent to L−1Z = L0Z = 0. It is well known

[149] [41] that (5.27) is equivalent to the fact that Z is the τ function of the KDV hierachy and
fulfills the dilaton equation.

All proofs of (5.27) are combinatorial. The first is by Kontsevich, who interprets a direct

evaluation of the correlators as ribbon graphs of the shifted Airy function matrix model, which

in turn can by viewed as the Akhiezer Baker function of the KdV hierarchy. This beautiful work

[99] has been reviewed in many places e.g. [40, 39]. More recently a second combinatorial proof

has been given by Okounkov and Pandharipande [122]. Recently a new proof has been given

by Mirzakhani [115], which establishes an interesting relation to the Weil-Peterson volume of

the moduli space of hyperbolic Riemann surfaces with geodesic boundary conditions that awaits

physical interpretation.

There is a physical recursion argument relation based on the contact term algebra of two di-

mensional gravity [145], which up to a normalization of 〈τ0τ0τ0〉 = 1 reproduces all correlation
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Figure 10: Degenerations of a genus g surface corresponding to the codim one boundary in M g,n in the

dual graph notations where closed lines are double points and open lines are operator insertions.

functions and is equivalent to 5.27, see [40]. The recursion includes a reduction of the genus

〈τn ∏k∈S τk〉g = ∑
k∈S

P
(n)
k 〈τn+k−1 ∏

k′ 6=k

τk′〉g + ∑
i+ j=n−2

A
(n)
i j 〈τiτ j ∏

k∈S

τk〉g−1

+
g−1
∑
h=1

∑
S=S1∪S2
i+ j=n−2

B
(n,h)
i j 〈τi ∏

k∈S1

τk〉h〈τi ∏
k∈S2

τk〉g−h

(5.29)

This recursion reads very naturally as if we could have reduced in addition to the unstable meeting

of two points also the nodes and irreducible fibres in Fig. 9 and treat all boundaries of the moduli

space M g,n at the same footing as in Fig. 10. [145] determine the P
(n)
k = 2k + 1 and A

(n)
i j = 1

2

and B
(n,h)
i j = 1

2
using contact term manipulations. The puncture and the dilaton equation, which is

implied in (5.29) can be established rigorously in this way. However for the determination of all

A,B,P one needs consistency assumptions about the contact term algebra. Therefore, even though

(5.29) implies (5.27), the approach of [145] is not a quite a proof of (5.27).

Let us sketch the argument [145] of the identification of the 2d field theory formalism with

the geometrical approach. 2d gravity can be constructed as cohomological supersymmetric theory

with two nilpotent operators Q representing the total BRST charge and Q− = Qs − Q̄s, where

Qs are the left and Q̄s the right super charge. The decoupling of the WS metric is not complete

{Qs,β k} = {Q,β k} = T k, so that Q and Qs insertions in correlations act on the measure (6.96) and

yield by (4.17) derivatives onMg,n. The decisive field is the 2d dilaton φ . Other fields have the
following relation to φ

ψ − ψ̄ = 1
2
{Q−,φ}, γ0 = 1

2
{Q,{Q−,φ}}

(ω, ω̄) = 1
2
(∂φ ,−∂̄ φ), (ψ0, ψ̄0) = 1

2
(∂ψ,−∂̄ψ), R = dω = ∂ ∂̄ω .

(5.30)

002 / 43



P
o
S
(
R
T
N
2
0
0
5
)
0
0
2

Topological String Theory on Calabi-Yau threefolds Albrecht Klemm

ε

P(x)
σn

Dε σn
P(1)

T

Figure 11: Conformally equivalent definition of colliding points.

The theory has a gauge fixing sector similar to the superstring and in particular anti-commutating

(b,c) ghost and commuting (β ,γ) ghosts with BRST symmetry δbrstω = φ0+ dc0, δbrstc0 = γ0,
δbrstω = φ0+ dc0, δbrstψ0 = dγ0 and δbrstγ0 = 0. The field equations imply γ0 = 1

2
(∂γ + γ∂φ +

c∂ψ + c.c.). The main claim is that formally the ψi classes are

ψi ∼ (γ0+ψ0+dω)(xi), (5.31)

so that formally σn ∼ (γ0 + ψ0 + dw)n. The point is that the insertion of 〈(γ0 + ψ0 + dω)O〉g

produces by (5.30) and (4.17) a two-form onM g namely ∂ ∂̄ 〈φO〉g, where the ∂ ∂̄ operators act on
M g,n and O stands for cohomological states. Note that the ∂ , ∂̄ derivatives act in the direction of
the complex moduli by (4.17) as well as in the direction of the fibre of the universal curve. There

are operators Oi = eπ(xi), so that 〈φOi〉g = log |σxi
|2 hence by (5.16) we get the claimed relation.

The puncture operator plays a special rôle in the field theory formalism and is given in the −1
picture [126] by P(x) = cc̄δ (γ)δ (γ̄)(x). In order to prove the puncture equation (5.19) one has to

understand the contact term between P and σn, that is the integral

∫
Dε

P|σn〉 =
∫
|x|<ε
d2xP(x)|σn〉 =

∫
|q|<ε

d2q

|q|2G0Ḡ0q
L0 q̄L0P(1)|σn〉

=
∫
|q|<ε

d2q

|q|2G0Ḡ0q
L0 q̄L0

1

2
QQ−|σn−1〉 =

∫
|q|<ε
d2q∂q∂̄q̄(q

L0 q̄L0 |σn−1〉)

=
∫
|q|<ε
d2q∂q∂̄q̄(log |q|2)|σn−1〉 = |σn−1〉

(5.32)

where we replaced in the second equality the position dependence of the puncture operator by a

neck of length T = − log |q|, see figure 11. The insertion of the G0, Ḡ0 comes from the integral

over the superpartners of the modulus q. From the definition (5.31) and σn = ψn as well as (5.30)

follows the third equality. The G0, Ḡ0 play the same rôle as the Q+,Q− in the derivation (4.64)
namely to produce the derivatives q∂qq̄∂̄q̄ from the anti commutator {Q,G0} = {Q−,G0} = L0.

The logarithm occurs, because [L0,φ(0)] = φ0+ 1 with φ0 =
∮

∂φ and φ0|σn−1〉 = L0|σn−1〉 = 0.

Regular terms vanish under the integral. Hence one concludes that

P(x)|σn〉 = δ (2)(x)|σn−1〉 (5.33)

fromwhich (5.19) follows. The derivation of the dilaton equation is a very similar exercise. The rest

of (5.29) is application of the sewing procedure of string perturbation theory with some consistency

considerations restricting the contact algebra [145]. We will a make a similar construction in Sec.

6.12
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Beside the classes Ψ there are other important classes onMg,n. A smooth Riemann surface

Σg has a g dimensional vector space of holomorphic differentials in H1,0(Σg) = H0(Σg,KΣg
). On a

connected nodal curves there is extension of these differentials. Namely on a curve of arithmetic

genus g one has g meromorphic differentials ω , which are holomorphic outside the nodes, have at
most a pole of order 1 at each node branch and the residua on the two node branches add up to

zero. These vector space patch together to give a rank g vector bundle E onMg,n, which is called

the Hodge bundle20. In fact the construction applies likewise toMg,n(M,β ), see below. The Chern

classes of the Hodge bundle. sometimes referred to as λ classes, can be integrated overMg,n. For

g ≥ 2 one gets [52] [51]

Rg =
∫

M g

c3g−1(E) =
|B2gB2g−2|

2g(2g−2)(2g−2)! (5.34)

e.g. R2 = 1
2880

,R3 = 1
725760

, . . .. Using a formula of Mumford the correlators involving ck(E) and

ψ can be systematically reduced [52] to correlators involving only ψ and are fixed by the Virasoro
constraints.

5.4 The moduli space of maps

Let us now come to the original question of coupling the topological A-model to gravity. We

now want to construct the moduli space of maps which send x : Σ → M into a class β = [x(Σ)] ∈
H2(M,Z) calledMg,n(M,β ). The rough expectation is that the negative dimension of the moduli

space (5.11) for g > 1 is offset by the dimension of the deformations spaceMg of the Riemann

surface. In other words we might hope to modify the complex structure j of Σ until it is compatible
with the complex structure on M and a ( j,J) holomorphic map satisfying the Cauchy-Riemann

equations

∂ j,Jx =
1

2
(dx+ J ◦dx◦ j) = 0 (5.35)

does exist. To see at least heuristically what the dimension of the moduli space of a stable com-

pactificationMg,n(M,β ) is consider the normal bundle exact sequence of an immersion of a non

singular curve inM

0→ TΣ → x∗TM → NΣ/M → 0 . (5.36)

The associated long exact sequence is

0 → H0(Σ,TΣ) →
H0(Σ,x∗TM) → H0(Σ,NΣ/M) → H1(Σ,TΣ) →
H1(Σ,x∗TM) → H1(Σ,NΣ/M) → 0 .

(5.37)

Let us interpret the terms as automorphism, deformations and obstructions of the involved struc-

tures. As far as only the domain curve is concerned we know that H1(Σ,TΣ)− H0(Σ,TΣ) =

Def(Σ)−Aut(Σ), and that the dimension of M} is 3g− 3. For fixed complex structure of the
domain we can identify H0(Σ,x∗TM) with the deformations and H1(Σ,x∗TM) with the obstructions

of the map x. The real objects of interest are H0(Σ,NΣ/M) and H1(Σ,NΣ/M) which are identified

with the deformations and obstructions of the map x without fixing the domain. In order to have a

20A similar construction on the targetspace is discussed in Sec. 6.5.
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stable compactificationMg,n(M,β ) we must allow in general for marked points. In this case (5.37)

becomes
0 → Aut(Σ, p,x) → Aut(Σ, p) →

Def(x) → Def(Σ, p,x) → Def(Σ, p) →
Obs(x) → Obs(Σ, p,x) → 0 .

(5.38)

Now if a stable compactificationMg,n(M,β ) exist then Aut(Σ, p,X) = 0. Moreover at least in some

relevant situations Obs(Σ, p,X) = 0 and since the alternating dimensions of long exact sequences

is 0, we can calculate Def(Σ, p,X), because we know Def(Σ, p)−Aut(Σ, p) = 3g − 3+ n and

Def(x)−Obs(x) = h0(x∗(T M))−h1(x∗(T M)). The expected or virtual complex dimension of the

moduli of stable maps is

vdimCM g,β ,n(x) = h0(x∗(T M))−h1(x∗(T M))+dim Def(Σ, p)−dim Aut(Σ, p)

= c1(T M) ·β +(dimC M−3)(1−g)+n ,
(5.39)

where we calculated the first two terms contribution by (7.43) and the last two by (7.42) with

addition of moduli for marked points.

This formula reflects the special rôle of Calabi-Yau threefolds. By (5.39) the moduli space

of the contributions to the zero point functions F (g)(t) for all genera is zero dimensional, which

reduces the problem of evaluating them to a problem of counting points, albeit a very complicated

one. All topological theories will simplify in this way as the example in 2.1. That does not mean in

general that all topological observable are integers, because discrete automorphism groups of the

theory, which have to be identified in the path integral, weigh some of these points with 1/|Aut|
factors. The remarkable fact about CY threefolds is that an infinite number of physically relevant

objects can be reduced in this way. Further comments about the A-model coupling to gravity are

exhibited in comparison with the B-model in Sec. 6.11.

5.5 Idea of localisation and the vertex

The successful setup of this point counting problem in the A-model is a very sophisticated

problem, which needs several lectures in its own. Let us mention just a few issues and ideas with

references to the literature. In the A-model we have a counting problems for each topological type

of map x : Σg → M which are labeled by g and the class β ∈ H2(M,Z). The virtual dimension of the

moduli space might be zero, but points have no hair. They must be characterized by starting with

the space of all possible deformationsM and analyze the obstructions. A natural way to describe

the obstructions especially if one comes from the path integral would be to give a top dimensional

integrand on M say ctop. For instance the question for the topological Euler number is point

counting problem asking for the zero set of the generic section σ in the tangent bundle, a C ∞ vector

field. We can use the Gauss-Bonnet theorem see Sec. 7.3 and write this as χ =
∫
M

cn =
∫
M

R(g)dV .

This is not a simplification, unless we have a good choice for g to perform the integral, which comes

up ifM admits symmetries. For instance on the sphere we can generate a vector field by rotating

the sphere. This introduces a coordinate direction φ and we can choose the altitude θ as the second
and pick the diagonal constant metric in these coordinates, which is flat everywhere but has δ
curvature at the poles, which leads to the Euler number 2. The poles come of course from the two

zeros of the vector field generated by the group action on S2, which also leads to the conclusion
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that χ = 2. Points that contribute to the integrals can be singled out as fixpoints under group

actions21. The underlying principle is called localization. The key is to give the points additional

structure which describes the group action in its neighborhood in a way that is useful to address

global cohomological questions, like calculating intersections. Learning about the group and the

target from the action of the group is a highly developed subject[17, 43]. As far as the cohomology

is concerned it is systematized in equivariant cohomology. An example of principal importance

in the A-model are group actions of the algebraic torus T = (C∗)r, C∗ = C \ {0}. In equivariant
cohomology the cohomology of point is already a very rich structure. E.g. under the torus action it

is, see [76] chap 4.2 for an introduction,

H∗
T ({pt}) = H∗(BT ) = H∗((P∞)r) = Q[t1, . . . , tr], (5.40)

the polynomial ring over the rationals in r variables thought as ti = c1(H(C∞)), see Sec. 7.3.

Toric varieties of dim r are varieties on which the algebraic torus (C∗)r acts on open subsets.

They are completely characterized by the degenerations of the (C∗)r action which are given by

an r valent graph Γ. Locally the degenerations of toric 3 fold can be represented by a 3 vertex,
which represents an C3 for the torus action zi → λizi, with λi ∈ C∗. Every toric 3fold can be build
by patching C3 patches in a way compatible with the global (C∗)3 action. The torus action of
the ambient space can be pushed forward to the moduli space of the maps M (β ,g) and allows

to define an equivariant cohomology theory onM (β ,g), by which the points can be enumerated

using the Atiyah-Bott fixpoint formula [6]. This technique was pioneered by Kontsevich in [100]

for pedagogical introduction and further references see [76]. An interesting point is that the cor-

relations functions of critical bosonic worldsheet gravity appear very explicitly in the formulas for

the equivariant virtual fundamental class over which [100] integrates inM (β ,g).

The most effective method to solve the open and closed topological string on open toric Calabi-

Yau manifolds employs the connection of open topological string to Chern-Simons theory [148].

This leads to the construction of the topological vertex [1] as reviewed in more detail in [114].

The topological vertex amplitude is the building block for calculation any closed or open string

amplitude in any toric CY variety by

• Solving the general problem on a C3 patch for arbitrary conditions on three stacks of D-

branes on Harvey-Lawson special Lagrangian cycles with topology S1×R2 as in Fig. 12

This amplitude can be calculated in terms of the large N expansion of link invariantsWRR′(q)

of Chern-Simons theory on S3 [1]. In a specific framing one has

ZR1R2R3(q) = ∑
R,Q1,Q2

N
R1
Q1,R

N
Rt
3

Qt
3R

qκR2
/2+κR3

/2
WRt

2Q1
(q)WR2Q

t
3
(q)

WR2(q)
, (5.41)

where N
R3
R1R2
are the usual tensor product coefficients and κR = ∑i li(li −2i +1) and li is the

length of the row of the i′th line in the Young-Tableaux of R. Note that q = eλ with λ the
string coupling. i.e. ZR1,R2,R3 is exact in q and contains all genus information. All possible

boundary conditions on the stack of N D-branes are encoded in R.

21Another way to single them out is a critical points of a Morse function.
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U(N )
3

U(N )
 2

Φ : Σ g,h

U(N )1

moment map
projection of C3

|z |

|z |

|z |3

1

2

Figure 12: Moment map projection of the vertex and an amplitude with genus 2 and boundary conditions

specified by three representations Ri of U(Ni) of three stack of D-branes wrapping Harvey-Lawson special

Lagrangian cycles of topology S1×R2.

1

(−1)

2Γ
e

l(Q) t−

Γ

Γ

...

...

Figure 13: Gluing of graphs along a connecting propagator

• Providing gluing rules: If Γ = Γ1∪Γ2 and XΓi
are the associated toric varieties then

Z(XΓ) = ∑
Q

Z(XΓL
)Q(−1)l(Q)e−l(Q)tZ(XΓL

)Qt (5.42)

with t is the Kähler parameter “size” of the connecting P1. The quantity (−1)l(Q)e−l(Q)t , with

l(Q) the number of boxes in the Young-Tableaux of the intermediate representation, can be

viewed as propagator. Here again we ignore the data of the framing, which are essential to

patch together arbitrary toric varieties.

For instance the Calabi-Yau geometry O(−3) → P2 is covered by three patches, with the

moment map projection as in Fig. 14 The partition function ZP2 for closed strings is obtained by

gluing three vertices with trivial representation Qi = · on the outer legs by three propagators

ZP2 = ∑
R1,R2,R3

(−1)∑i l(Ri)e−∑i l(Ri)tq∑i κRi Z·R2Rt
3
Z·R1Rt

2
Z·R3Rt

1
. (5.43)

All t represent the volume of the hyperplane P1, so that t is the single Kähler parameter ofO(−3)→
P2.

The calculation is easily performed and by taking the logarithm we get the generating function

for the all genus contribution

F (λ , t) =
∞

∑
λ=0

λ 2g−2F (g)(t) . (5.44)
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(−2)
R
2

R 3
(−2)

R1
(−2)

Q Q

Q1

3 2

Figure 14: The moment map projection that shows the degeneration of the torus action (C2)∗ on O(−3) →

P2

AllF (g) have an expansionF (g) = ∑β r
g

β qβ , where the r
g

β ∈ Q are the Gromow-Witten invariants

for the holomorphic map from Σg to a curve in the class β ∈ H2(M,Z) of the image curve inM.

5.6 The Gopakumar-Vafa invariants

The authors of [66] consider an M-theory compactification on M to five dimensions. The

space time BPS states fall into representations of the little group of the 5d Lorentz group L =

SO(4) ≃ SU(2)L ×SU(2)R. The low energy interpretation of the free energy F in 4d relates it to

the 5d BPS spectrum through a Schwinger one loop calculation of the 4d R2+F
2g−2
+ effective terms.

A similar one loop calculation corrects the effective gauge coupling 1
g2(G,p2)

through threshold

effects [89]. Note that these 4d calculations are sensitive to the off shell quantum numbers, i.e. to

SU(2)L ×SU(2)R. Only BPS particles annihilated by the supercharges in the (0, 1
2
) representation

contribute to the loop. They couple to the anti-selfdual graviphoton field strength F+ and the anti-

selfdual curvature R+ only via their left spin eigenvalues of their representation under L. The

right representation content enters solely via its multiplicity and a sign (−1)2 j3R , in particular any

contribution of long multiplets is projected out by these signs. To summarize, the dependence of

F on the BPS spectrum is via a supersymmetric index

I(α,β ) = TrH (−1)2 j3L+2 j3Re−α j3L−βH (5.45)

and all information enteringF is carried by the following combination

∑
j3L, j3R

(−1)2 j3R(2 j3R +1)N
β
j3R,J3L

[jL] =
∞

∑
g=0

n
(g)
β Ig . (5.46)

of the multiplicities of the BPS states N
β
j3R,J3L
. The last basis change of the left spin from [jL] to

Ig =

[(
1

2

)

L

+2(0)L

]⊗g

(5.47)

relates the left spin to the genus g of C and defines the integer Gopakumar-Vafa invariants n
(g)
β

associated to a holomorphic curve C of genus g in the class β = [C] ∈ H2(M,Z). In contrast to

the n
(g)
β , the N

β
j3R, j3L
are no symplectic invariants. They change when lines of marginal stability
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in the complex moduli space are crossed22 [90]. The N
β
j3R, j3L
are interpreted as the dimension of

SU(2)L × SU(2)R representations w.r.t. a natural action of this group on the cohomology of the

moduli space of the M2 brane. This moduli space is given by the moduli of flat U(1) connections

on C and the moduli of the curve. A model for this space is the Jacobian fibration over the moduli

space of the curve C in β . The expansion ofF hol in terms of these BPS state sums is obtained by

performing the Schwinger loop calculation [4],[66] as

F hol(λ , t) =
∞

∑
g=0

λ 2g−2F (g)(t)

=
c(t)

λ 2
+ l(t)+

∞

∑
g=0

∑
β∈H2(M,Z)

∞

∑
m=1

n
(g)
β
1

m

(
2sin

mλ
2

)2g−2
qβm

=
c(t)

λ 2
+ l(t)+

∞

∑
g=0

∑
β∈H2(M,Z)

∞

∑
m=1

n
(g)
β (−1)g−1 [m](2g−2)

m
qβm,

(5.48)

with

qβ = ei∑h1,1

i=1 ti
∫

β Ji , [x] := q
x
2

λ −q
− x
2

λ , qλ = eiλ . (5.49)

The cubic term c(t) in the Kähler parameters ti is the classical part of the prepotential F
(0) given

in (6.84) without the constant term, and l(t) = ∑h
i=1

ti
24

∫
M ch2Ji is the classical part ofF

(1). Using

the expansion
1

m

1
(
2sin mλ

2

)2 = ∑
g=0

λ 2g−2(−1)g+1 B2g

2g(2g−2)!m
2g−3

and a ζ (x) = ∑∞
m=1

1
mx regularization of the sum over m with ζ (−n) = −Bn+1

n+1 , we see that for g ≥ 2
the β = 0 constant map terms from localization [51]

〈1〉M
g,0 = (−1)g χ

2

∫
Mg

c3g−1 = (−1)g χ
2

|B2gB2g−2|
2g(2g−2)(2g−2)! (5.50)

are reproduced if we set n
(0)
0 = − χ

2
. This choice also reproduces the constant term proportional to

ζ (3) inF (0). InF (1) there is a ζ (1) term which requires an additional regularization.

In terms of the invariants n
(g)
β the partition function Zhol= exp(F hol) has the following product

form23

ZholGV(M,qλ ,q) = ∏
β

[(
∞

∏
r=1

(1−qr
λ qβ )

rn
(0)
β

)
∞

∏
g=1

2g−2
∏
l=0

(1−q
g−l−1
λ qβ )

(−1)g+r( 2g−2l )n
(g)
β

]
. (5.51)

This product form resembles the Hilbert scheme of symmetric products written in terms of partition

sums over free fermionic and bosonic fields with an integer U(1) charge as well as the closely

related product form for the elliptic genus of symmetric products. As it has already been pointed

out in [65], it is also reminiscent of the Borcherds product form of automorphic forms ofO(2,n,Z),

see [15] and [101] for a review. Here the idea is that integrality of the n
(g)
β is related to the fact that

they are Fourier coefficients of other (quasi)automorphic forms, see also [91].

22Notice that the successful microscopic interpretation of the 5d black hole entropy requires deformation invariance

and relies on the index-like quantity and not on the total number of BPS states.
23Here we dropped the exp(

c(t)
λ 2 + l(t)) factor of the classical terms at genus 0,1.
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5.7 Relation to Donaldson-Thomas Invariants

Another way to obtain BPS states is by wrapping D–branes on supersymmetric cycles inM. In

particular, we can wrap Euclidean 6-branes on M itself and Euclidean 2-branes on a curve C ⊂ M,

possibly bound to some 0-branes. At the level of RR charges such a configuration can be cast into

a short exact sequence of the form

0−→ I −→ OM −→ OZ −→ 0 (5.52)

where I is the ideal sheaf describing this configuration and Z is the subscheme of M consisting

of the curve C and the points at which the 0-branes are supported. Counting BPS states therefore

leads to the study of the moduli space Im(M,β ) of such ideal sheavesI , which has two discrete in-

variants: the class β = [Z] ∈ H2(M,Z) and, roughly speaking, the number of 0-branes m = χ(OZ).

Due to the Calabi–Yau condition the virtual dimension of Im(M,β ) is zero, and the number of BPS

states with these charges is therefore obtained by counting the points in Im(M,β ). It is, however,

not quite as simple as that because as is well–known from Gromov–Witten theory, these configu-

rations can appear in families, and one has to work with the virtual fundamental class. Putting this

important subtlety aside, this number is called the Donaldson–Thomas invariant ñ
(m)
β [47], [138].

These invariants are expected to be integral as they count BPS states.

Since both invariants, Gopakumar–Vafa and Donaldson–Thomas, keep track of the number

of BPS states, they should be related. The relation is in fact a consequence of the S–duality in

topological strings [119], and takes the following form. The factor in (5.51) coming from the

constant maps gives the McMahon function M(qλ ) = ∏n≥0
1

(1−qn
λ )n to the power

χ
2
. This function

appears also in Donaldson–Thomas theory [112], calculable on local toric Calabi–Yau spaces e.g.

with the vertex [1]. However, in Donaldson–Thomas theory the power of the McMahon function

is χ . Note also that if (5.48) holds then F or Z restricted to this class is always a finite degree

rational function in qλ symmetric in qλ → 1
qλ
, since the genus is finite in a given class β . Thanks to

this observation one can read from the comparison of the expansion of Zhol in terms of Donaldson–

Thomas invariants ñ
(m)
β ∈ Z

ZholDT(M,qλ ,q) = ∑
β ,m∈Z

ñ
(m)
β qm

λ qβ (5.53)

with the expansion in terms of Gopakumar–Vafa invariants [112]

ZholGV(M,qλ ,q)M(qλ )
χ(M)
2 = ZholDT(M,−qλ ,q) (5.54)

the precise relation between ñ
(m)
Q and n

(g)
Q . Eq. (5.48) and (5.51) then relate the two types of

invariants to the Gromov–Witten invariants r
(g)
Q ∈ Q as in

F
hol
GW(λ ,q) =

∞

∑
g=0

λ 2g−2∑
β

r
(g)
β qβ .

6. The topological B-model

Since the axial U(1)A, whose gauge connection is added to the spin connection to define the

B-model, develops an anomaly of its current proportional to
∫

Σ ∂µ j
µ
A ∼ ∫

Σ x∗(c1(T M)) the twisted
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B-model is only consistent for Kähler manifold with vanishing first Chern class, i.e. Calabi-Yau

manifolds.

Our plan for the treatment of the B-model is as follows. In next two sections we will present

the principal structure of the topological B-model and its coupling to gravity. We will then recall

some facts about families of complex manifolds. The integrability of the complex structure de-

formations on Calabi-Yau manifolds will be presented in some detail following the proof of Tian,

partly because it is one of the main classical results, but also because it leads directly to the for-

mulation of Kodaira-Spencer theory of gravity. The behavior of the periods under infinitesimal

deformations of the complex structure is the preparation for the derivation of the special Kähler

geometry relation from geometry. After that we discuss two methods to obtain the Picard-Fuchs

equations, which play a central role to actually solve the B-model. The quintic hypersurfaces is the

main example, however we aim for a presentation, which paves the way for generalizations to the

bulk of the known Calabi-Yau: complete intersections in weighted projective space.

6.1 The topological B without worldsheet gravity

The scalar BRST operator is in this case, see table 3,

QB = Q̄− + Q̄+ . (6.1)

The scalar fields on the worldsheet are conveniently chosen as

η ı̄ := −(ψ ı̄
− +ψ ı̄

+), θ j := g jı̄(ψ ı̄
+−ψ ı̄

−) , (6.2)

while the one form fields are

ρ i
z := ψ i

− of type (1,0), ρ i
z̄ := ψ i

+ of type (0,1). (6.3)

The supersymmetry transformation δ = ε̄Q̄+ + ε̄Q̄− is obtained by setting ε̄+ = −ε̄− = ε̄ and
ε± = 0

δxi = 0, δxı̄ = ε̄η ı̄

δθi = 0, δη ı̄ = 0

δρ i
µ = ±iε̄∂µxi .

(6.4)

The zero form observables O (0) are now related to forms in Ω(0,p)(M,ΛqT 1,0M) with the identifi-

cation of the scalar Grassmann fields on the worldsheet to forms and vectors on M η ı̄ ↔ dxı̄ and

θi ↔ ∂
∂xi . I.e. to each form onM of type

W = ω j1... jq
ı̄1...ı̄p
dxı̄1 ∧ . . .∧dxı̄p

∂
∂x j1

∧ . . .∧ ∂
∂x jq

(6.5)

we associate a 0-form operator on Σ

O
(0)
W = ω j1... jq

ı̄1...ı̄p
η ı̄1 . . .η ı̄pθ j1 . . .θ jq . (6.6)

One checks that the QB operator is identified with the Dolbeault operator ∂̄ which increases the
anti holomorphic form degree

0
∂̄
→Ω00(M,ΛqT 1,0M)

∂̄
→Ω01(M,ΛqT 1,0M)

∂̄
→ . . .

∂̄
→Ω0d(M,ΛqT 1,0M)

∂̄
→0 . (6.7)
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and one has with {QB,O
(1)
W } = −O

(0)

∂̄W
the identification

H∗
QB

=
Ker QB

Im QB

=
d⊕

p,q=0

H0,p(M,ΛqT 1,0M) . (6.8)

The selection rules from the R-symmetries are as before ∑i pi = ∑i qi = d(1− g). It follows

that for g = 0 we have again the possibility of a non-vanishing three point function 〈OA(i)OA( j)OA(k)〉,
if we consider three local operators OA(k) associated to

A(k) = ω(k) i

j̄
dx j̄ ∂

∂xi
∈ H1(M,T 1,0M) . (6.9)

Eq. (6.4) shows that there is a fixpoint of the fermionic symmetry at the constant maps

∂µxi = 0 . (6.10)

We expect therefore that all contributions to the path integral are localized to constant maps. This

is the main simplification in the B-model. For constant maps Σg is mapped to a point in M. These

maps are of course much easier to control then the holomophic maps of the A-model and in particu-

lar they are not affected by the sizes, i.e. Kähler parameter ofM. The B-model without worldsheet

gravity is like a Kaluza-Klein reduction. By writing the action in the form

S = it

∫
σ
{QB,V}+ tW (6.11)

with

V = gi j̄(ρz∂z̄x
j̄ +ρ i

z̄∂zx
j̄) (6.12)

and

W =
∫

Σg

(−θiDρ i − i

2
Riı̄ j j̄ρ i ∧ρ jη ı̄θkg j̄k) (6.13)

one can conclude the following.W does not depend on the complex structure of Σ, which decouples
from the B-model at genus 0. The Kähler variations ofW are QB exact and decouple likewise. It is

also t independent as t can be absorbed in a field redefinition inW . For more details see [156]. In

the off shell formulation of [105][106] one can simply write the complete action as Q commutator

S = {QB,Ṽ} which makes the above points more obvious.
Since the fixpoints of the fermionic maps of the B-model are constant maps, mapping all Σ

to a point in the Calabi-Yau manifold M, their moduli space contains M and in the special case of

the three punctured sphere, i.e. in the case of the three point function it is actually M, since these

three points can be fixed on S2 by an SL(2,C) transformation and the sphere itself has no complex

deformations. For this reason all we have to find is a canonical measure on M, which we integrate

over M to get the three point function. Using Kaluza Klein reduction methods this measure has

been found long ago [133]

Ci jk(z) = 〈O(0)
Ai O

(0)
A j O

(0)

Ak 〉 =
∫

M
Ω∧A

(i) i1
j̄1

A
( j) i2
j̄2

A
(k) i3
j̄3

Ωi1i2i3dx
j̄1 ∧dx j̄2 ∧dx j̄3 . (6.14)

HereΩ(z) is the unique non-vanishing holomorphic (3,0) form, which exists on every Calabi-

Yau, see Sec. (7.5). Using the isomomorphism (6.22) A 7→ Â we can define a non-holomorphic two

point function

Ni j̄ =
∫

M
Â(i)∧ Â

( j̄)
. (6.15)
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6.2 First order complex structure deformation

The expressions (6.14) and (6.15) depend as anticipated only on the complex structure of M

and not on its Kähler structure. We saw in section 4.3 that deformations of the action by
∫

Σ O
(2)

Ak with

A(k) ∈ H
(0,1)

∂̄ (M,TM) are first order complex structure deformations of M. Our aim is to explain

in this section the local tangent space of the complex structure moduli space from a different point

of view, put forward by Kodaira and Spencer [98] and to explain in the next section why the first

order deformations on a Calabi-Yau manifold are unobstructed.

Consider a 2n real dimensional manifold and a covering of it by coordinate patches Ui, i =

1, . . . ,r, which are homeomorphic to a neighborhoodUi ∈Cn with coordinates x
(i)
α (p), α = 1, . . . ,n.

It is a complex manifold if the transition functions f ( jk) : x(k)(p)→ x( j)(p), defined for p∈U j∩Uk,

are biholomorphic. One attempts to define a family of complex manifolds Mz, by considering

a family of transition functions x
( j)
α = f

( jk)
α (x(k),z), which depend also holomorphically on the

complex parameters z. The difficulty is that some z dependence of f
(ik)
α (x(k),z) corresponds just to

different choices of local coordinates systems on the same complex manifold. In order to decide

whether the f ( jk)(x(k),z) really induce changes of the complex structure [98] considers in every

patch Uk an infinitesimal coordinate change that is characterized by a holomorphic vector field

V (k)(z) = ∑n
α=1

∂ f
(k)
α (x(k),z)

∂ z
∂

∂x
(k)
α
. Next consider the composition of transition functions in Ui ∩U j ∩

Uk. By definition

f
(ik)
α (x(k),z) = f

(i j)
α ( f

( jk)
1 (x(k),z), . . . , f

( jk)
n (x(k),z),z) (6.16)

holds. Differentiation w.r.t. to z gives

∂ f
(ik)
α (x(k),z)

∂ z
=

∂ f
(i j)
α (x( j),z)

∂ z
+

n

∑
β=1

∂x
(i)
α

∂x
( j)
β

∂ f
( jk)
β (x(k),z)

∂ z
. (6.17)

Denote general vector fields by

A( jk)(z) =
n

∑
α=1

∂ f
( jk)
α (x(k),z)

∂ z

∂
∂x

( j)
α

, x(k) = f (k j)(x j,z) . (6.18)

Note that A(kk)(z) = 0 since f
(kk)
α = x(k) independently of z. Therefore eq. (6.17) written covariantly

in terms of the vector fields (6.18) implies A(k j)(z) =−A( jk)(z). For general i, j,k (6.17) is a Čhech

1-cocycle condition for the A(i j)

A(i j)(z)+A(ki)(z)+A( jk)(z) = 0 . (6.19)

The exact 1-cocycles come precisely from the infinitesimal coordinates changes setting A( jk)(z) =

V ( j)(z)−V (k)(z), while the true changes of complex structure correspond to 1-cocycles, which are

not exact, i.e. elements of H1(M,A), where A are sheaves of vector fields A = O(T M). The Čheck-

Dolbeault theorem (7.10) with F = O(T M) implies that complex structure deformations are given

by elements in H0,1(M,TM), which we also call A.
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6.3 Unobstructedness of the complex deformation space

As explained in [98] the existence of a global complex structure deformation requires the

vanishing of higher Čhech cohomology groups for vector fields. Tian [139] and Todorov [142]

have proven that these higher order conditions are automatically fulfilled on a Calabi-Yau space.

The elements A(z) = Ai
j̄
(x,z)dx j̄ ∂

∂xi inH(0,1)(M,TM) in the complex moduli space can be used

to deform the ∂̄ operator to ∂̄z = (∂̄ +A(z)) so that ∂̄z f (x) = 0, defines what a holomorphic function

onM is w.r.t. the new complex structure. The requirement that ∂̄ 2z = 0 leads to

∂̄A(z)+
1

2
[A(z),A(z)] = 0, (6.20)

where [., .] is the Lie bracket. For φ(x) = φ i(x)∂xi
∈L 0,p(T ), with φ i = 1

p!
φ(x)i

ı̄1,...,ı̄p
dxı̄1∧ . . .∧dxı̄p ,

and ω(x) ∈ L 0,q(T ) similarly defined one has

[φ ,ω] = (φ i ∧∂iω j − (−1)pqω i ∧∂iφ j)∂ j, (6.21)

giving above a (0,2) form vector field from two (0,1)-form vector fields. Condition (6.20) is

equivalent to the vanishing of the Nijenhuis tensor (7.5) [98].

The main idea of the proof is that the existence of the holomorphic (n,0) form induces an

isomorphism

H(0,p)(M,TM) ∼= Hn−1,p(M) . (6.22)

under which the condition (6.20) is converted into a cohomological question, which is solved by

the ∂ ∂̄ lemma. This conversion of the deformation problem to a cohomological question, which is
solved by an analog of the ∂ ∂̄ Lemma extends to deformations of G2 metrics [87][84].

Contraction with the homolomorphic (n,0) form associates to A = Ai
j̄1,..., j̄p

dx j̄1∧ . . .∧dx j̄p ∂
∂xi ∈

H(0,p)(M,TM) an Â ∈ Hn−1,p(M) as

Â =
1

(n−1)!A
j

j̄1,..., j̄p
Ω j,i2,...,indx

i2 ∧ . . .∧dxindx j̄1 ∧ . . .∧dx j̄p (6.23)

with the inverse

(Â)∨ =
1

(n−1)!|Ω|2 Ω̄i,i2,...,inÂi2,...in, j̄1,..., j̄p
dx j̄1 ∧ . . .∧dx j̄p

∂
∂xi

(6.24)

where |Ω|2 is defined in (7.52). One checks that A is harmonic iff Â is harmonic and the operation

is invertible i.e. A = (A∧)∨, which shows (6.22).
Since Ω is holomorphic the hat operation (6.23) commutes with ∂̄ and we get

∂̄ Â = ̂̄∂A = −1
2
[̂A,A] =:−1

2
[Â, Â], (6.25)

as equivalent to the condition (6.20).

The main technical instrument is the following Lemma

[Â, B̂] := [̂A,B] = ∂ (̂A∧B)− (D ·A)∧ B̂+ Â∧ (D ·B), (6.26)

whereD ·A = (∂iA
i
j̄1... j̄p

)x j̄1∧ . . .∧dx j̄p is a contraction. The calculation is a straightforward exercise

whose solution is made explicit in [139]. Eq. (6.26) becomes particularly useful, if one can choose
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“gauge” representatives for A and B so that (D ·A) = (D ·B) = 0. To control this “gauge” condition

Tian considers a Taylor expansion A(z) = A1z+A2z
2+ . . .with Ai sections of Γ(M,Ω(0,1)(T M)) and

starting data ∂̄0 = ∂̄ , i.e. A(0) = 0. To order z (6.20) states ∂̄A1(x) = 0 and we already argued that

in order to get rid of complex coordinate transformations we should consider A1 ∈ H
(0,1)

∂̄ (M,TM)

only. One wants now to prove inductively that ∂Ak + 1
2 ∑k−1

i=1 [Ai,Ak−i] = 0 for k > 1 which by (6.25)

is equivalent to

∂̄ Âk =
1

2

k−1
∑
i=1

[Âi, Âk−i], for k > 1 . (6.27)

First step of induction: To first order in z one has simply as above Â1 ∈ Hn−1,1(M) and we pick

the harmonic representative Â1. In fact on compact Kähler manifolds it follows from (7.20,7.24)

that every harmonic representative fulfills ∂̄A1 = ∂̄ ∗A1 = 0. Moreover with ∆∂̄ = ∆∂ , see sect. 7.2

also ∂ Â1 = 0 holds. This implies D ·A1 = 0 and by (6.26) [Â1, Â1] = ∂ ̂(A1∧A1) is ∂ -exact. On the
other hand for Â1 ∈ Hn−1,1(M) hence ∂̄A1 = 0 it is immediate from the definition of the bracket

that ∂̄ [Â1, Â1] = ∂̄ ∂ ̂(A1∧A1) = 0. The ∂ , ∂̄ Lemma of Kähler geometry ([72], p 149) states that if
a form η ∈ Ωp,q is ∂̄ closed and d-, ∂ - or ∂̄− exact then it can be written as η = ∂ ∂̄ψ . Applied
to the bracket we can write [Â1, Â1] = ∂ ∂̄ψ1 for some ψ1 ∈ Ω1,1. Identifying Â2 = 1

2
∂ψ1 we have

constructed a solution to ∂̄ Â2+
1
2
[Â1, Â1] = 0.

General induction: If for someN one has solved for Âi with ∂ Âi = 0 and ∂̄ Âi+
1
2 ∑i−1

j=1[Â j, Âi− j] =

0, i = 1, . . . ,N, then
N

∑
j=1

[Â j, ÂN+1− j] = ∂
N

∑
j=1

(A j ∧AN+1− j)
∧ (6.28)

and one also checks that

∂̄

(
N

∑
j=1

[Â j, ÂN+1− j]

)
= ∂̄ ∂

(
N

∑
j=1

[A j,AN+1− j]

)∧

=
1

2
∂

(
N

∑
j=1

j−1
∑
k=1

[
[Ak,A j−k],AN+1− j

]
−
[
A j, [Ak,AN+1− j−k]

]
)∧

= 0 .

Here we used first (6.26), then the fact that ∂̄ and ∧ commutes, (6.28) for Ak with k ≤ N and the

Jacobi identity for (6.21). By the ∂ , ∂̄ Lemma one can set ÂN+1 = 1
2
∂ψN and since ∂ ÂN+1 = 0 the

induction proceeds. Moreover one has arguments that the series converges in H n−1,1(M) [139].

Hence there exists always a family of Calabi-Yau manifolds with varying complex structure

parameters, whose complex dimension is h(0,1)(M,TM). Tians and Todorov’s result is very im-

portant also with respect to the world sheet theory, where is very not-trivial to establish that a

deformation of type (4.18) is exactly marginal and does lead to family of N = 2 SCFTs.

Mirror statement. On a Calabi-Yau threefold one has the above mentioned isomorphism be-

tween H(0,1)(M,TM) and H2,1(M), which is induced by the unique (3,0) form Ω. Thanks to the
above isomorphism the A-model and B-model physical operators are associated to H p,q and the

mirror symmetry can be interpreted as the following identification of these spaces H p,q(M) ↔
Hd−p,q(W ). Here M andW are mirror manifolds. As a corollary one has χ(M) = −χ(W ) if d is

odd.

002 / 56



P
o
S
(
R
T
N
2
0
0
5
)
0
0
2

Topological String Theory on Calabi-Yau threefolds Albrecht Klemm

A

A

A

A2A2 A

A

A

1

1

1
1

1

3

Figure 15: Perturbative solution of the Kodaira-Spence equation in Tians form ∂̄A(z)+ 1
2
∂ ̂(A(z)∧A(z)) = 0

by Feynmann graphs with massless fields (weavy lines) and massive fields (solid lines).

6.4 Kodaira-Spencer gravity as space-time action for the B-model

There are three space time actions known, which reproduce as classical equations of motion the

unobstructedness of complex structures on the Calabi-Yau. Kodaira-Spencer gravity [11], Hitchins

three-form action [84] and Hitchins general threeform action [85]. The first[11] and the last [125]

reproduce the B-model also at one loop. But even Einstein’s gravity poses no problem up to one

loop [141]. While it is not clear how the suggested spacetime descriptions make sense as full

quantum theory, the worldsheet B-model approach makes remarkable predictions at higher loops.

Kodaira-Spencer theory of gravity is a theory on M which couples exclusively to the complex

moduli of M. Its tree level result reproduces the B-model without the coupling to worldsheet

gravity, i.e. its genus zero sector[11]. It is a space time gravity theory in the sense that is does

couple to the Calabi-Yau metric as far as complex structure dependence is concerned. It reproduces

the (6.20) in the form ∂̄A(z)+ 1
2
∂ ̂(A(z)∧A(z)) = 0 as its equation of motion and its Feynman graph

expansion corresponds to the iterative solution to that equation exactly in the form as given above.

In fact by the ∂ , ∂̄ -Lemma we have shown e.g. in the second induction step that one has an ψ1
with ∂ ∂̄ψ1 = ̂[A1,A1] , hence Â2 = 1

2
∂ψ1. By (6.26) the first statement means also ∂̄ψ = ̂(A1∧A1).

Combining the two facts one gets a solution for Â2 in the form

Â2 = − 1
2∂̄

∂ ̂(A1∧A1) = P ̂(A1∧A1) . (6.29)

We have used a “gauge” ∂ Âk = 0 and it is easy to see that the recursive solution comes with the

freedom Âk + ∂̄ λ , which one can fix be requiring ∂̄ ∗Ak = 0. We can then define the “propagator”

asP = − 1

2∂̄ ∂ = −∂̄ ∗ 1
2∆∂̄

∂ . With this “propagator” one can recursively write the solutions to Âk.

E.g. Â3 = 2P(A1∧ (P ̂(A1∧A1))
∨)∧. It follows from the construction of Ak that only Â1 fulfills

the Laplace equation, while Ak for k > 1 correspond to “massive modes.”

It is not hard to see [11], that the Kodaira-Spencer action

λ 2S(Â1, Âm,z0) =
∫

M

1

2
ÂmPÂm +

1

6
((A1+Am)∧ (A1+Am))∧∧ (A1+Am)∧ (6.30)

has ∂̄ (Â1+ Âm)+ 1
2
∂ ((A1+Am)∧ (A1+Am))∧ = 0 as e.o.m. and reproduces the Feynman graph

expansion above. Here we have defined as Am the massive part of A(z) and z0 is the background

value of the complex structure. It has further been shown that (6.30) is the reduction of closed

string field theory to the topological modes and it has been argued that its path integral defines the

generating function for all correlators of the topological B-model coupled to worldsheet gravity.
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However the action does not make sense as quantum theory. So its solution is indirect by means of

the holomorphic anomaly equation of the topological B-model. Nevertheless the divergent factors

in the graph expansion of (6.30) lead to an analysis of the leading behavior at the boundaries of

the complex moduli space of the Calabi-Yau space once the ones of the three point couplings are

known. For one modulus t one gets Fg ∼ [∂ 3t Cttt ]
2g−2

[∂tCttt ]
. This result is useful to fix the holomorphic

ambiguity.

6.5 The periods and infinitesimal deformations of complex structure

The integral (6.14) can expressed in terms of holomorphic functions on the complex moduli

space parametrized by z, which are integrals of the holomorphic (3,0)-fom over a fixed topological

basis of three cycles ofM

Xk(z) =
∫

Ak

Ω(z), Fk(z) =
∫

Bk
Ω(z), k = 0, . . . ,h2,1 . (6.31)

These are called period integrals or periods for short. Here we have chosen an integral symplectic

basis of A and B cycles of the integral homology H3(M,Z) such that Ak ∩Bl = δ l
k , while Ai ∩A j =

Bi ∩B j = 0. The choice of such a basis in H3(M,Z) and its dual basis (αi,β j) in the integral

cohomology H3(M,Z) with

∫
M

αk ∧β l =
∫

Al

αk = −
∫

M
β l ∧αk = −

∫
Bk

β l = δ l
k (6.32)

is unique up to an Sp(h3,Z) transformation. The two dual symplectic bases (Ak,Bk) and (αi,β j)

are topological and do in particular not depend on the complex structure. What we call (n,0) form

Ω(z) does depend on the complex structure. This dependence is captured by the period integrals,

w.r.t to the fixed basis (αi,β j)

Ω(z) = Xk(z)αk −Fk(z)β k . (6.33)

The symplectic group over C is defined by

M†ΣM = Σ, M ∈ Sp(h3,C) with Σ =

(
0 1

−1 0

)
. (6.34)

Ω is a symplectic invariance and we have a natural action on the period vector

Π :=

(
Xk

Fk

)
by Π̃ = MΠ . (6.35)

The Xk are homogeneous projective coordinates of the complex structure moduli space and

one can choose locally inhomogeneous coordinates

tk =
Xk

X0
k = 1, . . . ,h := h2,1 (6.36)

as the complex structure parameters[71, 139]. This can be viewed as local Torelli theorem for

Calabi-Yau manifolds. A global Torelli is proven for K3 (and Enriques surfaces) [7], but seems not

to hold on general Calabi-Yau manifolds.
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In virtue of (6.36) the Fk must be expressible as functions of t. The precise relation comes

from the infinitesimal calculus describing changes of the (n,0)-form Ω in Hn(M) under changes

of the complex structure. The decomposition of Hn(M) into (p,q) type Hn(M) = ⊕p+q=nH p,q(M)

varies over the complex moduli space parametrized by t. We are concerned with n = 3. One

wants to describe the varying of H p,q(Mt) as a bundleH p,q over the moduli domain D(M) of M ,

called the Hodge bundle. However the spaces H p,q do not fiber holomorphically over D(M). One

defines therefore first a Hodge filtration F∗(M) = {Fp(M)}n
p=0 by Fp(M) =

⊕
a≥p Ha,k−a(M), with

Hn(M,C) = Fp(M)⊕Fk−p+1(M). Obviously H p,q(M) is recovered as H p,q(M) = Fp(M)∩Fq(M)

and one has an isomorphism H p,q(M) = Fp(M)/Fp+1(M). The Fp(Mt) form holomorphic bundles

F p over D(M) and the holomorphic Hodge bundle H p,q can be defined as H p,q = F p/F p+1,

see [73] for a precise definition of D(M). There is a bilinear form on Hn(M,Z)/torsion

Q(φ ,ψ) = (−1)n(n−1)/2
∫

M
φ ∧ψ (6.37)

with the following properties

Q(H pq,H p′q′) = 0, unless p′ = n− p and q′ = n−q (6.38)

S(ψ,ψ) ≡ ip−qQ(ψ, ψ̄) > 0, unless ψ = 0 in H p,q . (6.39)

In mathematical terms Q is called a polarization on the Hodge structure Hn(M,Z)/torsion and

(6.38) and (6.39) are the first and second Riemann bilinear relations, see [72, 73]. In particular

H 3,0 defines a line subbundleL in H3(M) and Ω(z) defines a section of it. Since it is expandable

in the fixed integer frame (αk,β l) by the periods (6.33) it has a flat connection that is called Gauss-

Manin connection. The Picard-Fuchs equations that the periods fulfill, which we derive later, can be

viewed as one manifestation of the flatness of the Gauss-Manin connection. Despite the fact that the

connection is flat the period vector Π (6.35) will have a monodromy G ∈ Sp(h3,Z), if transported

around loops Γz0 encircling singular points zi in the complex moduli space. To understand the

possibility of a monodromy remember that the moduli space is not simply connected. Singular

or orbifold loci of M are cut out. As exemplified at the end of Sec. 7.4 not simply connected

manifolds can have non trivial holonomy of flat connections24. The monodromy group is generated

by transport around all loops γi in H1(M )

Π(z) = Mγzi
Π(z), Mγzi

∈ Sp(h3,Z) , (6.40)

where one has relations, e.g. in the situation depicted in figure 16 one has M−1
γ∞ = Mγ0Mγ1 . The

homotopy group of M and the symplectic monodromies around the loops determine the period

vector as solution to a Riemann-Hilbert problem.

By taking a derivative w.r.t. the complex structure coordinates zk the (3,0) form changes as

follows
∂Ω
∂ zk

= ck(z)Ω+ Â(k), (6.41)

where ck(z) depends only on the complex moduli and Â(k) ∈ H2,1. This can be seen as follows.

Let, as in section (6.2), f µ(x,z) define a family of holomorphic coordinates on M, which vary

24This holonomy is called a “Wilson line” in physics.
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z= 8z=0 z=1

γγ
10

γ 8

Figure 16: Moduli space of a one complex parameter Calabi-Yau manifold compactified to P1 with three

singular points. In general singularities are divisors inM .

with the complex structure parameter z, so that xµ = f µ(x,z0). Via f µ(x,z) the (3,0)-form Ω =
1
3!

h( f )εµνρd f µd f νd f ρ depends on the complex structure z and by derivation we get

∂Ω
∂ zk

=
1

3!

∂h

∂ zk
εµνρd f µd f νd f ρ +

1

2!
hεµνρd f µd f ν ∂ (d f ρ)

∂ zk
. (6.42)

To analyze
∂ (d f ρ )

∂ zk requires an infinitesimal calculus in the neighborhood of the reference complex

structure z0. It is easy to convince oneself that the (0,1) part ∂ (d f ρ )
∂ zk

∣∣∣
(0,1)

= A
(k) ρ
j̄
dz j̄, where A(k) ∈

H(0,1)(M,T 1,0M) is the object we encountered in Sec. 6.2. The isomorphism (6.22) implies then

(6.41). Upon taking further derivatives we get

∂
∂X i

Ω ∈ F2 = H3,0⊕H2,1

∂ 2

∂X i∂X j
Ω ∈ F1 = H3,0⊕H2,1⊕H1,2

∂ 3

∂X i∂X j∂Xk
Ω ∈ F0 = H3,0⊕H2,1⊕H1,2⊕H0,3.

(6.43)

6.6 Special Kähler geometry

Let us discuss the consequences of the first property (6.38), which follows from simple con-

sideration of type. If we insert (6.33) in
∫

M Ω∧ ∂
∂Xk Ω = 0, a consequence of (6.43) and (6.38),

we can conclude that Fk = 1
2

∂
∂Xk

∑i X iFi. That implies that the Fi are indeed not independent but

determined as derivatives of the single function25

F =
1

2

h

∑
i=0

X iFi (6.44)

called the prepotential. Note that F is not a symplectic invariant. It follows further from the first

transversality that F is homogeneous of degree 2 in X a, i.e. ∑h
a=0Xa ∂

∂Xa
F = 2F . The implication of

the second line in (6.43)
∫

M Ω∧ ∂ 2
∂Xi∂X j

Ω = 0 follows already from the degree two homogeneity of

F and contains no new information. The last line of (6.43) shows that
∫

M Ω∧ ∂ 3
∂X̄a ∂

X̄b ∂X̄c
Ω is nonzero

and we calculate

Cabc(t) =
∫

M
Ω∧ ∂ 3

∂X̂a∂X̂b∂X̂c

Ω =
∂ 3

∂X̂a∂X̂b∂X̂c

F = (X0)2
∂ 3

∂t̂a∂t̂b
∂t̂c

F
(0)(t) , (6.45)

25Note that on even complex dimensional Calabi-Yau manifolds there will be no relative sign in (6.32) basis nor in

(6.33) and
∫

M Ω∧Ω = 2XaFa = 0 gives already an algebraic relation between the periods. Using further transversalities

one find an intriguing mix between algebraic and differential relations between the periods in the even case.
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where a,b,c runs form 1 to h21. To derive this we used (6.31,6.32,6.33) and the homogeneity of

degree two of F to pass to the inhomogeneous variables t. Each of the three derivatives w.r.t. to

the complex structure parameters ∂
∂Xk has to hit one d f κ in Ω = 1

3!
h( f )εµνρd f µd f νd f ρ to produce

the (0,3) part. It is clear by (6.42) that the eq. (6.45) is up to a normalization equivalent to

(6.14). It turns out that mirror symmetry identifies Cabc(t) = ∂ 3
∂t̂a

∂t̂b
∂t̂c

F (0)(t) at a special point

in the moduli space with (5.12). The right hand side of (6.45) is not covariant. It is valid only

in the coordinate system defined by the periods X a or the inhomogeneous coordinates ta. The

period expression is however valid in any parametrization of the complex structure. If we make a

coordinate transformations of the latter X a → za(X) we need no covariant derivatives on the right

hand side to compensate for the derivatives of ∂ za

∂Xb by z, because by (6.43) only terms contribute,

for which all derivatives by z act on Ω(z). In any complex structure coordinates we can therefore

express the triple couplings in terms of the period integrals as

Ci jk =
∫

Ω∧∂i∂ j∂kΩ =
h

∑
l=0

(X l∂i∂ j∂kFl −Fl∂i∂ j∂kX l) (6.46)

andCi jk transforms like Sym
3TM ⊗L −2 under Kähler- and general coordinate transformations in

the complex moduli spaceM . Note thatCi jk is by (6.35) a symplectic invariant, if the derivative is

w.r.t. to invariant complex structure parameters, such as the z in Sec. 6.7. The triple coupling are the

Yukawa couplings of the moduli fields in the effective action of heterotic string compactifications,

see e.g. [67, 126].

Let us come to the two point function (6.15) and is relation to (6.39). As we have discussed

the (3,0) form Ω(z) lies a complex line bundle H 3,0. This bundle is called the vacuum bundle

L in physics. Is has a natural gauge transformation Ω 7→ e f (z)Ω where f (z) is holomorphic,

which leads to another nowhere vanishing (3,0) form. We have by (6.39) a positive hermitian

norm S(Ω,Ω) = ||Ω||2 := i
∫

M Ω∧ Ω̄, which is is related to the norm (7.52) by a volume factor
||Ω||2 = iV |Ω|2. We define a now potential

K = − log i

∫
M

Ω∧ Ω̄ , (6.47)

which will turn out to be Kähler potential of the moduli space metric. Clearly the gauge transfor-

mation become Kähler transformations K 7→ K − f − f̄ and eK is a section of real line bundle. We

can define a candidate Kähler metric on the moduli space

Gab̄ = ∂a∂̄b̄K . (6.48)

Note by (7.33) that the Kähler form to this metric is the curvature form R of the hermitian metric

S(Ω,Ω) onL . Using (6.41) we can relate this metric to (6.15)

Gab̄ = −
∫

M Â(a)∧ Â(b̄)

∫
M Ω∧ Ω̄

. (6.49)

These couplings (6.15) are the kinetic terms of the moduli fields [67, 126].

Let us compare that metric Gab̄ with the standard way one defines a metric on the space of

metrics on M. The metric on the Calabi-Yau moduli space factorizes at least locally in the Kähler-
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and the complex structure deformations space, see Sec. 4.3 and [23, 22] for further background,

2Gab̄δ zaδ zb̄ =
1

2V

∫
M

gmn̄gkl̄δgmkδgn̄l̄ det(gab)
1
2 dx6 , (6.50)

where we just took the complex structure deformations into account. The metric (6.50) is called

the Weil-Peterson metric of the complex moduli space. In Sec. 4.3 we have already identified pure

deformations of the metric with elements in H1(M,TM), the precise relation is δg
(a)
m̄n̄ = ∂gn̄m̄

∂ za δ za =

−2A(a) i
n̄ gin̄δ za. Using (6.24) in (6.50) we note the remarkable fact that the two metrics (6.48) and

(6.50) coincide. This was first proven in [139] and implies the local Torelli theorem as well as the

fact that the holomorphic sectional curvature of the Weil-Peterson metric is negative and bounded

away form zero [139].

From (6.47) and (6.33) follows a simple formula for its Kähler potential in terms of the periods

K = − log i

(
X̄ ā ∂F

∂Xa
−Xa ∂ F̄

∂ X̄ ā

)
. (6.51)

This statement in terms of the inhomogeneous coordinates ti = X i/X0, i = 1, . . . ,h2,1 reads

e−K(t,t̄) = (t i − t̄ ı̄)(∂iF
(0)− ∂̄ı̄F

(0)
)−2(F (0)−F

(0)
) . (6.52)

As it obvious the Ci jk(t) ∈ Sym3T ∗M ⊗L 2 as well as the real Kähler potential K(tt̄) derive from

the holomorphic sectionF (0)(t) ∈ L 2 over the complex moduli spaceM . This justifies the name

prepotential for F (0) and the structure defined by (6.48),(6.52) and (6.45) supplemented with the

requirement that the Chern class represented by the curvature two form R of the vacuum line

bundleL defines an even integral class26 onM is known as special Kähler geometry.

The integrability condition for the existence ofF (0), given Gi j̄ = ∂i∂̄ j̄K(t, t̄) andCi jk, is

Rl
ik̄ j

= −∂̄k̄Γl
i j = [Di,∂k̄]

l
j = Gik̄δ l

j +G jk̄δ l
i −Ci jmC̄ml

k̄
(6.53)

The upshot of special Kähler geometry is that the relevant quantities are fixed by the section

F of the holomorphic line bundle L 2 over the compactified moduli space. As it is well known

in complex geometry such sections are fixed by a finite set of data, basically a Riemann-Hilbert

problem to find sections of the Hodge-bundle, which observe certain monodromies. This fact

underlies our ability to solve the two derivative effective action of N = 2 gauge theories exactly.

This structure we have discussed here mainly from the geometrical point of view has been in-

dependently discovered in the vector multiplet moduli space of N = 2 supergravity theories in four

dimensions [37, 38, 35]. The connection to string compactifications has been made in [22, 135].

In making contact with the supergravity literature note that [37, 38, 35] uses for the homogeneous

sections

LI = e
K
2 X I, MI = κe

K
2 FI, (6.54)

overM , which are not holomorphic ∂k̄X I = ∂̄k̄FI = 0, but covariantly holomorphic with respect to

the Kähler connection Dk̄ = (∂k̄ − 1
2
Kk̄), i.e. Dk̄LI = Dk̄MI = 0, with the effect that i(L̄IMIκ−1−

26A Kähler manifold (6.52) whose Kähler form is the curvature two-form R of line bundle L representing a class

in H2(M ,Z) is called Kähler-Hodge in the mathematical literature. As is was pointed out in [34] the fermions already

in N = 1 susy require that [R] is an even integral class.
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LIM̄I κ̄−1) = 1. In particular the earlier literature on N = 2 black holes [53, 136] uses κ = 2i, be-

cause the gravitino variations have been worked out in this conventions [38]. In the inhomogeneous

coordinates t I = LI

L0
= X I

X0
the Kähler factor cancels.

6.7 Picard-Fuchs equation from the symmetries of the ambient space

Let us now discuss an explicit simple example of such a mirror symmetry computation. The

principle example is the quintic in the projective space P4, which is discussed in great detail in the

paper [25]. It is defined as the zero locus of a homogeneous polynomial of degree 5 in xi, e.g.

P =
5

∑
i=1

aix
5
i +a0

5

∏
i=1

xi =
5

∑
i=1

x5i − z−
1
5

5

∏
i=1

xi = 0 (6.55)

The z appears here as one of the 101 possible complex structure deformations of the full family

of quintics. A deformation is generated by perturbing P0 = ∑5i=1 x5i with a parameter multiplying a

monomial of degree 5. We count (5) x5i , (20) x4i x j, (20) x3i x2j , (30) x2i x2jxk, (30) xix jx
3
k , (20) xix jxkx2l ,

(1)∏5i=1, with i, j,k, l = 1, . . .5 hence 126 monomials. Not all of those lead to independent complex

structure deformations, because the complex linear transformations of the coordinates xi of P
4 leads

to completely equivalent forms of the constraint. The group of those has dimension 52−1. Finally
there is one relation by P = 0 leading to 101. The symmetric deformation in (6.55) is chosen

with hindsight, because we can see it as the unique complex structure deformation on the mirror

manifold of the quinticW . The mirror is constructed as Z35 orbifold of the original quintic M. The

orbifold is generated by phase rotations on the homogeneous coordinates P4

xi → exp(2πig
(α)
i /5)xi, α = 1,2,3, i = 1, . . . ,5 , (6.56)

with g(1) = (1,4,0,0,0), g(2) = (1,0,4,0,0) and g(3) = (1,0,0,4,0). It leaves precisely the perturb-

ing monomial ∏5i=1 xi invariant. This one deformation parameter z can be identified with the one

Kähler deformation t of the original quintic M which has Hodge numbers h1,1 = 1 and h2,1 = 101.

The one element in H1,1(M) comes from the restriction of the unique Kähler form of P5 to the

hyper surface. The 101 elements of H1(M,TM) we counted above and explained their relation to

H2,1(M) before.

The holomorphic (3,0) form can be written explicitly in every patch Ul of P4 as a residue

expression[70]

Ω(z) =
∫

γ

a0µ
P

, (6.57)

where the contour surrounds the single pole at P = 0 inside P4 and the measure is

µ =
5

∑
k=1

(−1)kwix
idx1∧ . . .∧ d̂xk ∧ . . .∧dx5 . (6.58)

In each coordinate patch Ul , x
l = 1 and dxl = 0 so the sum (6.58) collapses to a single term. The

wi makes (6.58) applicable to hypersurfaces in weighted projective spaceWCP[w1, . . . ,w5], which

are generalizations of P4, for which wi = 1, i = 1, . . . ,5. An important consistency condition for Ω
is its invariance under the C∗ action xi → λxi. Let us consider the parametrization of the complex

structure by the parameters ai, i = 0, . . . ,5 in P = ∑5i=1 aix
5
i + a0∏5i=1 xi. These are redundant
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parameters and can be “gauged” by theGP4 = PGL(N,C)×C∗ transformation on the homogeneous
parameters (x1 : . . . : x5) of P

4 to one parameter. Let us summarize the “gauge invariances” ofΩ(a)

, which are obvious from (6.57) and (6.58).

• It is invariant under the change ai → ρai with ρ ∈ C∗. Defining the logarithmic derivative
θi = ai

∂
∂ai
, this homogeneity of degree 0 is expressed as

5

∑
i=0

θiΩ(a) = 0 . (6.59)

• It is invariant under theC∗ actions (ai,a j)→ (ρ−5ai,ρ5a j), i, j = 1, . . . ,5 with ρ ∈C∗. These
are compensated on P by GP4 transformations (xi,x j) → (ρxi,ρ−1x j), which leave the form

µ invariant. As differential relations one has

(θi −θ5)Ω(a) = 0, i = 1, . . . ,5 . (6.60)

These two equations mean that Ω(a) = Ω(z) does depend only on the combination z =− a1a2a3a4a5
a50

,

where we chose the sign for latter convenience. Instead of fixing the gauge immediately we first

notice the obvious differential relations

(
∂

∂a0

)5 Ω(a)

a0
=

(
n

∏
i=1

∂
∂ai

)
Ω(a)

a0
. (6.61)

With θi = ai
∂

∂ai
, θ = z d

dz
, the commutator [θi,a

x
i ] = xax

i and θ0 = −5θ as well as θi = θ for i =

1, . . . ,5 we rewrite

(
θ0
a0

)5 Ω(a)

a0
=

1

a1a2a3a4a5

(
5

∏
i=1

θi

)
Ω(a)

a0

a1a2a3a4a5

a50

(

∏
k=1

(θ0− k)

)
Ω(a) =

(
5

∏
i=1

θi

)
Ω(a)

z ∏
k=1

(5θ + k)Ω(z) = θ 5Ω(z)

(6.62)

The last line means that the factorizing differential operator D = θL = θ [θ 4− z∏4i=1(θ + i)]

annihilates Ω(z) and it also annihilates the periods

Πi(z) =
∫

Γi

Ω(z) (6.63)

with Γi ∈ H3(W ). One checks thatL Ω(z) is already exact, i.e.
∫

Γi
L Ω(z) = 0 so that the periods

Πi(z) =
∫

Γi
Ω(z), which correspond to the four independent cycles Γi ∈ H3(W ) are determined by

the four solutions of differential equation

[θ 4−5z
4

∏
i=1

(θ + i)]Π(z) = 0 . (6.64)

Note that the mirror has h2,1 = 1 and hence 4 elements in the middle cohomology H3(M,Z) =

H3,0⊕H21⊕H12⊕H03. The four period integrals over the dual four homology 3-cycles, which are
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invariant under theZ35 group correspond to four independent solutions of eq (6.64). The 3-cycles are

in a fixed topological basis of H3(M,Z). This basis is independent of the complex structure. The

trick in the derivation of the differential equation was to fix the gauge symmetry at the very end (last

line of (6.62)). This result is a considerable simplification in the derivation of the period equations

compared with the Griffith reduction method discussed below. The method is adjusted to derive

the systems of Picard-Fuchs operators of multi parameter Calabi-Yau hypersurfaces and complete

intersections in toric ambient spaces, which have the corresponding C∗ actions, see [80][97]. It
will give in general as above differential operators allowing for too many solutions, which need

to be reduced to lower order differential operators. In the simplest case this is accomplished by

factorization. As one example of this type consider the hypersurface of degree 12 in P(1,1,2,2,6),

which has h1,1(M) = 2 and h2,1(M) = 128. We modM out by an Z12×Z6×Z6 acting as

xi → exp(2πig
(α)
i /12)xi, α = 1,2,3, i = 1, . . . ,5 , (6.65)

with g(1) = (1,11,0,0,0), g(2) = (2,0,10,0,0) and g(3) = (2,0,0,10,0). The invariant constraint,

which we interpret as mirror admits two complex structure deformations h2,1(W ) = 2

P = a1x
12
1 +a2x

12
2 +a3x

6
3+a4x

6
4+a5x

2
5+a0

5

∏
i=1

xi +a6(x1x2)
6 (6.66)

It is convenient to express the multiplicative relation between the monomials in (6.66) in vectors27

l(1) = (−6;0,0,1,1,3,1) l(2) = (0;1,1,0,0,0,−2) (6.67)

such that equations corresponding to (6.61) are now written as

∏
l
(b)
i <0

(
∂

∂ai

)−l
(b)
i Ω(a)

a0
= ∏

l
(b)
i <0

(
∂

∂ai

)l
(b)
i Ω(a)

a0
b = 1,2 . (6.68)

Similar symmetry considerations as above lead to the conclusion that Π(z) depends only on

zb = (−1)l
(b)
0 ∏

i

a
l
(b)
i

i , b = 1,2 (6.69)

and the reduction of (6.68) leads after factorization to the differential operators θi = zi
d
dzi

D1 = θ 21 (θ 21 −2θ2)−∏2i=0(6θ1− (2i+1))z1

D2 = θ 22 −∏2i=1(2θ2−θ1− i)z2 .
(6.70)

We will discuss the solution to (6.64,6.70) below.

Let us first perform the integral over the small circle γ say in the patchUk, i.e. xk = 1 to bring

the expression of the (n,0) form to one which is familiar from the study of Riemann surfaces.

In order to do reduce one integration over dxi to the residue integration
∫ dp

p
= 2πi we perform a

coordinate transformation from (x1 . . . x̂k . . .x5) to (x1 . . . x̂k . . . x̂i . . .x5,P) under which the measure

27They will identified with the generators of the Mori cone in Sec. 6.9.
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dx1 ∧ . . . d̂xk . . .∧ dx4 goes to
(

∂P
∂xi

)−1
dx1 ∧ . . . d̂xk . . . d̂xi . . .∧ dx5 ∧ dP. Because of transversality

dP = 0 has no common solution with P = 0 and we can always pick an k and i so that
(

∂P
∂xi

)
6= 0

for P = 0. Therefore the integrand will have a single pole at 1
P
and integration leads to

Ω(z) =
a0wkxkdx1∧ . . . d̂xk . . . d̂xi . . .∧dx5

∂P
∂xi

. (6.71)

This form of the (n,0) form is analogous to the well known (1,0) form Ω ∼ dx
y
in the case of an

elliptic curve realized as cubic in P2 with the inhomogeneous equation in the z = 1 patch given in

the Weierstrass form y2 = 4x3−g2x−g3. It can be verified that it is nowhere vanishing [70].

6.8 Picard-Fuchs equation from the Dwork-Griffith reduction method

From the formal definition of the period Π(z) =
∫

Γi
Ω(z), with Ω given in (6.57) we can al-

ternatively derive a fourth order differential equation for the period in terms of the moduli z by

the Dwork-Griffiths reduction method. The key observation for this algorithm comes as follows.

Consider on the ambient space Pm−1(w1, . . . ,wm) the (m−2)-form

Φ =
a0

pr ∑
i< j

(−1)i+ j(w jx jAi −wixiA j)dx1∧ . . .∧ d̂xi ∧ . . .∧ d̂x j ∧ . . .∧dxn .

Here Ai(x) are homogeneous of degree di in x, i.e. ∑m
k=1 xkwk

∂
∂k

Ai = diAi. We further assume that

c1(M) = 0 ↔ ∑m
i=1wi = d, where d is the homogeneous degree of P, ∑m

k=1 xkwk
∂
∂k

P = Pd. With

this assumptions the total derivative of Φ simplifies

dΦ =
m

∑
k=1

( a0r

Pr+1
Ak∂kP− a0

Pr
∂kAk

)
µ

+
a0

Pr

m

∑
j=1

(d(1− r)−wi +di)Ai(−1) jdx1∧ . . .∧ d̂x j ∧ . . .∧dxn .

If we choose now the A j so that A j = 0 for j 6= k and dk = d(r−1)+wk for f (x) := Ak(x) the second

term vanishes. In other words if ∂
∂xk

(
f (x)a0

pr µ
)
is homogeneous of degree 0 w.r.t. the coordinate

weights wi then
a0r f ∂kP

Pr+1
µ =

a0∂k f

Pr
µ (6.72)

holds under the integration sign.

Let us mention in passing that for Calabi-Yau manifolds defined by a transversal complete

intersections of s polynomials, i.e. as the zero set P1 = . . . = Ps = 0 in a weighted projective space

the analog of (6.57) is

Ω =
∫

γa

. . .
∫

γs

s

∏
k=1

a
(k)
0

Ps

µ, (6.73)

where γi are circles around the Pi = 0 and similar as before ∂
∂xk

(
f (x)∏s

k=1
a

(k)
0

Ps
µ
)
is exact iff it is

of total degree zero. This leads to the partial integration rule[70]

∑
k 6= j

nk

n j −1
Pj

Pk

f ∂iPk

∏s
l=1P

nl

l

µ =
1

n j −1
Pj∂i

∏s
l=1P

nl

l

µ − f ∂iPj

∏s
l=1P

nl

l

µ, (6.74)
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where we omitted the factor ∏s
k=1 a

(k)
0 , which is however of relevance for a scaling argument as in

(6.62).

The idea is to take up to four derivatives of the periodΠ(z) w.r.t. the complex structure moduli

z, and rewrite the emerging expression by the repeated use of the partial integration rules (6.72)

or (6.74) w.r.t. xi into expressions, which have lower powers of P in the denominator and lower

homogeneous degree polynomials in x in the numerators. Eventually all emergent terms can be

manipulated into the form of moduli dependent functions times lower derivatives of Π(z) w.r.t.

to the moduli z. The relation derived in this way is one Picard-Fuchs operator. For the quintic

one starts with four derivatives of Π(z) and the emerging relation is of course the same 4th order

generalized hypergeometric differential equation as in (6.64). In the multi moduli examples one

has to consider various derivatives of Π(z) w.r.t. to different combinations z as starting point and

the calculation becomes quite tedious. Nevertheless one can give criteria when the left ideal of

differential relations is sufficient to determine Π(z) and systematize the calculations somewhat

using a Groebner basis for the ring of monomials in the x [79, 80].

6.9 Explicite solutions to the Picard-Fuchs equations

A solution to (6.64) will correspond a priori to an arbitrary linear combination of period in-

tegrals. To understand the physical duality symmetries and the mirror map of the model it is

important to find a basis of solutions which corresponds to an integral basis of H3(M,Z). This

can be achieved by requiring that the monodromy group is realized by a subgroup of Sp(4,Z). In

rescaled variables z → z̃ = 55z (6.64) has regular singular points at z̃ = 0,1,∞. I.e. the moduli space
is P\{0,1,∞} and we drop the tilde from the z. At z0 = 0 the indical equation, i.e. the equation for

α in solving (6.64) with a local power series ansatz ω(z) = (z− z0)
α ∑n=0 an(z− z0)

n is α4 = 0.

This degeneracy of solutions means that beside the unique power series solutions one has three

logarithmic solutions. Because of the logarithms the mondromy around this point has in a suitable

basis an upper triangular form with a maximal shift symmetries. Near z0 = 1 the indicial equation

has solutions {0,1,1,2} and near z0 = 1/z = 0 one has solutions {1/5,2/5,3/5,4/5} for α . The
latter implies that one has an order 5 monodromy around z = ∞. The order two degeneration of the
solutions at z0 = 1 indicates three power series and one logarithmic solution. The monodromies

around these special points are easily worked out. We refer to the basis (6.85), which is the canoni-

cal large radius basis of the mirror. For the quintic one has
∫

c2ω = 50 and A11=
11
2
. In the rescaled

variable z the monodromies are

M0 =




1 0 0 0

1 1 0 0

5 −3 1 −1
−8 −5 0 1


 , M1 =




1 0 −1 0
0 1 0 0

0 0 1 0

0 0 0 1


 , M−1

∞ =




−4 3 −1 1
1 1 0 0

5 −3 1 −1
8 −1 0 1


 . (6.75)

Our notation is that monodromies which go counter clock wised are positive, see Fig. 16. One has

of course the relation M−1
∞ = M1M0. Remarkable is the monodromy M0 around z = 0. This is the

point of maximal unipotency. A monodomy is called quasi-unipotent of index at most k if here is

some N so that

(T N −1)k+1 = 0 (6.76)
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ψ=1

ψ=α
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m

m

1

2
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α

α

α α24

3

ψ=α

ψ=α4

ψ=α3
ψ= 8

Figure 17: Quintic monodromies in the unfolded Ψ modulispace

As it has been shown [107] if the period map is semi stable the monodromy is unipotent. This

means N = 1. Moreover [131] shows that the maximal k that occurs as monodromy of periods is

k = dimC(M). M0 saturates this bound and is of the maximal unipotency 3. This means in particular

that a solution with cubic logarithm appears at this point. As was argued in [25] discovering (6.81)

is that this structure is needed to map to the large radius expansion of the mirror manifold given by

(6.85). A corollary to the mirror conjecture is then that all Calabi-Yau manifolds have at least one

point of maximal unipotent monodromy [116].

The monodromies in original paper [25] have been worked out in variable ψ = z−
1
5 . This

yields in the above basis

m∞ =




−19 32 −16 4

5 −7 4 −1
25 −40 21 −5

−40 64 −32 9


 , m1 =




1 0 −1 0
0 1 0 0

0 0 1 0

0 0 0 1


 , A =




1 0 1 0

−1 1 −1 0
−5 8 −4 −1
3 5 3 1


 , (6.77)

with mαk = A−km1A
k. In the unfolded moduli space there are five copies of the conifold and

encircling all five yields m∞ = M50 , see Fig. 17. Monodromies for more parameter families have

been investigated in [26][88][27].

One of the mysterious properties is the integral expansion of the mirror map at the point of

maximal unipotent monodromy. We exponentiate (6.81) invert it and expand z(q) in q = et . Call

jm = 1
z(q) in analogy with the normalized je(q) Sl(2,Z) invariant function of the elliptic curve. Both

expansions have positive integral coefficients

je = 1
q
+744+196884q+21493760q2+864299970q3+20245856256q4+ . . .

jq = 1
q
+770+421375q+274007500q2+236982309375q3+251719793608904q4+ . . .

(6.78)

The integrality should be related to monodromy group Γ ∈ Sp(4,Z) generated byM0 andM1.

For a Calabi-Yau in an general toric ambient space one can determine the generators of the

Mori cone of M. These are vectors, which represent curves C(a), a = 1, . . . ,h11 in the Calabi-Yau

spaceM that are dual to the Kählercone

l(a) = (l
(a)
0,1 , . . . , l

(a)
0,r ; l

(a)
1 , . . . , l

(a)
n ), for a = 1, . . . ,h1,1. (6.79)

Their first entries l
(a)
0,1 , . . . , l

(a)
0,r the (multi)degree of the algebraic constraints P1= 0, . . . ,Pr = 0 defin-

ing the Calabi-Yau manifold w.r.t to the dual divisors of C(a). The second entries l
(a)
1 , . . . , l

(a)
n are
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d rational elliptic

1 2 875 0

2 609 250 0

3 317 206 375 609 250

4 242 467 530 000 3 721 431 625

5 229 305 888 887 625 12 129 909 700 200

6 248 249 742 118 022 000 31 147 299 733 286 500

7 295 091 050 570 845 659 250 71 578 406 022 880 761 750

8 375 632 160 937 476 603 550 000 154 990 541 752 961 568 418 125

Table 4: BPS degeneracies n
(g)
β=d
associated to rational and elliptic curves on the Quintic in P4

the intersections of the curve C(a) with the toric divisors of the ambient space. The curves and

the intersection numbers can be determined purely combinatorially from the toric description of

the ambient space, see [80] for details. E.g. for the quintic one has l (1) = (−5;1,1,1,1,1). With
these data and the classical intersections numbers κabc = Da ∩Db ∩Dc, which is also determined

combinatorially (it is κ111 = 5 for the quintic), one can write down a local expansion of the periods

convergent near the large complex structure point, which is characterized by its maximal unipotent

monodromy. We review in the following just the essentials and refer to [80] for further details.

A particular set of local coordinates za on the complex structure moduli space onW is defined by

zb = (−1)∑a l
(b)
0,a ∏n

i=1 a
l
(b)
i

i , b = 1, . . . ,h21 in terms of ai, the coefficients in the polynomial constraints

of the complete intersection in the torus variables 6.55. A point of maximal unipotent monodromy

is then always at zb = 0. Let ϖa1,...,as
be obtained by the Frobenius method28 from the coefficients

of the holomorphic function ϖ(~z,~ρ) defined as

ϖ(z1, . . . ,zh,ρ1, . . . ,ρh) = ∑
{na}

c(n1 . . .nh,ρ1 . . .ρh)
h

∏
a=1

zna+ρa
a

c(n1, . . . ,nh,ρ1, . . . ,ρh) =
∏r

m=1Γ(1−∑h
a=1 l̂

(a)
m (na +ρa))

∏n
i=1Γ(1+∑h

a=1 l
(a)
i (na +ρa))

ϖa1,...,as
(z1, . . . ,zh) =

(
1
2πi

)s ∂ρa1
. . .∂ρas

ϖ(z1, . . . ,zh,ρ1, . . . ,ρh)|{ρa=0} .

(6.80)

Define also σa1,...,as
= (ϖa1,...,as

(z1, . . . ,zh)|log(za)=0)/ϖ(z1, . . . ,zh,ρ1, . . . ,ρh)|{ρa=0}. At the large
complex structure point the mirror map defines natural flat coordinates on the Kähler moduli space

of the original manifoldM

ta =
Xa

X0
=
1

2πi
(log(za)+σa), a = 1, . . . ,h , (6.81)

where X0 = ϖ(z1, . . . ,zh,ρ1, . . . ,ρh)|ρ=0 is the unique holomorphic period at za = 0 and Xa = ϖa

are the logarithmic periods. Double and triple logarithmic solutions are given by [80]

w
(2)
a =

1

2

h

∑
b,c=1

κabcϖbc(z1, . . . ,zh), a = 1, . . . ,h. (6.82)

28The holomorphic periodϖ(z1, . . . ,zh) can also be directly integrated using a residue expression for the holomorphic

(3,0) form [80].
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w(3) =
1

6

h

∑
a,b,c=1

κabcϖabc(z1, . . . ,zh) , (6.83)

where κabc are the classical intersection numbers κabc = Da ∩Db ∩Dc. The prepotentials F (0)(X I)

in homogeneous orF (0)(ta) in inhomogeneous coordinates can now be written as

F(0) = −κabcXaXbXc

3!X0
+Aab

XaXb

2
+ caXaX0− iχ

ζ (3)

2(2π)3
(X0)2+(X0)2 f (q)

= (X0)2F (0) = (X0)2
[
−κabct

atbtc

3!
+Aab

tatb

2
+ cata − iχ

ζ (3)

2(2π)3
+ f (q)

] (6.84)

where qa = exp(2πita), ca = 1
24

∫
X ch2Ja and χ is the Euler number of X . The real coefficients Aab

are not completely fixed. They are unphysical in the sense that K(t, t̄) and Cabc(q) do not depend

on them. A key technical problem29 in the calculation is to invert the exponentiated mirror map

(6.81) to obtain zi(t). An integral symplectic basis for the periods is given by

Π = X0




1

ta

2F (0)− ta∂taF (0)

∂taF (0)


= X0




1

ta

κabctatbtc

3!
+ cata − iχ ζ (3)

(2π)3
+2 f (q)− ta∂ta f (q)

−κabctbtc

2
+Aabtb + ca +∂ta f (q)



(6.85)

This period vector can be uniquely given in terms of (6.83,6.80) by adapting the leading log behav-

ior. The Aab are further restricted by the requirement that the Peccei-Quinn symmetries ta → ta +1

act as integral Sp(2h11+ 2,Z) transformations on Π. Note that F (0) can be read off from the

periods and since ta are flat coordinates, we have

Cabc(q) = ∂ta∂tb∂tcF
(0) = κabc + ∑

da,db,dc≥0
n

(0)
d dadbdc

qd

1−qd
, (6.86)

where the sum counts the contribution of the genus zero worldsheet instantons. We defined qd =

∏a e−2πidata

where the tuple (d1, . . . ,dh) specifies a class β in H2(M,Z). The expansion predicts

the first column in table 4. Higher genus predictions will be discussed in sec. 6.12.

6.10 Rational expressions for the threepoint couplings in generic complex structure

parameters

In the previous section we have focused on expressions of the genus 0 prepotentialF , which

are expanded around the large complex structure point. The expansion parameter q = exp(2πi)

contains t, which maps in the A-model to the complexified area of curves in the Calabi-Yau. The

phase in t is so that q → 0 if the real area in t goes to infinity. This is the natural expansion for

the Gromow-Witten invariants, where small q corresponds to large areas and hence suppressed

instanton corrections.

For global considerations and the calculation of the holomorphic anomaly it is useful to have

expressions for the three point couplings in terms of the complex structure parameters.

29We wrote an improved code for that [103].
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One way to derive them is to start with full system of Picard-Fuchs operators DiΠ(Z) = 0,

i = 1, . . . ,r. With reference to (6.14) we now define

W (k1,···,kd) = ∑l(z
l∂ k1

z1
· · ·∂ kd

zd
Fl −Fl∂ k1

z1
· · ·∂ kd

zd
zl)

:= ∑l(z
l∂ kFl −Fl∂ kzl) .

(6.87)

In this notation, W (k) with ∑ki = 3 describes the various types of triple couplings and by (6.43)

and consideration of typeW (k) ≡ 0 for ∑ki = 0,1,2. If we now write the Picard-Fuchs differential

operators in the form

Dα = ∑
k

f
(k)
α ∂ k , (6.88)

then we immediately obtain the relation

∑
k

f
(k)
α W (k) = 0 . (6.89)

Further relations are obtained from operators ∂zi
Dα . If the system of PF differential equations is

complete, it is sufficient for deriving linear relations among the triple couplings and their deriva-

tives, which can be integrated to give the Yukawa couplings up to an overall normalization. In the

derivation, we need to use the following relations which are easily derived

W (4,0,0,0) = 2∂z1W
(3,0,0,0)

W (3,1,0,0) = 3
2
∂z1W

(2,1,0,0) + 1
2
∂z2W

(3,0,0,0)

W (2,2,0,0) = ∂z1W
(1,2,0,0) +∂z2W

(2,1,0,0)

W (2,1,1,0) = ∂z1W
(1,1,1,0) + 1

2
∂z2W

(2,0,1,0) + 1
2
∂z3W

(2,1,0,0)

W (1,1,1,1) = 1
2
(∂z1W

(0,1,1,1) +∂z2W
(1,0,1,1) +∂z3W

(1,1,0,1) +∂z4W
(1,1,1,0)) .

(6.90)

For the Picard-Fuchs equation for the quintic we get in this way

Czzz =
5

z3(1−55z) . (6.91)

For the system (6.70) we get after rescaling of a = 1728z1 and b = 4z2 the triple couplings

Caaa = 4
a3∆1

, Caab = 2(1−a)
a2b∆1

,

Cabb = (2a−1)
ab∆1∆2 , Cbbb = 1+b−a(1+3b)

2b2∆1∆2
,

(6.92)

where we defined the components of the discriminant as

∆1 = 1−2a−a2(1−b) , ∆2 = (1−b). (6.93)

6.11 Coupling the B model to topological gravity

We consider again the moduli space introduced in Sec. 4.2

Mg = large gauge transf.\Hg/(diff×Weyl)g .

with expected dimension 3g− 3 (7.41). In the covariant quantization of string theory the metric
independence of the theory, up to this finite dimensional space (4.15) we presently discuss, is
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expressed by a nilpotent BRST operator just like in (4.14). Conformal invariance is maintained for

σ models on Calabi-Yau spaces. To take advantage of this extra bonus of the B-model note that in

a conformal fields theory T
µ

µ = 0 and (4.14) splits in the following two components corresponding

to Tzz = T (z) and Tz̄z̄ = T̄ (z). Now we can borrow literally the treatment of the measure from the

critical bosonic string. In the case of the bosonic string the situation is exactly as in the topological

B-model on a Calabi-Yau 3 fold (4.32), where the ghost number is identified with the U(1) axial

charge of the B-model. The geometrical reason for this equivalence is that (7.42) and (7.43) give the

same anomaly if dimC(M) = 3 and c1(T M) = 0. As we saw in Sec. 4.4 the b(z) and theQBRST have

ghost number−1 and 1 respectively and there is a ghost number anomaly of 6g−6= −3χ(Σg) on

a higher genus wordsheet, which corresponds to the axial current anomaly 6g−6 = −3χ(Σg).We

can use therefore the same measure over the complex moduli space ss in the bosonic string. From

the Beltrami-Differentials µk = µk z
z̄ dz̄∂z, k = 1, . . . ,3g− 3 in H1(T Σ), which represent tangent

directions ofMg, we define

Bk :=
∫

Σg

√
hhαγhβδ δ (k)hαβ Gγδ =

∫
Σg

d2z(Gzzµk z
z̄ +Gz̄z̄µ̄k z̄

z ) = β k + β̄ k , (6.94)

The definition of B(k) in itself does not require conformal invariance but just (4.14). We used after

the second equality the standard metric in a conformal gauge and the expressions for the Beltrami-

Differentials. In the last equality we used (2,2) supersymmetry and the fact that G−, Ḡ− are h = 2

fields after the B-twist to define

β k =
∫

Σg

d2z G−µk, β̄ k =
∫

Σg

d2z Ḡ−µ̄k . (6.95)

Because of the antisymmetry of G and the Kähler structure on the moduli spaceMg the quantity

µg = 〈
6g−6
∏
k=1

Bk〉 · [dM] =

〈
3g−3
∏
k=1

β kβ̄ k

〉
· [dm∧dm̄] (6.96)

is a top-form on Mg. Here ·[dM] or ·[dm∧ dm̄] means contraction with dMi1 ∧ . . .∧ dMi6g−g
or

dmi1 ∧ dm̄i1 ∧ . . .∧ dmi3g−3 ∧ dm̄i3g−3 and suitable normalization. That is we inserted 6g− 6 times
β (k) to compensate the ghost or axial anomaly, which is by the index theorems (cff section7.3)

identified with the dimension ofMg. The integral

F
(g) =

∫
Mg

µg (6.97)

is the central observable of the topological B model. How does this discussion of the dimension of

the moduli space relate to (5.39). In the A-model we counted the geometrical virtual dimension of

the moduli space of non-trivial maps and found that the deformations of the metricMg are offset

by the obstructions of having a a nontrivial holomorphic map to M, so that the virtual dimension

of the moduli space of maps is zero. Here we kill the deformation space of Mg by viewing the

B-model fields as ghost system from which we construct a top form to integrate over Mg. The

topological B-model is one of those examples of string theories, where general covariance (4.14)

is maintained by an QBRST operator, whose charge violation measure the dimension of the moduli

space, but the decoupling of ghost and matter sector is not imposed [148].
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As part of the prerequisite for coupling topological theories to gravity [151] the measure µg

must be closed dµg = 0. To see that consider

0= 〈{Q,
6g−5
∏
k=1

Bk}〉 =
6g−5
∑
j=1

(−1) j−1〈B1 . . .{Q,B j}, . . .B5g−5〉 (6.98)

and use the fact that {Q,Bi} yields the T i =
∫

Σg
d2zT µ i, whose insertions can be interpreted as

derivative onMg according to (4.17). A second prerequisite is that µg is basic, i.e. that it vanishes

for all variations of the metric induced by infinitesimal diffeomorphism. These correspond to the

last two terms in (4.16) and the property is easily checked. We will show below explicitly by

manipulations similar to the one that lead to (6.98) that the Q commutator of the measure is exact.

The metric dependence comes from the boundaries ofMg. Combinatorially the calculation is like

non-topological higher string loop calculations, apart from the much more sophisticated integrals

overMg. The compactifications ofMg,n is identical to the one discussed in Sec. 5.2. Its boundary

components come from pairwise collision of inserted points and nodes. In 2d gravity we got

from these boundaries the topological recursion relations. In the case of the B-model there is an

interesting modification namely that the boundary components contribute only in anti-holomorphic

derivatives of Fg, which gives rise to recursion relations involving antiholomorphic derivatives.

Since without boundary component contributions the F (g) would be holomorhic one calls these

recursions the holomorphic anomaly equations. They are no more anomalous then the topological

recursion relations.

6.12 The holomorphic anomaly

We want to consider in this section perturbations of a more general form then in Sec. 4.3

namely

S =
∫

Σ
d2zL0+∑

i

t i

∫
Σ
Oi +∑

i

t̄ i

∫
Σ
Ōi . (6.99)

Here the WS two-form field O = O (2) is the B-model field (4.12) which comes from a φ = O (0) in

the (c,c) ring. We will use here the CFT notation introduced in Sec. 4.5, i.e. Oi := {Q+, [Q−,φi]}∼
{G−
0 , [Ḡ−

0 ,φi]} and Ōı̄ := {Q̄+, [Q̄−, φ̄ı̄]} ∼ {G+
0 , [Ḡ+

0 , φ̄ı̄]}. In a unitary theory t̄ i = (t i)∗, but it will
be important in the following to view t̄ i as an independent parameter. As explained in Sec. 4.3 the

WS two-form fields in (6.99) are neutral. Therefore we can expect that arbitrary n− point functions

like for g > 1

C
(g)
i1,...,in

=
∫

Mg

〈
∫

Oi1 . . .
∫

Oin

3g−3
∏
k=1

β kβ̄ k〉 (6.100)

do not vanish. As it stands (6.100) is not well defined. We first have to specify how to deal with the

contact terms, which are necessarily present in an interacting supersymmetric theory, see (4.64) or

(4.71). Now in the case g = 0 there are the three PSL(2,C) conformal Killing fields. The zero mode

integral of their superpartners compensates for three descendant operations and with the PSL(2,C)

symmetry we set three points to 0,1,∞. The generic genus zero correlation is then

C
(0)
i1,...,in

=
∫

M0

〈φi1(0)φi2(1)φi3(∞)
∫

Oi4 . . .
∫

Oin〉 (6.101)
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This has no contact interaction among the first 3 fields. It is natural to make this function symmetric

in its indices. Therefore we exclude all contact interactions from the regions of the integrations.

This is the regularization we adopt for general g.

In view of (6.99) we can insert
∫

Σ Oi operators by taking t i derivatives ∂i of C
(g)
i1,...,in

in an

the attempt to obtain C
(g)
i,i1,...,in

. In order to achieve our short distance regularization we have to

subtract the would be contact terms in the integration over Σ. This is very naturally achieved by
taking covariant derivatives w.r.t. the Weil-Peterson metric, i.e. ∂i → ∂i −Γi. In the tt∗ formalism
we can isolate the contact term as the difference between ∂i(Q+Q−| j〉)−O j∂i|0〉 = [(Ai)

k) jOk −
(Ai)

0
0O j]|0〉. The logic is that in the term ∂i(Q+Q−| j〉) the field Oi in the integral

∫
Σ Oi explores the

region near O j in (4.47), while in the second it does not. The Q+Q− generate the descendant field
from φ j in (4.47) in order to compare the two terms. In particular applying this to | j〉 = |0〉 and
using (4.68,4.69) we get a contact term with the 1 operator (Ai)

0
0 ·1 = −∂K ·1. Roughly speaking

this non triviality of the vacuum comes from the coupling of φ j to theU(1)R current (4.2). One can

argue that the above contact term is proportional to the integral of R integrated over the Riemann

surface. The above consideration for the half sphere (4.47) , fixes the normalization and in general

gives the Euler number χ of Σ. Subtracting both contact terms one concludes that the insertion of∫
Σ O

(2)
i into a genus g correlation function with the right short distance prescription is given by the

covariant derivative ofC
(g)
i1,...,in

Di = ∂i −Γi − (2−2g)∂iK, (6.102)

This reflects the fact that C
(g)
i1,...,in

is a tensor over the complex moduli space of the Calabi-Yau

M transforming in Symn(T ∗M )⊗L 2−2g in as a generalization of the genus zero discussion in
Sec. 6.6. The last factor can also be understood by building the higher genus Riemann surface

Σg by sewing it from a sphere. This involves g times a |i〉η i j〈 j| ∈ L −2 insertion as we will see
shortly, which results inF (g) transforming as section ofL 2−2g w.r.t. to Kähler transformations. To
summarize the contact algebra analysis yields that all correlators can be obtained from the vacuum

correlatorsF g as

C
(g)
i1,...,in

= Di1 . . .DinF
(g) . (6.103)

They are symmetric, because of the vanishing of the corresponding curvature terms in Kähler

connections.

Let us therefore investigate similarly as in Sec. (4.62) the derivative w.r.t. t̄i of the correlator

∂
∂ t̄i

F
g =

∫
Mg

〈∮
Cw

G+
∮

C′
w

Ḡ+φ̄ī(w)
3g−3
∏

k,k̄=1

β kβ k̄

〉
· [dm∧dm̄]

=
∫

Mg

4
3g−3
∑
iı̄=1

∂ 2

∂mi∂ m̄i

〈
φī(w)∏

k 6=i

β k ∏̄
k 6=ı̄

β k̄

〉
· [dm∧dm̄]

=
∫

Mg

∂ ∂̄λ 6g−8 =
∫

∂Mg

λ 6g−8

(6.104)

The contour of G+, Ḡ+ are originally as in Fig. 5 encircling φ̄(w). The deformation and splitting

of the contour yields a sum of terms in which the G+ and Ḡ+ encircle one
∮

Cu
dwG+(w)G−(u)µk =

2T (u)µk and one
∮

Cu
dwḠ+(w)Ḡ−(u)µ k̄ = 2T̄ (u)µ k̄ in each summand. Together with the integral
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Figure 18: A-type sewing

d x
2

O
_

ι
(2)
−

G−
G
_

− G
−

G
_

−

τ
2

Figure 19: B-type sewing

in the definition of the β k and β̄ k and the charges Q+ and Q− associated to G+(z) and Ḡ+(z) we

can write the result of the contour deformation as

{Q−,β k} =
∫

Σg
d2zT µk =: T k

{Q+, β̄ k} =
∫

Σg
d2zT̄ µ̄k =: T̄ k .

(6.105)

In Sec. 4.5 where the G−(u), Ḡ−(u) are integrated over a contour we got the L−1 mode of the
T , which corresponds to derivative of an insertion position. Here we get the T k and T̄ k, which

convert according to (4.17) into a derivative in the moduli space. Both effects are related and lead

to exact forms onMg andMg,n. The boundary components ∂Mg, where the integral in the last

line of (6.104) contributes according to Cauchy’s theorem are in real codimension two as indicated

by the form degree of λ . They are the standard stable degenerations encountered in Sec 5.2 Fig
10. The whole point specific of the B-model is to now figure out what the Pi j, Ai j and Bi j are. This

turns out to be much easier then in the 2d gravity case. It is a bosonic string higher loop sewing

consideration [126] with simplifications. There will be no new information in the Pi j above what

we summarized in (6.103). Since
∫

Σ O(i) operators correspond to functions onMg as opposed to

the Ψ classes there is no interesting recursion to expect.
It remains to analyze the A and B degeneration depicted in Fig. 18 and 19 respectively. Near

the boundary component in the moduli space corresponding to the degenerate surface in the figures

the normal direction to the boundary can be parametrized by the length of the tube τ2. The moduli
space of the boundary components consist of the 3g−6 dimensional moduli space of the irreducible
curves of genus g− 1 in case A or h and g− h in case B respectively with measure [dm̂∧ d ˆ̄m].

That is we loose three complex dimensions in the moduli space of the irreducible components and

hence three β β̄ . As we make the tube infinitely long or equivalently infinitesimally thin the data
remembered about the shape are merely the two insertion points w and u, the length and the twist

of the tube. In particular two β β̄ are replaced by (
∮

Cx
G− ∮

C′
x
G−φX(x)) with x = u,w and since

we want to calculate a string amplitude we have to insert a complete set of states for the φX . The

contribution of the boundary is hence

∫
∂Mg

[d̂m∧ d̂m̄][dw][du]
∂

∂τ2

〈∫
φ̄ j̄(

∮
Cu

G−
∮

C′
u

G−φi)η i j(
∮

Cw

G−
∮

C′
w

G−φ j)
3g−6
∏
a=1

β̂ a ˆ̄β
a

〉
(6.106)

The integration over [du] and [dw] is over the fibre Σg of the universal curve. We can hence convert,

e.g. the
∮

Cu
G− ∮

C′
u
G−φi insertions in a descendant field O

(2)
j integrated over Σg. Only if the

∫
φ̄ j̄
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integral extends over the tube one gets a contribution proportional to τ2 which does not cancel
under the derivative in (6.106) and one can focus on this integration domain. The correlation

function factorizes upon complete insertion of states in operator approach, which gives

∫
∂Mg

[dm̂∧d ˆ̄m]
∂

∂τ2
〈k|

∫
tube

φ̄ j̄|l〉η ikη l j

〈
(
∫

Σ
Oi)(

∫
Σ
O j)

3g−6
∏
a=1

β̂ a ˆ̄β
a

〉
. (6.107)

Here we also used the fact that propagation on the tube projects on the ground state. With the

manipulations from the Sec. 4.5 and the normalizing the perimeter of the tube to one we get

〈k|
∫

tube
φ̄ j̄|l〉η ikη l j = 〈k̄|

∫
tube

φ̄ j̄|l̄〉Mk̄
k η ikM l̄

l η
l j

= τ2〈k̄|φ̄ j̄|l̄〉e2KGik̄G jl̄ = τ2C̄k̄ j̄l̄e
2KGik̄G jl̄ =: τ2Ci j

k̄

(6.108)

Using this result in the boundary contribution of the A or B type degeneration and (6.103) one gets

the contributions from the boundaries

∂̄k̄F
(g) =

1

2
C̄

i j

k̄

(
DiD jF

(g−1)) +
g−1
∑
r=1

DiF
(r)D jF

(g−r)

)
(6.109)

The factor 1
2
comes from the fact that we over count the integration over Oi and O j in (6.107) by

two in the A degeneration, as the Oi ↔ O j does not change the complex structure and in the B

degeneration we doubled the non symmetric terms.

For g = 1 the situation is more tricky and interesting. Because of h0(T 2) = 1 we have to kill

the infinite automorphism by the insertion of one operator to start with a stable curve. Hence we

have to consider ∂̄k̄∂mF (1). That leads in addition to the A degeneration to a contact term between

OiŌ j̄

∂̄k̄∂mF
(1) =

1

2
C̄

i j

k̄
Cmi j +

( χ
24

−1
)

Gk̄m . (6.110)

The first term above is from the A type degeneration. The contact term sees global properties of the

Calabi-Yau and is the most interesting one have encountered. There are two ways to normalize the

contact term. Compare with the operator

F1(t, t̄) =
1

2

∫
d2

τ2
Tr(−1)FFLFRqH q̄H̄ . (6.111)

formulation F (1) [10] and calculate the tt̄ term as in [30]. Or relate it to the Ray-Singer torsion30

[11] and use the family index theorem of [14].

The counting function for the GW invariants is obtained as a holomorphic limit of the result

of the integrationF top(t) = limt̄→∞ F g(t, t̄) of (6.110). One difficulty in integratingF g(t, t̄) is the

possibility of adding a holomorphic piece to it. Its form is however restricted to

fg(z) =
D

∑
i=1

2g−2
∑
k=0

p
(k)
i (z)

∆i
k

(6.112)

where D is the number of components ∆i of the discriminant, and p
(k)
i (z) are polynomials of degree

k. Using the expansion (5.48) and the genus one data of the quintic discussed in (6.9) one obtains

the BPS numbers in table 4 and 5.

30See [125] for a recent application to Hitchins action.
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d arith. genus 2 3 4

1 0 0 0

2 0 0 0

3 0 0 0

4 534 750 8 625 0

5 75 478 987 900 −15 663 750 15 520

6 871 708 139 638 250 3 156 446 162 875 −7845381850
7 5 185 462 556 617 269 625 111 468 926 053 022 750 243 680 873 841 500

8 22 516 841 063 105 917 766 750 1 303 464 598 408 583 455 000 25 509 502 355 913 526 750

Table 5: BPS degeneracies n
(g)
β=d
associated to genus 2,3,4 curves on the Quintic in P4

7. Complex-, Kähler- and Calabi-Yau manifolds.

Let us describe in the following the definitions and key properties of the manifolds mentioned

above. A quick introduction from the physics point of view is [82], a more extensive one is [21].

A good introduction of supersymmetric compactifications with emphasis on Calabi-Yau manifolds

and orbifolds is [54]. One purpose of this section is to give a guide to further mathematical refer-

ences which are given as we go along.

7.1 Complex manifolds

Consider a real 2n dimensional manifold M with a covering by coordinate patches Ui, i =

1, . . . ,r, which are homeomorphic to a neighborhood Ui ∈ Cn. Then we can pick x
(i)
α (p), α =

1, . . . ,n complex coordinates on each Ui. M is a complex manifold, if all transition functions

f ( jk) : x(k)(p) → x( j)(p) , (7.1)

defined for p ∈ U j ∩Uk, are biholomorphic.

Obviously Cn is a non-compact complex manifold with one chart. It is also Kähler. One may

hope to get examples of compact complex manifolds by considering constraints like f (x1, . . . ,xn) =

0, which are holomorphic in all variables. While this leads indeed to a complex manifold, it fails to

define compact ones, because of the maximum modulus theorem, which states that the maximum

value of the modulus of a non constant differential function on an arbitrary domainD is taken at the

boundary of D. If now f = 0 is solved for some xi in a compact domain D of the other variables, xi

takes its maximal modulus on the boundary ofD and the construction fails to define a differentiable

compact manifold.

A way out is to use identifications on R2n by discrete shift symmetries, i.e. consider tori

T 2n = R2n/Γ2n, where the lattice Γ2n ∼= Z2n as abelian groups. If one chooses a complex structure

on R2n by aligning real and imaginary directions of T ∗R2n ∼= R2n with the basis of Γ2n one gets
compact complex tori T 3C . They are flat and have hence trivial holonomy. Dividing by discrete

rotations G of the lattice Γ2n leads to orbifold compactifications. If G acts as a discrete irreducible

subgroup of SU(3) in the fundamental representation on the complex coordinates of T 3C then one

gets a complex orbifold with curvature singularities at the fix set of G. The corresponding lattice
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automorphisms have been classified [50]. Remarkably one can prove that this curvature singulari-

ties can be smoothed to get a Kähler manifold with SU(3) holonomy.

An alternative route to construct simple compact complex manifolds is by dividing by C∗ :=
C\{0} actions. E.g. Pn is defined as the space of complex lines through the origin in Cn+1. This

is the space of equivalence classes of [x0, . . . ,xn] in Cn+1 \{0} with the equivalence relation

(x0, . . . ,xn) ∼ λ (x0, . . . ,xn), (7.2)

where λ ∈ C∗. For the charts we take

Ui = {xi 6= 0|xi ∈ Pn}

and as their coordinates x
(i)
m = xm/xi. On U j ∩Uk we have the transition functions

x
(i)
m =

xm

xk

/
xi

xk

=
x
(k)
m

x
(k)
i

, (7.3)

which are biholomorphic. Pn is a obviously compact and a Kähler manifold as we shall see.

A hypersurface constraint in Pn of the type f (x0, . . . ,xn) = 0 must be homogeneous of some

degree d in the xi, i.e. f (λx1, . . . ,λxn) = λ d f (x1, . . . , fd), to be well defined on the equivalence

classes. It defines a compact complex Kähler manifold. This manifold is smooth if f is transversal,

i.e. d f 6= 0 for f = 0. We will give a short overview about the application of this construction and

generalizations to Calabi-Yau manifolds in Sec. 7.7.

Conceptually it is an important question if and how many complex structures an even dimen-

sion real manifold possesses. A necessary prerequisite to have a complex structure is a differen-

tiable endomorphism of the tangent bundle J : T M → T M with J2 = −1. J corresponds to mul-

tiplication of the tangent bundle by i =
√
−1 and manifold with this structure is called an almost

complex manifold 31. With J we can define projectors

P =
1

2
(1− iJ)

on the holomorphic sub-bundle and the antihomlomophic sub-bundle of the tangent bundle

P̄ =
1

2
(1+ iJ)

respectively. A necessary and sufficient condition for the existence of complex coordinates, i.e. a

complex structure, is that the Lie bracket (6.21) of two holomorphic vector fields X ,Y is always a

holomorphic vector field [120] (see [76] and [21] Chap. V. for physicists review). Written with the

projectors one formulates this condition as

P̄[PX ,PY ] = 0. (7.4)

31A complex manifold is almost complex, because multiplying the basis of T M of a complex manifold with coor-

dinates xk = uk + iwk by i =
√
−1 maps

(

∂
∂uk

∂
∂vk

)

7→
(

∂
∂vk

− ∂
∂uk

)

, i.e. J = dui ⊗ ∂
∂vi − dvi ⊗ ∂

∂ui . In holomorphic and

anti-holomorphic coordinates this means J i
j = iδ i

j , J
ı̄
j̄
= −iδ ı̄

j̄
and Ji

j̄
= J ı̄

j = 0
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This integrability condition leads to [JX ,JY ]−J[X ,JY ]−J[JX ,Y ]− [X ,Y ] = 0. In local flat coordi-

nates J(∂b) = Je
b∂e and with Jb

c Jc
d = −δ b

d , i.e. (∂aJb
c )Jc

d = −Jb
c (∂aJc

d), this means that the so called

Nijenhuis tensor vanishes identically [120]

Nc
bd := Ja

b (∂aJc
d −∂dJc

a)− Ja
d(∂aJc

b −∂bJc
a) ≡ 0 . (7.5)

Once complex coordinates xk = uk + ivk with

∂k :=
∂

∂xk
=
1

2

(
∂

∂uk
− i

∂
∂vk

)
, ∂k̄ :=

∂
∂ x̄k

=
1

2

(
∂

∂uk
+ i

∂
∂vk

)
(7.6)

are defined, we can split TCM = TRM⊗C, which is spanned over ∂
∂wk
, k = 1, . . . ,2n with complex

coefficients vi as TCM = T 1,0M ⊕T 0,1M. Here {uk,vk} =: {wk,wk+n} and each vector V in TCM

decomposes as

V =
2n

∑
k=1

V k ∂
∂wk

=
n

∑
k=1

[
(V k + iV n+k)∂k +(V k − iV n+k)∂k̄

]
=:V 1,0+V 0,1 . (7.7)

The transition functions of T 1,0M [T 0,1] spanned by ∂k, [∂k̄] are [anti-]holomorphic, and we call

it the [anti]holomorphic tangent bundle. Obviously under complex conjugation T 0,1M = T 1,0M.

Similarly the cotangent bundle splits T ∗
CM = T ∗1,0M ⊕ T ∗0,1M into a holomorphic and an anti-

holomorphic sub bundle spanned by dxk and dx̄k := dxk̄ respectively. Sections of ∧rT ∗
CM are called

r-forms Ωr and can be decomposed into sections of ∧pT ∗1,0M ∧q T ∗0,1, which are called (p,q)-

forms Ωp,q, i.e the space Ar of r forms splits into the space Ap,q of (p,q)-forms Ar =
⊕

r=p+q Ap,q.

If J is integrable32, the de Rham exterior derivative splits likewise into

d= ∂ + ∂̄ , (7.8)

i.e. for ω = ωi1,...,ip, j̄1..., jq
dxi1 ∧ . . .∧dxipdx j̄ ∧ . . .∧dx j̄q ∈ Ap,q one has

∂ω = (∂kωi1,...,ip, j̄1..., j̄q
)dxk ∧dxi1 ∧ . . .∧dxip ∧dx j̄ ∧ . . .∧dx j̄q ∈ Ap+1,q

∂̄ω = (∂k̄ωi1,...,ip, j̄1..., j̄q
)dxk̄ ∧dxi1 ∧ . . .∧dxip ∧dx j̄ ∧ . . .∧dx j̄q ∈ Ap,q+1 (7.9)

so that dΩp,q ∈ Ap+1,q ⊕Ap,q+1 . It follows by consideration of the (p,q) type that the equation

d2 = 0 on A∗ implies ∂ 2 = 0, ∂̄ 2 = 0 and ∂̄ ∂ + ∂ ∂̄ = 0. Since ∂̄ is nilpotent we can define the
cohomology H∗

∂̄ = Kern∂̄
Im∂̄ .

A central result is the Čhech-Dolbault isomorphism, which follows from the Čhech-deRham

isomorphism see [72] page 43-44 and the ∂̄ -Poincaré Lemma. It states for sheaves of vectors fields
F that

Hq(M,Ωp(F)) ∼= H
p,q

∂̄ (M,F) . (7.10)

For example Hq(M,∧pT ∗M) ∼= H p,q(M,TM) =: H p,q(M).

32On an almost complex manifold one can project r-forms Ω with p P’s and q P̄’s (r = p+q) to (p,q)-forms Ωp,q.

As J depends on the coordinates one gets dΩp,q = (dΩ)p−1,q+2+(dΩ)p,q+1+(dΩ)p+1,q +(dΩ)p+2,q−1 and one may

define ∂Ωp,q = (dω)p+1,q and ∂̄Ωp,q = (dΩ)p,q+1. One can check that the condition ∂̄ 2 = 0 is equivalent to Nb
cd ≡ 0.
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7.2 Kähler manifolds

A hermitian metric is a positive-definite inner product T M⊗ T̄ M → C. Locally it can be given

by a covariant tensor ∑n
i, j gi j̄(w)dxi ⊗dx j̄ such that gi j̄ = g jı̄ and ∀vi ∈ C one has vigi j̄v

j̄ > 0, if not

all vi = 0. Note that the first index of gi j̄ is only summed over the unbarred i = 1, . . . ,n and the

second only over barred j̄ = 1̄, . . . , n̄ indices respectively. To define a hermitian metric an almost

complex structure is sufficient. Hermiticity is the condition g(X ,Y ) = g(JX ,JY ) on the real metric,

which becomes

gmn = Ja
mJb

n gab (7.11)

in coordinates. It does not constrain M further than admitting J and any metric say g′, because
for any such g′ the metric gmn = 1

2
(g′mn + Ja

mJb
n g′ab) is hermitian. In particular on any complex

manifold we can define a hermitian metric see [98] Chap 3.5. Multiplying (7.11) with Jm
p , defining

Jnm = Ja
n gam and using Jm

p Ja
m = −δ a

p we see that Jnm = −Jmn. Hence we can define a 2-form

ω = Jnmdw
n ∧dwm. In complex notation this becomes

ω = i
n

∑
i, j=1

gi j̄dx
i ∧dx j̄ . (7.12)

This is a real form ω̄ = ω of type (1,1) and is called the fundamental form associated to the

hermitian metric. Because33 g := det(gi j̄) > 0 one gets by wedging ω n-times

vol=
ωn

n!
= in det(gi j̄)dx

1∧dx̄1∧ . . .∧dxn ∧dx̄n = 2ndet(gi j)
1
2 dw1∧ . . .∧dw2n (7.13)

a positive volume form onM, which implies also that M is orientable.

A hermitian metric whose fundamental form is closed dω = 0 is called a Kähler metric. A

complex manifold endowed with a Kähler metric is called a Kähler manifold. dω = 0 implies

∂ω = ∂̄ω = 0, which is equivalent to ∂kgi j̄ = ∂igk j̄ and ∂̄k̄gi j̄ = ∂̄ j̄gik̄. The latter equations are

integrability conditions for the existence of a local Kähler potential K(x, x̄) which is real and yields

the metric as follows

gi j̄ = ∂i∂ j̄K(x, x̄) = −1
2
d(∂ − ∂̄ )K(x, x̄) . (7.14)

Note that despite the form above ω cannot be exact. For if ω = dA would have been exact (7.13)

could not be true, because using Stokes theorem the integral
∫

ωn would be zero. That means that

(∂ − ∂̄ )K is not globally defined. Indeed as far as the definition of ω goes K(x, x̄) only needs to

be defined up to a Kähler transformation K(x, x̄) → K(x, x̄)+ f (x)+ f̄ (x̄), so eK will be a section

of a nontrivial line bundle over M. In general two Kähler forms ω and ω ′ are in the same class in
H2(M,R), if we can find a smooth global real function φ onM and

ω ′ = ω +∂ ∂̄φ(x, x̄) (7.15)

33Note in coordinates xi,xī one has the block form gnm =

(

0 gµν̄
gσρ̄ 0

)

and e.g. [21] defines g := det(gnm) =

det2 gµν̄ .
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Above property (7.14) simplifies the expressions for the Christoffel symbols and the curvature

tensors
a.) Γk

i j = gkl̄∂ig jl̄, Γk̄
ī j̄

= glk̄∂̄īgl j̄

b.) Ri j̄kl̄ = −∂i∂̄ j̄gkl̄ +gmn̄(∂igkn̄)(∂̄ j̄gml̄), R
l

i j̄k
= −∂̄ j̄Γl

ik

c.) Ri j̄ ≡ gkl̄Ri j̄kl̄ = −∂i∂̄ j̄ logdet(gi j̄) .

(7.16)

Note that the pure index Christoffel symbols are the only non-vanishing ones and that Ri j̄kl̄ =

Rk j̄il̄ = Ril̄k j̄, because of the integrability condition. The other non vanishing components of the

Ricci tensor are of type R j̄ikl̄ , Ri j̄il̄ and R j̄il̄k. From the Ricci tensor one defines the Ricci form

R = iRi j̄dx
j ∧dx j̄ = −i∂ ∂̄ logdet(gi j̄) =

i

2
d(∂ − ∂̄ ) logdet(gi j̄) . (7.17)

It satisfies dR = 0, but is not exact, despite the form it is written above, because logdet(gi j̄) is a

density and not a function.

We now turn to harmonic theory for complex manifolds. On (p,q)-forms φ = 1
p!q!

φi1,...,ip, j̄1..., jq
dxi1∧

. . .∧dxip ∧dx j̄1 ∧ . . .∧dx j̄q we have a local inner product defined by a hermitian metric

(φ ,ψ)(x) =
1

p!q!
φi1...ip j̄1... j̄q

ψ i1...ip j̄1... j̄q (7.18)

where ψ i1...ip j̄1... j̄q = gi1 l̄1 . . .gip l̄pgk1 j̄1 . . .gkq j̄qψk1...kq l̄1...l̄p
. With this we can define an global inner

product Ap,q ×Ap,q → C

(φ ,ψ) =
∫

M
(φ ,ψ)(x)vol, (7.19)

with

(φ ,ψ) = (ψ,φ), (φ ,φ) > 0 unless φ = 0, (7.20)

which makes Ap,q in a pre-Hilbert space. One can define the Hodge operator34 ∗ : Ap,q → An−q,n−p

i.e. ∗ : ψ 7→ ∗ψ by
(φ ,ψ)Vol= φ ∧∗ψ̄ , (7.21)

with ψ̄ = 1
p!q!

ψi1...ip, j̄1... j̄q
dxi1 ∧ . . .∧dip ∧dx j̄1 ∧ . . .∧dx j̄q = 1

p!q!
ψ j1... jq,ı̄1...ı̄p

dx j1 ∧ . . .∧ d jq ∧ dxı̄1 ∧
. . .∧dxı̄p and ψi1...ip, j̄1... j̄q

= (−1)pqψ̄ j1... jq,ı̄1...ı̄p
. Explicitly

∗ψ =
in(−1)n(n−1)/2+np

p!q!(n− p)!(n−q)!
gεk1...kp

j̄1... j̄n−p
ε l̄1...l̄q

i1...īn−q
ψk1...kp,l̄1...l̄q

dxi1∧ . . .∧din−q ∧dx j̄1∧ . . .∧dx j̄n−p . (7.22)

One checks ∗ψ̄ = ∗ψ and ∗∗ψ = (−1)pqψ for ψ a (p,q)-form.

With the norm (·, ·) we can define the adjoint operators ∂ ∗ : Ap,q → Ap−1,q and ∂̄ ∗ : Ap,q →
Ap,q−1 by

(∂ ∗ψ,φ) := (ψ,∂φ), and (∂̄ ∗ψ,φ) := (ψ, ∂̄ φ) (7.23)

respectively. On a compact manifold one has ∂̄ ∗ =−∗∂∗. With the adjoint operator one can define
beside the de Rham Laplacian ∆d= dd∗+d∗d the Laplacians ∆∂ = ∂∂ ∗+∂ ∗∂ and ∆∂̄ = ∂̄ ∂̄ ∗+ ∂̄ ∗∂̄ .
The Hodge theorem states that every element φ ∈Ap,q has an unique orthogonal decomposition into

34Here the conventions are as in [98]. The ∗ operator in [72] maps ∗gh : A
p,q → An−p,n−q, so it involves an additional

complex conjugation ∗ghψ = ∗koψ̄ .
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a harmonic form h, an exact piece ∂̄ ξ with ξ ∈ Ap,q−1 and a co-exact piece ∂̄ ∗η with η ∈ Ap,q+1

i.e.

Ap,q = H
p,q ⊕ ∂̄Ap,q−1⊕ ∂̄ ∗Ap,q+1 . (7.24)

This is in analogy with the de Rham decomposition Ap = H p ⊕ dAp−1⊕ d∗Ap+1. The usual ar-

gument shows that if φ is closed, i.e. ∂̄ φ = 0, then the ∂̄ ∗η piece in the decomposition is zero,
because ∂̄ φ = ∂̄ ∂̄ ∗η and thus 0 = (∂̄ φ ,η) = (∂̄ ∗η , ∂̄ ∗η), which implies ∂̄ ∗η = 0. This in turn

means that every ∂̄ closed form can be uniquely decomposed into a harmonic form w.r.t. ∆∂̄ and a

∂̄ exact piece, which implies H
p,q

∂̄ (M) ∼= H p,q(M).

Using (∂̄ ∗ψ)i1...ip j̄2... j̄p
= (−1)p+1∇ j̄1ψi1...ip j̄1 j̄2... j̄q

one can show that the Kähler ω form is
harmonic. Hence h1,1(M) ≥ 1 on a Kähler manifold. Similarly one shows that all ω m, m = 1, . . . ,n

are nontrivial elements in Hm,m(M). A very important result for Kähler manifolds is the Laplacians

are all equivalent

∆∂ = ∆∂̄ =
1

2
∆d , (7.25)

where ∆∂̄ = ∂̄ ∂̄ ∗ + ∂̄ ∗∂̄ , ∆∂ = ∂∂ ∗ +∂ ∗∂ and ∆d = dd∗ +d∗d. As a consequence of (7.25) ∆d like
∆∂ and ∆∂̄ does not change the (p,q)-type and taking the harmonic forms as unique representatives

we have a decomposition of the deRham cohomology groups

Hr(M) =
⊕

p+q=r

H p,q(M) . (7.26)

Let us note for further reference that the action of ∆d on p-forms ω can be expressed in terms of
covariant derivatives and the curvature tensors as

(∆dω)µ1...µp
= −∇ν∇νωµ1...µp

− pRν[µ1ω
ν
µ2...µp]

− 1
2

p(p−1)Rνρ[µ1µ2ω
νρ
µ3...µp]

(7.27)

By consideration of type follows that every holomorphic (p,0)-form ω is harmonic and vice
versa. We have ∂̄ ∗ω = 0 as it maps to Ap,−1 which is trivial. If ∆∂̄ ω = 0 then from ∂̄ ∗∂̄ω = 0

follows ∂̄ω = 0.

Forms of Kähler manifolds are related by complex conjugation Ap,q = Aq,p, which implies for

the cohomology groups H p,q(M) = Hq,p(M), since complex conjugation commutes with ∆d. The
star operator ∗ : Ap,q → An−q,n−p is another bijection which commutes with ∆d and hence

Hq,p(M) = H p,q(M) = Hn−q,n−p(M) . (7.28)

Let us mention briefly further important facts about Kähler manifolds. The property of the

Christoffel symbol to have only pure indices leads to the fact that parallel transport of a vector gen-

erates only the holonomy groupU(n) ∈ SO(2n) rather then SO(2n), which would be the holonomy

of a generic orientable manifold.

Another well known fact is that Pn is a Kähler manifold. This can be established by giv-

ing with the Fubini-Study metric an explicit. In the Ui, i = 0, . . . ,n patches the Kähler potential

is given by K(i)(x(i), x̄(i)) = log(1+ |x(i)|2), where |x(i)|2 = ∑ j 6=i |x(i)
j |2. Using (7.3) we see that

K(i)(x(i), x̄(i)) = K( j)(x( j), x̄( j))− log xi

x j
− log x̄i

x̄ j
. The latter two terms are holomorphic and antiholo-

morphic functions respectively on Ui ∩U j. Hence they do not affect the metric gi j̄ = ∂i∂ j̄K(x, x̄),
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which is globally well defined. Dropping the index for the patch we get

ω = i∂ ∂̄ log(1+ |x|2) = i

(
dxi ∧dxı̄

1+ |x|2 − x̄idxi ∧ x jdx j̄

(1+ |x|2)2

)
. (7.29)

This defines a positive-definite metric. With det(gi, j̄) = 1
(1+|x|2)n+1 one calculates the Ricci tensor

Ri j̄ = −∂i∂ j̄ logdet(gi j̄) = (n + 1)gi j̄. If the Ricci tensor is proportional to the Kähler metric one

calls the metric Kähler-Einstein.

7.3 Characteristic classes of holomorphic vector bundles

In the last section we encountered the holomorphic tangent bundle of M as an example of a

holomorphic vector bundle E with a hermitian metric, which we call hab in the general case. The

connection one form

Ak = (∂kh)h−1, Ak̄ = 0 (7.30)

defines the unique affine connection, which is compatible with the hermitian metric, i.e ∇h = 0,

and compatible with the complex structure. One defines the curvature two form as F = dA+A∧A.

The differential geometry approach to Chern classes ci(E) ∈ H2i(M,R) of a rank r holomorphic

vector bundle is to define them in terms symmetric function of the eigenvalues of the curvature

form as

c(E) = det(1+
i

2π
F) = 1+∑

i

ci(E) = 1+
i

2π
TrF + . . . (7.31)

and to prove then that they do not depend on the metric[12][140].

Topologically one can represent the Chern class ck as the Poincaré dual to the degeneracy cycle

Dr−k+1(σ) = {x : σ1(x)∧ . . .σr−k+1(x) = 0}, (7.32)

where r−k+1 generic C ∞ sections σi of E become linearly dependent. This is described as Gauss

Bonnet formula II in Chap 3.3 of [72], see also [58][81] for the approach using classifying spaces.

The simplest example of the above dual descriptions arise for line bundlesL . Let |σ |2 be a metric
on a line bundle L, where σ is a section of L. Local trivialization of L are φ : L|U →U ×C, where

sU is a holomorphic function and |σ |2 = h(x)|sU |2 for some function h(x), which is positive if the

metric is. The curvature 2-form given by

R = −∂̄ ∂ logh(x) (7.33)

defines the Chern-class of L represented by c1(L) = i
2π [R] ∈ H2(M). This class is Poincaré dual

to the divisor class [D] which defines L and is uniquely recovered from L as the locus where the

generic section vanishes. As a corollary the first Chern class of a holomorphic vector bundle is also

the first Chern class of the determinant bundle LD = ∧rE

c1(E) = c1(LD) . (7.34)

For the tangent bundle we identify the curvature 2-form F with Θ j

ī
= g j p̄Rip̄kl̄dx

k ∧dxl̄ and get

a representative for c1(T M) (which we also call c1(M))

c1(M) =
i

2π
Θi

i = Rkl̄dx
k ∧dxl̄ = − i

2π
∂ ∂̄ logdet(gkl̄) . (7.35)
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The canonical line bundle is the determinant line bundle of the holomorphic tangent bundle

KM = ∧nT ∗ 1,0M. By (7.34) and (7.35) we have therefore

−2πc1(KM) := −2πc1(∧nT ∗ 1,0M) = −2πc1(T
∗M) = 2πc1(T M) . (7.36)

Let us derive this also using as an explicit representative of the Chern class the curvature 2-form.

Given a complex structure and a Kähler metric gi j̄ we have a connection on T ∗ 1,0M described by
the holomorphic Christoffel symbols. This connection induces a connection on the line bundle KM

and a straightforward calculation shows on total antisymmetric forms [∇i,∇ j̄]ωi1...,in = −Ri j̄ωi1...,in

Therefore we can identify h(x) of (7.33) with det−1(gi j̄) and by (7.33) the first Chern class of KM

is

−2πc1(KM) = [R] = 2πc1(T M) . (7.37)

If one uses the Poincaré Hopf theorem that the Euler number χ(M) of a manifold of dim n is given

by the sum of indices of zeros of a generic vector field, i.e. a section of the tangent bundle, then by

(7.32) the dual to cn(T M) is D1. Counting these zeros leads then to the Gauss-Bonnet formula

χ(M) = D1∩M =
∫

M
cn(T M) . (7.38)

Let us discuss further properties of the Chern classes. By (7.31) one has c0(E) = 1, ck>r(E) =

0 and the Whitney product formula c(E ⊕F) = c(E)C(F) from the properties of the determinant,

see [16] for a proof from the topological definition. It is also easy to see[72] that

ck(E
∗) = (−1)kck(E) (7.39)

and ck( f (E)) = f ∗ck(E) for f : M → M′ a differentiable mapping. A further important property
is the splitting principle [16]. For an exact sequence of holomorphic vector bundles or sheaves

0→ E → F → G → 0 one has c(F) = c(E)c(G). One considers often classes xi such that c(E) =

∏r
i=1(1+ xi) where xi are Chern classes of line bundles. One reason that this is useful is that the

splitting principle implies that if one wants to derive polynomial identities among Chern classes

of vector bundles, one may replace the vector bundles by direct sums of line bundles. This opens

up a calculational machinery with classes, which behave e.g. more natural on direct products as

the Chern character Ch(E) = ∑r
i=1 exi . All expressions are polynomial, defined by expanding up to

degree r in xi. Obviously Ch(E ⊗F) = Ch(E)+Ch(F) and Ch(E ⊗F) = Ch(E)Ch(F). A little

playing with symmetric functions reveals Ch(E) = r+c1+
1
2
(c21−2c2)+ 16(c31−3c1c2+3c3)+ . . .,

where we set ck = ck(E). Similar is the Todd genus defined td(E) = ∏r
i=1

exi

1−exi
= 1+ 1

2
c1+

1
12

(c21+

c2)+ 1
24

c1c2+ . . .. A central theorem is the Hirzebruch-Riemann-Roch formula, which gives the

arithmetic genus χ(E) = ∑k(−1)khk(E) of a vector bundle over a manifoldM [81]

χ(E) =
∫

M
ch(E)∧ td(T X) . (7.40)

In sections 5.1,5.2 and 6.11 we needed applications of (7.40). Namely to count the deformation

space (4.15) of a Riemann surface35 Σg. As seen in section 6.2 the complex structure moduli of the

35This related by the Atiyah-Singer index formula to the index of the Dirac operator and hence to the ghost zero

modes. An overview about index formulas for physicist can be found in [48] and the connections to the zero modes is in

explained e.g. in [126].
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metric are given by elements in the Čheck cohomology group H1(T ) with T = T Σ and for g > 1

there are no conformal Killing vectors generating global diffeomorphims i.e. one has h0(T ) = 0.

However for g = 1 the shift z → z + λ on the torus accounts for h0 = 1 and for g = 0 the three

generators of PSL(2,C) z → az+c
cz+d
on S2 account for h0 = 3. For a vector bundle V of rank r over

the Riemann surface Σ the formula (7.40) gives

h0(Σ,V )−h1(Σ,V ) =
∫

Σ
ch(V )∧ td(T ) =

∫
Σ
(r+c1(V ))(1+

1

2
c1(T ) =

∫
Σ

c1(V )+r(1−g) . (7.41)

The virtual dimension of the deformation space is obtained by setting V = T with rank 1

dimMg = h1(T )−h0(T ) = −
∫

Σ
ch(T )∧ td(T ) = 3g−3 . (7.42)

In the integral over the metric moduli space in string amplitudes one sacrifices in the g = 0,1 cases

h0 = 3,1 additional parameters, the position of insertion points, to offset the negative contributions

to (7.42) from the conformal Killing fields. Another application leads to the formula (5.10) de-

scribing the dimension of the deformation space of holomorphic maps x : Σ → M. The movement

of the curve in M is described infinitesimally by a vector field xi → xi + εξ i on M. The vector

field must be holomorphic ∂z̄ξ = 0 so that the deformed map stays holomorphic. Also we are not

counting vector fields which correspond to reparametrizations of Σ. That is we look at elements of
H0∂̄ (Σ,x∗(T M)) = H0(x∗(T M)) and (7.40) gives us

h0(x∗(T M))−h1(x∗(T M))=
∫

Σ
(dimCM+x∗(c1(T M)))(1+

1

2
c1(T ))= c1(T M)·β +dimCM(1−g) .

(7.43)

Generically the movement of the map is unobstructed andH1(x∗(T M)) = 0. In the case the above is

also the dimension of the deformation space. In the case of Calabi-Yau three folds we get for genus

0 that the dimension of the deformation space is 3. We can think about this in two ways. Either

we don’t fix points on S2, then we have to mod out by the 3 dim automorphism group PL(2,C) of

S2 and the expected dimension of the moduli space is 0. That is the way the corrections in F (0)

are interpreted. Or we kill PL(2,C) by marking three points on the S2 required to map into three

divisors, which put three constraints and yields again a zero dimensional moduli space. That is the

interpretation of corrections inCi jk(t).

7.4 Metric Connection and Holonomy

To describe spinor connection on curved spaces one introduces beside the curved indices

M,N, . . . the flat tangent indices A,B, . . . which are lowered and raised with the flat metric η AB =

diag(−1,1, . . . ,1︸ ︷︷ ︸
D−1

) and its inverse.

The Clifford algebra is defined by the anti commutator of {ΓA,ΓB} = 2ηAB. In the smallest

representation the Γ symbols are 2[D/2] × 2[D/2] matrices. The generators of the Lorentz group

in the spinor representation ξ of dimension 2[D/2] are given by the commutator T s
AB = − i

2
ΓAB =

− i
4
[ΓA,ΓB], i.e. ξ 7→ exp(iωABT s

AB)ξ under the spin group which is a cover of proper, ortochronous
Lorentzgroup SO+

↑ (1,D−1). We do not display spinor indices a,b . . . like in ξ̃a = (ΓA)b
aξb, a,b =

1, . . . , [D/2] explicitly. For more on spin representations in various dimensions, see e.g. [126].
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The relation to curved indices M,N . . ., lowered and raised by the curved metric GMN and

its inverse GMN , is provided by the D-bein eA
M and its inverse eN

B (e
A
MeN

A = δ N
M and eA

MeM
B = δ A

B )

which fulfills GMN = eA
MeB

NηAB. One has ΓA = eA
MΓM and ΓM = eM

A ΓA etc., from which follows

{ΓM,ΓN} = 2GMN . A torsion free ΓP
MN = ΓP

NM Riemann connection leaves the metric invariant

∇SGMN = 0= ∂SGMN −ΓP
SMGPN −ΓL

SNGPM (7.44)

which implies the formula for the Christoffel Symbols

ΓS
MN =

1

2
GSP (∂MGPN +∂NGMP −∂PGMN) . (7.45)

The spin connection ωA
MB is defined as

∇MeA
N = ∂MeA

N −ΓP
MNeA

P +ωA
NBeB

M, (7.46)

which implies that

ωAB
M =

1

2
(ΩMNR −ΩNRM +ΩRMN)eNAeRB, with ΩMNR = (∂MeA

N −∂NeA
M)eAR (7.47)

The connection on a spinor is then

∂Mξ = (∂M +
i

2
ωAB

M T s
AB)ξ (7.48)

and for any other representation carrying only flat indices of the tangent space one has to replace

T s
AB by the appropriate generator of the Lorentz group, i.e. T

v
AB = ηACδ D

B −ηBCδ D
A for vectors etc.

If a vectorV N is parallel transported around a infinitesimal rectangle along two tangent vectors
∂

∂XA
and ∂

∂XB
with area element σ AB =−σ BA its infinitesimal rotation is δV L =− 1

2
δσ MNRL

MN PV P,

which is one way to explain the effect of curvature

[∇M,∇N ]VP = −R S
MNP VS, with R S

MNP = ∂MΓS
NP −∂NΓA

MP +ΓB
NPΓS

MB −ΓB
MPΓS

NB . (7.49)

Note RM
NOP = −RM

NPO and also for a Kähler manifold the only non vanishing elements of Rk
i j̄ l
is

pure in k, l. That means that a holomorphic vector stays holomorphic under parallel transport and

δσ mnRk
mn l spans the Lie algebra of U(n). Near the identity U(n) ∼= SU(n)×U(1) and the U(1)

part is generated by the trace part of the Riemann tensor which is the Ricci tensor δσ mnRk
mn k =

−4δσ µν̄Rµν̄ .

Once one knows the holonomy group Hol on vectors the transformation properties of tensors,

forms and spinors becomes a matter of representation theory. In particular the following holds see

e.g. [86]. If Hol is the holonomy group of a connection ∇ on T M on a simply connected manifold

M then a tensor section S ∈ ⊗i T M ⊗⊗ j T ∗M is covariantly constant (parallel) iff S|x0 is locally
fixed by Hol.

The restriction to simply connected is quite important. Non simply connected manifolds can

have monodromy even if they are flat. Consider e.g. the easy example of a non-simply connected

space which is topologicallyM = S1×R2 with the metric

d2s = R2d2θ +(dxi +T i
j x

jdθ)2 , (7.50)

where T =

(
0 1

−1 0

)
is the generator of SO(2) rotations in R2. M is flat, yet a vector parallel

transported around the S1 gets rotated in the R2 directions. Similar examples a flat connection on

tori, with monodromy. In the case of a gauge connection we call such configurations Wilson lines.
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7.5 Calabi-Yau manifolds

A general Calabi-Yau manifold is a compact Kähler manifold M with vanishing first Chern

class c1(T M) = 0. The following statements are essentially equivalent for complex n dimensional

Kähler manifolds M, up to some important subtleties for non-simply connected cases, which we

discuss below. Together with the Kähler property they are used to define a (general) Calabi-Yau

manifold

• a) The canonical class is trivial.

• b) The first Chern class of the tangent bundle vanishes36 c1(T M) = 0.

• c) It exists a Kähler metric g whose Ricci tensor vanishes Ri j̄(g) = 0.

• d) There exists an up to a constant unique nowhere vanishing holomorphic (n,0) form Ω.

• e) The holonomy group Hol of M is a subgroup of SU(n).

• f) M admits a pair of globally defined covariantly constant (parallel) spinors ξ and ξ̄ of
opposite chirality if n is odd and of the same chirality if n is even.

Complex tori of all dimensions are general Calabi-Yau with trivial holonomy. In dimC = 1

the torus is the only topological type of Calabi-Yau manifold. In dimC = 2 the K3-surface is the

only topological Calabi-Yau manifold with G = SU(2), while in dimC = 3 the number of different

topological types of Calabi-Yau manifolds is> 105. This estimate comes from explicit construction

mostly of hypersurface and complete intersections in toric ambient spaces, see also Sec. 7.7.

The question one is mainly interested in for physical applications, is how many super sym-

metries are unbroken in compactifications to four dimensions. An important situation is when

the number of supercharges is reduced by 1/4 by a compactification of the ten dimensional su-

pergravity on the six real dimensional internal manifold M. This is the case if ξ and ξ̄ are the
only covariantly constant spinors [24]. This in turn holds generically, without further non-trivial

background fields, if the holonomy is the full SU(3), i.e Hol= SU(3) and in an interesting special

case namley the T 1C ×K3/Z2 FHSV model, which has Hol = SU(2)×Z2. Important applications

emerging form this scheme are the 10d heterotic compactification, which leads to N = 1 super-

symmetry in 4d and the 10d type II compactifications, which lead to N = 2 supersymmetry in 4d.

Other interesting examples for conceptual questions are compactification of type IIA or IIB to 6d

on K3, which has Hol= SU(2). This reduces the number of supercharges by 1/2 and leads to (1,1)

and (2,0) supersymmetry in 6d respectively. A phenomenological very interesting compactifiction

with N = 1 in 4d is F-theory compactification on an elliptically fibred Kähler manifold with SU(4).

From the supergravity point of view the definition of a Calabi-Yau manifold, which covers the

simplest physically interesting cases, is a compact Kähler manifold with Hol= SU(n). This implies

that there are now exactly two covariant constant spinors. One excludes thereby cases involving

non-simply connected manifolds such as T 3C and T 1C ×K3 and other products e.g. K3×K3. On non-

simply connected manifolds the relation between c.) and d.) is more subtle as they can have flat

36We assume that we have a connection without torsion on T M.
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metrics, which do have non-trivial holonomy. They lead to interesting supersymmetry reduction by

what is called generalized Scherk-Schwarz mechanism or geometrical Wilson lines [109]. However

from the string point of view the important condition is the vanishing of the first Chern class

c1(T M) = 0, which would have to be supplemented by the simply connectedness to restrict to get

the 1
4
supersymmetric case. The first reason is that this is the sufficient condition for the unbroken

axial U(1) on the world-sheet, necessary to define the B-twist. More importantly it is known that

the non-linear σ -model is not conformally invariant for the Ricci-flat metric. The four loop β -
function does not vanish in this geometry [74]. However it has be shown in [118][83] the possible

counter terms that the total perturbative β -function can be set to zero by a change in the metric
so that logdetg

string

i j̄
= logdetgR f lat

i j̄
+ α(x, x̄), where α(x, x̄) is a globally defined real function on

M, which is not | f (x)|2 of a holomorphic one. By (7.17) this implies that the curvature two form
becomes non-trivial by some non-vanishing exact terms, but the first Chern class stays of course

trivial c1(T M) = 0. Ricci-flat flat manifolds are not a vacuum solutions of string theory. One

may wonder whether the considerations about the covariantly constant spinors ξ , ξ̄ make sense.
They do, because what is required is that (∇m − i

2
Am)ξ = (∇m + i

2
Am)ξ̄ is zero, where A is a form

potential for the Ricci-formR = dA, where ∂̄ı̄α = Aı̄ and ∂iα = Ai.

Ω∧ Ω̄ is proportional to the volume form and there is a natural normalization which makes
ReΩ a calibration

ωn

n!
= (−1)

m(m−1)
2

(
i

2

)n

Ω∧ Ω̄ . (7.51)

Imposing (7.51) reduces the freedom in the constant in e.) to a phase [86].

Let us now discuss the relation between the statements a.) to f.). In order to connect a.)-d.) to

e.) and f.) we will assume that M is simply connected and not of product form.

a.) ↔ b.) follows from (7.36).
c.) → b.) is a simple consequence of the independence of the Chern classes on the choice of

the Kähler metric. Once one knows that there exists a Ricci-flat metric clearly c1(T M) = 0 and that

holds for all Kähler metrics.

b.) → c.) is a corollary to Yau’ theorem [163], which proves the conjecture that E. Calabi
formulated in (1956). It states that given the data

• (C.a) that for every given Kähler metric g, Kähler form ω and Ricci formR onM and a real

closed (1,1) formR ′, which represents the Chern class [R] = [R ′] = 2πc1(T M)

one can construct

• (C.b) a unique metric g′ onM with associated Kähler formω ′ such that [ω ′] = [ω]∈H2(M,R)

and the Ricci form of g′ isR ′

In particular c1(T M) = 0 can be represented byR ′ ≡ 0 and then according to the above there exists
a unique metric g′ whose Ricci form isR ′. Therefore its Ricci tensor is vanishes.
One can formulate simpler equivalent versions of (C.a) and (C.b) as requirements on the exis-

tence of functions on M as follows. R−R ′ is a ∂̄ exact and d closed real (1,1) form. By the ∂ , ∂̄
Lemma one has a real function f onM so thatR−R ′ = i∂ ∂̄ f up to a constant κ . Recalling (7.16)
how R is derived from the positive function multiplying w1 ∧ . . .∧w2n in (7.13), which is itself

determined by ωn

n!
, we conclude that f must make its appearance also in e f ωn = (ω ′)n. In fact the
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constant κ can be fixed by normalizing the volume
∫

M e f ωm =
∫

M ωm. The simplification is that

instead of requiring g′ to lead to a prescribed R ′ one requires that it leads to a prescribed volume
form and the statement aboutR andR ′ can be replaced by a statement about f . Similarly one can

formulate the [ω ′] = [ω] condition in (C.b) as a search for a real function φ as in (7.15). φ can be
made unique by requiring

∫
M φvolg = 0. So the simplified version of (C.a) and (C.b) is

• (C’.a) that for every given Kähler metric g, Kähler form ω and a real smooth function f on

M with
∫

M e f ωm =
∫

M ωm

one can construct

• (C’.b) a unique smooth real function φ on M such that (i) ω + i∂ ∂̄φ is a positive (1,1) form

ω ′, (ii)
∫

M φvolg = 0 and (iii) (ω + i∂ ∂̄φ)m = e f ωm.

Yau proved that the non-linear p.d.e (iii) on φ admits a unique solution which fulfill (i) and (ii).
This is an existence proof and up to date no explicit solutions for φ and37 e.g. the Ricci-flat metric
on any compact Calabi-Yau manifold has been given.

c.) → e.) at the end of Sec. 7.4 we argued that the holonomy group of a Kähler manifold is
generically U(n). Moreover we saw that the Ricci-tensor is generating the U(1) part of U(n) ∼=
SU(n)×U(1). On a Ricci-flat manifold this is not generated and the holonomy is reduced to SU(n).

e.) → d.) An (n,0)-form can always be locally written as Ωi1,...,in = f (x)εi1,...in . It is therefore

in the total antisymmetric representation of the holonomy group SU(n) i.e. a singlet invariant under

Hol. By the fact quoted in the last paragraph of Sec. 7.4 one has that∇Ω = 0. Since Γ has no mixed
indices ∂̄īΩ = ∇īΩ = 0 and Ω is holomorphic. This implies that f (x) has to be a globally defined

holomorphic holomorphic function over the compact manifold M and hence a constant. Note that

ω , locally written as ω = i
2
(dx1∧dx1̄∧ . . .∧dxn ∧dxn̄), and g, locally written g = ∑n

i=1 |dxi|2, are
also covariantly constant. The normalization (7.51) established at a point requires | f | = 1, but is
since all quantities are covariantly constant (7.51) will hold at any point.

Ω is also harmonic ∆∂̄ Ω = 0 as beside ∂̄Ω = 0 also ∂̄ ∗Ω = −∗∂ ∗Ω = 0, because ∗ : An,0→
An,0 and ∂ : An,0→ An+1,0 = {0}.
d.) → a.) We just constructed with Ω a trivial constant section of the canonical bundle

∧nT ∗(1,0)M.

d)→ b): Assume a nowhere vanishing holomorphic (n,0) exists. We get then a globally well

defined scalar function

|Ω|2 =
1

n!
Ωi1...inΩ̄i1...in , (7.52)

where the indices are raised by the hermitian metric gik j̄k . Locally Ω is given by Ωi1,...,in =

f (x)εi1,...in , where f (x) is a non-vanishing holomorphic function in each patch. We can obtain

Ω̄i1,...in = f̄
g

ε i1...in and it follows that g = det(gi j̄) = | f |2
||Ω||2 . Inserting in (7.35) we get c1(T M) =

− i
2π ∂ ∂̄ log |Ω|2 which is exact since log |Ω|2 is a scalar, hence c1(T M) = 0 in cohomology.

f.) ↔ d.) is proven in generality in [147]. This is done using representation theory. Let us just
give a simple relevant example namely the threefold case, n = 3. We must figure out how many

37It is not that difficult to find a Kähler metric on a Calabi-Yau, e.g. by constructing the induced metric of the

Fubini-Study metric on the quintic in P4, see [140].
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spinors transforming as singlets under the holonomy SU(3). Under generic rotations in the internal

6d space vectors transform by SO(6) and the associated spin group with the same Lie algebras is

isomorphic to SU(4). The spinor representation in 6d is 2
6
2 = 8 dimensional and splits according

to the chirality into representations (4, 4̄) of this SU(4). Now the holonomy is reduced to SU(3)

and embedding the SU(3) in SU(4) singles out an U(1), i.e. one has SU(3)⊗U(1) ∈ SU(4).

The decomposition of the (4, 4̄) into the representations of thisU(1) and SU(3) is unique (4, 4̄) =

(31⊗ 1−3, 3̄−1⊗ 13), where the superscripts are the U(1)-charges. Hence we can conclude that

there are indeed one invariant and therefore covariantly constant spinor of each helicity. Bilinear

of the covariantly constant spinors can be used to build the covariantly constant tensors discussed

above. In particular the almost complex structure is Ja
b =−iξ †Γa

bξ , the metric gµν̄ = iξ †Γµ,ν̄ξ and
the (3,0) form by Ωi jk = e−iαξ T Γi jkξ . In this way one can show f.) → d.) see [21] for details.
Furthermore it is easy to see that the eight spinors can be generated from ξ ∈ 1−3 as Γiξ ∈ 3̄−1,
Γi jξ ∈ 31, Γi jkξ ∈ 13 and decomposed as

η = Ω0,0ξ +Ω0,1ı̄ Γı̄ξ +Ω0,2
ı̄ j̄

Γı̄ j̄ξ +Ω0,3
ı̄ j̄k̄

Γı̄ j̄k̄ξ where Ω0,nı̄1...ır
dxı̄1 ∧dı̄r ∈ H

0,r

∂̄ (M) . (7.53)

On T 3C one has therefore eight covariant constant spinors and on T 1C ×K3 four.

A very general tool in Čheck chomology is Serre duality which states for any sheaf E on M

that

Hk(E)∗ ∼= Hn−k(E∗⊗KM) . (7.54)

Using Čheck-Dolbeault isomorphism Hk(E) ∼= Hk

∂̄ (M,E), Hr(M,∧sT ∗M) = Hs,r(M) and KM = 1

we relate a Calabi-Yaumanifold by taking E =O(M) the cohomology groupsH 0,r(M)∼= H0,n−r(M)

or by complex conjugation the cohomology goups H r,0(M)∼= Hn−r,0(M). This particular result can

be seen also in a more direct way by contracting a (p,0) form ωi1...ip
dxi1 ∧ . . .∧dxip with the unique

(0,n) form ω̂ j̄p+1... j̄n
= 1

p!
Ω̄ j̄1... j̄n

ω j̄1... j̄p to define a (0,n− p)-form ω̂ . One shows easily that this is
an invertible map that commutes with ∆, i.e. H p,0(M) ∼= H0,n−p(M) ∼= Hn−p,0(M).

With hn,0(M) = h0,0 = 1 e.q. (7.53) implies that one has at least two covariantly constant

spinors on a Ricci-flat manifold. In order to show that one has only this two on a manifold with

Hol = SU(n) we shall show that hp,0 = 0 for 0 < p < n. On a compact Kähler manifold har-

monicity of (p,0)-form implies holomorphicity as argued after (7.24) by consideration of type.

Specializing (7.27) to Ri jk̄l̄ = 0 for Kähler- and Ri j̄ = 0 for Ricci-flat manifolds harmonicity means

∇ν∇νωi1...ip
= 0. On a compact manifold one can use pairing and partial integration to see that

this requires ∇ jωi1...ip
= 0 (and also ∂̄ω = 0). From these equations we conclude that all har-

monic (p,0) forms are covariantly constant. However that would mean that they are invariant

under SU(n), which is impossible for 0 < p < n as only the trivial and the total antisymmetric

representation are invariant.

7.6 Bergers List

Let us finally show here Bergers list of the possible holonomy groups and their representation

on the tangent space of simply connected irreducible and non-symmetric manifolds of real dimen-

sion m with the additional information about the number N+, N− of complex covariant constant
spinors with positive and negative chirality [147] respectively. If m is odd the spinor representation
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is irreducible and we have just one type of spinor. The last part comments on the special forms that

exist on this manifold. See [86] for background.

• (i) generic oriented: Hol(g) = SO(m), not nec. spin.

• (ii) n = 2m with m ≥ 2: Hol(g) = U(m), not nec. spin, ω (1,1) Kähler form

• (iii) m = 2n, n ≥ 2: Hol(g) = SU(n), vector, N± = 1 for n odd, N+ = 2 for n even, ω (1,1)

Kähler form and Ω (n,0) holomorphic form

• (iv) m = 4n, n ≥ 2: Hol(g) = Sp(n), vector, N+ = m+1, H, I,J SU(2) triplet of (1,1) forms.

• (v) m = 7: Hol(g) = G2, 7 dim irred., N = 1, Φ associative 3-form, ∗Φ coassociative 4-form.

• (vi) m = 8: Hol(g) = Sp(7), spin, N− = 1, Ψ Cayley 4-form.

7.7 Examples of Calabi-Yau spaces

The tool that makes constructing of Calabi-Yau spaces easy is the perfect control over the first

Chern class in algebraic geometry. As an application of some statements in Sec. 7.3 we want to

calculate the first Chern class of Pn, following [16]. As every projective space Pn has a tautological

sequence

0→ H∗ → Pn ×Cn+1→ Q → 0 . (7.55)

H∗ = {(l,x) ∈ Pn ×Cn+1|x ∈ l̂}, where l̂ is the line in Cn+1, which defines l as point in Pn, and the

quotient space Q is defined by (7.55). H∗ is parametrized by the homogeneous variables [x1 : . . . :
xn+1], which, as maps to C, are section of the dual space H, called the hyperplane bundle. We can

write tangent vectors in T Pn as linear combinations of (∑n+1
k=1 ai

kxk)
∂

∂xi
, which is scaling invariant

under the C∗ action and maps H⊕(n+1) to T Pn. There is a kernel C of that map, namely we have

∑xi
∂

∂xi
= 0 ∈ T Pn as it just generates the scaling action. These facts are expressed in the Euler

sequence

0→ C → H⊕(n+1) → T Pn → 0 . (7.56)

The Chern class of C is 1 and the Whitney formula and (trivial) splitting principle gives

c(T Pn) = (1+ x)n+1 , (7.57)

where we appreciated x = c1(H).

A weighted projective spaceWCPn is defined similarly as Pn cff. (7.2), only that C∗ acts now
by

(x1, . . . ,xn+1) ∼ (λ w1x1, . . . ,λ wn+1xn+1) ,

where common factors in all weights wi can be scaled out. Common factors k in subsets of the

weights lead to Zk quotient singularities ofWCPn. A similar argument as before shows that [46]

c(TWCPn) =
n+1

∏
i=1

(1+wix) , (7.58)
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All weights are in Z and order to be compact wi > 0. This prevents us to define compact WCP

with c1(TWCPn) = 0, butWCP(−3,1,1,1) is a well known example of a non-compact Calabi-Yau
manifold, better know as O(−3) line bundle over P2.

Compact examples are easily obtained, e.g. as hypersurfaces in the projective spaces above.

Let us consider a smooth degree d hypersurface M in Pn. M is defined as zero locus of a degree d

polynomial P, which is sufficiently general so that P = 0 and dP = 0 has no common solution. It

is a section of Hd = OPn(d). Since P is smooth we have a splitting of the tangent bundle T Pn as

follows

0→ T M → T Pn|M → NM → 0 , (7.59)

where NM is the normal bundle to M, which is identified with O(d)|M because P is a coordinate

of N near M. Ch(Hd) = edx = 1+ c1(H
d) = 1+ dx, i.e. c1(H

d) = dx and the adjunction formula

gives

c(M) =
(1+ x)n+1

(1+dx)
= 1+(n+1−d)x+ . . . , (7.60)

i.e. a Calabi-Yau hypersurface in Pn has to have degree d = n+1. In this case P is a sectionO(KPn)

of the canonical line bundle K = −[c1(P
n)]. This gives for dimension three case, the quintic in P4.

For weighted projective spaces one has

c(M) =
∏n+1

i=1 (1+wix)

(1+dx)
= 1− (d −∑

i

wi)x+ . . . . (7.61)

Together with the transversality condition dP = 0 at P = 0 it leads 7555 examples of Calabi-Yau

threefolds [96]. This sample contains many mirror pairs.

Batyrev provided a systematic construction of mirror pairs, as sectionsM = O(K(P∆)) andW =

O(KP(∆∗)) respectively[8]. Here P∆ is the projective space associated to the integral polyhedron ∆
[59]. Batyrev showed that if the ∆ polyhedron is reflexive then a smooth sections of O(KP(∆))

exists, the dual reflexive polyhedron ∆∗ exists and the generically smooth section of O(KP(∆)) has

mirror Hodge numbers hp,q(M) = h3−p,q(W ). Reflexive polyhedra in four dimensions relevant

for the CY threefold case have been classified [102]. These and generalized constructions like

complete intersections and orbifolds of tori and the afore mentioned manifolds are the bulk of the

systematically explored examples of Calabi-Yau mirror pairs, see [103] for computer generated

lists with about 104−108 topological inequivalent examples38, though slightly more exotic cases,
e.g. hypersurfaces and complete intersections in Grassmannians and flag manifolds do exist in

unknown numbers. An encouraging observation in view of this enormous numbers is that at least

in Type II string theory there is in some sense only one connected component of the Calabi-Yau

moduli space. In fact a conjecture formulated by Miles Reid that all Calabi-Yau spaces are in

the same moduli space connected by singular transitions [129] finds a physical application in that

[134] shows that the singularity in physical quantities as calculated in conformal field theory at the

conifold transition between topological different Calabi-Yau spaces is merely a breakdown of the

perturbative low energy description due to a non-perturbative black hole becoming massless at the

transition point. The full non-perturbative theory at low energy exhibits spontaneous breaking by

38The lower number is the number of inequivalent Hodge numbers the higher is an estimate of all topological differ-

ent phases in the Kählercone, which have not been systematically constructed.
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acquiring an Higgs vacuum expectation value. Also it has been shown that all hypersurfaces in

toric Calabi-Yau can be connected by such physically innocuous transitions.
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