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1. Overview and Motivation

A starting point for studying string theory in a non-trivial space time geometry M is the non-
linear 0 model. The correlation functions, for simplicity we consider the partition function Z first,
are given by a variational integral

Dh ;
Z(M) = 4@ ’S(x7h7M) 1.1
(M) / Vol diff.weyl. e (1)
over all embeddings of the world-sheet Z in M
x:2—M (1.2)

and the world-sheet metric 4. The dependence of such correlation functions on the topology and
geometry of M, which is treated here as a classical background, might be taken as a first step to
describe stringy geometry. It is of direct practical importance as it determines the effective action
in 4d for string compactifications on M. Of particular interest will be the dependence of terms in
the low energy effective action on the geometric moduli of M. Understanding that this depends on
the geometry is a prerequisite for quantizing the latter.

However in the generic case correlation functions like ([L1]) are far too complicated to handle.
Here we want to study the exceptions. One can be found within super symmetric compactifications
of critical string theory. Using diffeomorphism and Weyl invariance, maintained for the critical case
in the first quantized version, the dependence on the degrees of freedom of the world-sheet metric
h simplifies drastically even in the quantum theory. The world-sheet super symmetry gives rise
to nilpotent operators Q, which define a theory whose physical operators are cohomology classes
w.r.t. Q. It is called topological string theory. The reader might wonder how formal the expression
(1) is. Certainly we have suppressed all fermionic degrees of freedom in S. The full actions will
be spelled out in Sec. f. However even if we kill some suspense let us remark that the expression
for the integration over h, which is just as in the bosonic string in ([[.1)), is surprisingly accurate for
our purpose. It turns out the fermions, which we need to add play merely the role that the ghost
system plays in the bosonic string.

Physically this reduction to the topological sub sector of the theory can be thought as a semi-
classical approximation of ([[.T)) in which the variational integral is replaced by integral over the
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moduli space .# of the classical solutions 8S/dx = 0. E.g. for the Polyakov action these are
the minimal area maps. The path integral measure collapses to a measure on .#, which depends
merely on the topological properties of the map ([.2) and on the cohomology classes of the inserted
operators. This defines so an intersection theory on .# . The intersection numbers are topological
invariants of the classical solutions. Examples are the Gromov-Witten invariants, which are sym-
plectic invariants of M. 0 models with (2,2) world-sheet super symmetry, realized on Calabi-Yau
manifolds Mg, allow for two possibilities to pick Q, leading to what is known as the A and the
B topological string model[[[5d]. Exchanging this choice underlies the mirror duality and which
leads to two different ways to solve both models. The B-model approach is more effective. Open
topological string theory exists as well. Preservation of at least one world-sheet Q operator re-
stricts the boundary conditions on Calabi-Yau three folds with SU(3) holonomy either to special
Lagrangian branes for the A-model and holomorphic submanifolds for the B-model. It had been
observed in 1992 that the open topological models are reductions of open string field theory and
that this reduction leads to Chern-Simons theories on the branes [[L48]].

The remarkable fact is that in super string theories the restriction to the classical solutions leads
to exact calculations of certain low derivative terms in the effective supergravity action in 4d. This
ability to perform exact calculations including non-perturbative effects is typically reflected by non-
renormalization in the effective theory. For example in N = 2 super symmetric gauge theories the
protected terms are the kinetic of the moduli fields ¢, which give the exact ¢ dependence of the gauge
coupling as well as of the masses of the BPS states. Both terms are calculated by genus zero g =0
topological string amplitudes. In N = 2 supergravity theories one obtains from g > 0 topological
string amplitudes the exact moduli dependence of the coupling of the self-dual graviphoton field
ﬁmnghF+mﬂmsdﬂmmumnofmeRmdcmwmmeR+Je.meammthggRiFﬁfglnN::I
theories one can get the superpotential from disk amplitudes and the gauge kinetic terms from the
annulus amplitudes. Reconstruction of these exact terms in the low energy effective action of a
field theory by solving the topological string theory in a suitable chosen geometry M is called
geometrical engineering.

In general one would like to understand emergence of nearly flat 4d space-time M3 within
Mo 1 dynamically. Often one considers Mg | = Mg X M3 | as ansatz. In generalizations like wrapped
geometries [[37] or compactifications with RR/NS background fluxes on M [[[27]], which preserve
at least N = 1 supersymmetry one can still use topological string methods to calculate the protected
terms. Mg being compact leads to traditional compactifications including non-trivial supergravity
solutions, as e.g. black hole solutions on M3 ;. The gauge sector in M3 1 can be studied even for
non-compact Mg if gravity can be consistently decoupled. This is similar to the decoupling of bulk
gravity in brane world scenarios with non-compact transversal directions.

The second class of exactly solvable examples are critical string theories [@] [@]. Here the
understanding of the infinite symmetries is much more advanced and has lead to the solvability of
the string theories with ¢ < 1 or equivalently d < 2 dimensions, including the Liouville direction,
for the bosonic case. Supersymmetric versions exists as well. For the critical case the quantization
of the two dimensional metric degrees of freedom gives rise to the Liouville sector, which augments
(1) in the quantum theory. The theory consist of ghost-, matter- and Liouville sector and has an
nilpotent operator Q with an induced cohomological structure[[[31]], which is strikingly similar
to the one in the topological sector of the critical string. The choices of matter are (p,q) minimal
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models for ¢ < 1 and the free boson for the ¢ = 1 limiting value[P3]. The infinite symmetries which
underly the solvability of non-critical string are well understood. An elegant way to summarize the
structure is to say that log(Z(z)) is the 7(z) function associated to a vacuum orbit in an infinite
Grassmanian, which is physically described by an infinite 2d fermion system.

Major insights in ¢ < 1 strings have been obtained via the double scaled matrix model [31[B9].
The finite N x N matrix model, for which i.g. several realizations exist, provides a discretization of
the string world sheet 0 in terms of ribbon graphs. A vertex of valence p represents a regular p-gon
in the dual discretization of X and it is simplest to fix p = 3. More importantly the dual p-gons of a
graph give a discretization of the space of metrics on > modulo isomorphism. The continuum limit
can be understood as an improving approximation of the world-sheet and its metric by graphs with
an increasing number V of the vertexes. The key intuition is that for a larger number V of p-gons
the metric is approximated increasingly accurately by the deficit or surplus angles in gluing the
tiles and moreover that the number of graphs which approximate a metric in a given isomorphism
class becomes a good measure on the space of metrics. Therefore integrating over metrics can
eventually be replaced by counting contributions of the sum of graphs, just as the Feynman graph
expansion of the matrix model. The continuum limit requires a regularization procedure in which
one takes N to infinity while tuning the coupling(s) of the matrix model to a critical value g — g. so
that a parameter t = N(g — g.) &0 stays finite[B9] [[[52]. The double scaling limit regularizes the
total area, whose unregularized value goes like (A) = (V) ~ @ [[3]] as the number of p-gons
goes to infinity. One can show([[[J] that a genus g contribution is suppressed with NX as N — oo and

2-Y)/2X as g — g, where X = 2 —2g. The double scaling definition of # is

enhanced with (g — g
chosen to counterbalance these effects and to get a finite all genus expansion in 7.

A qualitative different relation to matrix models is provided by the Kontsevich model [[52]I[P9]l.
It describes the (2,1) pure 2d gravity case! by an hermitian matrix model whose ribbon graphs
model the cell decomposition of the moduli space M, , of the world-sheet with n descendant op-
erator ¢; insertions. The matrix model partition function calculates correlators (& ... 0,) as topo-
logical intersections numbers on M, ,. The cell decomposition replaces close string insertions by
holes and strongly resembles the formalism of open string field theory. The couplings #; of the
operators Oy are given in terms of symmetric functions of the hermitian matrix eigenvalues, i.e by
the Miura variables 7; = trX*. Results for a given correlator (0 ... 0,) are exact as long as the rank
N of the matrix X is large enough to provide enough independent symmetric functions for the #.

Exact calculations in higher dimensional topological strings have been boosted by mirror sym-
metry [R3] and in critical string theory by the double scaled matrix model approach and the Kont-
sevich type matrix model. The subjects have never been independent as one needs to couple the
topological A and B theories to worldsheet gravity to get the F, amplitudes for g > 1, see [[L]] for
the B-model. The solution of pure 2d gravity is used explicitly in the calculation of the A-model
amplitudes by localization [[[00] together with Hodge integrals[FTJI[P3]. A more surprising link
between the topological string on the conifold and the ¢ = 1 string at the selfdual radius [3]] has
been pointed out in [p4]].

Two more recent developments motivate to revisit this connection. Dijkgraaf and Vafa ob-
served in 2002 that the exact terms in the effective action of N = 2 and N = 1 supersymmetric

11t has an extension to the coupling of 2d gravity to (1, p) matter [E][][.
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gauge theories can be calculated also by an hermitian matrix model. Even though this has been
explained in the meantime within the supersymmetric field theory framework, it is natural to relate
it to topological string calculations by geometrical engineering and in fact it was discovered in this
way. This leads to a matrix model descriptions of the topological string on non-compact Calabi-
Yau and the quest for an unified description of the integrable structure behind topological strings
in various dimensions[f]].

A second motivation comes from the study of open/closed string duality. In the context of non-
critical string theory the Kontsevich model has long been considered to be the simplest example of
gauge theory/string duality. The gauge theory part describing the open string sector is played by the
finite N-Kontsevich matrix model, while the closed string part is played by the critical topological
string coupled to (1, p) matter. Recent progress in solving the Liouville approach to critical string
theory and classifying its boundary conditions revealed that the Kontsevich matrix model emerges
as the action on the FZZT brane. This was anticipated from the B-model description of open string
theory on local Calabi-Yau spaces[[]. It can also be shown by calculating the exact loop-operator
in the double scaling limit of the matrix model[[[1(] [7§]] or by doing a reduction of cubic string
field theory[] on FZZT branes.

An simple example of open/closed string duality in the case of critical topological string the-
ory had been proven by Gopakumar and Vafa in 1999. The closed string side is played by the
topological string on the non-compact Calabi-Yau geometry of two complex line bundles over the
compact space P! namely E' = ¢(—1) @ €(—1) — P!. The topological open string geometry is
reached from E’ by contracting the volume ¢ of the P! and then deforming complex structure of the
emerging singular geometry to the smooth cotangent bundle E = T*S* of S3. The latter is a La-
grangian submanifold L in E w.r.t to a natural symplectic structure on E and Witten’s picture [[4§]
of open topological string relates it to Chern-Simons theory on S3. Exact solvability of topological
Chern-Simons gauge theory on S is provided by its relation to the 2d WZW model[[[50]. The
closed topological string on E’ can be solved exactly by localization [F1]]. This solvability on both
sides provides a luxury, which is not readily available in the analogous situation in the ADS5/CFT
string/gauge theory correspondence, namely to check explicitly that the partitions functions of
gauge- and closed string theory are the same in the large N expansion of Chern-Simons theory
when the volume of the P! is identified with t = N, gés.

Beside the partition function, which is a topological invariant of a three manifold L, Chern-
Simons gauge theory is famous for calculating topological invariants associated to Wilson line
expectation values along knots or links inside L. What is the topological string question answered
by these quantities and what are the new parameters associated to the Wilson line ? A particular
answer for the unknot in S are open string amplitudes ending on a non-compact brane K which
meets the P! of E” in an S! [123]. The new parameter is the area of minimal disk ending on the
S!, which is non-contractible within K. The geometry of E’ and K has a systematic generalization.
E’ contains the algebraic torus T = (C*)? as an open subset (one C* for each line bundle and one
for the P'). Moreover (C*)? acts on E’ with the natural extension of the multiplicative action of
(C*)3 on itself. Varieties with this property are called toric varieties[@] [] [E] [@], here in three
complex dimensions. They are characterized by the degeneration of the T action, representable here
as linear trivalent graphs embedded in three real dimensions. The vertices represent C> patches and
the graph carries the information about the transition functions. K is characterized by the property
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String—String Duality
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Figure 1: Dualities relevant for the topological string of type II on backgrounds with two and heterotic string
in backgrounds with four covaraint constant spinors.

that it is a Lagrangian which is invariant under (C*)? € T. Non-compact toric Calabi- Yau manifolds
with invariant non-compact special Lagrangian branes are a simple natural class of backgrounds
on which all open and closed topological string amplitudes be calculated by localization w.r.t. the
torus action. The question how to understand these general amplitudes comes back to Chern-
Simons gauge theory. The answer is provided by the trivalent topological vertex, which solves the
problem for the open topological amplitudes among three stacks of invariant non-compact special
Lagrangian branes in a C> patch, and gluing rules for connecting these amplitudes on a patch to
global amplitudes compatible with the global 7" action. As maybe expected the answer for the
vertex is related to the amplitude of a link of three unknots in S°.

The exact calculations in the topological sector of string theory have been an indispensable
guide to the non-perturbative behavior of critical string theory. Virtually everything known about
dualities involving strong coupling regimes is known from the analysis of the topological sub sec-
tors of the corresponding theories. An overview over the dualities in this context is given below

Topological theories come with integrable structures, which reflect their often not immediately
apparent symmetries. M-theory gives hints, but the non-perturbative formulation of string theory is
illusive. Exploring possible non-perturbative completion of the topological string is a very serious
chance in this context. On various aspects of the duality depicted here there have been recently
very good lectures. In particular on the connection between matrix models and topological string
in [[[13] and on the connection to Chern-Simons theory and aspects of open/closed duality in [[[T4]).
Older physical application of topological string theory using many of the above connections are
review in [@] and newer can be found in [. Most of the material presented here can be studied
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in more detail in [[q]. [[[4€] is an introduction with the virtue of assuming very few prerequisite.

2. Semi-classical approximation and super symmetric localization

Let us sketch the reduction of supersymmetric critical string theory to its topological sector.
The two dimensional o-model action S(x,h,M) = fzg d’0.%(x,h,G,B,...) depends generically on
the metric G of M, the NS-two form field B on M and eventually other background fields. A
possible attempt to make sense out of ([[.)) is to expand the action around the classical solution of

the equation of motion % =0
X=X¢|
(0x)% 58
S(x,h,M) =S h,M — 2.1
(X, 9 ) (-xc‘lv 9 )+ 2 62X — ( )
=Xl
The quadratic semi-classical approximation in dx in ([L.1)) leads then
Dh ;
Z M — 9 IS(X,h,M)
() / Vol diff.weyl. ¢
- (822 &S e, M)
= z elS(xf”h"M)/@éxel 2 8 2.2)

Xel Jhe

= Stananger s OSCet e M)
0%x

Xethe

Here we have assumed that the determinant can be regularized and we have to consider all clas-
sical solutions, which are minimal embeddings of the world-sheet into M. It is useful to organize
these contributions in a sum over different topological classes of such embeddings as indicated in
(B2). In the closed string case these classes are labeled by the genus of the domain %, and the
cohomology class H?(M,Z) of the image [x(Z,)]. However depending on the case it might be that
there are families of classical solutions of a given topological type parametrized by moduli of the
minimal embedding and eventually the complex structure of % called /. . In this case one has to
integrate over a suitable measure over this moduli space, which is not indicated in the sums in (2.2).
Naturally if the semi classical approximation will be good all the configurations “localize” close to
extrema of the classical action.

It is a general fact that in supersymmetric extensions of (R.2) there is an exact localization to
classical configurations for correlation functions with a suitable fermion zero mode structure. This
has its origin simply in the rules of Grassmann integration over the fermionic fields Wy

/LPl...HJndllJl...d‘Pn:I, /wl...@...wndwl...dwn:o. 2.3)

For a field configurations for which the supersymmetric variations do not vanish for all variations
of the fermionic fields one can use the supersymmetry transformation to eliminate fermions from
the action. By the second identity in (2.3)) the fermionic measure will then produce a 0. Putting
the argument around the only contributing field configurations are the ones for which the fermionic
variations are stationary, but these are the classical configurations as we will see.
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2.1 A simple supersymmetric index

This mechanism is independent of the dimension and can be demonstrated already in the 0d

(x,W1,W,)

case, i.e. for an ordinary integral Z = [dxdW;dWyeS over the bosonic variable x and

Grassmann variables W; and W,. The action

1
S(x, Wi, Wa) = 5(0h) = 9%h¥ ¥, (2.4)
where h(x) is an arbitrary function of x. One checks easily that action dS = 0 and measure
0(dxdW;dW¥,) = 0 are invariant under the following supersymmetric transformations

ox = glL|J1 +82L|J2
oW, =¢€2oh (2.5)
54’2 = —Slah .

Away from the fixed points of the fermionic transformations, i.e. for dh # 0, we can set €' = £2 =
—% and use the supersymmetry transformation to eliminate the first fermion, i.e. with £ = x+ dx
and ¥, = W, 4+ 8W,, i = 1,2 one gets S(%,0, LTJ2) = S(x,W,¥,). So in the hatted variables there is no
@, to “soak up” the d¥ integration and the integral vanishes. To be more explicit we transform the
integration measure also to the hatted variables. Since the transformation is singular we consider
a nearby transformation €2 = (a(x) — 1)%, gl = —% and send a — 0 after transforming the
integral. Note that [WdW = 1 is invariant under ¥ — ¥ = a(x)W, therefore d§ = %dLIJ. In
the transformed integral one finds beside terms which go to 0 with a only a term which is total
derivative w.r.t. dx integral and vanishes at the boundary.

Since the integral gets contributions only from the critical points of A’(x.) = 0, we can collect
the contributions near those points by considering h(x) = h(x.) + % (x — xc)?, with K. = 1" (x.),
which yields a Gaussian integration. The partition function

Z= [ dudWdWye SEVI¥) =5 L fdxdWdwy e kbt

_ hU(/‘f)
= 2 W] -

2.6)

becomes a primitive version of a supersymmetric index. It counts sum of zeros of 4’(x) weighted
with +1 (—1) for positive (negative) slope at 4’ (x.). If #'(x) is continuous a +1 zero of A’(x) can
only disappear together with a —1 zero under deformations of 4’(x), which leave the behavior of
h'(x) for |x| — oo invariant. That means that Z is an invariant under such deformations and can be
thought as a topological invariant of & (x).

3. Supersymmetric nonlinear 0-models

Essential features of the Od topological toy model carry over to super symmetric field theories.
In general we search also for field configurations which are fixpoints under some super symmetry
transformation. The super symmetry generators become nilpotent operators Q on the Hilbert space
of the field theory. The cohomology of Q is a natural structure to extract topological invariants of
the classical bosonic configuration space. In more interesting situations indices can occur, which
are invariant under some deformations, but are family indices w.r.t. others. Physically the family
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indices can be particular correlation functions. Their dependence on certain geometrical deforma-
tion parameters, e.g. of the target space metric, can often be exactly calculated e.g. in an all genus
string loop expansion. This is the main physical benefit from topological theories.

The original references for the following are [[[53][[03]] and especially [[56]. We have adopted
the conventions from the review [[7§]. The 2d- ¢ model is defined by a map x : £ — M from the
worldsheet 2 to the targetspace M. There is a well known dictionary between properties of the
worldsheet theory and properties of M. In particular to have (2,2) worldsheet supersymmetry M
has to be a Kahler manifold [@]. In order to have superconformal invariance M has to be a
Calabi-Yau manifold. A Calabi-Yau manifold is Kéhler manifold with vanishing first Chern class
of its tangent bundle ¢;(7TM) = 0. This is equivalent to the statement that there exists a hermitean
metric g for which the Ricci curvature vanishes R;; = 0. This in turn is equivalent to the statement
that the holomomy group of M is contained in SU(3). We call a Calabi-Yau threefold a manifold
where the holonomy is the full SU(3) (or a least SU(2) x Z), which implies that there are exactly
two covariant constant spinors on M. This leads to N = 2 supergravity theories in 4d for the
compacification of type Il on M. Many of the above facts and concepts are reviewed in detail in
Sec. []. We will start the discussion of the symmetries of the actions at the classical level and
comment then on the potential anomalies and their cancellation.

3.1 N =(1,1) nonlinear o-model

Let us first treat the N = (1, 1) case. For this case the target space needs to have just a Rieman-
nian metric. We parametrize the map x: = — M by x/, where I . .., d where d is the real dimension of
M. The worldsheet is parametrized by z,Z, hence x is given in local coordinates as x(z,Z) The fields
of the 0 model have the following transformation properties under worldsheet and targetspace
reparametrizations. With K and K the canonical and anti-canonical bundle of ¥ and TM the com-
plexified tangentbundle of M one has WS-fermions which transform as /4 € (K P @x* (TM)) and
Y er(K I @xt (TM)), where " denotes sections of the indicated bundles. The Lagrangian of the
non-linear 0-model is then given by

1 j ] 1
L= 2t/2d2z<§g11(x)dledzxj + %gULIJszLﬂf + %gul/fiDglpi + ZRIJKLLIJi Wl LIJKLI/L> - B.D

The covariant derivatives D; (D) are obtained using the pullback of the Levi-Civita connection
from M as

d
D:y} = a_z"’i + 57 Tk (3.2)

and Ry is the Riemann-Tensor of M. Here we assumed a flat world-sheet or a local trivialization
of K %, so that no spin connection appears in (B.2). Soon global properties of K > and K* become
all important.

With Grassmann valued supersymmetry parameters € € I (K~ %) ande, € (K -3 ) one checks
at the classical level the following supersymmetry transformation

oxl = —S_L,Ui+£+w£
oYl = ie_ox! + e, YET L, WY (3.3)
oYl = —ig ox! +e_@kTL, WM.
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These equations (B.3) are quite similar to (B.3) and we would like to define nilpotent operators
from the supersymmetry transformations. The obstruction is that there are no global trivial sections
of K7 or K~2 unless g = 1. This means that there no global supersymmetry transformations on
the worldsheet unless®> g = 1.

In the case of the worldsheet beeing a torus one can chose globally defined sections £_ €
MK -2 Jande, €M (K~ %) to obtain globally defined supersymmetry generators Q> =0and Q% =0
on the Hilbert space .7#. E.g. we can chose £+ both to be in trivial sections of K ~2 and K7 re-
spectively. In view of B.3 we have to chose corresponding trivializations for /. € I'(K 1 @x* (TM))
and Y €T (K 2 ®x*(TM)) and this simply means that the fermions will have periodic boundary
conditions on 72. These boundary conditions are called twisted boundary conditions. Q_ and Q.
are globaly defined and Q4 |W) = Q_|W) =0 for W € 7 forces the cohomological states to be in
the E = 0 super symmetric ground state of the Hamiltonian H = ${Q.,0_} = 1(dd*+d*d) [[[57.
This reduces the model to constant maps, i.e. supersymmetric quantum mechanics. The 0 model
cohohomology is equivalent to de Rham cohomology of M, much in the same way as we will made
explicit in Sec. and p.1l The only non vanishing correlator in the double twisted model is the
Witten index, which is easily shown be equal to the Euler number of M [[[57]). It is simplest written
in the Hamiltonian formalism

X(M) =Tr(—1)F g g = Tr(-1)F, (3.4)
where F = F, +F_ and F,/F_ count the left/right moving fermion numbers so that {(—)f*, 0.} =
0 while [(—)%,04] = 0. Note that (—1)F = (1) can be defined even if the individual
fermion numbers are anomalous.

A much more interesting situation arises if one choses only £ to be in a trivial section. The

corresponding index is called the elliptic genus®

EM) = Tr(—1) g g = Tr(—1)F¢"- . (3.5)

Here only the left moving states are forced in the left moving groundstate. The trace over the right
moving states explores information which goes far beyond cohomological information of M. It can
be defined for 2d supersymmeric field theories and is conformally invariant even if the underlying
field theory is not [[[6(]. It requires (=) not to be anomalous, which is essentially equivalent
to M being spin [[[67]. It carries information, which is robust under certain deformations. In the
case of the 0 model on M & (M) is the Dirac index of the loop space of M [[[58, [59]. This index
varies with the volume parameters of M, but is independent of the complex structure of M and is
the first example of the promised family indices. There are further simple refinements possible, if
as below in the N = (2,2) theories F_ comes from an U (1), current F_ = § J;. If the latter is not
anomalous one can insert (—1)%" in the trace in (B.3) and even if the U (1), is broken to Zx (B-3)
with exp(’%F,) inserted is still an index. A theme of the lecture is to explore more sophisticated
family indices mainly in the N = (2,2) context and even at genus one there are further refinements

such as (p.111]).

2The quest for covariant constant spinors is familiar on the target space in order to obtain spacetime supersymmetric
compactifications. It requires restricted holonomies, see section E which is equivalent to the familiar ¢ (TM) =0
condition for N =2 (N = 1) II (heterotic) compactifications 6d internal manifolds.

3Unfortunately there are many notations common to distinguish the left- and right moving sectors in this context
unbarred/barred for euclidean worldsheets, R/L, +/— and without tilde/with tilde are maybe most often used.
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3.2 Compactifications with N = (2,2) world sheet supersymmetry

The additional structure that allows to define more general family indices for the (2,2) world-
sheet theories are right and left U(1)g/, symmetries, so called R-symmetries. Since the nilpotent
Q operators are derived from the supersymmetry transformations and since there are no covari-
ant constant spinors for world sheets of genus g # 1 there will be no well defined supersymmetry
operators on general 2, without further modifications. For the topological theory to make sense
at all genus g we “change” the transformation properties of the fields, so that the supersymmetry
transformation becomes a scalar operator on the world sheet. This modification is implemented by
twisting the world sheet Lorentz group either by the vector U(1)y = U(1), 4+ U(1)g or the axial
U(1)4 =U(1)L—U(1)g symmetry. To do this we first gauge the R-symmetries. Then we combine
the U(1) gauge connection with the spin connection to a twisted world sheet spin connection. Con-
trary to the U(1)y the U(1)4 current develops a quantum anomaly proportional to [s x*(c1(TM)).
Therefore the B model, which is obtained by twisting with the U(1)4 connection, is only well de-
fined on Calabi-Yau manifolds (c¢1(7M) = 0), while the A model, which is obtained by twisting
with the U(1)y connection can be considered on any Kéhler manifold.

3.3 The (2,2) non-linear g-model

Let us now see this mechanism in Kéhler case, which has at the classical level a N = (2,2)
supersymmetry and hence the necessary U (1) symmetries. The action is given by

S =2t /z d’z (—g,.jduxfd“xf +ig W DY+ igr Wl DYl + Ryl gl g wi) . (3.6

Here we have split the index 7 into i and i according to the Kihler decomposition. A Kihler metric
can locally be written as g;7 = 0,0;K (x',x") and its Levi-Civita connection in Kihler geometry is
pure in the indices r;k =gl 08, j as discussed in more detail in Sec. 3. On a non-flat Riemann
surface X one has the connection

Dz = 0:0p + s + T}, 00 g

_ _ . . _ 3.7
D =0 — Lyl +Tiax gl

where @, and @ are the components of the spin connection of 2.

In superfield formalism can can write L = 2¢ [ d0*K (X', X"), where the chiral field X’ has
components x', Y\, F'. F'is an auxiliary field that has has no kinetic terms and can be eliminated
from the action by its equation of motion F = Ffj(,lli WX . This offshell superfield formalism is
particularly useful when one couples a holomorphic superpotential W (x') to the action, which is
only possible for non-compact target spaces M. This formalism is worked out in detail including
the off-shell supersymmetry transformations in [@] and reviewed in [E]. For notational brevity
we restrict ourselves to the onshell formalism.

Classically there are now twice as many super symmetries, one set for the holomorphic and
one set for the antiholomorphic space time indices. They generated by €, € (K %), e el(K %)
and £.. The latter are sections of the same bundles but have opposite charges under U(1)4 and
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U(l)y ’ _ _
ox' = —e_ Y +e Pt
o =2 Y~ Yl
OWl = 2iE_d.x +e il Yo"
YL = —2ie 0, x' + &, wir}mwf
SY = —2ig 0_x +e il g

(3.8)

Syl = 2ig, 0 X+ YTl @r.

The relation between the existence of the two has been discussed first by [[64]. Decomposition
of the exterior derivative on Kédhler manifolds into a holomorphic and antiholomorphic derivative
d = @ + 9, which gives rise to Hodge decomposition of cohomology groups into H? (M). The
fields x, x', (i and L,Ui transform as before under WS transformations. W.r.t. the spacetime
transformations one has now simply a splitting of TMc into T'9M @ T%'M with i referring to
T'9M and7 referring to 7%'M, soe.g. i, € F(I?% ®x*(T''M)) e.t.c. All transformation properties
are summarized in table [l

The action of the U(1)y and U(1), are conveniently formulated in superfield formalism, i.e.
expand any field in Grassmann valued 8,0~,0%, 8~ complex fermionic spinor coordinates on
which complex conjugation is given by (6%)* = 6% . The WS Lorentz transformation acts on
t =x" and s = x' (with (1,1) signature) and on spinors as

K0 coshy sinhy \ [ x°
x! - sinhy coshy x!
) (3.9)
0t — et20*
6 — 1ot

Since the fermionic variables anticommute w.r.t. to each other the Taylor expansion in them con-
tains only 2% terms

D(x,0%,0%) = x(t,s) + O Y. (t,5) + 0 W_(£,5)+ 0P (t,5) + 0~ P_(t,5) +0T0 A, st +...

(3.10)
In this sense one can think of superspace as a thin space in the fermionic directions, which contains
no second order derivative information in a given fermionic direction. The relation to calculus with
differential forms is very obvious. The action of the vector U(1)y and axial U(1)4 symmetries on
all component fields is induced from

e D(x,0%,0%) 1 9V D(x,e7 10T 19 07F)

i _ . . o 3.11)
P d(x,0%,0%) — ePud(x,e TP HFHT)

Let us denote now the four supersymmetry operators corresponding to £€* and &* transforma-
tions O+ and O+ respectively. A general supersymmetry transformation is then generated by the
operator

S=ie,.Q_—ic_Q,—iE Q0_+iE 0, , (3.12)

002/13



Topological String Theory on Calabi-Yau threefolds Albrecht Klemm

where (0F)" = 0, and 6" = —4.

More generally for any infinitesimal field transformation dp¢ we will denote the infinitesi-
mal transformation on the field operator 0y by 8oy = [Q, Oy|+, where Q is the corresponding
generating operator. Let M be the generator of two dimensional Lorentz rotations SO(1,1). It is

0 = —ix? and we call Mg = iM the generator of the compact

convenient to make the Wick rotation x
Euclidean rotation group U(1)g. Beside the supersymmetry generators one has on the WS H the
generator of (euclidean) time translations, P generator of translations. Furthermore there are the
R-charge operators associated to the U(1)y and U(1)4 currents called Fy and F4. These generators

fulfill the algebra
0 =02=01=02=0,
{0+,0:} =H+P,  {04+,0-}={0+,0-}={0-,0+} ={0+,0-} =0,
Mg, Q%] = FQ0x, Mg, 0+] = F0x, (3.13)
[Fv,0+] = —0x4, [Fy,04] = Ox,
[Fa,0+] = F0Q+, [Fv,0+]==+0x,

It becomes soon important that O+ and Q- have opposite charges under the R symmetry groups.
As already stated Fj is present at the quantum level only for Calabi-Yau manifolds, the conformal
case, while Fy is generically present. See [[[03] for a further discussion of this algebra.

4. Twisting the N = (2,2) theories and cohomological fi eld theories

Twisting amounts to a modification of the Euclidean rotation group U(1)g by a generator of
the global U(1) R-symmetry groups and define the new generator of the Euclidean rotation group
U(1)g as M, = Mg +R.

Another way of saying this is that one gauges the U(1)-R symmetry group and adds the
corresponding gauge connection Aﬁ to the spin connection, so that the transformation property of
the spinor fields depend now on their R charge. Denote the gauge current, which corresponds to
the gauge variations 5Aﬁ by J ﬁ. It will modify the energy momentum tensor to

A 1
R (sﬁ 9,JR 1 ) aAjﬁ) . @.1)

In the action of the gauged theory there is a coupling
1 _ 1
AS:/J“CO“:—/Jcb+]w:—/R(p+totalder., 4.2)
s 2Js 2Js

to the spin connection w. In the second equality we bosonized the U(1)g current d¢ = J and
integrated partially. Contact terms of operators with the this expression will play a role determining
properties of the correlation functions.

Because of different signs under which the different chiral components of the spinors transform
the U(1)a4, the axial current develops an anomaly proportional to the Dirac index, which is related
by the Atiyah-Singer index theorem to the index, which is calculate with the Hirzebruch-Riemann
Roch theorem in Sec. ([.3)) to be fzg x*(c1(TM)). Path integral methods for deriving the anomaly
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Section before wisting [Section (+) twist|Section (—) twist
X x(TM) x(TM) x(TM)
Y| (T ekK? x(T0) (T RK
o X (TOD) QK? (TN ®K xH(TO)
wi x*(Tl’O) ®[g% x*(T],O) x*(Tl.,o) QK
¢  x(T")eKk: H(TOY oK x(TOh)

Table 1: Space time transformation of the non linear o-model fields after 4+ and — twist. Classically and in
non-anomalous theories one can chose the twisting on the left movers (U’ , /" and the right movers L[Ji, 178
independently.

are reviewed in [F7]. The U(1)y vector current is always non anomalous at quantum level. For a
discussion of the U(1), anomaly in the linear 0-model context see [[[62]].

The most desired effect of this twisting is that some of the Q1 and QO+ can be made to trans-
form as scalars under U (1)gr. These “scalar” operators are then globally defined on worldsheets of
arbitrary genus and can be used to define a cohomological theory on an arbitrary Riemann surface.
The term twisting is familiar in the orbifold context, where it means to modify the boundary condi-
tions of a field along cycles of the worldsheet by an element g of a global symmetry group G, e.g.
for the torus with a A cycle of length 2717 a field is periodically identified by @(x+ 21) = g@(x).
The analogy is appropriate since also in the above case we change the boundary conditions of
some fermionic fields to become periodic. We encountered such twisting already in the discussion
of Witten index and the elliptic genus. The twisting changes the WS transformation properties of
the fields. The table below records this for the so called + and the — twist.

In the (2,2) theory we have two fundamentally different possibilities to twist

A —Twist :
B — Twist :

Mg = Mg+ Fy

4.3)
ME/ :ME +FA .

In the above notation of table [l| the A twist corresponds to a (—,+) twist, i.e. to a combination
of the (—) twist on _, U_ and the (+)-twist on (/y, ', while the B twist is (+,+) twist, i.e. a
combination of the (+) twist on _, J_ and the (+)-twist on Y, ;. There are the possibilities
of an (+,—) twist and an (—,—) twist making Q4 and Qp nilpotent operators. They lead to the
definition of conjugated cohomological sectors and correspond to no new theories. However as
explained in Sec. f. the combined geometry of the sectors conjugated to each other leads to an
interesting geometry, the so called 7#* geometry.

The effects on the fields and the supersymmetry transformation can be summarized in the
tables Pl and ] respectively.

As it is clear from the table B and the following combinations

Os =0-+0+
Op =0-+0+

are now scalar, nilpotent operators which can be used to define two different cohomological theo-

(4.4)

ries, the topological A- and the topological B-model respectively. Mirror symmetry exchanges the
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Before Twisting| A twist (—,+) B twist (+,+)

U(l)y U(1)4a U(1)g spin|  U(1)y spin U(1) spin

X 0 0 0 1c| x 0 1¢ X 0 1¢
g -1 11 KX 0 1c pi 2 K
@ 1 1 -1 kX 0 1c|—1(67+n) 0 1c
@ 1 -1 1 Kz|pl 2 K| L6"-n) 0 1c
gl -1 -1 -1 Rzlpi -2 K pi -2 K

Table 2: Space time transformation of the non linear 0-model fields and charges after A and B twist. We
also indicate the names of the fields in the A and B model.

Before Twisting| A —twist| B —twist

U(l)yy U(1)a U(1)g spin|U (1) spin|U (1) spin

o_| -1 1 1 K2 0 1c 2 K
0. 1 1 -1 € 0 1c 0 1c
0 1 -1 1 K2 2 K 0 1c
o.l -1 -1 -1 K:| -2 K -2 K

Table 3: Space time transformation of the supersummetry generators after the A and B twist

— twist with the + twist on the {J_, (J_ side. Even before twisting Q4 and Qp define cohomological
theories on the plane the torus, where covariantly constant spinors exist. One can also choose to
twist only the say (J_, (U_ side. The indices of so called half-twisted models are the closest analogs
of the elliptic genus (B.5) at higher genus [[[5][[[61]]. This indices are shared between the A and
the B model and contain information about the couplings of 1,27,27 in the heterotic string with
standard embedding.

4.1 Generalities on physical observables

One calls an operator a chiral operator or (c,c) operator @ if

(0B, ¢] =0. (4.5)

Chiral and twisted chiral superfields play an important rdle in formulating the general (2,2) world-
sheet theory, see [[[67]. The lowest component ¢ of chiral superfield ® obeys [O+,0] =0 and is
hence a chiral operator. An operator @ is called twisted chiral or (a,c) if

[04,0] =0. (4.6)

The lowest component v of a twisted chiral superfield & obeys [Q+,v] = [Q_,v] = 0 and is hence
a twisted chiral operator. [0, @_] =0 and [Q_,®_] = 0 define left chiral- and antichiral operators
while [O,@,] =0and [Q,®.] = 0 define right chiral- and antichiral operators.

The key concept is now to define a cohomological theory whose observables are the equiva-
lence classes [@] of Q closed operators. To be closed the operators have to fulfill [Q, @] = 0 and the
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equivalence relation is as usual up to exact operators & = [Q,/\] 1, i.e.

@~ Q+[0Nx . 4.7

If the vacuum is annihilated by Q, which is the case if Q comes from a unbroken symmetry as above,
then the correlation function of the Q closed operators does not depend on the representative of the

class
(@ (@ +H{ONAY) @)= (@ @) 0@, ... 1A D1 - - 3, 0|0)
FO|0®,... 01 AGey1 ... 3,|0) (4.8)
=(o...%)

The analogy of the definition of topological correlators with cohomological intersections [, i A
N FHdA)A AW, = [l A A WA .. A Wy is not just formal in the case of the (2,2)-
sigma model as we will see.

An important property of these operators is that they form position independent rings. Using
the algebra (B.13), the properties of the twisted chiral operators and [{A,B},C] = {[A,C],B} +
{A,[B,C]} itis easy to see that e.g.

o+ ) 9 =[(H+P), ¢l =[{0+,0: 1,0 = .= {05, [0+, 9]}

. - (4.9)
- ) e=[H-PLel=[{0 .0 }.0l= .= {0n]0 0]}

and similar for the A model. Combining (@) and (E) one sees that the correlation functions of the
twisted chiral operators do not depend on the position of the insertions of the operators, which is
also true for the chiral operators. The ring structure comes from the operator product expansion. It
is obvious that the OPE of two (twisted) chiral fields is (twisted) chiral again and by (f.9) position
independent. One defines the structure constants of the ring in a basis of the ring ¢ as

@@ =Clp+ 0Nz, (4.10)

i.e. identifying an element on the right hand side up to exacts term. The ring satisfies the usual
associativity C’/’}Cllk = C%Cf ;- The unit @) = 1 is always (twisted) chiral, so C’g ;= Cfo = 6]’-‘ .

The position independence (#.9) and its realization on p-form operators can be formulated in
a covariant way as the so called descend equations, see [[0]] for a review. If & ) = g@isaQclosed
position independent O-form operator, one can define the following non-local n-form operators

0=1[0,0)
do©) ={9,0M}
4o = [0, 6@ (“.11)
do® =o0.

Using (f.9) and the corresponding relation for the A-model one can find the descend operators
explicitly noting that Q_dz (Q_dz) and Q, dz (Q dZ) are covariant combinations

A—mod. 04 =idZ[0, 0]~ idf[Q, )], 0} = dedz{0+, [0, 6,1},

(4.12)
B—mod. 4 = ide[Q, 0] —idz[0+, 04", O = dzaz{0-, 10, 53]} -
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The descent equations truncate, because of the anti symmetrization in the world-sheet indices. The
Qp and Q4 operators define the (a,a) and (c,a) ring states which we call ﬁg)) and ﬁ_ﬁo) respec-
tively. Their descendants 7 1(31’2) and ﬁ_’zgl’z) are defined as in (@) with the barred and unbarred O
operators exchanged. As an easy exercise one checks that 6’1(32) (51(32)) and 6‘;(12) @(‘2) are Op (Op)
and O, (Qy4) exact.

The significance of the descendant p-form operators is that one can integrate them over closed
p-cycles C, of the WS (or more general the topological field theory space-time) to obtain non-
local operators 0(C),) = fcp 0'P), which are automatically Q closed, because of Stokes theorem
[0.6(C)]x = ¢, 10, o), = Je, dor=1 = Jac, 0P=1) = 0. Reversed use of Stokes theorem
shows that the topological equivalence class of ¢'(C,) depends only the homology class of C,.
For a p — 1 chain S with C, — C), = 95 the difference 0(C,) — O(C}) = [330P) = [(dOP) =
0, [ ﬁ(”“)]i is O exact. As we shall see we have ﬁ’é{(,z)l )= wi]f)(i)(f operators in the A model as-
sociated to elements in H''!' (M) (5.3,5.4), which have according to table Pl (U (1)y,U(1)4) charges
(0,2). These charges are offset by Q,,0_, as seen from table (ff) so that ﬁv(é)l ) is neutral. Simi-

larly the operators associated to elements in A € H' (M, TM) (b.9) in the B-model ﬁf(xo) = wi;r] ig;

have (U(1)y,U(1)4) charges (2,0) which is offset by O, Q_ so that @1(‘2) is neutral. Neutrality of
these operators means that we can add them in arbitrary numbers to correlations functions without
affecting the selections rules.

4.2 A first look at the metric (in)dependence and topological string theory

In a topological theory the correlation functions are not only formally position independent,
but decouple formally from variations of the worldsheet metric 2V, Classically the energy mo-
mentum tensor Ty, = ﬁ % is the generator of those variations. From the first order variation of

the weight factor e5 one gets a dependence of a correlation function on metric variations dhHY
& (6), = <ﬁ’/ Vhd2 oSV T,,),. @.13)
zg

In a topological theory &,(C), = 0 does not require that Tj,, = 0 but in virtue of (f.§) that it is exact

This structure ensures general covariance or topological invariance. It plays a key role in covariant
quantization of string theory, where Q% = 0 is the BRST operator and the part of Gy is played by
the antighost field by, It is also the starting point of closed string field theory formulations [[148].
One can have topological invariance independently of conformal invariance and also independently
of the decoupling between ghost and matter sector [[148]]. For instance the A model relies on
this structure and can be defined on Kéhler manifolds on which the ¢ model is not conformally
invariant.

In string theory we integrate the world-sheet metric i of Z, over all possible choices 77;.
[[[24] is the standard extended reference for the following short review of the metric dependence.
Classically the integral over 4 is invariant under diffeomorphism and Weyl- and conformal trans-

formations of the metric /(&) = exp[2w(0)] ggc g—gjh

«d- These “gauge” invariances are present
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at quantum level in critical string theory, which does not require an anomaly cancellation for the
latter. The integral over the metric hence contains a gauge orbit over the diffeomorphism- and the

Weyl group, which requires a gauge fixing. After this gauge fixing the reduced moduli space is*

M, = large gauge transf.\ .77, / (diff x Weyl), . (4.15)

Large gauge transformations refer to diffeomorphism of 2, not connected to the identity, i.e. the
mapping class group, which does not affect the dimension or other local properties of .#,. Let
us focus on the latter, which are described by those infinitesimal transformations Sh which are
orthogonal to the infinitesimal Weyl and diffeomorphism transformations

5hab = 25whab — Daéab — Dbéaa , (4.16)

in the sense that fzg do?v/hoh Oh,, = 0. It is not hard to see [],[] (Vol. 1) that these de-

formations of the metric correspond to elements ugdz(% € HY(TZ). As explained in Sec. [6.2 this
cohomology group describes the independent first order complex structure deformations of =. We
have to take the cohomology group to exclude changes of the metric by reparametrizations. On the
other hand there are certain reparametrizations, which do not change the metric. Reparametriza-
tions are locally described by vector fields and currently we are looking for those that do not
change the conformal class of the metric. These are the conformal Killing fields, elements in
H°(TZ). They are canceled from the denominator of ({.13]). Hence the expected dimension of ./, ¢
is W' (TZ) — h°(TS), which we calculated in Sec. (f.3) to be 3g — 3. To avoid the peculiarities of
h°(TZ) #0 (3 and 1 for g=0and g = 1) consider g > 1 and let z* =:m“, a = 1,...,3g — 3 the
complex structure variables of 2. We can describe then a first oder deformation of the metric mod-
ulo Weyl and diffeomorphisms [F3] as [s d20vVhOh® T, = [5 dzz[,lz(a) “Om T, + p?*0m*T;; and if
we insert that in (.13) we conclude that

0

dma

(0); =0 [P T, = (0T, @17)

and similarly % = (0T"),. Eq. is strictly true, so the argument that cohomological states
and the vacuum are Q closed would make topological string theory completely metric independent
and therefore trivial! However the argument involving the invariance of the vacuum fails, because
the measure on the moduli space of higher genus Riemann surfaces, which is part of the vacuum
definition is not Q closed. It is a real 6g — 6 form L, for surfaces of g > 1 and the argument fails in
a very specific way. If we act with Q on it, it gives an exact form, as we will see in detail in Sec.
b.11. This is like a descent equation, but with exterior derivative in the moduli space direction. By
Stokes or rather Dolbeaults theorem the contribution to the integral can then only come from the
boundary of .#,, which represents degenerate Riemann surfaces. If the vacuum is not Q closed
we cannot trust the argument about position independence either. In the moduli space .#, , with
insertion of n operators the codimension one locus, where two operators coincide, is part of the
boundary components. Its contributions has to be taken into account by so called contact terms.
Most of what topological string theory is about is organizing the contributions of these boundaries.

“4In case of n operator insertions the moduli space is extended through the positions of the points by n complex
dimensions to .#g .
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The question which boundaries do give contributions leads to the stable compactifications on ]&n
in which only the boundary components are included, which are in complex codimension one.
These facts will govern the coupling of the A and the B-model to WS gravity as discussed in Sec.

5.2 and b.11].

4.3 A first look at the deformation space

2)

What is of importance is that integrals of the two form operators [ ﬁi( defined in the Sec.

can be added to the topological action as deformations

S = /z 2%+ 1 /z c? (4.18)
=1

This might extend the theory to a family of theories and we expect that the neutral operators we
discussed at the end of the last section lead to non-trivial deformation families. The reason is that
arbitrary derivatives of a correlation function w.r.t. #; might be non-trivial. Such derivatives bring
down U(1),y neutral operators in the path integral which do not affect the U(1),,y selection
rules and may all not vanish. An early world-sheet argument for the existence of such deformation
families was given in [@].

In conformal field theory operators ¢'('!) having conformal dimension (h,7) = (1,1) are
called marginal operators. (h,h) = (1,1) is a first order condition in ¢ for to define a con-
formal theory. It is far from trivial that this is the case for finite deformations in ¢. Operators for
which this is the case are called exactly marginal. It should be stressed that the topological models
allow in our context for more general perturbations then the CFT. The reason is that by (f.28) all
operators that obey the relation i = ‘%I between its U(1) charge Q and its conformal dimension A,
can become a scalar operator & ©) w.r.t. T after a suitable twist. Then an ¢ can be associated
to it by the descend relations. However not all such deformation operators started out as marginal
operators ¢'(1!) in the CFT. In this lecture we will focus on the deformations, which preserve the
conformal symmetry on the WS. As we will see in Sec.s and p.1| these are only a subset of the
¢'?) operators in the cohomological field theory. Perturbation w.r.t. the full set of perturbations
has been considered in [f]].

It is interesting to recover this first order condition of the CFT from the spacetime point of view,
see [23, P3]. We know that the geometrical background has to be Calabi-Yau manifold to allow
for a conformal field theory . The exactly marginal deformations ¢""!) must correspond hence
to deformations of the geometry, which preserve the Calabi-Yau condition. I.e. to deformations of
the background metric g,y + dgy,v (and B-field by + dbyy), which do not change the Calabi-Yau
condition® Ry (g) =0, i.e.

Ruy(g+0g)=0. (4.19)

In analyzing this equation we have to eliminate the dg, which come from coordinate transforma-
tions. Coordinate transformations or equivalently diffeomorphism of M are generated by vectors

SThere is an interesting extension of these considerations for non-conformal N = (2,2) g-models involving massive
(non-marginal) deformations.

6Strictly speaking one should ask for perturbations, which leave the Ricci-form Z in the ¢; (M) = 0 cohomology
class. Though the representatives of the deformations in the cohomology classes would be different, the counting would
be the same, see Sec. E
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fields VH, compare Sec. p.2} An actual change of the metric 8gy is orthogonal to diffeomorphism
generated by the vector field in the following sense [ ,/gdgH"(0yVy, + OyVy)d™x = 0, which is
equivalent to the gauge condition [J#dgyy = 0. Expanding with this constraint (B19) to linear
order around R(g) = 0 one gets

0P0p0guv — 2R, V7 0gko =0 (4.20)

Using the splitting of a Kéhler metric in holomorphic and holomorphic indices one can analyze
0g;;» and Og;; separately. Note that dg,; is real, while dg;; with E = Og; is complex. From
([7.27) it follows that dg; 71s Ay harmonic and og' = 5g;7dzf = g”_C 0g; Jvdzf is Az harmonic. In other
words the first order deformations factorize and correspond to elements in H'! (M) and H' (M, TM)
respectively. These are also among the deformations of the A- and B-model as mentioned above
and further discussed in the following Sec. f.1] and p.1.

Let us first discuss the two moduli space associated to H'"'(M). In a basis of (1,1)-forms

w((f,)l)’ we expand a Kéhler form

hl 1
k
w=Y o 4.21)
=1 ’
in terms of the real Kihler parameters #; > 0. The range of # is bounded by the inequalities, which

ensure positivity of the volumes of curves C, divisors D and M, i.e.

/w>0, /wAw>0, /wAw/\w>0. 4.22)
C D M

These conditions describe a real cone in Rﬂ’: ", which is called the Kihler cone. The parameters f;
are identified with the areas of dual curves Cy to w((f)l), which shrink to zero area at the boundaries
of the Kihler cones’. In the o-model (b.1)) it is natural to complexify the parameter #; to 7 =
Jo (w—iB) by adding the integral of the antisymmetric tensor field B € H"!(M) to #.. Moreover
due to mirror symmetry one has a natural choice of the complex parametrization of the complexified
Kihler moduli space .#k, simply the complex structure parameters of the mirror t,’fg

As it is clear from the fact that the deformations dg;;, 0g;; change the (i,7) type of the metric,
the moduli space H'(M,TM) is associated to complex structure deformations. It is fair to say
that most of what we know about the moduli space of (2,2) theories comes from the theory of
complex structure deformations. In particular it can be shown that the first order deformations of
the complex structures elevate to finite deformations. This is more thoroughly discussed in the Sec.
6.7 and p.3.

Let us conclude the description of emerging picture of the deformation spaces. We have found
that the U(1),,y neutral world sheet two form operators ﬁg&l) with w1 € H(M,Z) and @(xz)
with A € H'(M,TM) correspond geometrically to complexified Kihler and complex structure de-
formations of the Calabi-Yau metric and are expected to be exactly marginal from the CFT point of
view. In the low energy effective action of type II A/B string theory these marginal deformations

7 At the boundary of the Kéhler also a divisor may collapse. In this case #; is still the area of a curve Cy in D.
8 As a corollary all singularities of .4k occur at complex codimension one and the cone structure disappears com-
pletely.
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arise as vacuum expectation of complex scalar fields labeling the vacuum manifold of the N=2 su-
pergravity in 4d. The general structure of this vacuum manifold for abelian gauge groups U (1)*”
and U (1)* is that it is locally of the form .#osy X Daur, where .# is a complex special Kihler
manifold for the scalar fields in the vector multiplets [@] [] [E] and 2 is a quaternionic manifold
[R8]] for the scalar fields in the hypermultiplets. The subscripts indicate the real dimension of the
moduli space. Its relation to the perturbative sector of the II A/B string compactifications on a
Calabi-Yau 3 fold M is as follows

MG M) = Myt o % iy At W) = A8y X iy ) - (423)

One very far reaching definition of the mirror conjecture is that type IIA and type IIB com-
patifications are completely identically if M and W are mirror pairs. This in particular implies
MMM = A (W). The best studied object is .}, () since it is literally the complex moduli
space of W. The enhancement of the Calabi-Yau metric moduli space from the complex to the
quaternionic space 2 of Kihler multiplets is due to the moduli of Ramond forms. The additional
quaternionic dimension in 2 comes from the universal dilation, whose scalar components (S,C)

contain in particular the type II dilation S.

4.4 Conformal Field Theory point of view

A most remarkable fact is that for all 145 Calabi-Yau threefolds defined in weighted projective

space subject to the constraint (7.61]) and for which the defining polynomial is of Fermat type
S X"

p— AN 4.24
with m;w; = d, Vi and S3_, w; = d there is a well founded conjecture for an exact conformal field
theory description, which captures the full perturbative sector and not just the topological part of it.
The CFT description is based on an orbifold of tensor products of minimal N = 2 super conformal
field theories found by Gepner [p1]]. The description is valid only at one point in complex struc-
ture and complexified Kihler structure moduli space the so called Gepner point. In the complex
moduli space the constraint (#.24) literally describes this special point. In the complexified Kihler
moduli the point can also be described by (f.24)) after dividing by phase symmetry groups such as
(,), which identifies () with the mirror manifold. It is far away from the large volume
limit.

The purpose of the present section is to describe the topological sub sectors in CFT language
and to link them to the full perturbative spectrum of the string.

As it is well known [[I26] Vol. Il N = 2 supergravity and N = 1 heterotic string Eg x Eg string
compactifications with standard embedding require an N = (2,2) supersymmetry. Only a N =
(1,1) symmetry is gauged. The N = 2 chiral part of a superconformal algebra on the worldsheet
has beside the chiral component of energy momentum tensor® T'(z) = ez ZHL% with conformal

9The standard notation in CFT is quite different than the one common in the discussion of o models that we used
in Sec. E One uses in CFT z = ¢! +i0? and 7 = ¢! +i0? where 0% = ig¥ is the euclidean time. Correspondingly
one indicates the left moving sector which carried a + index in Sec. E by quantities without bar and the right moving
carrying before — with quantities with bar. Moreover the unbarred or barred super charges are now distinguished by —
and + respectively, e.g. 04 <> G, 0+ < G§, Q— < G, and 0_ « G
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Figure 2: 77?

dimension and U (1) charge (h,Q) = (2 0) an U(1) current J(z) = 5 ez Z,{ﬁ with (h,Q) = (1,0)
and two super currents G = zrezﬂ N T with (h,Q) = (3,%1). The shift v can take arbitrary real

values. The short distance operator expansmn is

T(2)T(0) = 55+ 3T(0)+ 197(0),
T(2)G*(0) ~ 55G*(0)+19G*(0),
T(2)J(0) ~ 5J(0)+10J(0),
G*(2)G(0) ~ 25+ 3J(0)+ 2T (0)+ 10J(0), (4.25)
G (z)G(0) ~G (z)G(0) ~0,
J(2)G*(0) ~ £1G*(0),
J(2)J(0) ~ 3z,

Let us recapitulate the standard procedure in 2d QFT which recovers the algebra of charge operators
from an operator algebra such as (f.25). To the operator A(z) we assign charge operators Ag =
$¢, 4z €(2)A(z), where Cp is a contour around the origin 0 and ¢ dz := fco . In particular for
&(z) = 274~ the charges are the modes A, of A(z). The transformation of the operator B(w)
under (4 E) is generated by the commutator with A¢. In radial time ordering the commutator is
given by the following contour integrals

(81)B(w) = Ag.Bow)] = f . &z E@A@BOD ~ § . dzE(RARB(W
le>wi lel<wi (4.26)
=} aE@ARB0) .
10

see Fig. [ The spatial transformations O corresponding to conformal transformations™ z —
7+ &(z) are generated by T'(z), i.e. O = Or,. One can integrate #29) with fC',.,O dw "B~ 1o

10These are holomorphic in 2d.
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recover as residue the mode algebra from
[Lin,Ly) = (m—n)Lyin+ 5m(m* — 1), _n,
L0 GE] = (2-1) G
(L, Jn] = —ndmin,
{G}G} =2Lyis+ (r—s)rs+ 5 (P — 1) 8, 4.27)
{67,67} ={G, .G} =0,
[, Gr] = £Gy s
UmsIn] = 5 Om,—n,

with L} =L_,, JI = J, and (G)" = GT,. In case that the N = (2,2) CFT theory is the internal
part of a string compactification it must have ¢ = ¢ = 9 to cancel the Weyl anomaly. It represents
the internal manifold M. In fact d := dimC(M) = 5. The generalized GSO projection restricts the
internal U (1) charges to odd integer values for space time bosons and half integer values for space
time fermions, see [p1], for more details.

If we consider now the (+, —) twisting!" [EGI[F]

R 1 N 1
T(z)=T(z) 5c?J (z) — Lo=Lo+ 5Jo (4.28)
then the modifications of (4.23)) occur in the following short distance expansions

T(z)T

7 (

(Z)Gi (0
(
(

0)
)

(2)(0) ~ L7(0) + $07(0) F' .
)

~ 27(0)+L97(0)

w N

~ ZFLGH0) + 1aGH(0)

4.29)

G*(2)G(0) ~ 25+ 2J(0) + 27 (0) + £10J(0).

Let us point out the salient features of the operator product expansions in (f.29)

e Since the central term in the first OPE vanishes no ghost system is required to quantize the
world sheet theory.

e By the second OPE either G (+-twist) or G~ (—-twist) become a spin one currents, so
either Q = G§ = §G" or G, = § G~ becomes conformal, i.e. scalars that are defined on
every genus world sheet. The opposite super currents G~ (--twist) or G (—-twist), become
spin 2 fields.

e The above conformal zero modes are recognized as building blocks for nilpotent operators
Oa/p- Oa = G§ + Gy in the case of the (+,—) twist defining the (c,a) twisted chiral ring as
cohomology. Qp = G§ + G for the (+,+) twist defining the (c,c¢) chiral ring. The relation

4" marked by a prime are correlated in @,
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to geometry of M is'? for the A-model Q4 < d and the for the B-model Qg < 0 as discussed

in more detail in the Sec. F.1}, b.1]

o The third OPE shows that J(z) has an anomalous transformation. By arguments familiar from
the BRST quantization of the bosonic string this gives rise to an anomaly in the divergence
of the current, which can be covariantly written as

O4J, = —%T VIR = —dci (%) = d(2g - 2). (4.30)

For d = 5 = 3 this comes precisely with the same anomalous coefficient —3 as the ghost
current in the BRST quantization of the bosonic string j, = — : be 1, see [[2§]. Integrating
the anomaly in the divergence of the current leads to a U (1)-charge violation of d(2g —2) on
a genus g Riemann surface.

e The last OPE finally is like the one between the BRST current and the b ghost. Integration
around a contour to isolate G, yields for the + twist

{0.67()}=T(2), (4.31)

which echos the main equation {Qgrsr,b(z)} = T8 (z) in the BRST quantization of the
bosonic string. We have seen already that G~ has (h,Q) = (2,—1), which are precisely the
conformal dimension and ghost charge of the b(z) ghost.

To summarize we have for the (+,+) twist [[L1]] exactly the same structure as in the bosonic string
if we identify

(G (2),J(2),T(2),G (2)) < (Jgrst(2), o = — : be : (2),T""8(2),b(2)) (4.32)

and similar for the anti chiral half. This implies also Qg <+ Qprsr and the ghost number becomes
U(1)4 charge.
The degenerate ground states in the Ramond-Ramond sector fulfill [[0§]

GEly) =0. (4.33)
These Ramond-Ramond ground states have by (F.27)
c 3
— 434
24 8 (4.34)

An operator ¢ with charge Q in the theory can be decomposed into a part 0 which is neutral under
the U(1) current and a charge carrying part, i.e. 0 = ﬁAe"Q\/?“’, where we bosonize the current as
J= \/g d¢ [[130, [0§]. Hence there is a natural operation, which shifts the U(1) charge of every
operator el0VEo _, pil0-aVFe i i easy to see that this operation induces a family of algebra
automorphisms known as spectral flow

L,—L,=L,+al,+ %azcdlp

I — J)y = Jp+3acd, (4.35)
Gf — (G =G

12For Calabi-Yau manifolds this identifications can be viewed as convention and is reversed in [El].

002 /25



Topological String Theory on Calabi-Yau threefolds Albrecht Klemm

The Ramond ground states are related by (f.33) witha = +’ % to states in the NS sector with

GHW)=L|w)=J,|g)=0, r>0, n>0, andG* |@)=0 (4.36)

Only the +' in (#34) correlates with the one in @ = £’ and one has (+) for chiral and (—1) for
anti chiral states. It is easy to see that (.36]ff.27) imply

h=t10,  lol<S=d. (4.37)

Wl o

Massless space-time scalars have (Q, Q) = (£1,41). The states in the chiral- and anti chiral rings
with this property are related to the cohomology of M. The (c, c) ring corresponds to H>! (M) and
the (c,a) ring corresponds!'® to H'“!(M). The above spectral flow operators with a = +1 relate
space time superpartners with each other and are identified with internal part of the spacetime susy
operators [B1]].

The main point in Gepners construction is to identify the internal ¢ = ¢ = 9 theory with an
orbifold of a tensor product of minimal (2,2) superconformal field theories. The factor theories are
constructed as cosets of supersymmetric, WZW models, see [PZ] for a general discussion. WZW
models and cosets are an important source of rational CFT beyond ¢ > 1. In the simplest case based
ona (SU(2) xU(1))/U(1) coset the central charge is

3k

= keN. 4.38
k+3’ (4.38)

Ck

Primary states |/,q,s) of the algebra (f.23) are labeled in the minimal models by integers which
have the following standard range'*

0<1<k

0<|g—s|<I

o { 0,2 Neveu — Schwarz — sector } (4.39)
+1 Ramond — sector

[+q+s5s=0mod?2
and have conformal dimension and charge

1(1+2) 52 q s

== 4 =" 42, 4.40
4(k+2)—q2+8’ ¢ k1212 (4.40)

Above we discussed only the right moving part of the theory. There is a remarkable A — D — E
classification, behind the question how to combine the X;,, and Xig.s characters to a modular
invariant one loop partition function [R(]. Note that above only  # I. That is because all possible
shifts of g,s w.r.t. g,§ are obtainable in a separate step by orbifold constructions w.r.t. to simple
current symmetries. The simplest way to get a modular invariant theory is to start with a left right
symmetric theory with states |/,q,s;/,q,s), this corresponds to the A-series. Considering only this

13The (a,a) and (a,c) rings correspond to conjugated fields and contain no independent information.
4For the orbifold procedure the following equivalences are important ¢ ~ ¢ mod 2(k +2), s = s mod 4 and
1,4,5:1,3,5) ~ |k—1,q,5:k = 1,4+ k+2,5+2).
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series there are 145 possibilities to build a tensor product theory with ¢ = ¢ = 21-5:1 ¢k, = 9. Note
that at most one k is allowed to be zero, because of the ¢ =9 condition. This is the same number as
c1(Tyr) = 0 Fermat hypersurfaces in WCP*, i.e. with 5,_, w; = d, see Sec. .7} In fact identifying
m; =d/w; = k; +2 it is easy to see that both enumerations lead to the same diophantic problem.
The simplest possibility is k; =3 fori=1,...,5. Thisleadstod =5, w; =1,i=1,...5, the Quintic
in P*. Gepners orbifold construction divides the symmetric tensor product by a symmetry group
which is generically the subgroup G = Zjeqs com. muir {k;} %< (Z»)"*! among the group generated
by the simple currents and constructs a modular invariant orbifold. The effect is that the factor
theories and the space-time part are either all in the NS-NS sector or all in the R-R sector and that
the charges in the internal NS-NS sector become odd integers [p1], p2]|. It is then easy to see that
states in (c, ¢) ring from the invariant sector!> of the orbifold are of the form ®; |1, 1;,0;1;,1;,0). For
the tensor product model that corresponds to the quintic this leads in view of (F.39) to 101 elements.
The counting is the same that leads to the 101 independent complex structure deformations under
Eq. (b.53), which are identified with elements in H*!'(M). All states in the (a,c) ring are from
the twisted sector. They are more complicated to count but one checks that they yield the number
of independent elements in H!(M). It is also straightforward to identify the orbifold action,
like e.g. (b.56,p.63), that leads to the mirrors W of the manifolds M in (f.24)) in the conformal
field theory context and to check that it indeed exchanges the (c,c) with (c,a) ring [p9, F6]. A
fascinating idea has been to use Cardy states [[[2§] to classify D-branes as boundary conditions
in the rational CFT at the Gepner-point and compare with geometric pictures of D-branes [[§] in
particular the triangulated category of coherent sheaves over M for the B-branes or the category of
special Lagrangian submanifolds of M for the A-branes respectively.

4.5 1" equations, special geometry and contact terms

The #t* equations describe the geometry of the ground states of N = (2,2) two dimensional
theories. The construction does not require necessarily conformal invariance, but rather the follow-
ing structure. A nilpotent operator Q and its adjoint QF

{0.0"}=H (4.41)

and a conserved fermion number. Q and its adjoint Q' define rings of cohomological operators %
and Z* respectively. To make contact with the previous sections this can be realized as

_Joi=0+0: Z=(ac) _loi=0-+0, #=(ca)
¢ {QB=Q+Q+, #=(c) {QE=Q+Q+, @ =(aa)

As explained we have to twist the theories by identifying the corresponding AR gauge connection
with the spin connection. Since only the fermion number must be conserved [B1]] one needs only
a Z, anomaly free subgroup of the U(1)g-currents. The ##* geometry is applicable to N = (2,2)
2d field theories with marginal (conformal) but also relevant (non-conformal) deformations. While

116

these theories might not have a geometrical target space realization, it is still'® useful to think of a

I5In general there might be (c,c) states in the twisted sectors but for the smooth hypersurfaces, such as the quintic,
there are none.
16Eor g model on M this formal correspondence becomes an actual correspondence.
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formal correspondence to the deRham (Dolbeault) cohomology on a manifold M with (Q, o' H )~
(d,d*,8)
The Ramond-Ramond vacuum states, compare ({.33), are defined by

Qla) =Qf|la)=0. (4.43)

Such states play the role of harmonic forms. We call the space of vacua s#. The operator state
correspondence of 2d QFT associates to every operator ¢ € & acting on a any vacuum state 0 a
state |@) = @|a). In order to avoid too many indices we call the zero-form operators &) = ¢
and the two form operators &(2) = &. Since |@)q = @|a) is closed, Hodge decomposition (7.24)

applies |@)a = |@)a + Q|@-)a + 07| @; )« and by that we get a map
My |@a— |@)a (4.44)

from Z to 7. If a is fixed and as will soon see there is preferred choice we can find a canonical
map from the ring & to the Ramond-Ramond groundstates. Moreover every ¢ € % induces a map

d:la)— |@)a (4.45)

from ¢ to . Everything we said from Eq. (F.43) on, could have been said verbatim for the
conjugated sector defined by Q7. In particular we get for the same choice of a a second basis of
A, which we call |7),j = 1,...,r. If one has unbroken U(1)g/, symmetries as in Sec. .4 one
could single out |a) as the lowest charge state in the Ramond-Ramond groundstate.

The following path integral argument requires only conserved fermion number. In the operator
approach[[][fi0]] to 2d field theory one defines a state of the Hilbert space H of 2d theory by the
path integral over a half sphere HS? bounding an S'. Parametrize the S' by 8 and denote the fields
generically by ¢(8). The path integral is a functional of the boundary field configuration @(8) € L2
on the S! and defines a state |@) in H as in (F47). Anti periodic boundary conditions for fermionic
states on contractible loops as S' on HS? are the natural boundary conditions in the path integral
so that (f.47) does not yield periodic Ramond-Ramond states in H. However the connection Aﬁ
of the gauged U (1) R-symmetry couples to the fermion number with charge %, i.e. acts like a spin
connection @y,. When one transports the fermion along the S !, the connection is integrated to a
Wilson loop phase rotation acting on the fermionic state as

eﬂifsl wdx — eﬂistz dw — eﬂistz ZAm\/ﬁ — eﬂistz C](T) _ _1’ (446)

which rectifies the periodicity.!” A projection to the Ramond-Ramond groundstates at the boundary
can now be achieved by attaching a cylinder of length T to HS?, see Fig. B Call the combined
surface HyS?. The “evolution” of a state |@) defined by the original boundary S! of HS? to the
far boundary is described by e 77 |@). If the length T of the cylinder goes to infinity only the
groundstates in . survive, because they have 0 as energy eigenvalue of H, cff (f.34).
After this preparation we can define the path integral version of a projector (f.44)
lim

i) = / P@e P g — 1 () . (4.47)

_T—>oo

17 A discussion of the axial anomalies of 2d U (1) gauge theories can be found in Chap 19.1 of [[[24]].
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Figure 3: Path integral projectors to the Ramond-Ramond ground states .7

The T — oo limit makes the projector only sensitive to cohomological information of ring states
©c X or ¢ c Z*. Exact pieces have non-zero energy and are completely suppressed. Note that
M(1) = |0) defines a preferred vacuum state. We call the image of a basis ¢ € Z, i =0,...,r with
®y = 1in S the topological basis |i) = I ,(@). By the operator state correspondence we can also
represent the rings (f.10) on the vacuum states

@|j) = C5[k) (4.48)

The path integral (#.47) with insertions of @ € %* defines the anti-topological basis |7) =

M,(@). The two basis of 7 namely |i) and |7 ) must be related by a linear transformation, the real
structure,
i) = Mj|T) . (4.49)

The CPT theorem of the 2d field theory states that the effect of complex conjugating all expressions
in (f.47) sends |i) — |7), i.e. |T) = M|j) which implies MM* = 1. One has a topological bilinear
pairing

(il j) = nij (4.50)
and an hermitian bilinear pairing called the ##* metric

T =g, 4.51)
which are in an obvious way related by the real structure

g'nij =M. (4.52)

Note that (i| # (|i))". Both bilinear pairings can be defined by the path integral as in Fig. [l These

nij= <ili> o, ‘." )

T

el 5] D

T—o

Figure 4: Path integral representation of the topological pairing 1);; and the topological-antitopological
pairing g7 ;.

objects are topological to different extent. Changing the representative of the O cohomology class
i) — i) + Q|A) or (j| — (j|+ (A|Q will do nothing in (i|j) as |j) and (i| are Q closed. Due
to (B.9) the pairing n;; is independent of the position. That is true for all length/diameter ratios
of the cylinder, i.e. the cylinder is not needed at all in the definition. For the pairing g;; with
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(7] (1|4 (A|Q and |i) — |i) + Q|A) the argument does not apply as | ;) is not Q7 and (7| not Q
closed. However from (f.41]) and Q|A) # 0 ((A|QT # 0) follows that these exact states have positive
energy. The only states with zero energy are R-R vacua. Le. in the case of g;; we need the T — oo
limit to define a topological quantity.

Locally the tangent space of the (#,7*) moduli space is spanned by elements from Z(t) and
*(t*). It is clear that the pairing );; depends only on the  moduli. Moreover one shows that as
metric it is completely flat, i.e. all components of the curvature tensor vanish similar as in d < 1
strings | @] One can therefore find coordinates which make the metric );; constant. This defines
the moduli dependent basis of Z. As it is clear from the construction of the basis |i) and |7) via the
projection of moduli dependent elements in the rings & and %* they will depend on the moduli
m = (t,1*). In the Landau-Ginzburg approach [[43] n;; is explicitly defined in terms of the Landau
Ginzburg superpotential as

(p X)dX'A... AdX"
2m OW...0,W

= @(X)det "' [9,0,W] . (4.53)
dw

nij = Res[@@;] =

Another approach to define n);; is via the supersymmetric Schroedinger equation [R91. We will not
dwell deeper into the derivation of (f.53), except for remarking that it is a zero dimensional analog
of the Griffith residuum expressions (6.571p.71)) used in Sec. to define the periods, with the
identification W = P.

The 1t* equations describe how the vacuum states in .7 vary over the moduli space parametrized
by m. One calls the corresponding bundle also J#. Let ey, be a basis, i.e. a section in ¢, and denote
its connection

Agy, = 8" (ex|0pley). (4.54)

If the basis of 7’ changes by a “gauge” transformation |ey) + [e}) = A\y5les) then the connection
undergoes a gauge transformation A — A~'AA 4+ A~'dA. Let us consider the perturbation

S— / Poty+ 0 / P2+ 5 T / 4226, (4.55)
pY ~ Jz = Jz
where the two-form descendants are called &; := ﬁi(z)
indices of this connection vanish in the holomorphic basis. Con31der e.g. AL ; using we
can write AL, = " (k|di| j) = n*(k|d:|j). By (E12) we can write [5 O; = [Q,A] and since (pj is O
closed we can write J;|j) = I'Ih([Q,/\](p]) = QN (Ag;) = Q(A|j)). Since (k|Q = 0 is closed this
expression vanishes

. It is easy to show that the following mixed

A =0. (4.56)

Similarly one shows that AZJ =n'{16|j) = 0.
The metric connection is characterized by

0 = Drg;; = 0k&i; — (O N[ J) — (il dr] /) = (G(i])]J) - (4.57)
From this and the Dy derivative, we get formulas for Al i and Alf;h
AL, =8"0g,; Al =¢" 0gmn . (4.58)
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as hermitian connection of g. Indeed the topological basis |i) and the anti-topological basis |7 ) form
holomorphic and antiholomorphic sections of the vacuum bundle over the moduli m and one gets
the vanishing of the following components of the curvature

Di,D;) = [Dr,D;] =0 . (4.59)

The most important relation comes from analyzing the [Di,D,—] curvature term. Let us do
this for definiteness for the B model. Since the twisting (f.29) is so that O, (z) ~ G*(z) and
Q_(z) ~ G"(z) have dimension one, we can define

0, = jf dzG"(z), O-= f dzG*(z) . (4.60)

Here we adopt the notation to use the CFT conventions for the twisted currents. The commutators
and anticommutators in the definition of the descendants (f.12) can be represented by (F.26) as

0 — {0..10_, @ f 4G (2) f, G (1)@(w).

_ . (4.61)
6:: =67 = {010, @)} ~ fde* C,de+< w)@(u)

We calculate [D;, D;] in |) basis i.e.
DDyl = 0l — 031 = 0" (3P 311K — (3(p]) k)]
=1 (@ fug 1010 al}) N (fug {0110 @1a)
=071 (@ Jusp 10+ (0,91} ) N (Jusi {0+ 10—, @} @)
=1 [11(@ s 290) N (S5 0) ~ 11 (9 Susy &) N (U 2001 )|
= 0" [1(9 Jus; ) 1 (Je, (02 m)—n(cppfqarm)ﬂ((h@;)c&)}

= 0" [N (@ Jus2 @) M (- H) e, R) =1 (6 HE) Jo, @) (s ) )|
(4.62)
the contours of G~ (z),G~(z) G*(z), G"(z) are as in Fig. (fJ). Moreover we consider operators ¢ in
the (c,c) and @ in the (a,a) ring, e.g. @is O, and Q_ closed. In the language of current algebras
that means that the short distance expansion of @(v) with Q. (z) ~ G*(z) and Q_(w) ~ G"(z) has
no pole and @(v) can be ignored when deforming I, and I",,. The contours e.g. of the term in the
third line can be deformed as in fig. fj and the contours of G~ (z),G ™ (z) encircling G (z),G"(2)
give the L_; and L_; acting as @ and @ derivatives on @ by ({.9). Similar manipulations apply to
the term in the second line of (F.62). Applying Gauss’s law in both terms gives the integral over
the normal derivative —dz,. The minus sign is due to the orientation of 7. The normal direction
is “time” evolution by H, i.e. dr, = 3, = [H, @], which is used in the last line of (#.62), where
H(z) is integrated around ¢. From now on we exploit the topological nature of the theory and take
ordered limits of 2
first : Tr, T — o, second : T — o0 (4.63)

as depicted Fig.pl The tubes are all normalized to have perimeter 1. Elongation Tk and 77, projects

002731



Topological String Theory on Calabi-Yau threefolds Albrecht Klemm

IR I - T

C
R

Figure 5: Contour manipulation on ¥ in the evaluation of [D;, D ]—H{ .
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Figure 6: Limits taking in the evaluation of [D;, D3 .

@, and ¢ to the Ramond-Ramond vacuum state (p| and |k) respectively. The procedure of the
limits is a prescription how to deal with short distance singularities and the only such issue in
topological field theory are contact terms see (£.71) and (5.32).

The action of H on these states yields zero. The two terms in the last line of (#.62)) are trans-
formed into each other by exchanging the left- and right infinity. We discuss the —1 ( ¢, [ 52 qo]v) X

N ((# H(z) §, ®) @) explicitly. Vanishing of H|k) means that H may considered as acting on
the full state M (($c, @)@ ). In Hilbert space notation it is denoted as H|( ., @)|k) and similarly
mn (qop f HS? (_pj) as (p| [, HS? @;|. We can move the H integral to the left and since @, is projected to
the groundstate the non-vanishing contribution comes from its action on |, Hs2 ;- If the insertion of
gij is on the leftmost part in fig (f) it will also be projected to the groundstate in the 7 — oo limit and
annihilated by H. Therefore it remains to consider the contribution from integral over the middle
tubes whose length is parametrized by 7'. This integral is [, @7 = fOT d, §, d0@;. H creates T,
translations, so [H, ;] = —0dr,¢; and the integration over T becomes trivial. Note that only the
lower boundary T, = 0 contributes. The upper boundaries, where @; is near ¢ in both contributions
see Fig. ], cancels. Therefore

DD = 0" [0 (@ fus &) 1 (G H o, )8) =11 (@ § H fe, @)1 (fsy 310
= P[P (7 @) H (f, @) 1K) — (0] (e, @) H (f, @) 1)
= 0% 10 (fo, 8) e (e @) ) — (| (Je) @™ (o 3) 6]

= (C5C), — (CiCy) = —[Ci. Gl
(4.64)
This is the main identity within the 7#* equations. The others are easier to derive and all are sum-

marized below in the topological basis

[D;,D}] = [D;,Dj] = [D;,C;] = [D;,C;] =0 (4.65)
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We can now define a flat [(0;, ;] = [[J;, @j] =[Oy, if] = 0 connection

0, =D;+aC;, O:=D:4+a 'C;. (4.66)

The sections of the vacuum bundle are identified with the periods in the Calabi-Yau 0 model
context. The above flat connection goes by the name Gauss Manin connection. In this context,
see Sec. p.5 Since it is flat it seems that the theory is trivial! However flat connections can still
have monodromies, over non simply connected manifolds, see Fig. [[][[7, which are the essential
data of our theories. Where do these monodromies come from? The key is that (f.23)), which is
based on a local consideration of the tangent spaces of metric deformations at a generic point of
the moduli space fails at singular degenerations of the space time Calabi-Yau manifold. At these
loci charged Ramond-Ramond states become light, the simplest example is the charged black hole
at the conifold [[[34], which sits in a hyper multiplet. In the presence of massless charged states
the supergravity argument for the factorization (#.23) into hyper- and vector multiplets does not
apply either. In fact the logarithm in third period that produces the monodromy M; in (6.79) can
be interpreted as the one loop correction of the vector multiplet gauge coupling due to the massless
hypermultiplet.

The tt* equations describe the essence of the WS super symmetry constraints on the topolog-
ical correlators. These equations have in general to be supplemented with information about the
structure constants ij and boundary conditions. But already with some U(1) i.e. R symmetry
charge constraints they become powerful. E.g. for d < 1 (f.37) implies |Q] < 1 moreover these
theories are rational and have finitely many chiral primaries in this charge range. We assign to
the ¢ of say the (c,c) ring (B.53) the weight w; = (1 — Q;) > 0. The last equation (f.63)) called
associativity guarantees the existence of a potential .% with C; ik = DiD D% . As discussed one
can chose flat coordinates, which we call for convenience also ¢’ such that C; ik = 0,0;0.7 Charge
conservation implies that .% is homogeneous of degree 2 in the weights w; of the #/, i.e. a finite
polynomial and associativity determines its coefficients up to an overall normalization. These con-
straints imply indeed that there is a completely solvable discrete infinite set of d < 1 N = (2,2)
theories with an ADE classification. For d > 1 there are zero and negative weight ¢/ and this simple
way of approaching the problem loses its grip.

However if d € Z and the R charges are also integer, we expect from Sec. [.4] that beside
WS super symmetry also ST supersymmetry constrains the correlators. Let us show that (f£.63)
implies for the Calabi-Yau 0 models on threefolds d = 3 and odd integer R charges special Kédhler
geometry. In the holomorphic basis we use to write [D;,D;]f = —d;4% = —[C;,C;]. With

ki — AL k — okkevn ;
(Ciy)" = Cy; and hence ¢, =g Cj’ﬂkg,;lm we write

0:AY = [C,Cilf = [Crg ' Clglf . (4.67)

In the case of Calabi-Yau 0 model the R charge conservation law forbids many correlators, see
sections B.1] and b1 In particular g,z = g% = 0 for k # 0 and C = JF and Ci% = Ok If we
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specialize (f.67) to k = [ = 0 we can write

9:AY = 3:(e% i) = [Cirg ™" (C)) el

ajdi log(ggp) = —g"ct 08k (4.68)
_8ii
800

As follows from the identification (6.3,p.6) in the B-model and (6.23) or Serre duality (f.54) the
vacuum states |0) and |0) are associated to the holomorphic (n,0) and anti-hololomorhic (0,n)
forms. In particular

K:i/ QAQ=(0|0) (4.69)
M

and comparing (p.47, p.48) with (F.68,f.69) we identify the Weil-Peterson metric with a sub-block
of the #¢* metric
G;;=ge" . (4.70)

In ({.64) we have related the curvature of g;; to a bilinear in the 3-point functions and with E70)
this becomes the special geometry relation (p.53). In other words 7¢* in genus 0 implies special
Kéhler geometry, but the main virtue of the formalism is that it generalizes readily special Kihler
geometry to higher genus. This will become essential to solve the B-model.

It is worth mentioning the closely related contact term approach to the definition of the con-
nection (#.57), see e.g. [[[04]] for a short introduction. It does use conformal invariance and restricts
the analysis to exactly marginal ring operators. If the operators are exactly marginal for all values
of t = {t,f} of marginal perturbation parameters as (f.53) then the most general short distance
expansion in the basis ey, of them is

Oa(2)0p(0) ~ |G‘4 +rY 52( )0,(0) . 4.71)

Clearly this expansion is compatible with dimensional analysis, &2(z) = 0 > Marglnahty implies
in first order in 7 that [ dz(0q(z) Og(1)0y(0)) gets only contributions from z=land z =0, which
explains that only the &-function appears on the right of (f.71) in this order. Exact marginality
means that scale independence, i.e. vanishing 3 functions, are maintained to all orders in 7. To next
order follows the closing on exactly marginal operators, as opposed to arbitrary (1, 1) operators, on
the right in (. 71]). The Zamolodchikov metric is defined as the sphere correlator

Gap = (Oa(1)05(0)) 4.72)

and because of conformal invariance it does not require a limit as in the ¢#* case. Taking the
derivatives with respect to perturbations one gets

aGaB

— [ 20 (2)05(1)0p(0)) =T2,Gop + T 35Gisa (@73)

which establishes Fay as connection of the Zamolodchikov metric. So far the discussion of the

contact terms has been about a general ansatz and in particular all ng could have been zero.
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However [p§] observed first that in order to ensure marginality in superconformal theories with
non trivial triple couplings Cl.ljc the contact terms have to be present, which is of course required to
get (B.69). The virtue of the 77+ equations is to generalize this analysis to all ring states replacing
I'g B with Ag B and non-conformal theories.

As an exercise one may derive the special geometry relation in N = (2,2) SCFT using the
contact term approach as a specialization of the derivation of the 7t* equations. The decompo-
sition of a,B into jj comes from the possibility of picking the holomorphic basis in N = (2,2)
WS theories. Of course the real challenge is to understand the occurrence of the monodromies,
which we identified as the data of the theory, which however requires to understand the spacetime

Ramond-Ramond states.

5. The topological A-model

As mentioned above the gauged U (1)y symmetry becomes not anomalous and this topological
model can be defined on any Kéhler manifold.

5.1 A model without worldsheet gravity

In this section we want to describe the operators and correlation functions of topological A
topological and their relation to the geometry of the target space M. We call the anticommuting
scalars from table P ' := ¢/ and x':= @, and the one forms i.e. sections of K and K are denoted
by pl = " and p; := l,Ui. The action is then

L=2t /dzz <8ij0vxiavxj+ is“vbifduxidvxf— igl-prfDZX" + igifpzéDZX'i - %Ri/}jipzinPle> ;
5.1
where we added the term involving the antisymmetric 2-form b;; € H, (M,Z), which plays an im-
portant rdle in the bosonic sector of the topological A model. Supersymmetry d = £_Q, +£,0_

acts by
oxl =& x', ox' =&_x"
Pl =2ig O’ + &, T plx*, Ox" =0 ] (5.2)
ox' =0, Op! = —2iE, 0 +E r}kpg X/

with 2 = 0. There is a fixpoint of & on fermionic zero mode configuration with x’ a holomorphic
mapx:2, — M,ie. c?z)?f = 0:x' = 0, on which the path integral will localize by the fermionic zero
mode integration, so that the bosonic integration reduces to an integration over the moduli space .#
of such holomorphic maps!'®. This moduli space will be labeled by the following topological data:
the genus of g and the homology class [x.(2,)] € H»(M,Z) of the image of %, in M. The 0-form
correlation observables are combinations of x,x and X', X the latter anticommutating operators
can be identified with the forms on M, i.e X’ < dx’ and X’ < dx’ One checks that under this
correspondence Q_ and Q, are identified with the exterior derivatives of Dolbault cohomology
0 and 4. Since then Q = Q_ + Q. is identified with the deRham operator d = 0 + 0 one can

181n considering only Q4 = Q1 4+ Q_, i.e. setting &, = E_ one neglects structure, which would give information
about the individual cohomology groups of .Z.
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summarize the correspondence between the BRST cohomology of Q4 and the deRham cohomology
of M as follows. For each form

W =wy, g, (x)dxt AL Adx (5.3)
on M there is a topological operator
0

Ongtp) = Wi, (X" - X" (P) (5.4)

of the A-model and the operation of Q4 is identified with the exterior derivative

{QA) ﬁW} = _ﬁdW 3 (55)

where the form degree n of W is identified with the ghost number of Oy, since X has ghost number
+1.
The action can be written as

S—it / 20, V) +1 / Cw),  with V=g (plowd +0.0p!) (5.6)
z 2z

and
/x*(w) = /dzz (dzxidzxfgif— indzxfgij) =w-B >0, (5.7)
s s

where  is the Kihler form w = —ig; fdzidzf and f3 is the cohomology class [x,(Z)] of the image of
2 and the positivity holds if w is in the Kdhlercone. If the antisymmetric tensor field B is non-zero
we replace w by a complexified Kahler form . = w+iB = i(b;; — ig; jf)dzidzf .

The correlation function of the physical operators

([0 =e " //// DxDxDpe eIV [ 6, (5.8)
P B 7

1=

=

depends on the metric of M only via the Kéhler class w (or on the complexified Kéhlerclass wc).
Other metric dependence in particular on the complex structure of M as well as on 2, appears in V.
However this dependencies appears only as a Q exact expression in (f.8)) and decouples by (f£.8).
Moreover taking the derivative w.r.t. ¢ implies by (.§) that the second factor is independent of ¢
and the correlation can be calculated for w in the Kéhlercone for Rer > 0 in limit of infinite ¢ i.e.
at the classical minimum of the action. If we write

SB == fzgij (dzxiazxj+dzxidzxj)

L (5.9
=2 [58;0:x'0.x + [s x*(w)

it is obvious that this minimum is taken at holomorphic maps d:x' = o"’zxf = 0, which is another
way to understand the supersymmetric localization. As mentioned the path integral collapses by
this mechanism to a finite dimensional integrals over an in general infinite series of components of
moduli spaces of holomorphic maps which are labeled by ./, g(M).

Let us now discuss the selection rules for correlators ([];_; Ow,)g- We note from table
and the identification of X’ and X’T that x' has charge ¢; = —1 and g, = 0 under the left and right
U(1);/, respectively, while X" has g; = 0 and ¢, = 1. Because of the splitting of the tangent bundle
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of M = TU0 ¢ 7O we can associate to Ow, an element in the Dolbeault cohomology group
H(Pe4) | Since the vector U (1)y is unbroken in the quantum theory we get a charge conservation
constraint gy = S7_; px — >t g« = 0 for the correlator to respect vector charge conservation. For
the classical axial charge we would get naively ga = 37_; px + 37— gk = 0. However the U (1), is
anomalous. Its anomaly is given by the index of the Dolbault operator and can be calculated by the
Hirzebruch-Riemann-Roch theorem, see Sec. .3

ga = #(X zero modes) — #(p zero modes) = 2(h°(x*(TM)) — b (x* (TM)))

(5.10)
= 2/ch(x*(TM(1’0)))td(TZ) =2(ci(TM) - B +dimeM (1—g)) .
z
Combining the constraints we get
qu: Zpk:cl(TM)‘B—kdimcM(l—g). (5.11)
k=1 k=1

In particular for g = 0 we can have a non-vanishing coupling (Ow, Ow, Ow, ), where all W; are (1,1)-
forms.
With two non-degenerate pairings we can associate a divisor Dy € Hy(M) to each W((ﬁ )1). One

has [, W((lli )1) AW (22) = Of as well as |, W) 22) = 5; If B denotes the cohomology class of

the image C of the worldsheet in M then we can write the product 8- w = 27‘[221:'11 trdr, where
dy = CN Dy is the number of intersections of C with Dy, or the degree of C w.r.t. Dy. The map with
di = 0 for all k is special. It maps the three punctured sphere 0y 3 to a point in M. One always find
a representative of WEII) N that has d-function support on Dy. This implies that the point in &« (Fy)
maps to Dy. If 2 3 maps to a point in M the path integral collapses hence to the intersection number

of D;ND;NDy. We define g, = e 2T then the correlation function'? is

hl,l
Cl'jk(t) = <ﬁW;ﬁW,—ﬁWk> = D,‘ﬁDjﬁDk—i- Z V?’Z?(Di,Dj,Dk) q?i . (5.12)
{a:}#{0} 1=

This deformed intersection is piece of the structure known as quantum cohomology ring of M.
It is a deformation of the classical cohomology ring on M by the parameters g;. One needs in
general the deformations of all pairings [m] : H*" — H indexed by m € H*(# 1), see [[[11] and
[@] for a review, which we can be provided on the mirror side. Note that the relation to classical
intersections in the limit picks a natural normalization of the operators &y and of their two-point
functions.

One collective effect of the instantons corrections is that structure functions C;j(¢) behaves
smoothly at singularities in codimension two in M as for instance through flop transitions [[[62][F]l.

We note) from table 2 and 3 and from (#.12) that the U(1)y as well as the U(1)4 charge of the

operator ﬁé&_

. vanishes. In view of (f£.18)) this means that non-vanishing derivatives of C jui(t) such

as

]
37 (On0n0,)|  =(0,,6,.0, zﬁfj’> (5.13)
1'=0

19We abbreviate ﬂfill q?" = ¢P in the following.
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Figure 7: This figure shows instanton corrections to the coupling Cjp3 with D; "D, N D3 = O(1) and Cjp4

with D; N Dy N D4 = 0. From the left to the right we pictured an instanton of degree 0 contributing of O(1) to

C123, an instanton of degree d; = 5,d> = 3,d3 = 4 contributing ~ q? ng‘g to C123 and an instanton of degree

dy = 5,d, = 4,ds = 3 contributing ~ ¢;¢3q3 to C124. Roughly speaking for large radii second the coupling
C124 is expected to be exponentially supressed against the first Cj23. The precise statement depends on the
growth of r?';? (Di,Dj,Dy). Such collective effects of the intantons can be analyzed best in the B-model.

do exist according to the selection rules. This non-vanishing correlators signal that a non-trivial
deformation family exist, but do not contain new information once c jx(t) is known as function
after summing up all intantons or easier from a B-model calculation. By SL(2,C) invariance on S
there is a symmetry between fixing any three of the {i, j,k,/} points and integrating over the fourth.
This implies that

0iCjia(t) = 0;Cis (1) (5.14)

which is the integrability condition for the existence of a function .% () (t) with the property that
Cijk(t) = 0,0,0.F (1) , (5.15)
J

W.
analysis of the vector moduli space of N = 2 supergravity in 4d, which is identified in type IIA

where we defined 0; = This is in perfect accordance with facts concerning .7 (¢) from the
compactifications with complexified Kéhler moduli space. This facts can also be established in the
complex structure deformation space, see Sec. (b.3), which again is identified by mirror symme-
try with the complexified Kéhler moduli space of the A-model. We should finally note that egs.
(F-13-p.13) are not written covariantly, but rather in special coordinates. Covariant derivatives are
discussed in the B-model section.

5.2 Coupling the A model to worldsheet gravity

While we have prepared our topological theories by the twist to make sense on any genus Rie-
mann surface, we have ignored the degrees of freedom of the worldsheet metric in our discussion
so far. As explained in Sec. £.7 in string perturbation theory one has to integrate over the complex
structure of the worldsheet and the position of the insertion points, in other words over the moduli
space of Riemann surfaces with n insertion of operators .#, ,. We have rightfully ignored that
in the genus zero correlator (5.12), because fixing three points kills the SL(2,C) invariance of S>
which has no complex structure deformations, so that .# 3 = point. Despite the fact that ()
predicts a nontrivial zero point function for g = 1, without integrating over the complex structure
of = the answer for the correlation function .% (1) would be generically vanishing. As an intuitive
examples consider maps from = = T2 to M = T?, allowed by the selection rule (F-TT). If we fix the
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complex structure of 2 and M there would be, by definition of inequivalent complex structures, no
holomorphic maps unless we hit with the complex structure parameter Ts the one of Ty,. Including
all multicoverings [[[(]] the answer .Z () = —log(n(Ty))S(Ty — Tx) begs to be integrated over Ts
as it is natural in string theory as explained below. For higher genus (F.11) predicts vanishing of
the correlation functions. That means if we fix the worldsheet metric there are just no holomorphic
maps from a genus g > 1 Riemann surface to M.

5.3 Topological gravity

The simplest example of string theory where integration over the the moduli space discussed
in Sec. [.3 is required is pure topological gravity. This is an good warm up example in which
M is replaced by a point. It plays a pivotal role for the A- as well as for the B-model coupling to
gravity. The calculation of the expected dimension (7.47) was for smooth curves, which represent
an open top dimensional subset of the moduli space of all curves. In order to integrate of .#,
we need some compactification of .#,. Including nodal curves, but so that the the automorphism
group, which is finite for smooth curves of g > 1, stays finite is called the stable Deligne-Mumford
compactification .#,. Genus zero curves have a SL(2,C) automorphism and g = 1 curves an
7 — z+c automorphism. These can be killed either by the position of a node or a puncture. Because
of the latter fact it is convenient to extend the discussion right away to punctured Riemann surfaces.
Inserting a so called puncture operator 1 at the point x € 2 in the path integral means that we want to
restrict the diffeomorphism group in (ff.13) to a subgroup which preserves that point x. We call the
moduli space with n punctures .#, ,. Its dimension is enhanced by n complex dimensions relative
to .#,. Intuitively one may picture the movement of the point as additional dimension of .Z, .
The more accurate picture is complementary. The restriction of the diffeomorphism group by the
part, which moves the point in the denominator of (fl.13)) enhances the dimension.

Let us call punctures and ordinary double points (nodes) special points of ¥. The Deligne-
Mumford compactification ///—gﬁ is the appropriate compactification to define good measures on
//Z—gﬂ in topological string theory. [[51], [43]]. It allows the above special points under the condition
that they do not meet. The further conditions that

e (i) every irreducible component of genus 0 has at least three special points
e (ii) every irreducible component of genus 1 has at least one special point

guarantee that there are no continuous automorphism groups acting on //f—g,n' Finite automor-
phism groups Aut are like gauge symmetries which are divided out. The resulting orbifold is the
connected, irreducible, compact, non-singular Deligne Mumford stack of dimension 3g —3 +n,
denoted also by %

The positive dimension of this space appears as an anomalous negative ghost number violation
in the BRST quantization. In topological gravity it is compensated by insertion of descendant
fields 0, (x) whose form degree is counted as positive ghost number. These descendant fields are
constructed geometrically as the first Chern class of the complex line bundle L; = x} (w) over .4,
in the universal curve M, , which is induced from the restriction of the holomorphic cotangent
bundle T%Z,|,, of Z, to x;. The universal curve is the fibration over %_N whose fibers are the
Riemann surfaces with n punctures described by the point [Z,xy,...,%,] € Mg, W= Ky ar
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o
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Figure 8: This figure shows a stable degeneration of a genus 2 curve with 5 marked points in .#) 5 as actual
configuration above and as dual graph below.

roughly the cotangent bundle along the fibres. More precisely since nodal singularities are allowed
it is the corresponding relative dualizing sheaf. L; are line bundles over .#Z, ,, see Fig. g.
The first Chern class (J; = ¢1(L;) might be represented by the (1, 1) curvature form (|/.33)

i

W= —ILT&c_Hoglax-l2 (5.16)

on .#g », Where 0y, is a meromorphic section of L;. It can be wedged to define the descent operators
0, (x;) := " of form degree or ghost number 2n. We can also consider the insertion of 0y(x) =
°(x), the above mentioned puncture operator. What this means is that we change the moduli .#, 2
to one .#,1 in which the diffeomorphism group in (#.19)) is restricted to fix one point without doing
anything else. The selection rule for a non vanishing correlator

(adl...crdn>:/% WAL A (5.17)

is now given simply by counting form degrees of insertions against the dimension of .#, ,, which
yields the condition [[[31], [43]
n
Z(di—l):3g—3. (5.18)
i=

Two easy and universal properties of the correlators (F.17)), called topological recursion relations
[[[49], are the puncture equation, referred also to as the string equation

<000d1 -~-Udn> = Z<O’dl...0di,1...0'dn> (519)
di#0

and the dilaton equation [[[49]
<O'10'd1 -'-O-du) = (2g—2—|—n)<0d1 ...O'dn> . (5.20)

Let us give the original arguments [[[49] that lead to (5.19 .20). The argument can be made
mathematically rigorous see [[7]. In equations both a puncture is removed from the left relative
to the right side and the nontrivial relation comes from loci in .# 1, where this removed point
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Xo is together with exactly one other x; in a genus zero component S% of the degenerate curve (the
bold fibre in Fig. f), so that its removal destabilizes ///—w. We will discuss the generic case and
leave the special g =0, n =2 and g = 1, n = 1 situations to the reader. The key point is now that
L; = x}(w) over %g.wr jand L] = x} (') over %gﬁ, i=1,...,nare related in a non trivial way. If
it would be the case that L; = 71" (L}) then starting with the right hand side we could argue that the
left hand side in (, ) vanishes due to ().

These relevant issues occur at the divisors D; in ]&H] (in Fig. 7 we show just D). The
forgetful map 77: %g,nﬂ — %&n is a fibering map, whose fiber describes the position of the
point xp, which is essentially . Its lift to the universal curves Tg; : %Z&,,H — ‘5]&,, not
a fibering as Tk also contracts the unstable S?. There is however an isomorphism a between
Q: Mgni1 = C M,y Itis just not compatible with the fibering 11: A4 g 41 — M g,. Now if s
is a section of @' then the evaluation x7(s) at x; pulls back under 7T* to section 7T°x’(s) of w over
m. A simple local model near the contracted S? shows that 7T°x’ (s) vanished with order one
at D;. This implies L; = 1" (L;) ® 0'(D;) with ; = ¢{(L;) and the properties about characteristic
classes summarized in Sec. ({7.3)) one gets

Wj=y;+[Dj]. (5.21)

The algebraic identity
n—1
W =)+ D]y Wiyt (5.22)
k=1

simplifies to @} = (Y7)" +[D;](@;)" " as ;= e1(L;)[D,] = 0, because L; is trivial over D as the
sphere Sé with its three special points is rigid.

So we can evaluate

n
(000g, ... 0q,) =/7 AL g = Z/f (DAL (g7 )
=”g,n+] le :ﬁg‘n+]

(5.23)

n

n
d dj—1 d
22/7 l,Ull/\...l,Uj] .../\l.,UIIZZ<O'dl...0'dj,1...Udn>
j:] A gn

=1

Here we used [D;] - [D;] = 0 which follows from the definition and in the third equality we
have integrated over the fiber of T: ]g7n+l where [D;] represents a section with a simple zero.
Very similarly one concludes that Ly = a* (') ®"_; €(Dj) is a degree 2g — g +n section of a line
bundle over the fibre of 7. We evaluate then again by integration over the fibre

0 g.n+1

With the recursive relations (5.19,5.20) and the initial conditions that the moduli space of a
three pointed sphere is a point (0yp0p0p) = 1 and (07) one can solve as an exercise all g = 0,1
correlators. It seems natural to try next to consider maps which “forget” nodes to get a recursion
among correlations with different genera. From the algebraic point of view taken above this turns
out to be surprisingly difficult.

Let now {d;} the set of all nonnegative integers and define

'

Fg(toﬁla'--):%(l_lrd,-)g r!)# ) (5.25)
; r>0 "
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Figure 9: Universal Curve €M, ;1 and the forgetful map. The nodal and reducible fibre are displayed,
because there are such fibres, but they plays no role in the derivations of the string and dilaton equation.
They would play a rdle in recursion relations among different genera, which is hard from the algebraic point
op view.

with n, = Card(i : d; = r) and
F=% A%72F, (5.26)

the free energy of 2d topological gravity. Where we rescaled the operators 7, = (2n+ 1)!!0,
for latter convenience. [[[49] conjectured that the partition function Z = e satisfies the Virasoro

constraints
L,Z =0, n>-—1 with [L,,Ly,] = (n—m)Lyim (5.27
with
>2 1
L, =19 i+
2 d[o 2 dtl 1
Lo 21—1—1 0 1 s 5
2 0[1 Z) 2 o'?t, 16’ (5.28)

. 2t1, 0 AL
" 20tn1 Z, 2 15 t,+n 4 Z)dt, 10ty

As an exercises one may check that (5.19,5.20) are equivalent to L _{Z = LyZ = 0. It is well known
[] [@] that () is equivalent to the fact that Z is the T function of the KDV hierachy and
fulfills the dilaton equation.

All proofs of are combinatorial. The first is by Kontsevich, who interprets a direct
evaluation of the correlators as ribbon graphs of the shifted Airy function matrix model, which
in turn can by viewed as the Akhiezer Baker function of the KdV hierarchy. This beautiful work
[PI] has been reviewed in many places e.g. [fi0} B9]. More recently a second combinatorial proof
has been given by Okounkov and Pandharipande [[[22]]. Recently a new proof has been given
by Mirzakhani [[[TJ], which establishes an interesting relation to the Weil-Peterson volume of
the moduli space of hyperbolic Riemann surfaces with geodesic boundary conditions that awaits
physical interpretation.

There is a physical recursion argument relation based on the contact term algebra of two di-
mensional gravity [[43], which up to a normalization of (ToToTo) = 1 reproduces all correlation
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Figure 10: Degenerations of a genus g surface corresponding to the codim one boundary in ]gn in the
dual graph notations where closed lines are double points and open lines are operator insertions.

functions and is equivalent to f.27, see [[i(J]. The recursion includes a reduction of the genus

(TaMkesTe = 3 B (Tt [T w)et Y AZ(GT [ e

keS kK'#k i+j=n—-2 keS

g—1 . ) (5.29)
+Z B I_l Tl |_| Tk

h=1 ?Ijzljf% kesS; kesS,

This recursion reads very naturally as if we could have reduced in addition to the unstable meeting
of two points also the nodes and irreducible fibres in Fig. P| and treat all boundaries of the moduli
space ]&n at the same footing as in Fig. [I0. [[[45]] determine the Pk(") =2k+1 and Ag’) =5
and Bg?’h) = % using contact term manipulations. The puncture and the dilaton equation, which is
implied in (5.29) can be established rigorously in this way. However for the determination of all
A, B, P one needs consistency assumptions about the contact term algebra. Therefore, even though
(6-29) implies (5.27), the approach of [[[43]] is not a quite a proof of (5.27).

Let us sketch the argument [[[43] of the identification of the 2d field theory formalism with
the geometrical approach. 2d gravity can be constructed as cohomological supersymmetric theory
with two nilpotent operators Q representing the total BRST charge and Q_ = Q; — Q,, where
Qs are the left and Qy the right super charge. The decoupling of the WS metric is not complete
{0s,B%} = {0, B*} = T*, so that Q and Q; insertions in correlations act on the measure (p.96) and
yield by derivatives on .#, ,. The decisive field is the 2d dilaton ¢. Other fields have the
following relation to ¢

l\)l'—'l\)\

=3{0-, cp}

5.30
00, ~50), (6, ) — 30

10, {Q ,¢}}
(

( ) oY, —0yY), R=dw=00w

BN = —
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A P(X) X C§<n
[fe°n P(L)
T

Figure 11: Conformally equivalent definition of colliding points.

The theory has a gauge fixing sector similar to the superstring and in particular anti-commutating
(b,c) ghost and commuting (f3,y) ghosts with BRST symmetry O = @ + dco, Oprsrco = Yo,
Oprst W = @ + dcg, OprsrWo = dyp and Oy, Yo = 0. The field equations imply Yy = %(0 y+Yyop+
cOY+ c.c.). The main claim is that formally the J; classes are

Wi ~ (Yo + Yo+ dw) (x;), (5.31)

so that formally g, ~ (Yo + Yo +dw)". The point is that the insertion of ((yo + Yo + dw)0),
produces by (5.30) and a two-form on .# , namely 89 (Q0),, where the 99 operators act on
]g,n and & stands for cohomological states. Note that the 0, 0 derivatives act in the direction of
the complex moduli by (f.17) as well as in the direction of the fibre of the universal curve. There
are operators 0; = e™¥) | g0 that (90;)s =log |0y, |2 hence by (F.16) we get the claimed relation.
The puncture operator plays a special role in the field theory formalism and is given in the —1
picture by P(x) = c¢d(y)d(y)(x). In order to prove the puncture equation (5.19) one has to
understand the contact term between P and 0y, that is the integral

. d2 B
fo Plo) = [ @P@la) = [ =AGeGog o P(1)]an)
: o <e lal<e l4|

d? - 1 )
:/ _qGoGoqLoq—u)EQQJan,l):/ Padduldodlon ) G

ql<e \CI|2 lgl<e

= d%40,04(log|q|*)|0u-1) = |Ou-1)
lg|<e
where we replaced in the second equality the position dependence of the puncture operator by a
neck of length T = —log|q|, see figure [[1. The insertion of the Gy, Gy comes from the integral
over the superpartners of the modulus g. From the definition () and g, = " as well as )
follows the third equality. The Gg, Gy play the same role as the Q,Q_ in the derivation )
namely to produce the derivatives ¢d,Gd; from the anti commutator {Q,Go} = {Q_,Go} = Lo.
The logarithm occurs, because [Lo, @(0)] = @ + 1 with @ = § d@ and @|0,—1) = Lo|0,—1) = 0.
Regular terms vanish under the integral. Hence one concludes that

P(x)|0,) = 3% (x)|0,_1) (5.33)

from which (5.19) follows. The derivation of the dilaton equation is a very similar exercise. The rest
of (5.29) is application of the sewing procedure of string perturbation theory with some consistency
considerations restricting the contact algebra []. We will a make a similar construction in Sec.

e <
O A
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Beside the classes W there are other important classes on .#, ,. A smooth Riemann surface
5, has a g dimensional vector space of holomorphic differentials in H'0(%,) = H%(%,,Ks,). Ona
connected nodal curves there is extension of these differentials. Namely on a curve of arithmetic
genus g one has g meromorphic differentials w, which are holomorphic outside the nodes, have at
most a pole of order 1 at each node branch and the residua on the two node branches add up to
zero. These vector space patch together to give a rank g vector bundle £ on %, which is called
the Hodge bundle®. In fact the construction applies likewise to .7, 2n(M, ), see below. The Chern
classes of the Hodge bundle. sometimes referred to as A classes, can be integrated over .#, ,. For

g > 2 one gets [F2] [F]

|BogBog 2|
R :/ 3 (E)= 822 (5.34)
A 1(E) 2¢(2g—2)(2g—2)!
eg Ry = Tlso’& = ﬁ, .... Using a formula of Mumford the correlators involving c,(E) and

(J can be systematically reduced [B2] to correlators involving only (/ and are fixed by the Virasoro
constraints.

5.4 The moduli space of maps

Let us now come to the original question of coupling the topological A-model to gravity. We
now want to construct the moduli space of maps which send x : £ — M into a class B = [x(X)] €
Hy(M,Z) called .#,,(M,[3). The rough expectation is that the negative dimension of the moduli
space (B.11]) for g > 1 is offset by the dimension of the deformations space M, of the Riemann
surface. In other words we might hope to modify the complex structure j of 2 until it is compatible
with the complex structure on M and a (j,J) holomorphic map satisfying the Cauchy-Riemann
equations

1
(9]'7])6: E(dX—FJdeOj):O (535)

does exist. To see at least heuristically what the dimension of the moduli space of a stable com-
pactification .#, ,(M, B) is consider the normal bundle exact sequence of an immersion of a non
singular curve in M

0— Tz —x"Ty — Ny — 0. (5.36)

The associated long exact sequence is

0 —H'(ZT5) —
HY(Z,x*Ty) — H*(Z,N5)y) — H' (L, T3) — (5.37)
H'(Z,x*Ty) — H'(Z,Ng/y) — 0

Let us interpret the terms as automorphism, deformations and obstructions of the involved struc-
tures. As far as only the domain curve is concerned we know that H'(Z,T5) — HO(Z,Ts) =
Def(Z) — Aut(Z), and that the dimension of .#) is 3g — 3. For fixed complex structure of the
domain we can identify H°(Z,x*Tj;) with the deformations and H'(Z,x*Tj) with the obstructions
of the map x. The real objects of interest are H(3, N5 y/) and H'(Z,Ns ;) which are identified
with the deformations and obstructions of the map x without fixing the domain. In order to have a

20 A similar construction on the targetspace is discussed in Sec. E
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stable compactification .#, ,(M, ) we must allow in general for marked points. In this case (5.37)

becomes
0 — Aut(Z,p,x) — Aut(Z,p) —
Def(x) — Def(Z, p,x) — Def(Z,p) — (5.38)
Obs(x) — Obs(Z,p,x) — 0

Now if a stable compactification ., ,(M, ) exist then Aut(Z, p,X) = 0. Moreover at least in some
relevant situations Obs(Z, p,X) = 0 and since the alternating dimensions of long exact sequences
is 0, we can calculate Def(Z, p,X), because we know Def(Z, p) — Aut(Z,p) = 3g —3 +n and
Def(x) — Obs(x) = h°(x*(TM)) — h' (x*(TM)). The expected or virtual complex dimension of the
moduli of stable maps is

vdime , g ,(x) = hO(x*(TM)) — h' (x*(TM)) + dim Def(Z, p) — dim Aut(Z, p)
N - (5.39)
=ci(TM)-B+ (dimc M —3)(1—g)+n,

where we calculated the first two terms contribution by (F.43) and the last two by (F.42) with
addition of moduli for marked points.

This formula reflects the special role of Calabi-Yau threefolds. By (F.39) the moduli space
of the contributions to the zero point functions .7 (¢)(z) for all genera is zero dimensional, which
reduces the problem of evaluating them to a problem of counting points, albeit a very complicated
one. All topological theories will simplify in this way as the example in .1 That does not mean in
general that all topological observable are integers, because discrete automorphism groups of the
theory, which have to be identified in the path integral, weigh some of these points with 1/|Aut|
factors. The remarkable fact about CY threefolds is that an infinite number of physically relevant
objects can be reduced in this way. Further comments about the A-model coupling to gravity are
exhibited in comparison with the B-model in Sec. p.11].

5.5 Idea of localisation and the vertex

The successful setup of this point counting problem in the A-model is a very sophisticated
problem, which needs several lectures in its own. Let us mention just a few issues and ideas with
references to the literature. In the A-model we have a counting problems for each topological type
of map x : Z, — M which are labeled by g and the class B € H,(M,Z). The virtual dimension of the
moduli space might be zero, but points have no hair. They must be characterized by starting with
the space of all possible deformations .# and analyze the obstructions. A natural way to describe
the obstructions especially if one comes from the path integral would be to give a top dimensional
integrand on .# say c;,,. For instance the question for the topological Euler number is point
counting problem asking for the zero set of the generic section 0 in the tangent bundle, a €’ vector
field. We can use the Gauss-Bonnet theorem see Sec. /.3 and write thisas X = [ , ¢, = [ ,R(g)dV.
This is not a simplification, unless we have a good choice for g to perform the integral, which comes
up if .# admits symmetries. For instance on the sphere we can generate a vector field by rotating
the sphere. This introduces a coordinate direction ¢ and we can choose the altitude 6 as the second
and pick the diagonal constant metric in these coordinates, which is flat everywhere but has o
curvature at the poles, which leads to the Euler number 2. The poles come of course from the two
zeros of the vector field generated by the group action on S2, which also leads to the conclusion

002 /46



Topological String Theory on Calabi-Yau threefolds Albrecht Klemm

that x = 2. Points that contribute to the integrals can be singled out as fixpoints under group
actions?!. The underlying principle is called localization. The key is to give the points additional
structure which describes the group action in its neighborhood in a way that is useful to address
global cohomological questions, like calculating intersections. Learning about the group and the
target from the action of the group is a highly developed subject[[[7}, F3]]. As far as the cohomology
is concerned it is systematized in equivariant cohomology. An example of principal importance
in the A-model are group actions of the algebraic torus 7 = (C*)", C* = C\ {0}. In equivariant
cohomology the cohomology of point is already a very rich structure. E.g. under the torus action it
18, see []E] chap 4.2 for an introduction,

Hr({pt}) = H"(BT) = H*((P*)") = Qlt1,.... 1], (5.40)

the polynomial ring over the rationals in r variables thought as t; = ¢| (H(C®)), see Sec. [I.3.

Toric varieties of dim r are varieties on which the algebraic torus (C*)" acts on open subsets.
They are completely characterized by the degenerations of the (C*)" action which are given by
an r valent graph I'. Locally the degenerations of toric 3 fold can be represented by a 3 vertex,
which represents an C?3 for the torus action z; — A;z;, with A; € C*. Every toric 3fold can be build
by patching C? patches in a way compatible with the global (C*)? action. The torus action of
the ambient space can be pushed forward to the moduli space of the maps .#(f3,g) and allows
to define an equivariant cohomology theory on .# (f3,g), by which the points can be enumerated
using the Atiyah-Bott fixpoint formula [f]]. This technique was pioneered by Kontsevich in [[[00]
for pedagogical introduction and further references see [[7§]. An interesting point is that the cor-
relations functions of critical bosonic worldsheet gravity appear very explicitly in the formulas for
the equivariant virtual fundamental class over which [[[00] integrates in . (B, g).

The most effective method to solve the open and closed topological string on open toric Calabi-
Yau manifolds employs the connection of open topological string to Chern-Simons theory [[[48]].
This leads to the construction of the topological vertex [[] as reviewed in more detail in [[[T4]].
The topological vertex amplitude is the building block for calculation any closed or open string
amplitude in any toric CY variety by

e Solving the general problem on a C? patch for arbitrary conditions on three stacks of D-
branes on Harvey-Lawson special Lagrangian cycles with topology S! x R? as in Fig.
This amplitude can be calculated in terms of the large N expansion of link invariants Wgg (g)
of Chern-Simons theory on S° [[]. In a specific framing one has

: Wri0,(9)Wr,0:(9)
_ R 24Kp, /2 Ry Q1 R 04
Zr,RoRs (9) = NEV N3 R/ 2 KRy : (5.41)
o R,;Qz ook Wk, (q)

where Nngz are the usual tensor product coefficients and kg = 5 ;/;(; —2i+ 1) and ; is the
length of the row of the i'th line in the Young-Tableaux of R. Note that ¢ = ¢* with A the
string coupling. i.e. Zg, r,r; 1s €xact in ¢ and contains all genus information. All possible
boundary conditions on the stack of N D-branes are encoded in R.

21 Another way to single them out is a critical points of a Morse function.
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moment map
projection of C

Figure 12: Moment map projection of the vertex and an amplitude with genus 2 and boundary conditions
specified by three representations R; of U(N;) of three stack of D-branes wrapping Harvey-Lawson special
Lagrangian cycles of topology S' x R?.

Figure 13: Gluing of graphs along a connecting propagator

e Providing gluing rules: If ' =" Ul and Xr, are the associated toric varieties then

Z(Xr) = 3 2(Xr,)o(— 1) Qe D Z(Xr,) o (5.42)
[9]

with 7 is the Kiihler parameter “size” of the connecting P'. The quantity (—1)/(@)¢=/(Q) with
1(Q) the number of boxes in the Young-Tableaux of the intermediate representation, can be
viewed as propagator. Here again we ignore the data of the framing, which are essential to
patch together arbitrary toric varieties.

For instance the Calabi-Yau geometry &'(—3) — P? is covered by three patches, with the
moment map projection as in Fig. [[4 The partition function Zp: for closed strings is obtained by

gluing three vertices with trivial representation Q; = - on the outer legs by three propagators
Zp2 = Z (_l)zil(Ri)e*zil(Ri)tquKRiZ.RzRgZ.RlR,ZZ.RSRtI, (5.43)
R,k ,R3

All £ represent the volume of the hyperplane P!, so that ¢ is the single Kihler parameter of &'(—3) —
P2,

The calculation is easily performed and by taking the logarithm we get the generating function
for the all genus contribution

F (A1) = i AE2FE (1) (5.44)
A=0

002 /48



Topological String Theory on Calabi-Yau threefolds Albrecht Klemm

\ 1

(=2)
Ri

&)
R2

) \
R(3 )

Q3 Qz

Figure 14: The moment map projection that shows the degeneration of the torus action (C?)* on &'(—3) —
P2

All .Z(®) have an expansion F (&) =33 5 qP 54" where the rB € Q are the Gromow-Witten invariants
for the holomorphic map from %, to a curve in the class B € H,(M,Z) of the image curve in M.

5.6 The Gopakumar-Vafa invariants

The authors of [p6]] consider an M-theory compactification on M to five dimensions. The
space time BPS states fall into representations of the little group of the 5d Lorentz group L =
SO(4) ~ SU(2) x SU(2)g. The low energy interpretation of the free energy F in 4d relates it to

zg 2 effective terms.

the 5d BPS spectrum through a Schwinger one loop calculation of the 4d R2
A similar one loop calculation corrects the effective gauge coupling ( ) through threshold
effects [BY]. Note that these 4d calculations are sensitive to the off shell quantum numbers, i.e. to
SU(2), x SU(2)g. Only BPS particles annihilated by the supercharges in the (0, 5) representation
contribute to the loop. They couple to the anti-selfdual graviphoton field strength F and the anti-
selfdual curvature R, only via their left spin eigenvalues of their representation under L. The
right representation content enters solely via its multiplicity and a sign (—1)21'13'(’, in particular any
contribution of long multiplets is projected out by these signs. To summarize, the dependence of

% on the BPS spectrum is via a supersymmetric index
1(a,B) = Trp (1) 2re- @i Pl (5.45)

and all information entering .% is carried by the following combination

S (CDPRQ+ DN i) = z n (5.46)
Itk
of the multiplicities of the BPS states V' [33 g The last basis change of the left spin from [j ] to
L
1 o8
I, = [(—) +2(0)L] (5.47)
2/,

relates the left spin to the genus g of C and defines the integer Gopakumar-Vafa invariants ngg)

associated to a holomorphic curve C of genus g in the class B = [C] € H*>(M,Z). In contrast to
the ngg), the Nj% j are no symplectic invariants. They change when lines of marginal stability
RJL
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in the complex moduli space are crossed?? [0d]. The Nj% P are interpreted as the dimension of
SU(2). x SU(2)g representations w.r.t. a natural action (ff %his group on the cohomology of the
moduli space of the M2 brane. This moduli space is given by the moduli of flat U(1) connections
on C and the moduli of the curve. A model for this space is the Jacobian fibration over the moduli
space of the curve C in 8. The expansion of .7 " in terms of these BPS state sums is obtained by
performing the Schwinger loop calculation [[{].[6d] as

00

FrlAr) = § A% 276 (1)
g=
c(t) c o (o] < m/\>2g "
= = +I1t)+ ng’— ( 2sin— q (5.48)
A2 g:oBeHgM,z)mzl Fom 2
c(t > ® ([m])e2) o
SRR NP R X AChi =
§=0 BEH,(M,Z) m=1 m

with »
cht L A X _X .
qB — elZi:l lt.[p-’t7 [x] = qAZ —qA 2, q/\ g el)\, (549)

The cubic term ¢(¢) in the Kihler parameters ¢; is the classical part of the prepotential .%# ©) given
in (B:84) without the constant term, and I(t) = 3", % [, chyJ; is the classical part of #(!). Using

the expansion
1 B, —
Z /\2g 2 g+l 8 2g-3

(2 sin Z& ) 28(2g—2)!

and a {(x) = yp_, - regularization of the sum over m with {(—n) = — Bt

n+1°

we see that for g > 2
the B = 0 constant map terms from localization [F1]]

M —(_ gX/ 3 _(_ gX ‘BZgBZg—Z‘
(Do = Ce- 22g(28—2)(2g—2)! (5.50)

are reproduced if we set n(()o) = —%. This choice also reproduces the constant term proportional to

Z(3)in ZO. In.ZW there is a {(1) term which requires an additional regularization.

In terms of the invariants ng %) the partition function Z"' = exp(.#"!) has the following product

form%3

) o 2g—2
Zh01 M _ 1— -1 B (- )z+r(2g;2)nég) ‘ 51
V(M. q,q) = D[(Dl( 0d°) )|'| ﬂ ) (5.51)
This product form resembles the Hilbert scheme of symmetric products written in terms of partition
sums over free fermionic and bosonic fields with an integer U(1) charge as well as the closely
related product form for the elliptic genus of symmetric products. As it has already been pointed
out in [p3], it is also reminiscent of the Borcherds product form of automorphic forms of O(2,n,Z),
see [ and [@] for a review. Here the idea is that integrality of the ngg ) is related to the fact that
they are Fourier coefficients of other (quasi)automorphic forms, see also [PT]].

22Notice that the successful microscopic interpretation of the 5d black hole entropy requires deformation invariance
and relies on the index-like quantity and not on the total number of BPS states.
Z3Here we dropped the exp( % +1(r)) factor of the classical terms at genus 0, 1.
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5.7 Relation to Donaldson-Thomas Invariants

Another way to obtain BPS states is by wrapping D-branes on supersymmetric cycles in M. In
particular, we can wrap Euclidean 6-branes on M itself and Euclidean 2-branes on a curve C C M,
possibly bound to some O-branes. At the level of RR charges such a configuration can be cast into
a short exact sequence of the form

0— Y —0Oy— Oz —0 (5.52)

where .# is the ideal sheaf describing this configuration and Z is the subscheme of M consisting
of the curve C and the points at which the 0-branes are supported. Counting BPS states therefore
leads to the study of the moduli space I,,,(M, B) of such ideal sheaves .#, which has two discrete in-
variants: the class B = [Z] € Hy(M,Z) and, roughly speaking, the number of 0-branes m = X (7).
Due to the Calabi—Yau condition the virtual dimension of 1,,(M, ) is zero, and the number of BPS
states with these charges is therefore obtained by counting the points in I,,(M, 3). It is, however,
not quite as simple as that because as is well-known from Gromov—Witten theory, these configu-
rations can appear in families, and one has to work with the virtual fundamental class Putting this
important subtlety aside, this number is called the Donaldson—-Thomas invariant n @] [M38].
These invariants are expected to be integral as they count BPS states.

Since both invariants, Gopakumar—Vafa and Donaldson-Thomas, keep track of the number
of BPS states, they should be related. The relation is in fact a consequence of the S—duality in
topological strings [[[19], and takes the following form. The factor in (5.51) coming from the
constant maps gives the McMahon function M (g, ) = [0 = q,, =gy o the power )2( This function
appears also in Donaldson—Thomas theory [[[1J], calculable on local toric Calabi—Yau spaces e.g.
with the vertex [[[]. However, in Donaldson-Thomas theory the power of the McMahon function
is . Note also that if (5.48) holds then .Z or Z restricted to this class is always a finite degree
rational function in ¢, symmetric in gy — %, since the genus is finite in a given class 3. Thanks to
this observation one can read from the comparison of the expansion of Z"! in terms of Donaldson—
Thomas invariants ﬁg") ez

AdiManq) = Y iy dd (5.53)
B,meZ

with the expansion in terms of Gopakumar—Vafa invariants [[112)]

28 (M, qr,9)M(92)"" = Z5}(M, ~q,9) (5.54)
the precise relation between n(Q) and n(g> Eq. (F.48) and (5.51) then relate the two types of

(8)

invariants to the Gromov—Witten invariants rg € Qasin

FE ) = F AT ryd
g= B

6. The topological B-model

Since the axial U(1)4, whose gauge connection is added to the spin connection to define the
B-model, develops an anomaly of its current proportional to [5 dyjk ~ [z x*(c1(TM)) the twisted

002/51



Topological String Theory on Calabi-Yau threefolds Albrecht Klemm

B-model is only consistent for Kdhler manifold with vanishing first Chern class, i.e. Calabi-Yau
manifolds.

Our plan for the treatment of the B-model is as follows. In next two sections we will present
the principal structure of the topological B-model and its coupling to gravity. We will then recall
some facts about families of complex manifolds. The integrability of the complex structure de-
formations on Calabi-Yau manifolds will be presented in some detail following the proof of Tian,
partly because it is one of the main classical results, but also because it leads directly to the for-
mulation of Kodaira-Spencer theory of gravity. The behavior of the periods under infinitesimal
deformations of the complex structure is the preparation for the derivation of the special Kihler
geometry relation from geometry. After that we discuss two methods to obtain the Picard-Fuchs
equations, which play a central role to actually solve the B-model. The quintic hypersurfaces is the
main example, however we aim for a presentation, which paves the way for generalizations to the
bulk of the known Calabi-Yau: complete intersections in weighted projective space.

6.1 The topological B without worldsheet gravity

The scalar BRST operator is in this case, see table f]

Op=0 +0;. (6.1)
The scalar fields on the worldsheet are conveniently chosen as
n'=—(l ), 8i=gp(Wh—yl), (6.2)
while the one form fields are
pl:=y.  of type (1,0), pl:= . of type (0,1). (6.3)
The supersymmetry transformation & = €0, + £Q_ is obtained by setting &, = —& = & and
& =0
ox; =0, ox' =&n’
06, =0, on' =0 (6.4)
Opj, = +iEdux' .

The zero form observables ¢(©) are now related to forms in Q(©-?) (M, NIT'OM) with the identifi-
cation of the scalar Grassmann fields on the worldsheet to forms and vectors on M n’ «» dx’ and
6, — %. Le. to each form on M of type

T A -0 17}
e Jledg g0 i
W—a}“”jpdx'/\.../\dxpale/\.../\aqu (6.5)
we associate a 0-form operator on 2
0 g T 7
oy =t e .6, . (6.6)

One checks that the Qp operator is identified with the Dolbeault operator @ which increases the
anti holomorphic form degree

d 0 i 0 d
0 QOMANITYM) " QMM AT YOMY ™ T QY (M NITOMY) T 0. (6.7)
— — — —

—
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and one has with {Qj, ﬁv(‘})} —05 (©) v the identification

* Ker QB
O — Im Op

= EB HOP (M, NT'OM) . (6.8)
p,q=0
The selection rules from the R-symmetries are as before 3, p; = 5;¢; = d(1 —g). It follows
that for g = 0 we have again the possibility of a non-vanishing three point function (&) 04 O4w)),
if we consider three local operators &, associated to

0
AW — ( Vi 2 57 € H' (M, T"°M) . (6.9)
Eq. (b.4) shows that there is a ﬁxpomt of the fermionic symmetry at the constant maps
ux'=0. (6.10)

We expect therefore that all contributions to the path integral are localized to constant maps. This
is the main simplification in the B-model. For constant maps 2, is mapped to a point in M. These
maps are of course much easier to control then the holomophic maps of the A-model and in particu-
lar they are not affected by the sizes, i.e. Kdhler parameter of M. The B-model without worldsheet
gravity is like a Kaluza-Klein reduction. By writing the action in the form

S:it/{QB,V}—HW (6.11)
g
with ) )
V = gi(p.0:x" + p:0.x7) (6.12)
and
W= / 8D~ S Ryyi0! AP 8 ™) (6.13)

one can conclude the following. W does not depend on the complex structure of 2, which decouples
from the B-model at genus 0. The Ké&hler variations of W are Qp exact and decouple likewise. It is
also ¢ independent as ¢ can be absorbed in a field redefinition in W. For more details see [[[56]. In
the off shell formulation of [[[0J][[L06]] one can simply write the complete action as Q commutator
S = {Qp,V} which makes the above points more obvious.

Since the fixpoints of the fermionic maps of the B-model are constant maps, mapping all Z
to a point in the Calabi-Yau manifold M, their moduli space contains M and in the special case of
the three punctured sphere, i.e. in the case of the three point function it is actually M, since these
three points can be fixed on S? by an SL(2, C) transformation and the sphere itself has no complex
deformations. For this reason all we have to find is a canonical measure on M, which we integrate
over M to get the three point function. Using Kaluza Klein reduction methods this measure has
been found long ago [[[33]

Cin(z) = (0060 6" / QAAV AT ARG, s del A e Adi (6.14)

Here Q(z) is the unique non-vanishing holomorphic (3,0) form, which exists on every Calabi-
Yau, see Sec. (7-3). Using the isomomorphism (-27) A — A we can define a non-holomorphic two
point function

N-—/A 6.15)
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6.2 First order complex structure deformation

The expressions (p.14) and (.13) depend as anticipated only on the complex structure of M
and not on its Kéhler structure. We saw in section .3 that deformations of the action by |5 ﬁﬁ) with

AW Hg)"l)(M ,TM) are first order complex structure deformations of M. Our aim is to explain
in this section the local tangent space of the complex structure moduli space from a different point
of view, put forward by Kodaira and Spencer [P§] and to explain in the next section why the first
order deformations on a Calabi-Yau manifold are unobstructed.

Consider a 2n real dimensional manifold and a covering of it by coordinate patches %;, i =
1,...,r, which are homeomorphic to a neighborhood U; € C" with coordinates xg) (p),a=1,...,n.
It is a complex manifold if the transition functions fUX) : x)(p) — xU)(p), defined for p € %;N %,
are biholomorphic. One attempts to define a family of complex manifolds M,, by considering
a family of transition functions xg) = fé,jk) (x(k),z), which depend also holomorphically on the
complex parameters z. The difficulty is that some z dependence of f,g,ik) (x("),z) corresponds just to
different choices of local coordinates systems on the same complex manifold. In order to decide
whether the f () (x(k),z) really induce changes of the complex structure [P§]| considers in every

patch Uy an infinitesimal coordinate change that is characterized by a holomorphic vector field
(0) (40 . . . .
VR (z) = > a1 %ﬁ’d ﬁ. Next consider the composition of transition functions in %; N %; N
Xa
Y. By definition

FEOEW 2y = (D (PO W), 0 (0 7)) (6.16)

holds. Differentiation w.r.t. to z gives

. .. . . ik
A W G afg (. 2)

. 6.17
0z 0z = 0x;3’) 0z (6.17)
Denote general vector fields by
) n 0f Jjk) (x(k) Z) 0 )
(k) () — a ’ (k) — ki) (.
AV (z) = a; 2 PR x® = 8 (x; 7). (6.18)

Note that A*%) (z) = 0 since fékk) = x®) independently of z. Therefore eq. (p-17) written covariantly
in terms of the vector fields (.18) implies A*/)(z) = —AU¥)(z). For general i, j, k (5.17) is a Chech
1-cocycle condition for the A (/)

Al (2) + Ak (2) +AUK) (z)=0. (6.19)

The exact 1-cocycles come precisely from the infinitesimal coordinates changes setting A (/%) (z) =
V) (z) —v®)(z), while the true changes of complex structure correspond to 1-cocycles, which are
not exact, i.e. elements of H' (M, A), where A are sheaves of vector fields A = &(TM). The Check-
Dolbeault theorem ([7.10) with F = & (T M) implies that complex structure deformations are given
by elements in H%!' (M, TM), which we also call A.
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6.3 Unobstructedness of the complex deformation space

As explained in [P§] the existence of a global complex structure deformation requires the
vanishing of higher Chech cohomology groups for vector fields. Tian [[39] and Todorov [[42]
have proven that these higher order conditions are automatically fulfilled on a Calabi-Yau space.

The elements A(z) = Ajf(x, z)dx/ % in H*1) (M, TM) in the complex moduli space can be used
to deform the @ operator to 9, = (8 +A(z)) so that @, f(x) = 0, defines what a holomorphic function
on M is w.r.t. the new complex structure. The requirement that 5'12 =0 leads to

9A(z) + =[A(2),A(z)] =0, (6.20)

where [.,.] is the Lie bracket. For @(x) = ¢/(x)d,, € £L*P(T), with ¢/ = #(p(x)ﬁ-'lM,—pdxf1 A Adx,
and w(x) € £%4(T) similarly defined one has

[0, ] = (¢ AW — (—1)PM e A Gig)0;, (6.21)

giving above a (0,2) form vector field from two (0, 1)-form vector fields. Condition (p.20) is
equivalent to the vanishing of the Nijenhuis tensor (7.3)) [P§]].
The main idea of the proof is that the existence of the holomorphic (n,0) form induces an
isomorphism
HOP) (M, TM) = H"™'"P(M) . (6.22)

under which the condition (6.20) is converted into a cohomological question, which is solved by

the 0 lemma. This conversion of the deformation problem to a cohomological question, which is

solved by an analog of the 00 Lemma extends to deformations of G, metrics [@] [@].
Contraction with the homolomorphic (r,0) form associates to A = A% " d/! AL Adadr % €

J1s-
HOP)(M,TM) an A € H""'"P(M) as

A 1 ; . o .
A= ( l)ijTl ; Qi iydx? AL A" AT AL AdXTP (6.23)
n—1)! Jip
with the inverse
N 1 — A - -0
A = ———— QiAo s dy/U AL A AP = 6.24
( ) (n — 1)!’(2‘2 125e-lny J15e+5]p oxi ( )

where |Q|? is defined in (7.52). One checks that A is harmonic iff A is harmonic and the operation
is invertible i.e. A = (A")", which shows (.27).
Since Q is holomorphic the hat operation (§.23) commutes with @ and we get

- = 1—— 1 4 4
0A =0A = —E[A,A} = _E[A’A]’ (6.25)
as equivalent to the condition (p.20)).
The main technical instrument is the following Lemma
A,B) = [A,B] = d(AAB) — (D-A) NB+AA(D-B), (6.26)

where D-A = (diASTl 7 )x-7 I'A...Adx/» is a contraction. The calculation is a straightforward exercise
Jp
whose solution is made explicit in [[39]. Eq. (6.26) becomes particularly useful, if one can choose

002 /55



Topological String Theory on Calabi-Yau threefolds Albrecht Klemm

“gauge” representatives for A and B so that (D-A) = (D-B) = 0. To control this “gauge” condition
Tian considers a Taylor expansion A(z) = A1z+A4,2% +... with A; sections of (M, Q%)(TM)) and
starting data dy = 0, i.e. A(0) = 0. To order z (5.20) states dA; (x) = 0 and we already argued that
in order to get rid of complex coordinate transformations we should consider A € Hg)’l) (M, TM)
only. One wants now to prove inductively that dA; + % zi.:l] [A;,Ar_i] = O for k > 1 which by (6.23)
is equivalent to

[Ai,Ay_i], for k>1. (6.27)

First step of induction: To first order in z one has simply as above A; € H"~"! (M) and we pick
the harmonic representative A;. In fact on compact Kihler manifolds it follows from (7.2,7.24)
that every harmonic representative fulfills dA; = 0*A; = 0. Moreover with Ay =Dy, see sect.
also dA; = 0 holds. This implies D-A; = 0 and by (p-2) [A1,A] = 0(Am1) is d-exact. On the
other hand for A; € H"~'!(M) hence dA; = 0 it is immediate from the definition of the bracket
that (_9[A1 ,A]] = Bd(Aml) = 0. The 9, @ Lemma of Kihler geometry (721, p 149) states that if
a form n € QP4 is @ closed and d-, d- or d— exact then it can be written as ) = . Applied
to the bracket we can write [Al Al] 90 Y for some Y € Qll, Identifying Ag = %0(,[!1 we have
constructed a solution to dA, + 1 [A LA 1] =0.

General induction: If for some N one has solved for Ai with 0& =0and BA,- + % Zi/_:ll [A j,A,-_ =
0,i=1,...,N, then

MZ

1

N
A =03 (4 A Av1-) (6.28)
J J=1

and one also checks that

A
[AijNJrl ﬂ)

1

I
Q!
QU
~.
™M=

- N N A
0 <Z [A,,ANHJ-])

J=1

j A
j
[[Ak,Aj—i], Ans1-5] — [A), [Ak,ANij]]) =0.

I
| —
S

~
M=
i

1

Here we used first (), then the fact that @ and A commutes, () for A; with k < N and the
Jacobi identity for (5.21]). By the @, @ Lemma one can set Ay = %c?L,UN and since dAy,; = 0 the
induction proceeds. Moreover one has arguments that the series converges in H"~ ! (M) [[[39].

Hence there exists always a family of Calabi-Yau manifolds with varying complex structure
parameters, whose complex dimension is h(o*l)(M ,TM). Tians and Todorov’s result is very im-
portant also with respect to the world sheet theory, where is very not-trivial to establish that a
deformation of type (#.1§) is exactly marginal and does lead to family of N = 2 SCFTs.

Mirror statement. On a Calabi-Yau threefold one has the above mentioned isomorphism be-
tween H(®V(M, TM) and H>' (M), which is induced by the unique (3,0) form Q. Thanks to the
above isomorphism the A-model and B-model physical operators are associated to H”'¢ and the
mirror symmetry can be interpreted as the following identification of these spaces H”9(M) «
HY=P4(W). Here M and W are mirror manifolds. As a corollary one has x(M) = —x(W) if d is
odd.
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A,

>

—

Figure 15: Perturbative solution of the Kodaira-Spence equation in Tians form 9A(z) + $0(A(z) AA(z)) =0
by Feynmann graphs with massless fields (weavy lines) and massive fields (solid lines).

6.4 Kodaira-Spencer gravity as space-time action for the B-model

There are three space time actions known, which reproduce as classical equations of motion the
unobstructedness of complex structures on the Calabi-Yau. Kodaira-Spencer gravity [[[T]], Hitchins
three-form action [B4]] and Hitchins general threeform action [B3]. The first[[[T]] and the last [[23]]
reproduce the B-model also at one loop. But even Einstein’s gravity poses no problem up to one
loop [[[41]]. While it is not clear how the suggested spacetime descriptions make sense as full
quantum theory, the worldsheet B-model approach makes remarkable predictions at higher loops.

Kodaira-Spencer theory of gravity is a theory on M which couples exclusively to the complex
moduli of M. Its tree level result reproduces the B-model without the coupling to worldsheet
gravity, i.e. its genus zero sector[[[T]]. It is a space time gravity theory in the sense that is does
couple to the Calabi-Yau metric as far as complex structure dependence is concerned. It reproduces
the (5.20)) in the form 0A(z) + %0(A(z)//\7 (z)) = 0 as its equation of motion and its Feynman graph
expansion corresponds to the iterative solution to that equation exactly in the form as given above.
In fact by the d,0-Lemma we have shown e.g. in the second induction step that one has an
with oy, = [A/I,E |, hence Ay = %0’74/1. By (6.24) the first statement means also 8 = (Al//\\Al).
Combining the two facts one gets a solution for A, in the form

—

A, = _%a(f(m) — PANAY) . (6.29)

We have used a “gauge” dA; = 0 and it is easy to see that the recursive solution comes with the
freedom Ay + A, which one can fix be requiring 8*A; = 0. We can then define the “propagator”
as & = —%d = —0*%0. With this “propagator” one can recursively write the solutions to Ay.

Eg A3 =22(A A (@(Aml ))V)". Tt follows from the construction of A, that only A; fulfills
the Laplace equation, while A for k > 1 correspond to “massive modes.”
It is not hard to see [[LT]], that the Kodaira-Spencer action

A2S(A1,An,z0) = /M %Am%im - é((Al +AR) AALFA)) A (AL A (6.30)
has d(A; +A,,) + 20((A1 +An) A (A1 +A,))" = 0 as e.o.m. and reproduces the Feynman graph
expansion above. Here we have defined as A,, the massive part of A(z) and z is the background
value of the complex structure. It has further been shown that (p.30) is the reduction of closed
string field theory to the topological modes and it has been argued that its path integral defines the
generating function for all correlators of the topological B-model coupled to worldsheet gravity.
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However the action does not make sense as quantum theory. So its solution is indirect by means of
the holomorphic anomaly equation of the topological B-model. Nevertheless the divergent factors
in the graph expansion of (6.3() lead to an analysis of the leading behavior at the boundaries of

the complex moduli space of the Calabi-Yau space once the ones of the three point couplings are
[aISCm]Zg—Z

known. For one modulus 7 one gets Fy ~ 0.C]

. This result is useful to fix the holomorphic
ambiguity.

6.5 The periods and infinitesimal deformations of complex structure

The integral (p.14) can expressed in terms of holomorphic functions on the complex moduli
space parametrized by z, which are integrals of the holomorphic (3,0)-fom over a fixed topological
basis of three cycles of M

X@)=) Q@ FE@=[ @, k=0 (6.31)
k B
These are called period integrals or periods for short. Here we have chosen an integral symplectic
basis of A and B cycles of the integral homology H3(M,Z) such that Ay N B' = 5;, while AINA/ =
B;NB; = 0. The choice of such a basis in H3(M,Z) and its dual basis (a;,37) in the integral
cohomology H*(M,Z) with

/Mork/\B’:/Alak:—/MBl/\ak:—/BkBl:5,f (6.32)

is unique up to an Sp(h*,Z) transformation. The two dual symplectic bases (A*, By) and (a;, /)
are topological and do in particular not depend on the complex structure. What we call (r,0) form
Q(z) does depend on the complex structure. This dependence is captured by the period integrals,
w.r.t to the fixed basis (a;, 3/)

Q(z) = X*(z)ax — Fi(z) B . (6.33)

The symplectic group over C is defined by

1
MSM=3,  MecSp(h*,C) with Z= ( 01 0) : (6.34)

Q is a symplectic invariance and we have a natural action on the period vector
Xk -
- by =M. (635)

The X* are homogeneous projective coordinates of the complex structure moduli space and
one can choose locally inhomogeneous coordinates

v X 2,1

t =30 k=1,....,h:=h" (6.36)
as the complex structure parameters[[/1}, [39]. This can be viewed as local Torelli theorem for
Calabi-Yau manifolds. A global Torelli is proven for K3 (and Enriques surfaces) [[]]l, but seems not

to hold on general Calabi-Yau manifolds.
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In virtue of () the F; must be expressible as functions of . The precise relation comes
from the infinitesimal calculus describing changes of the (n,0)-form Q in H"(M) under changes
of the complex structure. The decomposition of H"(M) into (p,q) type H"(M) = @ 1q—nH"4 (M)
varies over the complex moduli space parametrized by r. We are concerned with n = 3. One
wants to describe the varying of H”4(M;) as a bundle .77 over the moduli domain D(M) of M,
called the Hodge bundle. However the spaces H”7 do not fiber holomorphically over D(M). One
defines therefore first a Hodge filtration F* (M) = {F? (M)} _, by F* (M) = @, H ak=a(pr), with
H"(M,C) =FP(M) @ Fk-r+t1(M). Obviously H”4(M) is recovered as H?4(M) = F?(M) NF4(M)
and one has an isomorphism H?9(M) = F? (M) /FP*!(M). The F?(M,) form holomorphic bundles
ZP over D(M) and the holomorphic Hodge bundle .77 can be defined as /P4 = .FP | FP+!,
see [[3]] for a precise definition of D(M). There is a bilinear form on H"(M,Z) /torsion

0(p.0) = (~1y"V2 [ gny (6.37)

with the following properties
Q(HP? H”7) =0,  unless p'=n—p and ¢ =n—gq (6.38)
S(Y,p)=i""10(yY,p) >0, unless ¢ =0in HPY . (6.39)

In mathematical terms Q is called a polarization on the Hodge structure H"(M,Z)/torsion and
(6-39) and are the first and second Riemann bilinear relations, see [[2, [3). In particular
30 defines a line subbundle - in H3(M) and Q(z) defines a section of it. Since it is expandable
in the fixed integer frame (Qy, Bl) by the periods () it has a flat connection that is called Gauss-
Manin connection. The Picard-Fuchs equations that the periods fulfill, which we derive later, can be
viewed as one manifestation of the flatness of the Gauss-Manin connection. Despite the fact that the
connection is flat the period vector M (b.35) will have a monodromy G € Sp(h?,Z), if transported
around loops [, encircling singular points z; in the complex moduli space. To understand the
possibility of a monodromy remember that the moduli space is not simply connected. Singular
or orbifold loci of M are cut out. As exemplified at the end of Sec. [.4 not simply connected
manifolds can have non trivial holonomy of flat connections®*. The monodromy group is generated
by transport around all loops ; in H' (.#)

N(z) =M, M), My €Sp(h’,Z), (6.40)

where one has relations, e.g. in the situation depicted in figure [[§ one has M, e MyM,y,. The
homotopy group of .# and the symplectic monodromies around the loops determine the period
vector as solution to a Riemann-Hilbert problem.

By taking a derivative w.r.t. the complex structure coordinates z* the (3,0) form changes as

follows 20

o = (0)Q+AY, (6.41)
where ¢, (z) depends only on the complex moduli and A®) ¢ H>!_ This can be seen as follows.
Let, as in section (6.2), fH(x,z) define a family of holomorphic coordinates on M, which vary

24This holonomy is called a “Wilson line” in physics.
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Figure 16: Moduli space of a one complex parameter Calabi-Yau manifold compactified to P! with three
singular points. In general singularities are divisors in .Z .

with the complex structure parameter z, so that x* = fH(x,zp). Via fH(x,z) the (3,0)-form Q =
31, h(f)€uvpdf*df¥dfP depends on the complex structure z and by derivation we get

0Q 1 0h 1 (d f )
(7—Zk 31 9K H‘/Pdfudf dff + hguvpdf dr’ . (6.42)
To analyze ‘9(55(’3) requires an infinitesimal calculus in the neighborhood of the reference complex

5(dJZJ) ‘ — AW Paz/, where AN ¢
07 (0,1) J

HOD(M,T'OM) is the object we encountered in Sec. p.3. The isomorphism (F.22) implies then
(6.41)). Upon taking further derivatives we get

structure z. It is easy to convince oneself that the (0, 1) part

0
aXlQ € F2 = g3 g 2!
2
Ko - Q¢ Fl H3"0 EBH2,1 EBHl,2 (6.43)
3
WQ G FO = H370@H271 @HLZ@HO’?’.

6.6 Special Kéhler geometry

Let us discuss the consequences of the first property (p.38]), which follows from simple con-
sideration of type. If we insert (b33) in [, QA d‘;(kQ = 0, a consequence of (5.43) and (6.38),
we can conclude that F, = 2 aX S X'F;. That 1mphes that the F; are indeed not independent but
determined as derivatives of the single function®

1 h

F=3 X'F; (6.44)

=

called the prepotential. Note that F is not a symplectic invariant. It follows further from the first

transversality that F is homogeneous of degree 2 in X¢, i.e. z a=0X"3 F 2F . The implication of

the second line in (6.43) |, QA WQ = 0 follows already from the degree two homogeneity of
i04;j

. . . . 93 .
F and contains no new information. The last line of (p.43)) shows that [,, Q A . Q is nonzero
and we calculate

03 0”13 002 03 )
Cact:/Q/\ Q= F=(X F(t), 6.45
=], OgaOgpOge O304 0 &) 9;,9;,0;. o (04

Z3Note that on even complex dimensional Calabi-Yau manifolds there will be no relative sign in ( basis nor in
) and [, QA Q =2X“F, = 0 gives already an algebraic relation between the periods. Using further transversalities
one find an intriguing mix between algebraic and differential relations between the periods in the even case.
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where a,b,c runs form 1 to 42!, To derive this we used (p-31,p-32,p-33) and the homogeneity of
degree two of F to pass to the inhomogeneous variables . Each of the three derivatives w.r.t. to

the complex structure parameters % has to hit one df* in Q = %h( f)EuvpdfHdfVdfP to produce

the (0,3) part. It is clear by (p.42)) that the eq. (p.43)) is up to a normalization equivalent to

(6.14). It turns out that mirror symmetry identifies Cope(r) = 5 gf - 7 0)(¢) at a special point
ia Vi, Yic

in the moduli space with (5.12). The right hand side of (6.43)) is not covariant. It is valid only
in the coordinate system defined by the periods X¢ or the inhomogeneous coordinates . The

period expression is however valid in any parametrization of the complex structure. If we make a
coordinate transformations of the latter X* — z%(X) we need no covariant derivatives on the right
hand side to compensate for the derivatives of % by z, because by (.43) only terms contribute,
for which all derivatives by z act on Q(z). In any complex structure coordinates we can therefore

express the triple couplings in terms of the period integrals as
h
Cijk = /Q VAN c?,-o"'jde = Z (X’didjdkFl —Fld,-d,-del) (6.46)
=0

and C; j transforms like Sym3T.# © .22 under Kihler- and general coordinate transformations in
the complex moduli space .7 . Note that C; ;. is by (6.33) a symplectic invariant, if the derivative is
w.r.t. to invariant complex structure parameters, such as the z in Sec. The triple coupling are the
Yukawa couplings of the moduli fields in the effective action of heterotic string compactifications,
see e.g. [p7} [[24].

Let us come to the two point function ( and is relation to (). As we have discussed
the (3,0) form Q(z) lies a complex line bundle .73, This bundle is called the vacuum bundle
% in physics. Is has a natural gauge transformation Q — ¢/(?Q where f(z) is holomorphic,
which leads to another nowhere vanishing (3,0) form. We have by (p.39) a positive hermitian
norm S(Q,Q) = ||Q|> := i [,, Q A Q, which is is related to the norm (7.53) by a volume factor
1Q||? = iV|Q|?. We define a now potential

K:—logi/ QnG, (6.47)
M

which will turn out to be Kéhler potential of the moduli space metric. Clearly the gauge transfor-
mation become Kihler transformations K — K — f — f and X is a section of real line bundle. We
can define a candidate Kéhler metric on the moduli space

Gy = 0.0;K . (6.48)

Note by ([7.33) that the Kihler form to this metric is the curvature form % of the hermitian metric
S(Q,Q) on Z. Using (b.41)) we can relate this metric to (p.13))

[, A@ AA®)

5= NG (6.49)

These couplings (p.13) are the kinetic terms of the moduli fields [E7, [26].

Let us compare that metric G ,; with the standard way one defines a metric on the space of
metrics on M. The metric on the Calabi-Yau moduli space factorizes at least locally in the Kahler-
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and the complex structure deformations space, see Sec. .3 and [R3] P2 for further background,
ax_b 1 mii kI 14,6
2Ga56Z 07’ = W/Mg g 5gmk5gﬁl-det(gab)2dx , (6.50)

where we just took the complex structure deformations into account. The metric (b.50) is called
the Weil-Peterson metric of the complex moduli space. In Sec. we have already identified pure
deformations of the metric with elements in H' (M, TM), the precise relation is 5g£52 = ‘95% 0z =
—2Af—la) "ein0Z. Using (.29) in (6.50) we note the remarkable fact that the two metrics (p.48)) and
(6.50) coincide. This was first proven in [[[39] and implies the Iocal Torelli theorem as well as the

fact that the holomorphic sectional curvature of the Weil-Peterson metric is negative and bounded

away form zero [].
From (6.47) and (.33) follows a simple formula for its Kihler potential in terms of the periods
__ OF oF
oxi (¥ 355~ 357 31
This statement in terms of the inhomogeneous coordinates t; = X i /X 0= 1,.. .,h2=1 reads
e KD = (7 —7)(0,70) - 37 ") — 270 - 7). (6.52)

As it obvious the C;j(t) € Sym*T*.# ® £ as well as the real Kihler potential K () derive from
the holomorphic section .% (¥) (t) € £? over the complex moduli space .#. This justifies the name
prepotential for .7 () and the structure defined by (6.49).(6.59) and supplemented with the
requirement that the Chern class represented by the curvature two form & of the vacuum line
bundle . defines an even integral class?® on ./ is known as special Kihler geometry.
The integrability condition for the existence of .7 (), given G, ;= é’i(}]K (t,7) and Cjj, is
Rfl?j = —0iT; = [Di,0) = G0} + G 38! — CijuC}" (6.53)
The upshot of special Kahler geometry is that the relevant quantities are fixed by the section
.Z of the holomorphic line bundle .#? over the compactified moduli space. As it is well known
in complex geometry such sections are fixed by a finite set of data, basically a Riemann-Hilbert
problem to find sections of the Hodge-bundle, which observe certain monodromies. This fact
underlies our ability to solve the two derivative effective action of N = 2 gauge theories exactly.
This structure we have discussed here mainly from the geometrical point of view has been in-
dependently discovered in the vector multiplet moduli space of N = 2 supergravity theories in four
dimensions [B7, B, B3l. The connection to string compactifications has been made in [P2, [[35].
In making contact with the supergravity literature note that [B7, B8, B3] uses for the homogeneous
sections
L'=etx!, My=ketF, (6.54)

over .Z , which are not holomorphic d; X! = (_9,-(F[ = 0, but covariantly holomorphic with respect to
the Kihler connection Dy = (J; — 1K), i.e. DiL! = DgM; = 0, with the effect that i(L'M;k ! —

26 A Kihler manifold () whose Kihler form is the curvature two-form % of line bundle . representing a class
in H2(.# ,Z) is called Kihler-Hodge in the mathematical literature. As is was pointed out in [E] the fermions already
in N = 1 susy require that [#] is an even integral class.
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L'M;R~") = 1. In particular the earlier literature on N = 2 black holes [F3, [3§] uses k = 2i, be-
cause the gravitino variations have been worked out in this conventions [B§]. In the inhomogeneous
Ll

. I ..
coordinates ¢/ = o= )% the Kéhler factor cancels.

6.7 Picard-Fuchs equation from the symmetries of the ambient space

Let us now discuss an explicit simple example of such a mirror symmetry computation. The
principle example is the quintic in the projective space P*, which is discussed in great detail in the
paper [R3]. It is defined as the zero locus of a homogeneous polynomial of degree 5 in x;, e.g.

5 5 5 5
P=Y and +ay rlx,-:zx?—z*%r!xi:o (6.55)
=1 = =1 =

The z appears here as one of the 101 possible complex structure deformations of the full family
of quintics. A deformation is generated by perturbing Py = Zle xf with a parameter multiplying a
monomial of degree 5. We count (5) x7, (20) x{x;, (20) x; x5, (30) x7x5xz, (30) x;x 7, (20) Xix jxex7,
) |'|?: 1»withi, j,k,l=1,...5hence 126 monomials. Not all of those lead to independent complex
structure deformations, because the complex linear transformations of the coordinates x; of P* leads
to completely equivalent forms of the constraint. The group of those has dimension 5% — 1. Finally
there is one relation by P = 0 leading to 101. The symmetric deformation in (p.53) is chosen
with hindsight, because we can see it as the unique complex structure deformation on the mirror
manifold of the quintic W. The mirror is constructed as Zg orbifold of the original quintic M. The

orbifold is generated by phase rotations on the homogeneous coordinates P*
x —exp(2mig!® /5w, a=1,2,3, i=1,...,5, (6.56)

with g() = (1,4,0,0,0), g® = (1,0,4,0,0) and g® = (1,0,0,4,0). It leaves precisely the perturb-
ing monomial [];_, x; invariant. This one deformation parameter z can be identified with the one
Kihler deformation ¢ of the original quintic M which has Hodge numbers 2! = 1 and h>! = 101.
The one element in H'!(M) comes from the restriction of the unique Kihler form of P° to the
hyper surface. The 101 elements of H'(M,TM) we counted above and explained their relation to
H>'(M) before.

The holomorphic (3,0) form can be written explicitly in every patch U; of P* as a residue

expression[f7(]

_ [ %oH
Qz) = ral (6.57)

where the contour surrounds the single pole at P = 0 inside P* and the measure is

D wadde AL AR AL A .
1w dax! dxk dx® (6.58)
1

I‘l:
k

5
In each coordinate patch Uj, x' = 1 and dx’ = 0 so the sum (.58) collapses to a single term. The
w; makes (6.5§) applicable to hypersurfaces in weighted projective space WCP[wy, ..., ws], which
are generalizations of P*, for which w; = 1, i =1,...,5. An important consistency condition for Q
is its invariance under the C* action x; — Ax;. Let us consider the parametrization of the complex
structure by the parameters a;, i = 0,...,5 in P = $3_;ax) +ag[];%. These are redundant
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parameters and can be “gauged” by the Gps = PGL(N, C) x C* transformation on the homogeneous
parameters (x1 : ... : x5) of P* to one parameter. Let us summarize the “gauge invariances” of Q(a)

, which are obvious from (b.57) and (6.58).

e It is invariant under the change a; — pa; with p € C*. Defining the logarithmic derivative
6 = aiﬁ, this homogeneity of degree 0 is expressed as

5
6:Q(a)=0. (6.59)

=

e Itis invariant under the C* actions (a;,a;) — (p*Sai,pSaj), i,j=1,...,5with p € C*. These
are compensated on P by Gps transformations (x;,x;) — (px;, 0~ 'x;), which leave the form
U invariant. As differential relations one has

(6:—65)Q(a) =0, i=1,...,5. (6.60)
These two equations mean that Q(a) = Q(z) does depend only on the combination z = — <4244,

. . . . . 0
where we chose the sign for latter convenience. Instead of fixing the gauge immediately we first
notice the obvious differential relations

o\’ Q@ (& 9\ Q)
<a—a0> a0 = <l_ a_al> a0 . (661)
With 6; = aia%, 0= zd%, the commutator [6;,a]| = xa’ and 6y = —56 as well as 6, = 6 for i =
1,...,5 we rewrite
(@)5 Q@ 1 (lil 9i> Q(a)
ap ap ajaxazagas \ 1 ap
5
AEBEE M8k | Qa) = 1IDEE 6:62)
ay k=1 i=
Z |_| (560 +k)Q(z) = 6°Q(z)
k=1

The last line means that the factorizing differential operator 2 = 0. = 0[8* — z[7-,(0 +i)]
annihilates Q(z) and it also annihilates the periods

MNi(z) = /r-Q(Z) (6.63)

with I'; € H3(W). One checks that #Q(z) is already exact, i.e. Jr.£Q(z) = 0 so that the periods
Mi(z) = Jr, Q(z), which correspond to the four independent cycles I'; € H3(W) are determined by
the four solutions of differential equation

[64—51|i!(9+i)]l'l(z) =0. (6.64)

1=

Note that the mirror has #>! = 1 and hence 4 elements in the middle cohomology H*(M,Z) =
H3* @ H?' © H'? @ H*. The four period integrals over the dual four homology 3-cycles, which are
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invariant under the Zg group correspond to four independent solutions of eq (p.64)). The 3-cycles are
in a fixed topological basis of H3(M,Z). This basis is independent of the complex structure. The
trick in the derivation of the differential equation was to fix the gauge symmetry at the very end (last
line of (6.62))). This result is a considerable simplification in the derivation of the period equations
compared with the Griffith reduction method discussed below. The method is adjusted to derive
the systems of Picard-Fuchs operators of multi parameter Calabi-Yau hypersurfaces and complete
intersections in toric ambient spaces, which have the corresponding C* actions, see [BOJI[P7]. It
will give in general as above differential operators allowing for too many solutions, which need
to be reduced to lower order differential operators. In the simplest case this is accomplished by
factorization. As one example of this type consider the hypersurface of degree 12 in P(1,1,2,2,6),
which has h'"! (M) = 2 and h*! (M) = 128. We mod M out by an Z 5 x Zg x Z acting as

x —exp(2mig!®/12)x;, a=1,23, i=1,...,5, (6.65)
with g1 = (1,11,0,0,0), g® = (2,0,10,0,0) and g® = (2,0,0,10,0). The invariant constraint,
which we interpret as mirror admits two complex structure deformations 42! (W) = 2

5
P= alx%z + azxéz + agxg -+ a4x2 + asxg +ag r! x; +ag(x1x)° (6.66)

=
It is convenient to express the multiplicative relation between the monomials in (6.66) in vectors?’
1M =(-6;0,0,1,1,3,1)  1®¥ =(0;1,1,0,0,0,—2) (6.67)

such that equations corresponding to (p.61]) are now written as

/)

)
9\ " Q) 2 \" Q)

1P <o 1P <o

Similar symmetry considerations as above lead to the conclusion that M(z) depends only on

/®) 1
= (—1)" |_|a; , b=1,2 (6.69)

and the reduction of ) leads after factorization to the differential operators 6; = z,-d%
21 = 6(87 ~26,) ~ MN(66) — (2i+ 1))z
P =6~ (26 -6 — i)z .

We will discuss the solution to (.64,p.70) below.

Let us first perform the integral over the small circle Yy say in the patch Uy, i.e. x; = 1 to bring

(6.70)

the expression of the (n,0) form to one which is familiar from the study of Riemann surfaces.
In order to do reduce one integration over dx; to the residue integration [ %p = 271 we perform a

coordinate transformation from (xj...xK...xs5) to (x;...X...X;...xs5,P) under which the measure

2TThey will identified with the generators of the Mori cone in Sec. @
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—

— -1 —~
dx; A...dxg... Adxg goes to (g—)‘:) dx; A...dxg...dx;... Adxs AdP. Because of transversality

dP = 0 has no common solution with P = 0 and we can always pick an k and i so that (g—f) #0

i

for P = 0. Therefore the integrand will have a single pole at % and integration leads to

. -
aowrx"dxy AL dxg...dxg . Adx
Qz) = e 2. (6.71)

ox;

This form of the (n,0) form is analogous to the well known (1,0) form Q ~ ‘1—)‘ in the case of an
elliptic curve realized as cubic in P? with the inhomogeneous equation in the z = 1 patch given in
the Weierstrass form y> = 4x> — gox — g3. It can be verified that it is nowhere vanishing [[(].

6.8 Picard-Fuchs equation from the Dwork-Griffith reduction method

From the formal definition of the period MN(z) = [r, Q(z), with Q given in (6.57) we can al-
ternatively derive a fourth order differential equation for the period in terms of the moduli z by
the Dwork-Griffiths reduction method. The key observation for this algorithm comes as follows.
Consider on the ambient space P! (wy,...,w,,) the (m — 2)-form

ag

o (—1)i+'i(WijA,'—WixiAj)dX1 /\.../\d/;l-/\.../\d/x\j/\.../\dxn .
1<j

Here A;(x) are homogeneous of degree d; in x, i.e. S}, xiwi %Ai = d;A;. We further assume that
ci(M) =0« ", w; =d, where d is the homogeneous degree of P, 3, kakng = Pd. With
this assumptions the total derivative of ® simplifies

m

aor ap
av= 3 (S AdP — 530 ) 1
m
—I—g z (d(l —l") —Wl‘—i-di)Ai(—l)]dxl /\.../\de/\.../\dxn .
j=
If we choose now the A j so that A ; = 0 for j # k and d = d(r — 1) +wy for f(x) := Ax(x) the second
term vanishes. In other words if aixk (@u) is homogeneous of degree 0 w.r.t. the coordinate

weights w; then
aorfoP  agOf
pr+l - pr H

(6.72)

holds under the integration sign.
Let us mention in passing that for Calabi-Yau manifolds defined by a transversal complete

intersections of s polynomials, i.e. as the zero set P| = ... = P; = 0 in a weighted projective space
the analog of (p.57) is
k)
0

Q:/ / g TS (6.73)
Ya Vsk[ll Ps

(k)
where y; are circles around the P, = 0 and similar as before dixk ( F) Miey ‘%u) is exact iff it is
of total degree zero. This leads to the partial integration rule[[(]

ne P foiP 1 P;0; fO;P;
iR PR T ia pH o (6.74)
Kz k =187 nj—110- 5 Mi=1 P,
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(k)

where we omitted the factor [;_, a, ', which is however of relevance for a scaling argument as in
(6-62).

The idea is to take up to four derivatives of the period N(z) w.r.t. the complex structure moduli
z, and rewrite the emerging expression by the repeated use of the partial integration rules (.72))
or (b.74) w.r.t. x; into expressions, which have lower powers of P in the denominator and lower
homogeneous degree polynomials in x in the numerators. Eventually all emergent terms can be
manipulated into the form of moduli dependent functions times lower derivatives of 1(z) w.r.t.
to the moduli z. The relation derived in this way is one Picard-Fuchs operator. For the quintic
one starts with four derivatives of I(z) and the emerging relation is of course the same 4th order
generalized hypergeometric differential equation as in (p.64). In the multi moduli examples one
has to consider various derivatives of IN(z) w.r.t. to different combinations z as starting point and
the calculation becomes quite tedious. Nevertheless one can give criteria when the left ideal of
differential relations is sufficient to determine 1(z) and systematize the calculations somewhat
using a Groebner basis for the ring of monomials in the x [[[9, BQ].

6.9 Explicite solutions to the Picard-Fuchs equations

A solution to (p.64) will correspond a priori to an arbitrary linear combination of period in-
tegrals. To understand the physical duality symmetries and the mirror map of the model it is
important to find a basis of solutions which corresponds to an integral basis of H>(M,Z). This
can be achieved by requiring that the monodromy group is realized by a subgroup of Sp(4,Z). In
rescaled variables z — 7 = 577 has regular singular points at 7 =0, 1, . I.e. the moduli space
is P\ {0, 1,0} and we drop the tilde from the z. Atz = 0 the indical equation, i.e. the equation for
a in solving with a local power series ansatz w(z) = (z2—20)% ¥ ,—0an(z —20)" is a* = 0.
This degeneracy of solutions means that beside the unique power series solutions one has three
logarithmic solutions. Because of the logarithms the mondromy around this point has in a suitable
basis an upper triangular form with a maximal shift symmetries. Near zg = 1 the indicial equation
has solutions {0,1,1,2} and near zo = 1/z = 0 one has solutions {1/5,2/5,3/5,4/5} for a. The
latter implies that one has an order 5 monodromy around z = . The order two degeneration of the
solutions at zp = 1 indicates three power series and one logarithmic solution. The monodromies
around these special points are easily worked out. We refer to the basis (p.83)), which is the canoni-
cal large radius basis of the mirror. For the quintic one has [c;w=50and A} = 12—1 In the rescaled
variable z the monodromies are

1 00 0 10-10 -4 3 -1 1
1 10 0 0100 1 1 0 0

My = . M, = . M = . (6.75)
5-31-1 0010 5 -3 1 —1
—8-50 1 00 0 1 8 -1 0 1

Our notation is that monodromies which go counter clock wised are positive, see Fig. [Lf. One has
of course the relation M ! = M;M,. Remarkable is the monodromy M around z = 0. This is the
point of maximal unipotency. A monodomy is called quasi-unipotent of index at most k if here is
some N so that

(TN -1 =0 (6.76)
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Figure 17: Quintic monodromies in the unfolded W modulispace

As it has been shown [[[07] if the period map is semi stable the monodromy is unipotent. This
means N = 1. Moreover [|L31]] shows that the maximal & that occurs as monodromy of periods is
k= dim¢(M). My saturates this bound and is of the maximal unipotency 3. This means in particular
that a solution with cubic logarithm appears at this point. As was argued in [R3] discovering (p.81))
is that this structure is needed to map to the large radius expansion of the mirror manifold given by
(b-83). A corollary to the mirror conjecture is then that all Calabi-Yau manifolds have at least one
point of maximal unipotent monodromy [[[14].

The monodromies in original paper [PJ] have been worked out in variable (¢ = z75. This
yields in the above basis

19 32-16 4 10-10 101 0
5 —7 41 0100 11-10

00 — 5 - ,A: 5 6.77

m 2540 215" {0010 58 —4 —1 ©.77)
40 64 -32 9 000 1 353 1

with mge = A=¥m1A*. In the unfolded moduli space there are five copies of the conifold and
encircling all five yields me = MS, see Fig. [[7. Monodromies for more parameter families have
been investigated in [] ] [.

One of the mysterious properties is the integral expansion of the mirror map at the point of
maximal unipotent monodromy. We exponentiate (b.81)) invert it and expand z(q) in ¢ = €. Call
jm = = in analogy with the normalized j,(g) SI(2,Z) invariant function of the elliptic curve. Both

2(q)
expansions have positive integral coefficients

Je = g + 744 4 196884 g + 21493760 ¢> + 864299970 4> 4 20245856256 ¢* + . ...

Jg = é + 7704421375 g + 274007500 > + 236982309375 ¢* +251719793608904 ¢g* + . ..
(6.78)
The integrality should be related to monodromy group I" € Sp(4,Z) generated by M, and M.
For a Calabi-Yau in an general toric ambient space one can determine the generators of the
Mori cone of M. These are vectors, which represent curves C @, g = 1,..., k11 in the Calabi-Yau
space M that are dual to the Kéhlercone

19 = (13,0050, 1), for a=1,... by, (6.79)
Their first entries l((fl), e l(()ar) the (multi)degree of the algebraic constraints P =0, ..., P, = 0 defin-
ing the Calabi-Yau manifold w.r.t to the dual divisors of C'@. The second entries / g“), e, l,(,a) are
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d rational elliptic
1 2 875 0
2 609 250 0
3 317 206 375 609 250
4 242 467 530 000 3721431 625
5 229 305 888 887 625 12 129 909 700 200
6 248 249 742 118 022 000 31 147 299 733 286 500
7 295 091 050 570 845 659 250 71 578 406 022 880 761 750
8(375 632 160 937 476 603 550 000|154 990 541 752 961 568 418 125

=

Table 4: BPS degeneracies ngg 4 associated to rational and elliptic curves on the Quintic in P*

the intersections of the curve C®) with the toric divisors of the ambient space. The curves and
the intersection numbers can be determined purely combinatorially from the toric description of
the ambient space, see [B{] for details. E.g. for the quintic one has [ M = (=5;1,1,1,1,1). With
these data and the classical intersections numbers K. = D, N Dy, N D,, which is also determined
combinatorially (it is K117 = 5 for the quintic), one can write down a local expansion of the periods
convergent near the large complex structure point, which is characterized by its maximal unipotent
monodromy. We review in the following just the essentials and refer to [B0]] for further details.
A particular set of local coordinates z, on the complex structure moduli space on W is defined by
=(— I)Za Iy My aﬁ’( ! ,b=1,...,h*" interms of a;, the coefficients in the polynomial constraints
of the complete intersection in the torus variables p.53. A point of maximal unipotent monodromy
is then always at z, = 0. Let @, ... 4, be obtained by the Frobenius method?® from the coefficients
of the holomorphic function @(Z, ) defined as

h
w(zl,...,zh,pl,...,ph) = {Z}C(l’ll ... np, P1 ph) I_l ZZ“+p”
a=1

Ng

;ni F(l_sh i(,,f) vy (6.80)
C(nl’.__’nh’pl,...,ph> :I—l =1 ( 2571 (a>(n P))
Misi T+ 31 4 (na+ pa))
Wala.‘.,aj(zh...,Zh) = (ZLTU) 0Pa1 -'~ap[,sw(Z1,...,Zh,pl,---,ph)‘{pu:()}~

.....

complex structure point the mirror map defines natural flat coordinates on the Kéhler moduli space
of the original manifold M
t¢ X ! (log(zq) + 0a) 1 h (6.81)
= —= = —— a = N .
X0 2Tl g\Za a), REERY
where X° = @(z1,...,24,P1,---,Pn)|p=o is the unique holomorphic period at z, = 0 and X* = @,
are the logarithmic periods. Double and triple logarithmic solutions are given by [BO]]

h
2 1
Wz(z) = 5 z Kabcwbc(zlv-"azh)a a:17"'7h‘ (6.82)
b,c=1
28The holomorphic period @(zy, ... ,z;) can also be directly integrated using a residue expression for the holomorphic

(3,0) form [BA.
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h
W(3) = Z Kabcwabc(zl PR 7Zh) ) (683)

a,b,c=1

AN~

where K, are the classical intersection numbers K, = D, N Dy, N D.. The prepotentials F (©) (X ! )
in homogeneous or .% (*) (%) in inhomogeneous coordinates can now be written as

 KapeXX"X€ xoxt Z(3)

©0) — ay0 _ - 042 02
F a0 A FeXX 1X2<2n)3(x) + (X% f(q) o5
asbic ash :
_ (x0\2 2 (0) _ (y0y2 | _ Kabel 1T 1 a ., CB3)
(0270 = (X0 | = =25+ Aw 5+ et ~iX g5 5 T (4)

where g, = exp(27it?), ¢, = 21—4 Jx chaJ, and X is the Euler number of X. The real coefficients A,
are not completely fixed. They are unphysical in the sense that K(z,7) and Cp:(q) do not depend
on them. A key technical problem?® in the calculation is to invert the exponentiated mirror map
(6.81)) to obtain z;(z). An integral symplectic basis for the periods is given by

1 1
n=x° ) 3 o | =X kit z(tZ) a (6.85)
270 a9, 7 “‘3—,+caz X G +2f(q) 1“0 f(q)
dl”y(O) ——Kabat r +Aabtb +cq+ at“f(q)

This period vector can be uniquely given in terms of (6.83,.80) by adapting the leading log behav-

ior. The A, are further restricted by the requirement that the Peccei-Quinn symmetries 14 — ¢ + 1

act as integral Sp(2h'' 4 2,Z) transformations on M. Note that .7 () can be read off from the
periods and since ¢ are flat coordinates, we have

d

Carcl@) = 00p0e T = kape = § 1 dudpde—, (6.86)

ddyde>0 —q

where the sum counts the contribution of the genus zero worldsheet instantons. We defined ¢ =
[Nae 2™ where the tuple (dy,...,dy) specifies a class 3 in H*(M,Z). The expansion predicts
the first column in table f|. Higher genus predictions will be discussed in sec. .12}

6.10 Rational expressions for the threepoint couplings in generic complex structure
parameters

In the previous section we have focused on expressions of the genus 0 prepotential .%, which
are expanded around the large complex structure point. The expansion parameter g = exp(27T)
contains ¢, which maps in the A-model to the complexified area of curves in the Calabi-Yau. The
phase in ¢ is so that ¢ — O if the real area in # goes to infinity. This is the natural expansion for
the Gromow-Witten invariants, where small g corresponds to large areas and hence suppressed
instanton corrections.

For global considerations and the calculation of the holomorphic anomaly it is useful to have
expressions for the three point couplings in terms of the complex structure parameters.

29We wrote an improved code for that [@].
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One way to derive them is to start with full system of Picard-Fuchs operators Z,[1(Z) = 0,
i=1,...,r. With reference to () we now define
w ki ka) — Zl<zldzkll "'@k;’c% _ylazkll ...5dedzl)

(6.87)
= 5,(dO% T — F0%7)

In this notation, W*) with > ki = 3 describes the various types of triple couplings and by 6.43)
and consideration of type W*) = 0 for > ki =0,1,2. If we now write the Picard-Fuchs differential
operators in the form

D = Zfé“)a“ : (6:88)
then we immediately obtain the relation

Y wme —g (6.89)

13

Further relations are obtained from operators d;, Z4. If the system of PF differential equations is
complete, it is sufficient for deriving linear relations among the triple couplings and their deriva-
tives, which can be integrated to give the Yukawa couplings up to an overall normalization. In the
derivation, we need to use the following relations which are easily derived

W(4.0.00) _ 20, W (3.0.0,0)

Ww3.1.00) — %5Z1W(2,1,0,0) + %%W(&o,o,m

W(2200) — o*nZlW(l,Z,O,O) +0~.12W(2,1,0.,0) (6.90)
Ww2LL0) — 5Z1W(1’1’1’0)+%%W(z’o’l’o)—i—%d@W(z’l’o’O)

wLL) — %(azIW(O’l’l’l)+0zZW(1’0’1’1)+07Z3W(1’1’0"])+07z4W(1’1’]"0)) .

For the Picard-Fuchs equation for the quintic we get in this way

5

Corz = B(1-5%)°

6.91)

For the system (b.70) we get after rescaling of a = 1728z; and b = 4z, the triple couplings

Caaa:ﬁa Caabzza(le_A(j)v
C _ (2a-1) C _ 1+b—a(143b) (6.92)
abb — abb b, bbb — N )
where we defined the components of the discriminant as
A =1-2a—a*(1-b), Dy=(1-D). (6.93)

6.11 Coupling the B model to topological gravity

We consider again the moduli space introduced in Sec. f.2
M, = large gauge transf.\ .77, / (diff x Weyl), .

with expected dimension 3g — 3 ([41)). In the covariant quantization of string theory the metric
independence of the theory, up to this finite dimensional space (fl.13) we presently discuss, is
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expressed by a nilpotent BRST operator just like in (f.14). Conformal invariance is maintained for
0 models on Calabi-Yau spaces. To take advantage of this extra bonus of the B-model note that in
a conformal fields theory T\ = 0 and (§.14) splits in the following two components corresponding
to T,, = T(z) and Tz: = T(z). Now we can borrow literally the treatment of the measure from the
critical bosonic string. In the case of the bosonic string the situation is exactly as in the topological
B-model on a Calabi-Yau 3 fold (f.32), where the ghost number is identified with the U (1) axial
charge of the B-model. The geometrical reason for this equivalence is that (7.42)) and ([.43) give the
same anomaly if dim¢(M) =3 and ¢ (TM) = 0. As we saw in Sec. [F.4the b(z) and the Qpgsr have
ghost number —1 and 1 respectively and there is a ghost number anomaly of 6g —6 = —3x(Z,) on
a higher genus wordsheet, which corresponds to the axial current anomaly 6g —6 = —3x(%,).We
can use therefore the same measure over the complex moduli space ss in the bosonic string. From
the Beltrami-Differentials u* = p*dzd,, k = 1,...,3g — 3 in H'(TZ), which represent tangent
directions of .#,, we define

B [ VoS GBGyé_/ PGl + G ) = B+ B5, (6.94)
8

The definition of B%) in itself does not require conformal invariance but just (.14). We used after
the second equality the standard metric in a conformal gauge and the expressions for the Beltrami-
Differentials. In the last equality we used (2,2) supersymmetry and the fact that G~,G~ are h =2
fields after the B-twist to define

= / ez pk, pF= / >z G~ . (6.95)
zé’ z}s’

Because of the antisymmetry of G and the Kihler structure on the moduli space .#, the quantity

63 6 3g—3
|‘| By - [dM] = < |‘| B B > [dm A diit] (6.96)

is a top-form on .#,. Here -|[dM] or -[dm A dm]| means contraction with dM; A ... A dM;

log—g
dm;, Admy A ... Ndmgy, , Admg,,  and suitable normalization. That is we inserted 6g — 6 times

or

B to compensate the ghost or axial anomaly, which is by the index theorems (cff sectionfl.3)
identified with the dimension of .#,. The integral

8 = / e 6.97)
M,

is the central observable of the topological B model. How does this discussion of the dimension of
the moduli space relate to (5.39). In the A-model we counted the geometrical virtual dimension of
the moduli space of non-trivial maps and found that the deformations of the metric .#, are offset
by the obstructions of having a a nontrivial holomorphic map to M, so that the virtual dimension
of the moduli space of maps is zero. Here we kill the deformation space of .#, by viewing the
B-model fields as ghost system from which we construct a top form to integrate over .#,. The
topological B-model is one of those examples of string theories, where general covariance (f.14)
is maintained by an Qpgsr operator, whose charge violation measure the dimension of the moduli
space, but the decoupling of ghost and matter sector is not imposed [[[4§]].
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As part of the prerequisite for coupling topological theories to gravity [[[51]] the measure p,
must be closed dug = 0. To see that consider

6g—5 6g—5 )
0=({0o. I B*}) = > (-1)/"YB'...{Q,B},...B>%73) (6.98)
k=1 j=1

and use the fact that {Q, B’} yields the T' = fzg d?zT !, whose insertions can be interpreted as
derivative on .#, according to (B17). A second prerequisite is that M, is basic, i.e. that it vanishes
for all variations of the metric induced by infinitesimal diffeomorphism. These correspond to the
last two terms in (4.16) and the property is easily checked. We will show below explicitly by
manipulations similar to the one that lead to () that the Q commutator of the measure is exact.
The metric dependence comes from the boundaries of .#,. Combinatorially the calculation is like
non-topological higher string loop calculations, apart from the much more sophisticated integrals
over .#4. The compactifications of .#, , is identical to the one discussed in Sec. . Its boundary
components come from pairwise collision of inserted points and nodes. In 2d gravity we got
from these boundaries the topological recursion relations. In the case of the B-model there is an
interesting modification namely that the boundary components contribute only in anti-holomorphic
derivatives of .%,, which gives rise to recursion relations involving antiholomorphic derivatives.
Since without boundary component contributions the .% (¢) would be holomorhic one calls these
recursions the holomorphic anomaly equations. They are no more anomalous then the topological
recursion relations.

6.12 The holomorphic anomaly

We want to consider in this section perturbations of a more general form then in Sec.

S:/d2$+ z"/ﬁ,-+ f"/@-. 6.99
5 0 Z s Z s (099

Here the WS two-form field & = &%) is the B-model field (f.12) which comes from a ¢ = ¢®) in
the (c,c) ring. We will use here the CFT notation introduced in Sec. 1.3} i.e. 0;:={Q4,[0-, @]} ~
{Gy,[Gy . @]} and G;:={0+.,[0-, @]} ~ {G{,[G{, @]} In a unitary theory 7' = (¢')*, but it will
be important in the following to view 7' as an independent parameter. As explained in Sec. the

namely

WS two-form fields in (p.99) are neutral. Therefore we can expect that arbitrary n— point functions

like for g > 1
3g—3

c® , = /j{g( / O ... / % BB 6.100)

do not vanish. As it stands (6.100) is not well defined. We first have to specify how to deal with the
contact terms, which are necessarily present in an interacting supersymmetric theory, see (f.64) or
(B.71)). Now in the case g = 0 there are the three PSL(2, C) conformal Killing fields. The zero mode
integral of their superpartners compensates for three descendant operations and with the PSL(2,C)
symmetry we set three points to 0, 1,0. The generic genus zero correlation is then

cti= ], @On0a@ [0 [0) (6.101)
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This has no contact interaction among the first 3 fields. It is natural to make this function symmetric
in its indices. Therefore we exclude all contact interactions from the regions of the integrations.
This is the regularization we adopt for general g.

(8)

In view of (.99) we can insert [s &; operators by taking ' derivatives d; of C;*/ . in an

the attempt to obtain CI(IR _____ ;- In order to achieve our short distance regularization we have to
subtract the would be contact terms in the integration over 2. This is very naturally achieved by
taking covariant derivatives w.r.t. the Weil-Peterson metric, i.e. d; — d; —I';. In the ¢#* formalism
we can isolate the contact term as the difference between 9;(Q1Q-|j)) — 0;6:{0) = [(A)¥); 0% —
(A)30]|0). The logic is that in the term d;(Q1 Q| )) the field &} in the integral [5 &; explores the
region near ¢ in (4.47)), while in the second it does not. The Q. Q_ generate the descendant field
from ¢; in (f-47) in order to compare the two terms. In particular applying this to |j) = |0) and
using (F.68.69) we get a contact term with the 1 operator (A ) -1= —0K -1. Roughly speaking
this non triviality of the vacuum comes from the coupling of @; to the U(1)g current (£2). One can
argue that the above contact term is proportional to the integral of R integrated over the Riemann
surface. The above consideration for the half sphere (f.47)) , fixes the normalization and in general
gives the Euler number X of 2. Subtracting both contact terms one concludes that the insertion of
Is ﬁi(z) into a genus g correlation function with the right short distance prescription is given by the
(¢)

covariant derivative of C i o
D,-zai—r,-—(Z—Zg)&'iK, (6102)

This reflects the fact that Ci(f?“’in is a tensor over the complex moduli space of the Calabi-Yau
M transforming in Sym"(T*.#) ® %78 in as a generalization of the genus zero discussion in
Sec. .6 The last factor can also be understood by building the higher genus Riemann surface
%, by sewing it from a sphere. This involves g times a |i)n¥(j| € 2 insertion as we will see
shortly, which results in .% (%) transforming as section of .22 w.r.t. to Kihler transformations. To
summarize the contact algebra analysis yields that all correlators can be obtained from the vacuum
correlators .# ¢ as

C(g) =Dj...D; J(g) (6103)

114000l In

They are symmetric, because of the vanishing of the corresponding curvature terms in Kihler
connections.
Let us therefore investigate similarly as in Sec. (f.62) the derivative w.r.t. 7; of the correlator

0 _ 3g—3
57 =, (4.0 4,650 [1 601 ) omnon
i My Cy Cl, Kh=1
3 ; (6.104)
B B -[dm A dr] :
43 i (910
- / gaN6ss = [ pess
A, 0.4,

The contour of G*,G™ are originally as in Fig. fj encircling ¢(w). The deformation and splitting
of the contour yields a sum of terms in which the G* and G* encircle one §. dwG™ (w)G ™ (u)p* =
27 (u)u* and one e, AWGH(w)G™ (u )uF = 27 (u) ¥ in each summand. Together with the integral
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Figure 18: A-type sewing

Figure 19: B-type sewing

in the definition of the B* and B and the charges Q and Q_ associated to G*(z) and G*(z) we
can write the result of the contour deformation as

{0-.B} = J5, 2Tt = T"

(0B} = f5 TPk =T*. (6.105)

In Sec. §.§ where the G~ (u),G~(u) are integrated over a contour we got the L_; mode of the
T, which corresponds to derivative of an insertion position. Here we get the 7% and T*, which
convert according to (.17) into a derivative in the moduli space. Both effects are related and lead
to exact forms on .#, and .#,,. The boundary components d.#,, where the integral in the last
line of (b.104) contributes according to Cauchy’s theorem are in real codimension two as indicated
by the form degree of A. They are the standard stable degenerations encountered in Sec f.2] Fig
[[J. The whole point specific of the B-model is to now figure out what the P;;, A;; and B;; are. This
turns out to be much easier then in the 2d gravity case. It is a bosonic string higher loop sewing
consideration [] with simplifications. There will be no new information in the P;; above what
we summarized in (b.103)). Since [5 09 operators correspond to functions on M as opposed to
the W classes there is no interesting recursion to expect.

It remains to analyze the A and B degeneration depicted in Fig. [§ and [[9 respectively. Near
the boundary component in the moduli space corresponding to the degenerate surface in the figures
the normal direction to the boundary can be parametrized by the length of the tube T;. The moduli
space of the boundary components consist of the 3g — 6 dimensional moduli space of the irreducible
curves of genus g — 1 in case A or & and g — h in case B respectively with measure [driz A d7).
That is we loose three complex dimensions in the moduli space of the irreducible components and
hence three BB. As we make the tube infinitely long or equivalently infinitesimally thin the data
remembered about the shape are merely the two insertion points w and u, the length and the twist
of the tube. In particular two 33 are replaced by ( $. G~ fc; G~ @k (x)) with x = u,w and since
we want to calculate a string amplitude we have to insert a complete set of states for the @x. The
contribution of the boundary is hence

~ ~ a _ _ _ .. - - 3g—6 A ad

/ [dmAdededu]a—< [&() 6§ camifcicarl B“B> (6.106)
oM, g T2 Cu C1/4 CW Cv/v a=1

The integration over [du] and [dw] is over the fibre X, of the universal curve. We can hence convert,

e.g. the §o G~ ¢ G~ @ insertions in a descendant field 6"1@ integrated over Z,. Only if the [ @;
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integral extends over the tube one gets a contribution proportional to T, which does not cancel
under the derivative in (6.106) and one can focus on this integration domain. The correlation
function factorizes upon complete insertion of states in operator approach, which gives

ikl 3g—6,\ ~ra
1 J . . a
'/aM [dm/\dm 5[ ginn®n <(/Zﬁ,)(/zﬁ]) a|:|1/3 B > 6.107)

Here we also used the fact that propagation on the tube projects on the ground state. With the
manipulations from the Sec. .3 and the normalizing the perimeter of the tube to one we get

W [ @in*n" =@ | hmin“yin"
— T2<k|(pj‘l> ZKleG]l — TZCkJ ZKleGjl T Cl]

(6.108)

Using this result in the boundary contribution of the A or B type degeneration and (p.103)) one gets
the contributions from the boundaries

g—1
S Dl-%”l)j%g”)) (6.109)

r=1

- 1.
I_ij(g) — 5C]f(J <DiDj§(gl)) +

The factor % comes from the fact that we over count the integration over &; and &} in (p.107) by
two in the A degeneration, as the 0; «<» ¢; does not change the complex structure and in the B
degeneration we doubled the non symmetric terms.

For g = 1 the situation is more tricky and interesting. Because of h°(T?) = 1 we have to kill
the infinite automorphism by the insertion of one operator to start with a stable curve. Hence we
have to consider d;d,,.% (!). That leads in addition to the A degeneration to a contact term between
O, i 5) 7

35 () _ LA X i
0007 c Conij+ ( S )ka . (6.110)

The first term above is from the A type degeneratlon. The contact term sees global properties of the
Calabi-Yau and is the most interesting one have encountered. There are two ways to normalize the
contact term. Compare with the operator

1 rd? .
F1(t,f) = 5/T—Tr(—l)FFLFRqu-"I. (6.111)

formulation .7 (! ) [[Ld] and calculate the ¢7 term as in [B0]]. Or relate it to the Ray-Singer torsion®"

[[[1)] and use the family index theorem of [[[4]].

The counting function for the GW invariants is obtained as a holomorphic limit of the result
of the integration .7/ (t) = limj_,.,.#%(t, ) of (6.110). One difficulty in integrating .8 (z,7) is the
possibility of adding a holomorphic piece to it. Its form is however restricted to

D 2g-2 (k) (2)

&@:Z;fb 6.112)

where D is the number of components A; of the discriminant, and p§k>

k. Using the expansion (5.48) and the genus one data of the quintic discussed in (p.9) one obtains
the BPS numbers in table f| and f.

(z) are polynomials of degree

308ee [] for a recent application to Hitchins action.
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d arith. genus 2 3 4
1 0 0 0
2 0 0 0
3 0 0 0
4 534 750 8 625 0
5 75 478 987 900 —15 663 750 15 520
6 871 708 139 638 250 3156 446 162 875 —7845381850
7 5185462 556 617 269 625 111 468 926 053 022 750 243 680 873 841 500
8122 516 841 063 105 917 766 750|1 303 464 598 408 583 455 000|25 509 502 355 913 526 750

=

Table 5: BPS degeneracies ngg associated to genus 2,3,4 curves on the Quintic in P*

d

7. Complex-, Kihler- and Calabi-Yau manifolds.

Let us describe in the following the definitions and key properties of the manifolds mentioned
above. A quick introduction from the physics point of view is [B2]], a more extensive one is [1]).
A good introduction of supersymmetric compactifications with emphasis on Calabi- Yau manifolds
and orbifolds is [54]. One purpose of this section is to give a guide to further mathematical refer-
ences which are given as we go along.

7.1 Complex manifolds

Consider a real 2n dimensional manifold M with a covering by coordinate patches %;, i =
1,...,r, which are homeomorphic to a neighborhood U; € C*. Then we can pick xg) (p), a =

1,...,n complex coordinates on each %;. M is a complex manifold, if all transition functions
S99 W (p) = X (p) (7.1)

defined for p € %; N %, are biholomorphic.

Obviously C”" is a non-compact complex manifold with one chart. It is also Kahler. One may
hope to get examples of compact complex manifolds by considering constraints like f(x,...,x,) =
0, which are holomorphic in all variables. While this leads indeed to a complex manifold, it fails to
define compact ones, because of the maximum modulus theorem, which states that the maximum
value of the modulus of a non constant differential function on an arbitrary domain D is taken at the
boundary of D. If now f = 0 is solved for some x; in a compact domain D of the other variables, x;
takes its maximal modulus on the boundary of D and the construction fails to define a differentiable
compact manifold.

A way out is to use identifications on R?* by discrete shift symmetries, i.e. consider tori
T2 = R /T 2n, where the lattice I, = Z?" as abelian groups. If one chooses a complex structure
on R?" by aligning real and imaginary directions of 7*R?" = R?" with the basis of 5, one gets
compact complex tori Té. They are flat and have hence trivial holonomy. Dividing by discrete
rotations G of the lattice I, leads to orbifold compactifications. If G acts as a discrete irreducible
subgroup of SU(3) in the fundamental representation on the complex coordinates of Té then one
gets a complex orbifold with curvature singularities at the fix set of G. The corresponding lattice
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automorphisms have been classified [B(J]. Remarkably one can prove that this curvature singulari-
ties can be smoothed to get a Kdhler manifold with SU(3) holonomy.

An alternative route to construct simple compact complex manifolds is by dividing by C* :=
C\ {0} actions. E.g. P" is defined as the space of complex lines through the origin in C"*!. This
is the space of equivalence classes of [x,...,x,] in C"*!\ {0} with the equivalence relation

(X055 Xn) ~ A (X0, Xn), (7.2)
where A € C*. For the charts we take
02/1' = {xi 75 0|xl~ S Pn}

and as their coordinates x,(f;) = X /X;. On ;N\ % we have the transition functions

@ _ Xm X xt(r]l()

which are biholomorphic. P” is a obviously compact and a Kihler manifold as we shall see.

A hypersurface constraint in P of the type f(xo,...,Xx,) = 0 must be homogeneous of some
degree d in the x;, i.e. f(Axq,...,Ax,) = A9f(x1,..., fs), to be well defined on the equivalence
classes. It defines a compact complex Kihler manifold. This manifold is smooth if f is transversal,
i.e. df # 0 for f = 0. We will give a short overview about the application of this construction and
generalizations to Calabi-Yau manifolds in Sec. .7.

Conceptually it is an important question if and how many complex structures an even dimen-
sion real manifold possesses. A necessary prerequisite to have a complex structure is a differen-
tiable endomorphism of the tangent bundle J : TM — TM with J> = —1. J corresponds to mul-
tiplication of the tangent bundle by i = v/—1 and manifold with this structure is called an almost
complex manifold 3!. With J we can define projectors

1
P= 3 (1-iJ)
on the holomorphic sub-bundle and the antihomlomophic sub-bundle of the tangent bundle
P ! (1+iJ)
== i
2

respectively. A necessary and sufficient condition for the existence of complex coordinates, i.e. a
complex structure, is that the Lie bracket (p.21)) of two holomorphic vector fields X,Y is always a
holomorphic vector field [] (see [IE] and [R1]] Chap. V. for physicists review). Written with the
projectors one formulates this condition as

P[PX,PY] =0. (7.4)

31 A complex manifold is almost complex, because multiplying the basis of TM of a complex manifold with coor-

0 o . .

dinates x* = u¥ + iw* by i = /=1 maps ( ‘?i‘: ) — ji ,ie. J=du'® % —-d'® 0‘1,. In holomorphic and
av duk

anti-holomorphic coordinates this means J} = id, J} = —i5j§ and J; = J; =0
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This integrability condition leads to [JX,JY|—J[X,JY]|—J[JX,Y]—[X,Y] =0. In local flat coordi-
nates J(9b) = J¢d, and with J2JS = — 3%, i.e. (9,J2)J5 = —J2(d,J5), this means that the so called
Nijenhuis tensor vanishes identically

ba = I (Oalg — 0aly) — I3 (0ayy — OpJ3) = 0. (7.5)

Once complex coordinates x* = uf + ivk with
p

J 1/ 0 d 7] 1/ 0 J
Ohi==—===———i=— O =—===—+i=— 7.6
T ok 2<auk ’avk>’ TS 2<duk+l0vk> (7.6)
are defined, we can split TcM = TrM ® C, which is spanned over %W, k=1,...,2n with complex

coefficients v\ as TcM = T'°M @ T%'M. Here {uy, v} =: {wi,wiin} and each vector V in TcM
decomposes as

2n 0 n
vesViio—y [(V"HV”*")&H(v"—iv"“)d,; = VO yOl (1.7)
=i Wk =

The transition functions of 7'M [T%!] spanned by &, [d] are [anti-]holomorphic, and we call
it the [anti]holomorphic tangent bundle. Obviously under complex conjugation T%!'M = T1OM.
Similarly the cotangent bundle splits 7¢M = T*1°M & T*%!M into a holomorphic and an anti-
holomorphic sub bundle spanned by dx* and di* := ik respectively. Sections of A"T:M are called
r-forms Q" and can be decomposed into sections of APT*'0M A4 T*01 | which are called (p,q)-
forms QP4 i.e the space A" of r forms splits into the space A”? of (p,q)-forms A" = D,—p AP
If J is integrable®?, the de Rham exterior derivative splits likewise into

d=0d+d, (7.8)

ie. for =, j, AL Adx’rdx/ A ... Adxis € AP4 one has

--~aip~,j1-~-7

0w = (e, ;5 )N AL Addr AdeI AL Adidn € APFLY 79)
0w = (G, . Sydok Adxdt AL LAY A AL Adide € AP '

~~,ip7]71-~~a .q)

so that dQP € APT1.4 ¢ AP+l | Tt follows by consideration of the (p,q) type that the equation

d?> =0 on A* implies 3> =0, 3> =0 and 99 + 30 = 0. Since 9 is nilpotent we can define the
Kerrla
Imd *

A central result is the Chech-Dolbault isomorphism, which follows from the Chech-deRham

cohomology H 5 =

isomorphism see [[[2]] page 43-44 and the 0-Poincaré Lemma. It states for sheaves of vectors fields
F that

HY(M,QF(F)) = H)(M,F) . (7.10)

For example HY(M,\PT*M) = HP9(M,TM) =: HP4(M).

320n an almost complex manifold one can project r-forms Q with p P’s and g P’s (r = p+¢g) to (p,q)-forms QP4.
As J depends on the coordinates one gets dQP4 = (dQ)P~14+2 4 (dQ)P4+! + (dQ)P+14 + (dQ)P+24~! and one may
define 9QP4 = (dw)P*!4 and QP4 = (dQ)P4 1. One can check that the condition 9% = 0 is equivalent to N, = 0.
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7.2 Kihler manifolds

A hermitian metric is a positive-definite inner product TM @ TM — C. Locally it can be given
by a covariant tensor 37 ;g :(w)dx' @ dx/ such that g;; = g;; and V' € C one has vig;;»/ > 0, if not
all v/ = 0. Note that the first index of g; is only summed over the unbarred i = 1,...,n and the
second only over barred j = 1,...,7 indices respectively. To define a hermitian metric an almost
complex structure is sufficient. Hermiticity is the condition g(X,Y) = g(JX,JY) on the real metric,
which becomes

Gon =4I g (7.11)

in coordinates. It does not constrain M further than admitting J and any metric say g’, because
for any such g’ the metric gy = 3 (), +J4J2g,,) is hermitian. In particular on any complex
manifold we can define a hermitian metric see [P8] Chap 3.5. Multiplying (F.11)) with J > defining
Jum = Jj 8am and using J;,”Jf,’, = —5]? we see that J,,, = —J,,,. Hence we can define a 2-form
W = Jymdw" Adw™. In complex notation this becomes

n T
w=iy gidAdy. (7.12)
i=1

This is a real form & = w of type (1,1) and is called the fundamental form associated to the
hermitian metric. Because® g := det(g; 7) > 0 one gets by wedging w n-times

W’
vol = = = " det(g;7)dx' AdF A... AdY AdF" = 2"det(g;)dw' A... Adw?" (7.13)

a positive volume form on M, which implies also that M is orientable.

A hermitian metric whose fundamental form is closed dw = 0 is called a Kéhler metric. A
complex manifold endowed with a Kihler metric is called a Kédhler manifold. dw = O implies
dw = dw = 0, which is equivalent to Ogi7 = 0igx; and 51‘(&-]7 = 5jgi,-<. The latter equations are
integrability conditions for the existence of a local Kahler potential K (x,x) which is real and yields
the metric as follows

g7 = 0,0;K (x,%) = —%d(o" —0)K(x,%) . (7.14)

Note that despite the form above @ cannot be exact. For if w = dA would have been exact ([.13)
could not be true, because using Stokes theorem the integral | «w”" would be zero. That means that
(0 — 0)K is not globally defined. Indeed as far as the definition of w goes K(x,%) only needs to
be defined up to a Kihler transformation K (x,%) — K(x,%) + f(x) + £(%), so eX will be a section
of a nontrivial line bundle over M. In general two Kihler forms w and @’ are in the same class in
H?(M,R), if we can find a smooth global real function ¢ on M and

w = w4+ 09¢(x,%) (7.15)

33Note in coordinates xﬂx’T one has the block form g, = ( 0 ggp > and e.g. [ defines g := det(gnm) =
8op

det2 8uv-
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Above property ([7.14) simplifies the expressions for the Christoffel symbols and the curvature
tensors _ _ _
a.) ri'(j :gklaigﬂ_» r%:glkafglf
b.) Rir=—0058,7+ 8" (0igi) (058,r), Rl.fkl — —0dL (7.16)

~ _ J
C.) Ri]T = gklRi‘/Tkl‘: —o"idflogdet(gl-j) .

Note that the pure index Christoffel symbols are the only non-vanishing ones and that R;5; =
Ry 77 = R;j5» because of the integrability condition. The other non vanishing components of the
Ricci tensor are of type R ;7. R; 77 and R .. From the Ricci tensor one defines the Ricci form

# = iR;zdx) Adx/ = —iddlogdet(g;7) = %d(d — 0)logdet(g;;) - (7.17)

It satisfies d% = 0, but is not exact, despite the form it is written above, because logdet(g;;) is a
density and not a function.

Wg now ‘uTlrn to hannc:nic theory for complex manifolds. On (p, ¢)-forms ¢ = ﬁ @i Froa dx’t A
.. Adx? Adx/t AL Adx/e we have a local inner product defined by a hermitian metric
QW)= @iy, W (7.18)

where it-ir/1-js = g"ll_1 ...g"/’l_f'gklf1 .. gkala Ui, ki, With this we can define an global inner
product AP x AP1 — C

(@)= [ (@Wvol, (7.19)

with

(0.9)=(¢,9), (¢,®) > 0 unless =0, (7.20)

which makes A?* in a pre-Hilbert space. One can define the Hodge operator®* x : AP4 — A"—4"—P
ie. *x: P — x by
(@, Y)Vol = A= , (7.21)

, | : — — . o
with @ = Lo, o 5 o deit AL AP Adet AL A = L dt AL A At A

oA and @ = (=D, 5, Explicitly

in(_l)n(nfl)/ZJrnp Kok,

..,
= E- - €
p!q!(n—p)!(n—q)!g J1efn=p

l|...ln,q

Wy i1 X AL A A AL A (722)

One checks () = % and *x = (—1)P9Y for Y a (p, q)-form.
With the norm (-,-) we can define the adjoint operators 0* : AP4 — AP~14 and 8* : AP —
AP~ by
(0°¢, ) :=(Y,09), and  (9"Y,9):=(y,09) (7.23)
respectively. On a compact manifold one has d* = — x @«. With the adjoint operator one can define
beside the de Rham Laplacian Ag = dd* +d*d the Laplacians Ay = 09" +0*d and A = 00*+0%9.
The Hodge theorem states that every element ¢ € A”¢ has an unique orthogonal decomposition into

34Here the conventions are as in [@]. The * operator in [@] maps # g, : AP — A""P1=4_ 50 it involves an additional
complex conjugation g, Y = %4, (.
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a harmonic form %, an exact piece (_?E with & € A?%~! and a co-exact piece a*l‘} with n € A? an
i.e.
APY = P4 g JAPI @ §FAPITT (7.24)

This is in analogy with the de Rham decomposition A? = 77 & dAP~! © d*AP*!. The usual ar-
gument shows that if @ is closed, i.e. d@ = 0, then the d*n piece in the decomposition is zero,
because @ = 0*n and thus 0 = (d@,n) = (8*n,d*n), which implies d*n = 0. This in turn
means that every 0 closed form can be uniquely decomposed into a harmonic form w.r.t. A 5 and a
0 exact piece, which implies H g M) = #P9(M).

Using (B*W)il...i,,jz...j,, = (—1)Ptioh Wi .iyjijs...j, One can show that the Kahler w form is
harmonic. Hence 2! (M) > 1 on a Kihler manifold. Similarly one shows that all W™, m=1,...,n
are nontrivial elements in H™"(M). A very important result for Kiahler manifolds is the Laplacians

are all equivalent

1
DNy =05 = EAd , (7.25)

where Ay = 90" + 070, Ny = 09" + 9*9 and Ag = dd* +d*d. As a consequence of (7:23) A4 like
A and Az does not change the (p, ¢)-type and taking the harmonic forms as unique representatives
we have a decomposition of the deRham cohomology groups

H'(M)= & H™(M). (7.26)
p+q=r

Let us note for further reference that the action of Ay on p-forms @ can be expressed in terms of
covariant derivatives and the curvature tensors as

(Ba®)uy..py = =0 Oy @ty = PRy @y, _y1) = 5P(P = DRvplu @y ) (7.27)

By consideration of type follows that every holomorphic (p,0)-form  is harmonic and vice
versa. We have d*w = 0 as it maps to A”~! which is trivial. If Azw = 0 then from 00w =0
follows dw = 0.

Forms of Kihler manifolds are related by complex conjugation A?:4 = A%?_ which implies for
the cohomology groups H?4(M) = H%? (M), since complex conjugation commutes with Aq. The
star operator * : A??4 — A"~%"P is another bijection which commutes with A4 and hence

H®(M) = HP9(M) = H""9""P(M) . (7.28)

Let us mention briefly further important facts about Kihler manifolds. The property of the
Christoffel symbol to have only pure indices leads to the fact that parallel transport of a vector gen-
erates only the holonomy group U (n) € SO(2n) rather then SO(2n), which would be the holonomy
of a generic orientable manifold.

Another well known fact is that P” is a Kéhler manifold. This can be established by giv-
ing with the Fubini-Study metric an explicit. In the %;, i = 0,...,n patches the Kihler potential
is given by K (x 7)) = log(1 + [x)]?), where |x()|?> = Y i ]xy)lz. Using (.3) we see that
KO x50y = k) (xU) 50)) —log ;f—; —log }‘—; The latter two terms are holomorphic and antiholo-
morphic functions respectively on %; N %;. Hence they do not affect the metric g;; = 907K (x,%),
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which is globally well defined. Dropping the index for the patch we get

dé Add ®ddd Ax/dxd
T Y ) (7.29)

w=iddlog(1+ |x|*) :i( T2 (142

This defines a positive-definite metric. With det(g; ;) = W one calculates the Ricci tensor
R;; = —0,0;logdet(g;;) = (n+1)g,;. If the Ricci tensor is proportional to the Kéhler metric one
calls the metric Kéhler-Einstein.

7.3 Characteristic classes of holomorphic vector bundles

In the last section we encountered the holomorphic tangent bundle of M as an example of a
holomorphic vector bundle E with a hermitian metric, which we call &, in the general case. The
connection one form

Ay = ()R, Ar=0 (7.30)

defines the unique affine connection, which is compatible with the hermitian metric, i.e [h = 0,
and compatible with the complex structure. One defines the curvature two form as F = dA +A AA.
The differential geometry approach to Chern classes c;(E) € H*(M,R) of a rank r holomorphic
vector bundle is to define them in terms symmetric function of the eigenvalues of the curvature
form as )

i
om
and to prove then that they do not depend on the metric[[[2]][[[40].

Topologically one can represent the Chern class ¢y, as the Poincaré dual to the degeneracy cycle

i

c(E) =det(1+ T

F):H—Zci(E):H— TrF + ... (7.31)

Dr,kJrl(O') = {x: 01 (x)/\...O'r,kJrl(X) :0}’ (7.32)

where r —k+ 1 generic €* sections 0; of E become linearly dependent. This is described as Gauss
Bonnet formula II in Chap 3.3 of [[2]], see also [F§][R1]] for the approach using classifying spaces.
The simplest example of the above dual descriptions arise for line bundles .. Let |g|? be a metric
on a line bundle L, where O is a section of L. Local trivialization of L are ¢ : L|yy — U x C, where
sy is a holomorphic function and |g|> = h(x)|sy|? for some function /(x), which is positive if the
metric is. The curvature 2-form given by

X = —001ogh(x) (7.33)

defines the Chern-class of L represented by ¢ (L) = 5~[%] € H*(M). This class is Poincaré dual
to the divisor class [D] which defines L and is uniquely recovered from L as the locus where the
generic section vanishes. As a corollary the first Chern class of a holomorphic vector bundle is also
the first Chern class of the determinant bundle L, = A'E

C1 (E) = C] (LD) . (734)

For the tangent bundle we identify the curvature 2-form F' with @lf = gjﬁRiﬁkl-dxk Adx and get
a representative for ¢ (TM) (which we also call ¢; (M))

c1(M) = %TG);I = Rdd Ad! = —ﬁdalogdet(g,d-) . (7.35)
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The canonical line bundle is the determinant line bundle of the holomorphic tangent bundle

Ky = AN"T* 1M By and (7.39) we have therefore
—2711¢1 (Kyy) := —271c1 (A"T* 'YOM) = 27100 | (T*M) = 271 (T M) . (7.36)

Let us derive this also using as an explicit representative of the Chern class the curvature 2-form.
Given a complex structure and a Kihler metric g;; we have a connection on 7 1OAf described by
the holomorphic Christoffel symbols. This connection induces a connection on the line bundle K3,
and a straightforward calculation shows on total antisymmetric forms [0;, O7]ay, i, = —R;5,. i,
Therefore we can identify A(x) of (33) with det™'(g;7) and by the first Chern class of Ky,
is

—211c1 (K)p) = [#) =211 (TM) . (7.37)

If one uses the Poincaré Hopf theorem that the Euler number x (M) of a manifold of dim # is given
by the sum of indices of zeros of a generic vector field, i.e. a section of the tangent bundle, then by
(7:32) the dual to ¢,(TM) is D;. Counting these zeros leads then to the Gauss-Bonnet formula

X(M) =D, mM:/ n(TM) . (7.38)
M

Let us discuss further properties of the Chern classes. By (7.31)) one has co(E) = 1, ¢4, (E) =
0 and the Whitney product formula ¢(E & F) = ¢(E)C(F) from the properties of the determinant,
see [[[6] for a proof from the topological definition. It is also easy to see[[[2]] that

cr(E*) = (= Dk (E) (7.39)

and ¢, (f(E)) = f*ck(E) for f: M — M’ a differentiable mapping. A further important property
is the splitting principle [[Lf]]. For an exact sequence of holomorphic vector bundles or sheaves
0—E —F — G — 0onehas c¢(F) =c(E)c(G). One considers often classes x; such that ¢(E) =
[1i=;(14x;) where x; are Chern classes of line bundles. One reason that this is useful is that the
splitting principle implies that if one wants to derive polynomial identities among Chern classes
of vector bundles, one may replace the vector bundles by direct sums of line bundles. This opens
up a calculational machinery with classes, which behave e.g. more natural on direct products as
the Chern character Ch(E) = 3_, ¢“. All expressions are polynomial, defined by expanding up to
degree r in x;. Obviously Ch(E ® F) = Ch(E) + Ch(F) and Ch(E ® F) = Ch(E)Ch(F). A little
playing with symmetric functions reveals Ch(E) = r+cy + (i —2c2) + ¢ (¢} —3cico+3¢3) + ...,
where we set ¢ = cx(E). Similar is the Todd genus defined td(E) = [/, lf,x,. =1+%c1+15(c3+
)+ iclcz +.... A central theorem is the Hirzebruch-Riemann-Roch formula, which gives the
arithmetic genus X (E) = ¥ (—1)*h¥(E) of a vector bundle over a manifold M [B1]]

X(E) = /M ch(E) Atd(TX) . (7.40)

In sections B.1),5.2 and p.11] we needed applications of (7.40)). Namely to count the deformation
space ([.19) of a Riemann surface Z,. As seen in section p.J the complex structure moduli of the

35This related by the Atiyah-Singer index formula to the index of the Dirac operator and hence to the ghost zero
modes. An overview about index formulas for physicist can be found in [@] and the connections to the zero modes is in

explained e.g. in .
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metric are given by elements in the Check cohomology group H' (T) with T =TX and for g > 1
there are no conformal Killing vectors generating global diffeomorphims i.e. one has 1%(T) = 0.
However for g = 1 the shift z — z+ A on the torus accounts for #/° = 1 and for g = 0 the three

generators of PSL(2,C) z — gﬁiﬁl on S account for A% = 3. For a vector bundle V of rank r over

the Riemann surface 3 the formula ([.40) gives

hO(Z,V)—hl(Z,V):/zch(V)/\td(T):/Z(r—f—cl(V))(l—l—%cl(T):/zcl(V)+r(1—g). (7.41)

The virtual dimension of the deformation space is obtained by setting V = T" with rank 1

dim.#, = h'(T) —h°(T) = — /zch(T) Ad(T)=3g—3. (7.42)
In the integral over the metric moduli space in string amplitudes one sacrifices in the g =0, 1 cases
h° = 3,1 additional parameters, the position of insertion points, to offset the negative contributions
to (7.42) from the conformal Killing fields. Another application leads to the formula (5.10) de-
scribing the dimension of the deformation space of holomorphic maps x : Z — M. The movement
of the curve in M is described infinitesimally by a vector field x' — x' + &€&’ on M. The vector
field must be holomorphic d;é = 0 so that the deformed map stays holomorphic. Also we are not
counting vector fields which correspond to reparametrizations of 2. That is we look at elements of
Hg(Z,x*(TM)) = H°(x*(TM)) and (T.40) gives us

R (x*(TM)) —h' (x*(TM)) :/(dimcM+x*(c1 (TM)))(1+ %cl (T))=c1(TM)-B+dimcM(1—g) .

: (7.43)
Generically the movement of the map is unobstructed and H' (x*(TM)) = 0. In the case the above is
also the dimension of the deformation space. In the case of Calabi-Yau three folds we get for genus
0 that the dimension of the deformation space is 3. We can think about this in two ways. Either
we don’t fix points on S2, then we have to mod out by the 3 dim automorphism group PL(2,C) of
$2 and the expected dimension of the moduli space is 0. That is the way the corrections in .% (¥
are interpreted. Or we kill PL(2,C) by marking three points on the S? required to map into three
divisors, which put three constraints and yields again a zero dimensional moduli space. That is the
interpretation of corrections in C;j(t).

7.4 Metric Connection and Holonomy

To describe spinor connection on curved spaces one introduces beside the curved indices
M, N, ... the flat tangent indices A, B, ... which are lowered and raised with the flat metric n4% =
diag(—1,1,...,1) and its inverse.
o
The Clifford algebra is defined by the anti commutator of {I'4, 8} =2n45. In the smallest
representation the ' symbols are 2[0/2] % 2ID/2 matrices. The generators of the Lorentz group

/2 are given by the commutator 7{; = —%I’AB =

in the spinor representation & of dimension 2
—ﬁ [T4,T 5], i.e. & — exp(iwBT;,)& under the spin group which is a cover of proper, ortochronous
Lorentzgroup SO (1,D —1). We do not display spinor indices a,b... like in & = ()58, a,b =

1,...,[D/2] explicitly. For more on spin representations in various dimensions, see e.g. [[26].
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The relation to curved indices M,N ..., lowered and raised by the curved metric Gy and
its inverse GMV, is provided by the D-bein ¢4, and its inverse e} (ef,el = Ol and efel = 3f)
which fulfills Gy = e4,e8nap. One has T = e4,T™ and T = M4 etc., from which follows

{rM.rN} =2GMN. A torsion free ['h;,, =%, Riemann connection leaves the metric invariant
OsGun = 0 = dsGyn — 5y Gew — Ty Geu (7.44)

which implies the formula for the Christoffel Symbols
1

MYy = EGSP (OmGpy + OnGup — OpGuy) - (7.45)
The spin connection W}y is defined as
Ouey = dyen —Thnep + whipel, (7.46)
which implies that
Wy’ = %(QMNR — Qury + Qruw)e™ e, with  Qung = (duey — Ovey)ear  (1:47)

The connection on a spinor is then

OuE = Ou-+ Sl Tin)E (1.48)

and for any other representation carrying only flat indices of the tangent space one has to replace
T3 by the appropriate generator of the Lorentz group, i.e. T = Nac OF — npcdP for vectors etc.
If a vector V¥V is parallel transported around a infinitesimal rectangle along two tangent vectors

% and 5% with area element 0% = —g® its infinitesimal rotation is 8V~ = —150™VRY; LV,
which is one way to explain the effect of curvature

[Oar, ON]Ve = —Ryynp Vs, with Rynp® = Ol xp — OnTap +T 8oy g —T8M%s . (7.49)
Note R¥p = —R¥,,, and also for a Kéhler manifold the only non vanishing elements of Riff s

pure in k,[. That means that a holomorphic vector stays holomorphic under parallel transport and
do™ Rk spans the Lie algebra of U(n). Near the identity U(n) = SU(n) x U(1) and the U(1)
part is generated by the trace part of the Riemann tensor which is the Ricci tensor 50’””ann P =
_450'H‘7R“\7.

Once one knows the holonomy group Hol on vectors the transformation properties of tensors,
forms and spinors becomes a matter of representation theory. In particular the following holds see
e.g. [BM]. If Hol is the holonomy group of a connection [ on TM on a simply connected manifold
M then a tensor section S € @ TM @ ®’ T*M is covariantly constant (parallel) iff S|, is locally
fixed by Hol.

The restriction to simply connected is quite important. Non simply connected manifolds can
have monodromy even if they are flat. Consider e.g. the easy example of a non-simply connected
space which is topologically M = S! x R? with the metric

d®s = R*d*0 + (dx' + T}x/d6)? , (7.50)

011} . . . .
where T = ( ) 0) is the generator of SO(2) rotations in R?. M is flat, yet a vector parallel

transported around the S' gets rotated in the R? directions. Similar examples a flat connection on
tori, with monodromy. In the case of a gauge connection we call such configurations Wilson lines.
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7.5 Calabi-Yau manifolds

A general Calabi-Yau manifold is a compact Kihler manifold M with vanishing first Chern
class ¢1(TM) = 0. The following statements are essentially equivalent for complex n dimensional
Kéhler manifolds M, up to some important subtleties for non-simply connected cases, which we
discuss below. Together with the Kéhler property they are used to define a (general) Calabi-Yau
manifold

e a) The canonical class is trivial.

e b) The first Chern class of the tangent bundle vanishes® ¢;(TM) = 0.

c) It exists a Kéhler metric g whose Ricci tensor vanishes R;;(g) = 0.

d) There exists an up to a constant unique nowhere vanishing holomorphic (n,0) form Q.

e) The holonomy group Hol of M is a subgroup of SU (n).

f) M admits a pair of globally defined covariantly constant (parallel) spinors & and & of
opposite chirality if # is odd and of the same chirality if 7 is even.

Complex tori of all dimensions are general Calabi-Yau with trivial holonomy. In dimc =1
the torus is the only topological type of Calabi-Yau manifold. In dimc = 2 the K3-surface is the
only topological Calabi-Yau manifold with G = SU(2), while in dim¢ = 3 the number of different
topological types of Calabi-Yau manifolds is > 10°. This estimate comes from explicit construction
mostly of hypersurface and complete intersections in toric ambient spaces, see also Sec. [I.7}

The question one is mainly interested in for physical applications, is how many super sym-
metries are unbroken in compactifications to four dimensions. An important situation is when
the number of supercharges is reduced by 1/4 by a compactification of the ten dimensional su-
pergravity on the six real dimensional internal manifold M. This is the case if & and & are the
only covariantly constant spinors [P4]]. This in turn holds generically, without further non-trivial
background fields, if the holonomy is the full SU(3), i.e Hol = SU(3) and in an interesting special
case namley the T¢ x K3/Z, FHSV model, which has Hol = SU(2) x Z,. Important applications
emerging form this scheme are the 10d heterotic compactification, which leads to N = 1 super-
symmetry in 4d and the 10d type II compactifications, which lead to N = 2 supersymmetry in 4d.
Other interesting examples for conceptual questions are compactification of type IIA or IIB to 6d
on K3, which has Hol = SU(2). This reduces the number of supercharges by 1,/2 and leads to (1, 1)
and (2,0) supersymmetry in 6d respectively. A phenomenological very interesting compactifiction
with N = 1 in 4d is F-theory compactification on an elliptically fibred Kéhler manifold with SU (4).

From the supergravity point of view the definition of a Calabi-Yau manifold, which covers the
simplest physically interesting cases, is a compact Kihler manifold with Hol = SU (n). This implies
that there are now exactly two covariant constant spinors. One excludes thereby cases involving
non-simply connected manifolds such as TC3 and Té x K3 and other products e.g. K3 x K3. On non-
simply connected manifolds the relation between c.) and d.) is more subtle as they can have flat

36We assume that we have a connection without torsion on TM.
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metrics, which do have non-trivial holonomy. They lead to interesting supersymmetry reduction by
what is called generalized Scherk-Schwarz mechanism or geometrical Wilson lines [[09]. However
from the string point of view the important condition is the vanishing of the first Chern class
c1(TM) = 0, which would have to be supplemented by the simply connectedness to restrict to get
the % supersymmetric case. The first reason is that this is the sufficient condition for the unbroken
axial U(1) on the world-sheet, necessary to define the B-twist. More importantly it is known that
the non-linear 0-model is not conformally invariant for the Ricci-flat metric. The four loop -
function does not vanish in this geometry [@]. However it has be shown in [][ the possible
counter terms that the total perturbative 3-function can be set to zero by a change in the metric
String — Jog detghd !
i ij

M, which is not | £(x)|? of a holomorphic one. By (7.17) this implies that the curvature two form
becomes non-trivial by some non-vanishing exact terms, but the first Chern class stays of course

so that logdetg + a(x,x), where a(x,%) is a globally defined real function on

trivial ¢;(TM) = 0. Ricci-flat flat manifolds are not a vacuum solutions of string theory. One
may wonder whether the considerations about the covariantly constant spinors &, & make sense.
They do, because what is required is that ([, — %Am)f = (0n+ éAm)f is zero, where A is a form
potential for the Ricci-form Z = dA, where d;a = A; and d;a = A;.

Q A Q is proportional to the volume form and there is a natural normalization which makes

ReQ a calibration ;
(Un m(m— | —
Yyt <;) angd. (7.51)

n!
Imposing (7.51]) reduces the freedom in the constant in e.) to a phase [B6].

Let us now discuss the relation between the statements a.) to f.). In order to connect a.)-d.) to
e.) and f.) we will assume that M is simply connected and not of product form.

a.) < b.) follows from (7.39).

c.) — b.) is a simple consequence of the independence of the Chern classes on the choice of
the Kéhler metric. Once one knows that there exists a Ricci-flat metric clearly ¢ (7M) = 0 and that
holds for all Kdhler metrics.

b.) — c.) is a corollary to Yau’ theorem [@], which proves the conjecture that E. Calabi
formulated in (1956). It states that given the data

e (C.a) that for every given Kéhler metric g, Kihler form w and Ricci form % on M and a real
closed (1,1) form %', which represents the Chern class [Z]| = [#'] = 211¢;(TM)

one can construct

e (C.b) aunique metric g’ on M with associated Kihler form ¢’ such that [o/] = [w] € H*(M,R)
and the Ricci form of g’ is %’

In particular ¢; (TM) = 0 can be represented by %’ = 0 and then according to the above there exists
a unique metric g’ whose Ricci form is %’. Therefore its Ricci tensor is vanishes.

One can formulate simpler equivalent versions of (C.a) and (C.b) as requirements on the exis-
tence of functions on M as follows. % — %' is a @ exact and d closed real (1,1) form. By the 8,9
Lemma one has a real function f on M so that Z — %' = idd f up to a constant K. Recalling {19
how Z is derived from the positive function multiplying wi A ... Awy, in (F.13), which is itself
determined by % we conclude that f must make its appearance also in e/ w" = («/)". In fact the
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constant K can be fixed by normalizing the volume J[,, el = | y w". The simplification is that
instead of requiring g’ to lead to a prescribed %’ one requires that it leads to a prescribed volume
form and the statement about % and %’ can be replaced by a statement about f. Similarly one can
formulate the [w'] = [w] condition in (C.b) as a search for a real function ¢ as in (F.15). @ can be
made unique by requiring [, ¢vol, = 0. So the simplified version of (C.a) and (C.b) is

e (C’.a) that for every given Kédhler metric g, Kédhler form w and a real smooth function f on
M with [, ef " = [, 0™

one can construct

e (C’.b) a unique smooth real function ¢ on M such that (i) w+ i0d@isa positive (1, 1) form
', (ii) [, @vol, = 0 and (iii) (w+idd )™ = e/ W™

Yau proved that the non-linear p.d.e (iii) on ¢ admits a unique solution which fulfill (i) and (ii).
This is an existence proof and up to date no explicit solutions for ¢ and®’ e.g. the Ricci-flat metric
on any compact Calabi-Yau manifold has been given.

c.) — e.) at the end of Sec. [.4 we argued that the holonomy group of a Kihler manifold is
generically U(n). Moreover we saw that the Ricci-tensor is generating the U(1) part of U(n) =
SU(n) x U(1). On aRicci-flat manifold this is not generated and the holonomy is reduced to SU (n).

e.) — d.) An (n,0)-form can always be locally written as Q;, ;. = f(x)&, ;. Itis therefore
in the total antisymmetric representation of the holonomy group SU (n) i.e. a singlet invariant under
Hol. By the fact quoted in the last paragraph of Sec. [.4 one has that 0Q = 0. Since " has no mixed
indices 0:Q = [0;Q = 0 and Q is holomorphic. This implies that f(x) has to be a globally defined
holomorphic holomorphic function over the compact manifold M and hence a constant. Note that
w, locally written as @ = 4 (dx! A dx! A Adx" Adx), and g, locally written g = S, |dxi|?, are
also covariantly constant. The normalization (f.51)) established at a point requires |f| = 1, but is
since all quantities are covariantly constant (7.51)) will hold at any point.

Q is also harmonic AzQ = 0 as beside 0Q =0also 0*Q = — %9+ Q =0, because * : A0 —
A™0 and g : A0 — A"H10 = [0},

d.) — a.) We just constructed with Q a trivial constant section of the canonical bundle
APT*1.0) 01

d) — b): Assume a nowhere vanishing holomorphic (7,0) exists. We get then a globally well
defined scalar function

Q> = %Qilmin@l...in : (7.52)

where the indices are raised by the hermitian metric gikfk. Locally Q is given by Q;

yeeesln

f(x)&;...i,, where f(x) is a non-vanishing holomorphic function in each patch. We can obtain

Qitin — gsilmin and it follows that g = det(g;;) = % Inserting in (7.33) we get c1(TM) =
—%Td(_?log |Q|? which is exact since log |Q|? is a scalar, hence ¢; (TM) = 0 in cohomology.
f.) <> d.) is proven in generality in [[47]]. This is done using representation theory. Let us just

give a simple relevant example namely the threefold case, n = 3. We must figure out how many

371t is not that difficult to find a Kihler metric on a Calabi-Yau, e.g. by constructing the induced metric of the
Fubini-Study metric on the quintic in P*, see .
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spinors transforming as singlets under the holonomy SU (3). Under generic rotations in the internal
6d space vectors transform by SO(6) and the associated spin group with the same Lie algebras is
isomorphic to SU(4). The spinor representation in 6d is 2% = 8 dimensional and splits according
to the chirality into representations (4,4) of this SU(4). Now the holonomy is reduced to SU(3)
and embedding the SU(3) in SU(4) singles out an U(1), i.e. one has SU(3) @ U(1) € SU(4).
The decomposition of the (4,4) into the representations of this U (1) and SU(3) is unique (4,4) =
(3' ®173,37! ®13), where the superscripts are the U(1)-charges. Hence we can conclude that
there are indeed one invariant and therefore covariantly constant spinor of each helicity. Bilinear
of the covariantly constant spinors can be used to build the covariantly constant tensors discussed
above. In particular the almost complex structure is J; = —ié TFZE , the metric g,y = i r uvé and
the (3,0) form by Q;jx = e "¥&TT ;€. In this way one can show f.) — d.) see [RI]] for details.
Furthermore it is easy to see that the eight spinors can be generated from & € 173 as ;& € 371,
rijée 3!, M€ € 13 and decomposed as

n=Q"0&+ QM e+ QM riig + Q?jz,,jrl‘f'kf where Q)" dx"' Ad” € HY'(M) . (1.53)

On TC3 one has therefore eight covariant constant spinors and on Té x K3 four.
A very general tool in Check chomology is Serre duality which states for any sheaf E on M
that

HYE)* = H" 8 E*®Ky) . (7.54)

Using Check-Dolbeault isomorphism H*(E) =2 Hé‘ (M,E), H'(M,\N°T*M) = H*"(M) and Kjy = 1
we relate a Calabi- Yau manifold by taking E = &'(M) the cohomology groups H*" (M) =2 H"~" (M)
or by complex conjugation the cohomology goups H"*(M) =2 H"~"0(M). This particular result can
be seen also in a more direct way by contracting a (p,0) form w;, ,,,,-pdxil A...A\dx» with the unique
(0,n) form &; | ; = ﬁﬂjl..jn w/1-Jr to define a (0,n — p)-form @. One shows easily that this is
an invertible map that commutes with A, i.e. H?0(M) = H*"~P(M) = H"P9(M).

With #"0(M) = h°° = 1 e.q. (7.53) implies that one has at least two covariantly constant
spinors on a Ricci-flat manifold. In order to show that one has only this two on a manifold with
Hol = SU(n) we shall show that /”® = 0 for 0 < p < n. On a compact Kihler manifold har-
monicity of (p,0)-form implies holomorphicity as argued after (7.24) by consideration of type.
Specializing (F.27)) to R; jzr = 0 for Kihler- and R;; = 0 for Ricci-flat manifolds harmonicity means
ava, Wi..i, = 0. On a compact manifold one can use pairing and partial integration to see that
this requires U JW i, = 0 (and also dw = 0). From these equations we conclude that all har-
monic (p,0) forms are covariantly constant. However that would mean that they are invariant
under SU (n), which is impossible for 0 < p < n as only the trivial and the total antisymmetric
representation are invariant.

7.6 Bergers List

Let us finally show here Bergers list of the possible holonomy groups and their representation
on the tangent space of simply connected irreducible and non-symmetric manifolds of real dimen-
sion m with the additional information about the number N, N_ of complex covariant constant
spinors with positive and negative chirality [[47] respectively. If m is odd the spinor representation
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is irreducible and we have just one type of spinor. The last part comments on the special forms that
exist on this manifold. See [B€] for background.

e (i) generic oriented: Hol(g) = SO(m), not nec. spin.
e (ii) n = 2m with m > 2: Hol(g) = U(m), not nec. spin, w (1, 1) Kihler form

e (iii) m = 2n, n > 2: Hol(g) = SU (n), vector, Ny = 1 for n odd, N;. = 2 for n even, w (1,1)
Kihler form and Q (n,0) holomorphic form

o (iv)m=4n,n>2: Hol(g) = Sp(n), vector, Ny =m+1, H,I,J SU(2) triplet of (1, 1) forms.
e (v)m=T7:Hol(g) = G, 7 dim irred., N = 1, ® associative 3-form, *® coassociative 4-form.

o (vi)m=8: Hol(g) = Sp(7), spin, N_ = 1, W Cayley 4-form.

7.7 Examples of Calabi-Yau spaces

The tool that makes constructing of Calabi-Yau spaces easy is the perfect control over the first
Chern class in algebraic geometry. As an application of some statements in Sec. we want to
calculate the first Chern class of P, following [[L]. As every projective space P" has a tautological
sequence

0—-H" -P'xC""' - 0—-0. (7.55)

H* = {(I,x) € P" x C"*!|x € [}, where [ is the line in C"*!, which defines [ as point in P", and the
quotient space Q is defined by (f.55). H* is parametrized by the homogeneous variables [x; : ... :
Xn+1], which, as maps to C, are section of the dual space H, called the hyperplane bundle. We can

write tangent vectors in TP" as linear combinations of ( Zill af{xk)%, which is scaling invariant
- 1

1) to TP". There is a kernel C of that map, namely we have

under the C* action and maps H®(
in% =0 € TP”" as it just generates the scaling action. These facts are expressed in the Euler
sequence

0—C— g D) L 7pr 0. (7.56)

The Chern class of C is 1 and the Whitney formula and (trivial) splitting principle gives
c(TP") = (1 +x)"1 | (7.57)

where we appreciated x = ¢;(H).
A weighted projective space WCP" is defined similarly as P cff. ([.7), only that C* acts now
by
(X1, ,xn+1) ~ (A", ,)\W"“xnﬂ) ,

where common factors in all weights w; can be scaled out. Common factors k in subsets of the
weights lead to Z; quotient singularities of WCP". A similar argument as before shows that [[6]]

n+1
o(TWCP") = |‘l (14 wix) (7.58)

=
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All weights are in Z and order to be compact w; > 0. This prevents us to define compact WCP
with ¢;(TWCP") =0, but WCP(—3,1,1,1) is a well known example of a non-compact Calabi-Yau
manifold, better know as &'(—3) line bundle over P2.
Compact examples are easily obtained, e.g. as hypersurfaces in the projective spaces above.
Let us consider a smooth degree d hypersurface M in P”. M is defined as zero locus of a degree d
polynomial P, which is sufficiently general so that P = 0 and dP = 0 has no common solution. It
is a section of HY = Opn(d). Since P is smooth we have a splitting of the tangent bundle TP" as
follows
0—TM—TP"|yy =Ny — 0, (7.59)

where Ny, is the normal bundle to M, which is identified with &'(d)|y because P is a coordinate

of N near M. Ch(H) = ¢™ = 1+ ¢|(H?) = 1 +dx, i.e. ¢;(H?) = dx and the adjunction formula

gives

(1 + x)n+1
(1+dx)

i.e. a Calabi-Yau hypersurface in P" has to have degree d = n+ 1. In this case P is a section &'(Kpn)

c(M) = =14+n+1-d)x+..., (7.60)

of the canonical line bundle K = —[c; (P")]. This gives for dimension three case, the quintic in P*.
For weighted projective spaces one has
(1 wix)

c(M):Wzl—(d—Zwi)x+.... (7.61)

4
Together with the transversality condition dP = 0 at P = 0 it leads 7555 examples of Calabi-Yau
threefolds [Pd]. This sample contains many mirror pairs.

Batyrev provided a systematic construction of mirror pairs, as sections M = (K p,)) and W =
7 (KP(A*)) respectively[f]. Here P, is the projective space associated to the integral polyhedron A
[F9]. Batyrev showed that if the A polyhedron is reflexive then a smooth sections of & (Kpa))
exists, the dual reflexive polyhedron A* exists and the generically smooth section of &'(Kpa)) has
mirror Hodge numbers h79(M) = h3~P4(W). Reflexive polyhedra in four dimensions relevant
for the CY threefold case have been classified []. These and generalized constructions like
complete intersections and orbifolds of tori and the afore mentioned manifolds are the bulk of the
systematically explored examples of Calabi-Yau mirror pairs, see [[[03] for computer generated
lists with about 10%* — 108 topological inequivalent examples?®, though slightly more exotic cases,
e.g. hypersurfaces and complete intersections in Grassmannians and flag manifolds do exist in
unknown numbers. An encouraging observation in view of this enormous numbers is that at least
in Type II string theory there is in some sense only one connected component of the Calabi-Yau
moduli space. In fact a conjecture formulated by Miles Reid that all Calabi-Yau spaces are in
the same moduli space connected by singular transitions [[[2]] finds a physical application in that
[[34] shows that the singularity in physical quantities as calculated in conformal field theory at the
conifold transition between topological different Calabi-Yau spaces is merely a breakdown of the
perturbative low energy description due to a non-perturbative black hole becoming massless at the
transition point. The full non-perturbative theory at low energy exhibits spontaneous breaking by

38The lower number is the number of inequivalent Hodge numbers the higher is an estimate of all topological differ-
ent phases in the Kéhlercone, which have not been systematically constructed.
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acquiring an Higgs vacuum expectation value. Also it has been shown that all hypersurfaces in
toric Calabi-Yau can be connected by such physically innocuous transitions.
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