
ADV. THEOR. MATH. PHYS. c© 2014 International Press
Volume 18, Number 4, 827–956, 2014

Topological strings, D-model,

and knot contact homology

Mina Aganagic, Tobias Ekholm,

Lenhard Ng and Cumrun Vafa

We study the connection between topological strings and contact
homology recently proposed in the context of knot invariants. In
particular, we establish the proposed relation between the Gromov-
Witten disk amplitudes of a Lagrangian associated to a knot and
augmentations of its contact homology algebra. This also implies
the equality between the Q-deformed A-polynomial and the aug-
mentation polynomial of knot contact homology (in the irreducible
case). We also generalize this relation to the case of links and to
higher rank representations for knots. The generalization involves
a study of the quantum moduli space of special Lagrangian branes
with higher Betti numbers probing the Calabi-Yau. This leads to
an extension of SYZ, and a new notion of mirror symmetry, involv-
ing higher dimensional mirrors. The mirror theory is a topological
string, related to D-modules, which we call the “D-model”. In the
present setting, the mirror manifold is the augmentation variety of
the link. Connecting further to contact geometry, we study inter-
section properties of branches of the augmentation variety guided
by the relation to D-modules. This study leads us to propose con-
crete geometric constructions of Lagrangian fillings for links. We
also relate the augmentation variety with the large N limit of
the colored HOMFLY, which we conjecture to be related to a Q-
deformation of the extension of A-polynomials associated with the
link complement.
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1. Introduction

The subject of topological strings has been important in both physics and
mathematics. From the physical perspective it has been studied from many
different viewpoints and plays a prominent role in the understanding of
string dualities. From the mathematical perspective, its underpinnings
(Gromov-Witten invariants) are well understood and play a central role in
symplectic geometry and related subjects. Moreover, in many cases one can
directly compute the amplitudes using either physical methods or mathe-
matical techniques and the two agree.

An interesting application of topological strings involves the study of
knot and link invariants. In particular it is known that HOMFLY polyno-
mials for links K can be reformulated in terms of topological strings on
T ∗S3 where one includes N Lagrangian D-branes wrapping S3 and some
Lagrangian brane LK intersecting S3 along the link and asymptotic to the
conormal of K at infinity. In this setup, it is possible to shift LK off of the
0-section S3 ⊂ T ∗S3, which suggests that the data of the link is imprinted in
how LK intersects the boundary of T ∗S3 at infinity. This ideal boundary is
the unit cotangent bundle U∗S3, which is a contact manifold (topologically
S3 × S2) with contact 1-form given by the restriction of the action form
p dq. The intersection of LK with U∗S3 is a Legendrian torus ΛK .

Large N transition relates this theory to a corresponding theory in the
geometry where S3 shrinks to zero size and is blown up with blow-up param-
eter given by Ngs, where gs is the string coupling constant. Under the
transition, boundary conditions corresponding to strings ending on branes
wrapping S3 close up and disappear, but the transition does not affect the
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Legendrian torus ΛK , which is part of the geometry infinitely far away from
the tip of the singular cone where S3 shrinks and gets replaced by S2.

Contact homology is a theory that was introduced in a setting corre-
sponding exactly to the above mentioned geometry at infinity. More pre-
cisely, one studies the geometry of R× ΛK ⊂ R× U∗S3, which we can nat-
urally view as the far distance geometry of LK , using holomorphic disks.
In this particular case of conormal tori ΛK in the unit cotangent bundle
of S3, the resulting theory is known as knot contact homology. From the
viewpoint of string theory, this theory involves a Hilbert space of physical
open string states corresponding to Reeb chords (flow segments of the Reeb
vector field with endpoints on ΛK) and a BRST-operator deformed by holo-
morphic disks in R× U∗S3 with boundary on R× ΛK and with punctures
mapping to Reeb chords at infinity. In this language, knot contact homology
is the corresponding BRST-cohomology. From a mathematical perspective
this structure can be assembled into a differential graded algebra (DGA)
which is well studied and in particular can be computed from a braid presen-
tation of a link through a concrete combinatorial description of all relevant
moduli spaces of holomorphic disks.

In view of the above discussion it is natural to ask how this DGA is
related with the open version of Gromov-Witten theory of LK . In [1] a partial
answer for this was proposed: it was conjectured that the augmentation vari-
ety associated to a knot, which is a curve that parametrizes one-dimensional
representations of the DGA associated to the knot, is the same as the moduli
space of a single Lagrangian LK corrected by disk instantons. This moduli
space is in turn, according to a generalization of SYZ conjecture, related to
the mirror curve, which is the locus of singular fibers in the bundle of conics
that constitutes the mirror, and as such determines the mirror.1

One aim of this paper is to indicate a path to a mathematical proof of
this conjecture: in Section 6.3 we show how to get a local parametrization
of the augmentation curve in terms of the open Gromov-Witten potential of
a Lagrangian filling of the conormal torus of a knot, see Section 6.4 for the
definition, and that expression agrees with the local parametrization of the
mirror curve derived using physical arguments, see Section 2.4. In particular,
for knots with irreducible augmentation variety, using the conormal filling
we obtain a proof of the conjecture, see Remark 6.7.

1The A-polynomial curves and their deformations were studied in a context of
(generalizing) the volume conjecture in [2], and its relation to topological string
was studied in [3–7]. Mirror symmetry and torus knots were studied in [8] and also
in [9].
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A further aim is to generalize this from one-component knots to many-
component links, and the generalization turns out to involve interesting new
ingredients. We consider new Lagrangian branes that have the same asymp-
totics as LK but have a topologically different filling. Similar new Lagrangian
branes in fact appear already in the case of knots, where different 1-cycles of
the Legendrian torus bound and can be shrunk in the different branes. For
links with n > 1 components, there are further possibilities with Lagrangian
branes of various numbers of components. The maximal number of compo-
nents is n, in which case no two components of the conormal tori of the link
at infinity are connected through the brane. However, there are Lagrangian
fillings and corresponding branes that connect some of the components at
infinity. For example, there is a single component Lagrangian brane which
connects them all, see Section 6.7 for a conjectural geometric construction.

Our study of the quantum moduli space of all these Lagrangians leads
to a new reformulation of mirror symmetry: the moduli space of branes for
an n-component link is n-dimensional and the mirror geometry, instead of
being a 1-dimensional curve, will be an n-dimensional variety. It turns out
that this variety can be viewed as a Lagrangian variety V ⊂ (C∗)2n in a
canonical way and we identify it with the augmentation variety from knot
contact homology.

An unusual feature of this structure is that we encounter higher dimen-
sional geometries as the mirror. In fact, it may appear that one cannot
formulate topological string in this context since the critical dimension for
that theory is effectively 1 for non-compact Calabi-Yau 3-folds but for n-
component links we have effective dimension n > 1. Nevertheless we propose
a string theory mirror even in these cases, based on what we call the topo-
logical “D-model”. The D-model is the A-model topological string on (C∗)2n

with a Lagrangian D-brane V and a canonical coisotropic brane filling the
whole (C∗)2n. In this context the topological string is exact at the level of
the annulus, with the analog of higher genus A-model corrections being cap-
tured not by higher genera of strings, but by the choice of a flux turned
on along the coisotropic brane. The D-model leads to a natural definition
of the theory in terms of D-modules (hence the name), while for n = 1 (in
particular for knots), the D-model is already known to be equivalent to the
B-model.

The organization of this paper is as follows. In Section 2 we review
the relation between topological strings and Chern-Simons theory, large N
transition, and knot invariants. Furthermore, we describe, using a general-
ized SYZ formulation, how any knot gives a mirror geometry. In Section 3
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we introduce new Lagrangians associated to knots with the usual asymp-
totics at infinity but with different interior topology. We then generalize the
discussion from knots to n-component links and show how n-dimensional
Lagrangian varieties in flat space (C∗)2n arise in the the study of the mod-
uli space of Lagrangian branes filling the link conormal. In Section 5, we
introduce basic elements of knot contact homology; furthermore, we relate
augmentation varieties with the (disk instanton corrected) moduli spaces of
Lagrangians associated to knots and links, and study intersection properties
of branches of the augmentation variety guided by the D-model. In Sec-
tion 6, we present a mathematical argument relating knot contact homology
for links to disk amplitudes in Gromov-Witten theory, and study geomet-
ric constructions of Lagrangian fillings for conormals as well as properties
and applications of the resulting Lagrangians. In Section 7 we present some
examples. In Section 8, we formulate a conjecture about how to quantize
higher dimensional augmentation varieties in terms of the D-model, by relat-
ing them to D-modules. Finally, Appendices A and B contain calculations
of a more technical nature.

2. Review

Consider Chern-Simons gauge theory with gauge group G = SU(N) on a
closed 3-manifold M at level k, where k is a positive integer. The Chern-
Simons partition function is given by the path integral

ZCS(S
3) =

∫
DA e

ik

4π
SCS(A)

over the space of connections A with values in the Lie algebra of the gauge
group, where

SCS(A) =

∫

M
Tr
(
A ∧ dA+ 2

3A ∧A ∧A
)

is the Chern-Simons action of the connection A. The path integral is indepen-
dent of metric on M and hence gives a topological invariant of 3-manifolds.
Submanifolds of dimension 0 in M , i.e. points, carry no topological informa-
tion but submanifolds of dimension 1, i.e. knots and links, do and in Chern-
Simons theory there are corresponding topologically invariant observables.
More precisely, we associate a Wilson loop observable in representation R
to a knot K by inserting the path ordered exponential

TrR U(K),
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where U(K) = P exp i
∮
K A is the holonomy of A along K, in the path inte-

gral. In fact, to define this we also have to choose a framing of the knot,
i.e. a non-vanishing vector field in the normal bundle of the knot K ⊂ M .
The case of many-component links is similar: a link K is a collection

K = K1 ∪K2 ∪ · · ·Kn

of disjoint knots Kj in M . We specify a framing of each knot component of
the link and representations

R1, R2, . . . , Rn

coloring K1, . . . ,Kn, respectively. The corresponding link invariant is then
the expectation value

〈TrR1
U(K1) · · ·TrRn

U(Kn)〉 = ZR1,...,Rn
(M ;K1, . . . ,Kn)/Z(M)

obtained by computing the Chern-Simons path integral with insertion of
link observables:

ZR1,...,Rn
(K1, . . . ,Kn) =

∫
DA e

ik

4π
SCS(A) TrR1

U(K1) · · ·TrRn
U(Kn),

and normalizing it with the path integral in the vacuum.
In [10], Witten explained how to solve the above theory exactly. Any

three dimensional topological theory corresponds to a two dimensional ratio-
nal conformal field theory (CFT). The Hilbert space of the three dimensional
theory and operators acting on it can be constructed from conformal blocks
of the CFT and from representations of the corresponding modular group.
In the Chern-Simons case, the relevant conformal field theory is the SU(N)k
Wess-Zumino-Witten (WZW) model, and one finds that knowledge of the
S, T and braiding matrices is all that is needed to solve the theory on any
3-manifold.

In this way, invariants of knots and links in the 3-sphere S3 that arise
from Chern-Simons theory can be explicitly computed. In particular, the
polynomial knot invariants considered earlier by Jones correspond to the
gauge group G = SU(2) and Wilson lines in the fundamental representation.
More generally, for a linkK ⊂ S3 with knot componentsK = K1 ∪ · · · ∪Kn,
the expectation values

〈TrR1
U(K1) · · ·TrRn

U(Kn)〉 = HR1,...,Rn
(K1, . . . ,Kn)(q,Q)
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are polynomials in the variables

q = e
2πi

k+N , Q = qN

with integer coefficients that are independent of both k and N . These poly-
nomials are known as HOMFLY polynomials and were constructed from a
mathematical point of view in [11].

2.1. Chern-Simons theory and topological string

Chern-Simons theory on S3 with gauge group SU(N) is intimately related
to the open topological A-model, or Gromov-Witten theory, on

X = T ∗S3

with N Lagrangian branes on the zero section S3 ⊂ T ∗S3 as follows. The
topological A-model corresponds to counting holomorphic maps with Lagran-
gian boundary conditions. In T ∗S3, any holomorphic map with boundary
on the zero section has vanishing area and is therefore constant. Thus, all
maps that contribute to the A-model partition function ZGW (X) are degen-
erate and it was shown in [12] that their contributions are exactly captured
by the Feynman diagrams of SU(N) Chern-Simons theory on S3. Conse-
quently, the partition functions of the topological A-model on X equals the
Chern-Simons partition function on S3:

ZGW (X) = ZCS(S
3),

where, as mentioned above, ZGW localizes on the 0-dimensional space of
holomorphic maps and is thus given by the (exponentiated) generating func-
tion

ZGW (X) = exp

⎛
⎝
∑

g,h≥0

Fg,h Nhg2g−2+h
s

⎞
⎠ ,

where Fg,h captures the contribution of maps of connected genus g Riemann
surfaces to X with h boundary components mapping to S3 ⊂ X. Here, each
boundary component is weighted by a factor N corresponding to the choice
of which of the N D-branes wrapping S3 that it lands on, and the genus
counting parameter (or string coupling constant) of the open topological



836 M. Aganagic, T. Ekholm, L. Ng and C. Vafa

string, gs, equals the effective value of Chern-Simons coupling constant:

gs =
2πi

k +N
.

From the perspective of Chern-Simons perturbation theory, the numbers
Fg,h arise by organizing the Feynman graphs in the following way: thicken
the graphs into ribbon graphs with gauge index labels on the boundary; the
number Fg,h then keeps track of the contributions from the graphs that give
rise to ribbon graphs corresponding to a genus g Riemann surface with h
boundary components. We also point out that the parameter q, in terms of
which the Chern-Simons knot invariants become polynomial, is given by

q = e gs .

Knots and links can be included in the correspondence between Chern-
Simons and the topological A-model in the following way [13]. To each knot
K in S3, we associate a Lagrangian LK in X, which we take to be its
conormal in T ∗S3 consisting of all covectors along the knot that annihilate
its tangent vector. In particular, intersecting LK with the zero section, we
get the knot itself,

LK ∩ S3 = K.

For n-component linksK = K1 ∪ · · · ∪Kn in S3, we consider the Lagrangian
LK which is the union of the conormals of its components

LK = LK1
∪ · · · ∪ LKn

.

We will consider D-branes on LKj
and therefore need to include a sector

in the theory that corresponds to worldsheets with boundaries both in the
branes on LK and in the branes on the zero section S3. We write the partition
function of the topological string on X with these branes present as

ZGW (X,LK1
, . . . , LKn

)

and note that, in addition to depending on gs and N , it also depends on the
moduli of the Lagrangians LKj

which in particular keeps track of the class
in H1(LKj

) represented by the boundaries of the worldsheets.
In the case under consideration, LKj

each has the topology of S1 × R2

and we get one modulus xj for each Lagrangian LKj
. Here, the complex

parameter xj can be written as xj = rj + i
∮
S1 Aj , where the real part rj can

be viewed as coming from the moduli of the deformations of the Lagrangian
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and the imaginary part is the holonomy of the U(1) gauge field of the brane
around the nontrivial cycle S1 × {0} ⊂ LKj

. In later sections, we will study
similar Lagrangians for K of first Betti number b1 = r > 1, in which case
the moduli of the Lagrangian is r-dimensional. Giving xj a nonzero value
corresponds to lifting the Lagrangian LKj

off of the S3.
From the Chern-Simons perspective, assuming there is a single D-brane

on LK for a knot K, computing the partition function ZGW (X;LK) corre-
sponds to inserting the operator

(2.1) det(1− e−x U(K))−1.

This describes the effect of integrating out the bifundamental strings, with
one boundary on S3 and the other on LK . To relate this to knot invariants,
we formally expand the determinant:

det(1⊗ 1− e−x ⊗ U(K))−1 =
∑

Sk

TrSk
U(K) e−kx,

where the sum ranges over all totally symmetric representations Sk of SU(N)
of rank k. Thus, computing in SU(N) Chern-Simons theory on S3 the fol-
lowing weighted sum of expectation values,

ΨK1,...,Kn
(x1, . . . , xn) =

∑

k1,...kn

〈
TrSk1

U(K1) · · ·TrSkn
U(Kn)

〉
e−k1x1−···−knxn ,

gives the topological string partition function on X with single branes on
LK1

, . . . , LKn
and N branes on S3. In what follows, we will denote the

HOMFLY polynomials

〈
TrSk1

U(K1) · · ·TrSkn
U(Kn)

〉
= HSk1

···Skn
(K1, . . . ,Kn)

simply by

HSk1
···Skn

(K1, . . . ,Kn) = Hk1···kn
(K1, . . . ,Kn).

Since we isolated the part of the topological string amplitude on X with
some boundary component on the Lagrangian branes on LK1

∪ · · · ∪ LKn
,

we get the following equation explicitly relating HOMFLY to topological
string partition functions:

ΨK1···Kn
(x1, . . . , xn) = ZGW (X,LK1

, . . . , LKn
)/ZGW (X).
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2.2. Higher representations and multiple branes

In Section 2.1, we considered knots and links with a single brane on the
conormal of each component. It is natural to ask what happens if we instead
insert several branes on the conormals. As it turns out, this reduces to a
special case of single brane insertions. We explain this in the case of a single
component knot K; the case of many component links is then an immediate
generalization.

Consider X = T ∗S3 with n > 1 branes on the Lagrangian conormal LK

of a knot K. Let V be the n× n matrix of holonomies on the branes, with
eigenvalues (ex1 , . . . , exn). The topological string partition function of the n
branes

Ψ
[n]
K (x1, . . . , xn).

has a contribution from worldsheets with at least one boundary component
on one of the branes wrapping S3 that can be computed by inserting

det(1⊗ 1− V −1 ⊗ U(K))−1

in the Chern-Simons path integral, and which describes the effect of integrat-
ing out the bifundamental strings between LK and the S3, generalizing (2.1)
to the case of more than one brane on LK .

Consider instead n distinct Lagrangians that are copies of LK separated
from it by moduli corresponding to Re(xi). More precisely, we take the
conormal of the n-component link K̃ = Kǫ ∪ · · · ∪Knǫ where Kjǫ is the knot
obtained by shifting K a distance jǫ, where ǫ > 0 is very small, along the
framing vector field of K used to define the quantum invariants (i.e. the
expectation values 〈TrR U(K)〉). Note that the topological string partition
function for a single brane on each LKjǫ

has exactly the same contribution,
as follows e.g. from the simple mathematical fact that

det(1⊗ 1− V −1 ⊗ U)−1 =
∏

i

det(1− e−xiU)−1,

which then holds inside the expectation values as well. In fact the system
with n branes on LK is physically indistinguishable from the system with
single branes on all components of the conormal LK̃ . The expression on the
left is more naturally associated to the former, whereas the one on the right
is more naturally associated to the latter.

Treating K̃ as a general link as considered in Section 2.1, disregarding
the effects of the branes being very close, we get a corresponding string
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partition function

ΨK̃(x1, . . . , xn)

given by the insertion in the Chern-Simons path integral described above.
However, when computing the string partition for n coincident branes on
LK , it is natural to take these effects into account: contributions that are not
captured by Chern-Simons theory correspond to worldsheets with no bound-
ary component on S3. For parallel branes these come from short strings
connecting different branes; such strings only contribute nontrivially to the
annulus diagram of the topological string with amplitude

∑
k>0

1
ne

kxie−kxj

corresponding to strings connecting LKi
to LKj

, i < j. Exponentiating this
contribution, we then find the following relation between the partition func-
tion for branes on LK and the partition function of single branes on LK̃ ,
treated as a general link:

Ψ
[n]
K (x1, . . . , xn) = ΨK̃(x1, . . . , xn)∆(x1, . . . , xn),

where

∆(x1, . . . , xn) =
∏

i<j

(exi − exj ).

Note that Ψ
[n]
K encodes the HOMFLY of the knot K colored by repre-

sentations with n rows:

ΨK(x1, . . . , xn) =
〈
det
(
1⊗ 1− V −1 ⊗ U(K)

)(−1)
〉
∆(x),

using the expansion

det
(
1⊗ 1− V −1 ⊗ U

)−1
=
∑

R

TrR U TrR V −1,

where the sum ranges over all SU(N) representations R with at most n
rows.

2.3. Large N duality

It was conjectured in [14] that SU(N) Chern-Simons theory on S3, or equiv-
alently the topological A-model string on X = T ∗S3 with N D-branes on S3,
has a dual description in terms of the topological A-model on the resolved
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conifold Y which is the total space of the bundle

O(−1)⊕O(−1) → CP 1.

Note that X and Y both approach the conical symplectic manifold R×
U∗S3, which is topologically R× S2 × S3, at infinity. At the apex of the
cone sits an S3 in X, while in Y , there sits a CP 1 ≈ S2. The duality arises
from the geometric transition from X to Y that shrinks S3 and replaces it by
CP 1 without altering the geometry at infinity. Furthermore, the N branes
on S3 in X disappear under the transition, but their number is related to
the size (symplectic area) t of CP 1 in Y as follows: t = Ngs, where gs is the
string coupling constant. We write

(2.2) Q = exp(−t) = qN .

The partition function of the closed topological string on Y counts holomor-
phic maps into Y . All such maps arise from perturbation of branched covers
of the central CP 1 ⊂ Y , and the variable Q keeps track of their degree.
In [14], the partition function of the closed topological A-model string on
Y was shown to agree with the partition function of SU(N) Chern-Simons
theory on S3, and consequently with the partition function of A-model topo-
logical string on X in the background of N D-branes on S3, provided that
the Chern-Simons parameters, k and N , and the string coupling constant
gs (for topological strings in both X and Y ) are related as gs =

2πi
k+N , and

that (2.2) holds. In other words, for parameters related as described:

ZCS(S
3; k,N) = ZGW (X; gs, N) = ZGW (Y ; gs, Q).

We next describe how to include knots and links in this picture, see [13].
Let K = K1 ∪ · · · ∪Kn ⊂ S3 be a link. As described in Section 2.1, adding
branes along the Lagrangian conormal LK , we relate the Chern-Simons
path integral with insertions corresponding to the link with open topological
string on X with boundaries on either the N branes on S3 or on the branes
on LK .

Recall that LK ⊂ X can be pushed off of the zero section S3, corre-
sponding to turning on xj �= 0 along LKj

. We thus assume that LK ⊂ X
is disjoint from S3 ⊂ X and consider the effect of the geometric transition
from X to Y . Since the transition affects only a small neighborhood of
the tip of the cone, corresponding to small neighborhoods of S3 ⊂ X and
CP 1 ⊂ Y , the Lagrangian LK is canonically pushed through the transition



Topological strings, D-model, and knot contact homology 841

as a Lagrangian in Y . Furthermore, in analogy with the closed string case dis-
cussed above, boundary conditions corresponding to worldsheet boundaries
on the N branes on S3 close up and disappear, while worldsheet boundaries
on the branes on LK remain unchanged. Thus, the partition function of
branes on the components of LK in Y

ΨK1,...,Kn
(x1, . . . , xn) = ZGW (Y, LK1

, . . . , LKn
)/ZGW (Y )

also gives the partition function of branes in X, wrapping the Lagrangian
in X corresponding to LK ⊂ Y under transition, and N branes on S3 ⊂ X,
provided (2.2) holds.

2.4. SYZ mirror symmetry for knots

Consider the A-model topological string on the resolved conifold Y with a
D-brane wrapping the Lagrangian conormal LK ⊂ Y of a knot K ⊂ S3, see
Section 2.3. There is then a contribution from short strings beginning and
ending on LK . Noting that a small neighborhood of LK is symplectomorphic
to a neighborhood of the zero section in T ∗LK and applying the construction
of [12], we find that this contribution is given by the partition function of
U(1) Chern-Simons theory on LK ≈ S1 × R2. At infinity, LK looks like R×
ΛK , with ideal boundary ΛK ≈ T 2, which means we should study U(1) (or
more precisely, GL(1)) Chern-Simons theory on the manifold S1 ×D2 with
T 2 boundary. Let λ be the longitudinal cycle of the T 2, which determines
the parallel of the knot K that links it trivially, and let µ be the meridional
cycle. We denote by x the holonomy along λ, and by p the holonomy along µ:

∮

λ
A = x,

∮

µ
A = p,

where A is the connection 1-form. In Chern-Simons theory on LK , the
holonomies of λ and µ are canonically conjugate:

[p, x] = gs,

where gs is the string coupling constant. This means in particular that for a
D-brane on LK in Y , p and x are not independent; rather, if ΨK(x) denotes
the partition function of LK , we have

pΨK(x) = gs
∂

∂x
ΨK(x).
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In particular, we should view ΨK(x) as a wave function with asymptotics

ΨK(x) ∼ exp

(
1

gs

∫
p dx+ · · ·

)
.

From the perspective of topological strings, in the classical limit gs → 0,
maps of the disks dominate the perturbation expansion, with maps of more
complicated Riemann surfaces giving contributions of higher order. This
means that

ΨK(x) ∼ exp

(
1

gs
WK(x,Q) + · · ·

)
,

where

WK(x,Q) =
∑

n,k≥0

an,k Q
k e−nx

is the generating function of Gromov-Witten invariants an,k corresponding
to counting holomorphic disks in Y with boundary on LK . Thus, at the level
of the disk,

(2.3) p = p(x) =
∂WK

∂x
(x,Q).

We point out that (2.3) is consistent with the fact that, classically in LK ,
the cycle µ bounds. Here µ bounding in LK means that the holonomy around
µ vanishes if we disregard the disk instanton corrections: ∂WK

∂x vanishes up
to contributions of instantons. This leads to the interpretation of the moduli
space of the brane as a Lagrangian curve VK ⊂ T ∗T 2, with coordinates x, p
and symplectic form dx ∧ dp, given by the equation

(2.4) AK(ex, ep, Q) = 0

for a polynomial AK(ex, ep, Q) (where we view Q as a parameter). In general,
for large x, (2.4) may have more than one solution p = p(x) for p in terms of
x. This corresponds to the fact that the theory may have more than critical
point in this phase; to get the solution corresponding to LK , we need to pick
the one where p ∼ 0 +O(e−x).

The curve (2.4) sums up disk instanton corrections to the moduli space
of a D-brane on LK probing Y . It was argued in [1] that this gives rise to a
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mirror Calabi-Yau manifold, XK , given by the hypersurface

(2.5) AK(ex, ep, Q) = uv.

Mirror symmetry exchanges A-branes, i.e. Lagrangian submanifolds, of Y
with B-branes, i.e. holomorphic submanifolds, of the mirror XK . Moreover,
quantum mirror symmetry implies that for every (special) Lagrangian brane
in Y there is a B-brane in XK such that the quantum corrected moduli space
of LK in Y is the same as the classical moduli space of the mirror B-brane
in XK . Here we see that the quantum dual B-branes are given by the line
{u = 0, v arbitrary} over a point q ∈ VK , i.e. if q = (ex0 , ep0) then (2.4) holds
for (ex, ep) = (ex0 , ep0).

In the special case when K is the unknot, we obtain the same mirror
of Y as in [15], but for more general knots, we get new mirrors. In fact,
for every knot K in S3 and its associated Lagrangian LK in Y , we get a
canonical mirror geometry (2.5), where the mirror of LK is determined by
a point on the mirror Riemann surface VK . Of course, we expect each of
the mirror Calabi-Yau manifolds (2.5) to contain not just the mirror of the
Lagrangian LK corresponding to the knot K, but also, by mirror symmetry,
mirrors of all other Lagrangian branes LK′ for knots K ′ �= K. In general,
however, these mirrors have more complicated descriptions.

3. Chern-Simons theory and Lagrangian fillings

Via large N duality, the Chern-Simons path integral on S3 contains non-
perturbative information about the A-model topological string in the resolved
conifold Y . Before the transition, in X = T ∗S3, the data that go into spec-
ifying the theory are just the knot K, the number of branes on it, and the
holonomy at infinity. We will set the number of branes on K to be 1 in
this section, and consider the higher rank generalization in the next section.
The data are imprinted at infinity of the ambient Calabi-Yau manifold, and
are thus visible both before and after the transition. After the transition,
the data at infinity may be compatible with more than one filling in the
interior. In Section 2.4, we focused on the filling that gives the Lagrangian
conormal LK , but, as we shall see, Chern-Simons theory encodes informa-
tion about other Lagrangian fillings as well; these correspond to different
classical solutions of the topological string.

At infinity, the Calabi-Yau looks like R× U∗S3 ≈ R× S3 × S2 and the
Lagrangian LK approaches R× ΛK , where ΛK , the conormal of the knot, is
naturally identified with the boundary of a tubular neighborhood of K in S3
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and is thus topologically a torus 2. There are two natural basic 1-cycles in
ΛK : the longitude λ, which is a parallel copy of the knot, and the meridian
µ, which is the boundary of a fiber disk in the tubular neighborhood.

A vacuum of the topological string with these boundary conditions is
determined once we specify the holonomy of the GL(1) connection around
a 1-cycle of the torus ΛK at infinity and find a Lagrangian brane that fills
in R× ΛK in Y with these moduli. Note that the holonomy of the GL(1)
connection encodes both the position of the brane and the U(1)-holonomy
on it, see Section 2.4.3 In the discussion so far we used the filling LK and
fixed the holonomy around the longitude cycle x. With a fixed connection at
infinity, there may be more than one corresponding filling. Moreover, having
found a vacuum with one choice of the filling, there is an SL(2,Z) family of
choices of flat connections, related by canonical transformations, that gives
rise to the same filling. This corresponds to a choice of the framing of the
Lagrangian, which we will discuss in more detail in Section 3.2.

By taking the holonomy x around the longitude to be very large, we
always get a choice of filling corresponding to the conormal Lagrangian LK .
The mirror Riemann surface

(3.1) 0 = AK(ex, ep, Q),

which encodes the geometry of the mirror, also has information about fillings
of R× ΛK . As we explained, the Lagrangian LK corresponds to a branch of
the Riemann surface where

p =
∂WK

∂x
(x) ∼ 0.

Since p is the holonomy around the meridian of the knot, the fact that it
vanishes classically means that the meridian cycle gets filled in in LK , as
is indeed the case topologically. The Lagrangian LK has a one-dimensional
moduli space, and the branch p ∼ 0 is the branch where x → ∞ and the
worldsheet instanton corrections are maximally suppressed. As we vary x,

2As will be further discussed in Section 5, U∗S3 ≈ S2 × S3 is naturally a contact
manifold, and ΛK a Legendrian submanifold. These observations are the starting
point for the knot contact homology approach to topological string in this back-
ground.

3We cannot expect to specify holonomies around both cycles of ΛK simulta-
neously, as the theory on the Lagrangian A-brane in a Calabi-Yau three-fold is
Chern-Simons theory, and in Chern-Simons theory on a manifold with a T 2 bound-
ary holonomies of the 1-cycles generating H1(T

2) are canonically conjugate.
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we can probe all of the Riemann surface and go to a region where this is no
longer the case.

There can be other ways of filling in. The region of p and x where the
mirror geometry is well approximated by

(3.2) mp+ nx ∼ const

should correspond to filling in which the mµ+ nλ cycle in ΛK ≈ T 2 bounds.
In all cases, “∼” denotes “up to instanton corrections”: if the approximation
in (3.2) can be made arbitrarily good in the mirror, on the original Calabi-
Yau Y , then the instanton correction can be made arbitrarily small, and
the corresponding classical geometry exists in Y . The relation between the
different phases should be akin to flop transitions in closed Gromov-Witten
theory, in the sense that phase transitions change the topology of the cycles
in the manifold: in this case, of the Lagrangian.

For example, filling in the longitude cycle λ gives

x ∼ 0.

The Lagrangian MK one obtains in this way is related to the knot comple-
ment S3 −K. In the special case when the knotK is fibered, the complement
can actually be constructed as a Lagrangian submanifold of Y asymptotic
to R× ΛK , see Section 6.5. In the general case we will give a conjectural
construction of a Lagrangian filling with the same classical asymptotics, see
Section 6.7. We will discuss this with further details in later sections. Here we
simply let MK denote a Lagrangian filling of ΛK in Y that has the classical
asymptotics x ∼ 0. In this setting, the holonomy p around the meridian cycle
is the natural parameter. In fact, the topological string partition function of
Y with a single brane on MK turns out to be

(3.3) Ψ̃K(p) = Hp/gs(K),

computed by the HOMFLY polynomial Hm(K) of the knot colored by the
totally symmetric representation with m boxes. Here m = p/gs where p is
fixed and gs is small. This follows from existence of a geometric transition
that relates MK and LK . Despite the fact that the transition changes the
topology of the cycle that gets filled in, it is quantum mechanically com-
pletely smooth due to instanton corrections, in the case of knots. In later
sections, we will study the case of links, where again there are different
choices of filling in the cycle at infinity. However, there the phase structure
of the theory becomes far more intricate.
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3.1. Geometric transition between LK and MK

Let us clarify the relation between LK and MK and the nature of the transi-
tion between them. We start with N D-branes on the S3 and a single brane
on the conormal bundle LK , intersecting along the knot K

LK ∩ S3 = K.

The fact that LK and S3 intersect makes the configuration slightly singular,
but one can remedy this by using the fact that LK moves in a one-parameter
family, parametrized by x. For any Re(x) �= 0, we can then move LK off of
S3 so that they no longer intersect.

However, there is another way to smooth out the singularity by smooth-
ing out the intersection between the S3 and LK . This requires breaking the
gauge symmetry on S3 by picking one of the N D-branes. Cut out a neigh-
borhood of the knot K from both the D-brane on S3 and on LK . This gives
S3 −K and LK −K both with a torus boundary. The two manifolds can
then be glued together along their boundaries. Topologically, this results in
S3 −K, since gluing in T 2 × R does not change the topology. (This way
of obtaining S3 −K discussed, in a related context, in [16].) As mentioned
above, it is not always possible to move the Lagrangian version of S3 −K
off of the zero section, and we have a somewhat more involved construction
with similar features to deal with this case. As in the previous section, we
will use MK to denote a Lagrangian that classically gives x ∼ 0.

Before the transition, the Lagrangian S3 −K and LK project with dif-
ferent degrees to S3 and no transition between them is possible. Also before
the transition, N is finite, and hence Q = eNgs = 1 classically. In this limit,
the curve factorizes and contains

(3.4) 0 = AK(ex, ep, Q = 1) = (1− ep)AK class(e
x, ep)× · · ·

where AK class is the classical A-polynomial of the knot, describing the mod-
uli space of flat connections on the knot complement. The ep − 1 = 0 branch,
corresponding to LK , disconnects from the curve describing S3 −K.

After the transition, the S3 has shrunk, Q gets an expectation value
Q �= 1, the curve generally becomes irreducible

(3.5) 0 = AK(ex, ep, Q),

and the distinction between LK and MK disappears. Since both p ∼ 0 and
x ∼ 0 branches lie on the same Riemann surface, MK and LK are smoothly
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connected once we include disk instanton corrections, with no phase transi-
tion between them.

To make this point even clearer, it is useful to consider one very simple
example of this when K is the unknot. We will study this both before and
after the transition. In the mirror geometry LK is given by choosing a point
λ in the curve

(3.6) Q− λ− µ+ λµ = 0

where λ = ex and µ = ep. When |λ| ≫ 1 this gives the Lagrangian mirror
of LK for the unknot. Note that this is consistent with µ = 1, i.e., p = 0.
The Lagrangian mirror to MK is given by |µ| ≫ 1, which requires λ = 1,
i.e., x = 0 as expected. Note that going from LK to MK can be done via a
smooth path in the mirror curve, even though in the original geometry they
are classically distinct.4

The transition between LK and MK described above has a simple inter-
pretation in the topological string. At the intersection of the D-branes wrap-
ping LK and S3 lives a pair of complex scalars A, B transforming in the
bifundamental representation (N,−1), (N̄ , 1), corresponding to strings with
one boundary on the zero section and the other on LK . As long as LK and
S3 intersect, the bifundamental is massless (the real mass vanishes). In one
phase, we move the Lagrangian LK off of the zero section. In this phase, the
bifundamental hypermultiplet gets a mass r = Re(x) corresponding to the
modulus of moving off. From this perspective, the partition function ΨK(x)
arises as follows. Integrating out the massive bifundamental of mass x gen-
erates the determinant [13] det(1⊗ 1− e−x ⊗ U)−1, where, as usual, U =
Pei

∮
K
A is the holonomy along the knot and x is identified with holonomy on

LK . In Chern-Simons theory, we integrate over A and thereby compute the
expectation value of the determinant ΨK(x) = 〈det(1⊗ 1− e−x ⊗ U)−1〉S3 ,
which is in turn computed by the colored HOMFLY polynomial

ΨK(x) =

∞∑

n=0

Hn(K) e−nx,

as explained earlier. This is in fact the derivation of the partition function
given in [13].

4Note also that before the transition, to go from LK to MK , one must add
one copy of S3, as is clear from the path in the mirror geometry going from one
asymptotic region to the other, taking into account that the periods get modified
by one unit around the cycle mirror to the blown-up CP 1.
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The theory has a second phase, where the bifundamental hypermultiplet
remains massless and gets an expectation value p. This requires the gauge
group on the S3 to be broken from U(N) to U(N − 1)× U(1), and then the
U(1) factors on the S3 and on LK to be identified. Giving the expectation
value to the bifundamental gives rise to the smoothing of the intersection
between LK and S3, which we described above. In the next subsection we
will show that the partition function in this phase is given by (3.3).

3.2. Framing of the Lagrangians

To write down the partition function of the theory, in addition to choosing
the vacuum by picking a point on the Riemann surface, we have to choose a
framing of the Lagrangian: a flat connection at infinity. Since the holonomies
around different cycles of the ΛK ≈ T 2 do not commute, different choices
are related by wave-function transforms. In LK , the natural variable is the
holonomy along the longitude of the knot x, and the wave function is given
by

ΨK(x) =
∑

Sn

Hn(K) e−nx = exp

(
1

gs
WK(x) + · · ·

)
.

In MK , the natural variable is p, the holonomy around the meridian.
Since x and p are canonically conjugate in the theory on the brane,

[p, x] = gs,

and moreover since there is no distinction between MK and the LK phase,
we can identify the Fourier transform of ΨK(x) with the partition function
of MK :

Ψ̃K(p) =

∫ ∞

−∞
e

1

gs
pxΨK(x).

We can simply deform the contour, at least in perturbation theory, to
find (3.3):

Ψ̃K(p) = Hp/gs(K) = exp

(
1

gs
UK(p) + · · ·

)
.

In particular, the Gromov-Witten “potentials” WK(x) and UK(p) that we
previously associated to LK and MK are simply dual to each other,

UK(p) =crit px+WK(x),
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related by Legendre transformation. In Section 6.9, we will provide a differ-
ent path to this result by directly comparing contributions of disk instantons
to Gromov-Witten potentials of MK and LK .

4. Large N duality, mirror symmetry, and HOMFLY

invariant for links

Consider Chern-Simons theory on S3 with an n-component link K,

K = K1 ∪ · · · ∪Kn,

where Kj are the knot components of K. The conormal LK of K in X =
T ∗S3 is the union of the n conormals of the knot components,

LK = LK1
∪ · · · ∪ LKn

,

and LK ∩ S3 = K. Under large N transition as in Section 2.3, X is replaced
by the total space Y of the bundle O(−1)⊕O(−1) → CP 1. As we explained
in Section 3.2, it is natural to view the boundary data as the only fixed data,
in which case we should consider the geometry of LK far from the apex of
the cone. Here the Lagrangian LK approaches R× ΛK , where ΛK is the
union of the n conormal tori ΛKj

of the components of K that describe
the imprint of the corresponding branes at the S2 × S3 at infinity of the
Calabi-Yau. As in the knot case, there are different ways to fill in ΛK in the
interior of Y . As we shall see, the link case is more involved than the case of
a single knot: there is a larger number of ways to fill in R× ΛK , connecting
different numbers of components of ΛK in the interior.

As in Section 2.4, we are led to consider holonomies of a GL(1) gauge
field on the brane around the 1-cycles of ΛK . This gives a phase space of
the system, which is the cotangent bundle of a 2n-dimensional torus:

Mn = (C∗)2n = T ∗(T 2n).

The torus is the torus of holonomies of the U(1) gauge field on the brane
around the 2n 1-cycles of ΛK . The cotangent direction arises from the moduli
of the Lagrangians. Equivalently, the phase spaceMn arises from holonomies
of the GL(1) gauge field on R× ΛK around the cycles of n copies of T 2 that
comprise the infinity ΛK . Thus on Mn we have (C∗)2n-coordinates

exi , epj , i, j = 1, . . . , n
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associated to the longitudes and the meridians of knots Ki, and a symplectic
form

ω =
∑

i

dxi ∧ dpi.

Note that Mn is in fact hyper-Kähler, a fact which we will make use of later
in this paper.

Inside Mn there is a Lagrangian subvariety VK associated to the link
(i.e. VK is half-dimensional and ω|VK

= 0). As we shall see, VK is in general
reducible:

VK =
⋃

P

VK(P ),

where the subvarieties correspond to different fillings of ΛK labeled by
partitions P of {1, . . . , n}. We want to identify the fillings that can be
obtained by smoothly varying the holonomies, since these give rise to the
same Lagrangian submanifold VK(P ). We will initiate the study of the vari-
eties in this section, using Chern-Simons theory and large N duality. In
Sections 5 and 6 we will use another approach based on knot contact homol-
ogy, where VK will be identified with the augmentation variety of the knot.
In Section 4.4, we will study quantum mirror symmetry, where we explain
how to quantize this variety.

4.1. Conormal bundle LK

In the simplest case, R× ΛK is filled by the conormal bundle of the link

LK = LK1
∪ · · · ∪ LKn

.

This is simply a union of n disconnected Lagrangians LKj
, which we move off

of S3 independently and then transition to Y . This was studied previously
in [17].

On Y , in the presence of LK , there are no holomorphic disks with bound-
ary on more than one component of LK , as the conormals LKj

are disjoint
from each other. So the disk amplitude is simply a sum of k contributions,
coming from disks with boundaries on one of the LKj

:

(4.1) WK,1n(x1, . . . , xn) = WK1
(x1) + · · ·+WKn

(xn).

From the perspective of large N dualities, this arises as follows. We start
with X = T ∗S3, with the n Lagrangians LKj

intersecting the zero section
along the link K. Pushing LKj

off of S3 by xj for each j, we give a mass
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xj to the bifundamental hypermultiplet at the intersection of Kj and S3.
Integrating these k massive hypermultiplets out, we end up computing the
expectation value of

n∏

i=1

det(1⊗ 1− e−xi ⊗ U(Ki))
−1

=
∑

m1,...,mn

Trm1
U(K1) · · ·Trmn

U(Kn) e
−m1x1−···−mnxn

where mi denotes the mi-th symmetric representation of the fundamental
representation, in the topological string or Chern-Simons theory. This can
be written as

(4.2) ΨK,1n(x1, . . . , xn, gs, N) =
∑

m1,...,mn

HSm1
,...,Smn

(K) e−m1x1−···−mnxn ,

where

(4.3) Hm1,...,mn
(K) = 〈Trm1

U(K1) · · ·Trmn
U(Kn)〉.

As was shown in [17], the classical limit of this is

ΨK,1n(x1, . . . , xn, gs, Q) = exp

(
1

gs
WK,1n(x1, . . . , xn) + · · ·

)
,

where WK,1n is as in (4.1). In this case, the link indeed gives rise to a
n-dimensional variety, but one which is simply a direct product of n 1-
dimensional curves,

VK(1n) : pi =
∂WKi

∂xi
(xi).

We will denote this variety by VK(1n), to indicate that it factors as a product
of n pieces, each of dimension 1.

4.2. Link-complement-like fillings MK

Just like in the knot case, there are other fillings of R× ΛK in Y . Here we
focus on fillings that in the classical limit looks like the link complement. We
denote a general such filling MK , see Section 6.7 for geometric constructions
of such fillings.
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Physically, MK is obtained by giving expectation values pi = migs to
the n hypermultiplets at the intersections of LKi

and S3 in X = T ∗S3. This
smooths the intersections of the D-branes on LKi

with one of the D-branes
on the S3, to give a single Lagrangian MK . This Lagrangian has first Betti
number b1(MK) = n so we still have n moduli that allow us to move MK

off of the zero section. These n moduli are the pi’s, which are also the
holonomies around the meridians. After that, the geometric transition relates
the Lagrangian MK to a copy of itself on Y .

The disk amplitude depends on nmeridian holonomies pi, and is obtained
from the colored HOMFLY polynomial of the link,

(4.4) Hm1,...,mn
(K) = 〈Trm1

U(K1) · · ·Trmn
U(Kn)〉,

by rewriting it in terms of pi = migs:

Ψ̃K,n(p1, . . . , pn, gs, Q) = Hp1/gs,...,pn/gs(K, gs, Q)

= exp

(
1

gs
UK(p1, . . . pn, Q) + · · ·

)
.

Equivalently, we can write this as

UK(p1, . . . pn, Q) = lim
gs→0

[gs log(Hp1/gs,...,pn/gs(K, gs, Q))].

The quantum corrected moduli space of the brane on MK in Y is an
n-dimensional variety VK(n) given by

(4.5) VK(n) : xi =
∂UK

∂pi
(p1, . . . , pn, Q).

By the above construction, VK(n) can be viewed as a Lagrangian subspace in
the 2n-dimensional space of (xi, pi) ∈ (C)2n relative to the symplectic form∑

i dxi ∧ dpi.
Note that if the linkK is a completely split link (i.e., one can find disjoint

solid balls B1, . . . , Bn ⊂ S3 such that Ki ⊂ Bi for each i), then in fact VK(n)
and VK(1n) coincide. This is because the HOMFLY polynomial of the link
factor in this case,

(4.6) Hm1,...,mn
(K) =K split Hm1

(K1) · · ·Hmn
(Kn),

and consequently the brane partition function, is an exact product of VKi
(1).

This suggests that in this case, one can go smoothly from the phase where
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we have a single Lagrangian MK , to the conormal Lagrangian LK consisting
of n disconnected Lagrangians. Since VK(n) would have no new information
in this case, we will simply identify it with VK(1n) and reserve the notation
of VK(n) for a non-split link K of n components: the fact that the link is
non-split translates into the fact that VK(n) is not a direct product of some
lower-dimensional varieties.

Just as in the case of the knots it is natural to expect VK(n) to corre-
spond to moduli space of SL(2,C) flat connections on S3 −K. More pre-
cisely, we expect this to be a Q-deformed version of it, where SL(2,C) is
embedded in the canonical way in SL(N,C). This is natural from the view-
point of the Higgsing construction discussed before.

4.3. General fillings

We will now describe the set of physically distinct ways of filling in the
torus ΛK in the interior of Y. As we will explain, the physically distinct
fillings are labeled by the ways to partition an n-component link K into
sublinks. The different ways to do this are labeled by integer partitions
P of {1, . . . , n}, where we view the parts Pa of the partition P as giving
corresponding sublinks Ka of K. An alternative way to label the fillings is
by a link K(P ) which is a split union of sublinks Ka:

K(P ) =
⋃

Pa⊂P

Ka.

(That is, move each of the sublinks away from the others, so that the result
is split.) We conjecture that the general distinct fillings are labeled by the
primitive partitions P , namely those for which each sublink Ka is non-split,
or, equivalently, those that have no refinement P ′ such that K(P ) = K(P ′).
The set of primitive partitions of an n-component link K is a subset of the
set of all partitions of {1, . . . , n}. For example, for a fully split link, there
is a single primitive partition P = {{1}, {2}, . . . , {n}}, and a single distinct
partition of K into sublinks: K = K(P ).

Let us now explain why this is reasonable. The Lagrangian fillings of ΛK ,
taken crudely, describe how components of ΛK come together in the interior
of Y . What one misses in this description is any information about which
cycles get filled in; however, as we have seen, this fact is not invariant (one
should recall the knot case, where phases with different cycles filled in get
smoothly connected, due to instanton corrections). We want to identify those
fillings which, while they may result in distinct classical geometries of the
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Lagrangian, are indistinguishable once disk instanton corrections are taken
into account. Since one can interpolate smoothly between such Lagrangians,
they lead to the same mirror variety. If this were the only consideration, we
would simply label the fillings by all partitions P . However, we also have to
take linking information into account. If some sublinks are split, since the
amplitudes should not depend on where the corresponding Lagrangians are,
we can separate them infinitely far from one another, which suggests there
could not have existed a single Lagrangian with those asymptotics. Even
if such Lagrangians existed, one could smoothly interpolate between the
would-be connected ones and the disconnected phases of the Lagrangian by
BRST trivial deformation as we separate them infinitely apart. Thus, par-
titions P that are not primitive contain only redundant information. Thus,
for an n-component link K, the physically inequivalent fillings are labeled
by primitive partitions P of {1, . . . , n}, the ones that result in sublinks Ka

that do not split further.
Given such a primitive partition P and the associated collection of sub-

links K(P ), we will denote the corresponding Lagrangian filling by

FK(P ) ⊂ Y.

The filling FK(P ) gives rise to an n-dimensional Lagrangian submanifold

VK(P ) =
∏

Pa⊂P

VKa
⊂ Mn,

which is a product of the varieties VKa
associated to the sublinksKa ofK(P ).

Each sublink Ka is by assumption non-split; suppose that Ka consists of na

knot components, where n =
∑

a na. We now explain the meaning of VK(P ).
Consider the disk amplitude

UK(P )(p1, . . . , pn)

obtained by studying the topological A-model string on Y , together with
the Lagrangian brane FK(P ). We define the “D-mirror” variety VK(P ) as

VK(P ) : xi =
∂UK(P )

∂pi
(p1, . . . , pk).

We have written UK(P ) in terms of the meridian variables, which is a conve-
nient choice when the meridian cycles get filled in. Since there cannot be any
disk instantons ending on disconnected components of a Lagrangian filling,
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the disk potential is a sum

UK(P ) =
∑

a

UKa
.

Each disconnected component MKa
of the filling is homologically like the

complement of the link Ka in the classical limit, and UKa
is the correspond-

ing potential. This together with the fact that the potentials UKa
give rise to

varieties VKa
(na) gives the result we claimed. This is consistent with what

we expect from large N duality: since the link K(P ) is a split link, with Ka

its non-split sublinks, the corresponding potential should be captured by the
classical limit of the HOMFLY polynomial of K(P ):

UK(P )(p1, . . . pna
) = lim

gs→0
gs log(Hp1/gs,...,pna/gs

(K(P ))).

It is important to note that the HOMFLY polynomial HK(P ) of the link
K(P ) is not the full topological string amplitude for this filling; P and K(P )
only label the filling. The branes in the filling labeled by P do remember
the full data of the link K they came from. The partitions P for which we
get nontrivial fillings correspond to saddle (critical) points of the HOMFLY
polynomial HK of the link, and the full partition function of topological
string with the Lagrangian branes on the filling FK(P ) is encoded by the
expansion of HK , the HOMFLY polynomial of the original link K, around
its saddle point P . We will discuss this in more detail below.

To summarize, for each different splitting of K into non-split sublinks
Ka, labeled by the primitive partition P , we get a Lagrangian filling FK(P ) of
the Legendrian tori ΛK at infinity. This filling is a union of link-complement-
like Lagrangians MKa

, one for each sublink of K(P ). The mirror variety cor-
responding to this filling is VK(P ), which is a product of the corresponding
varieties VKa

(na).

4.4. D-mirror variety

Given the link K, it is natural to define the mirror variety so that it depends
on the data at infinity of the Calabi-Yau alone, and not the specific filling.
With this in mind, we propose to identify

VK =
⋃

P

VK(P )

as the mirror variety to the link K. This is a natural proposal as it contains
information both about knots that comprise the link, and the way they
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are linked together. Moreover, this is exactly the same data that goes into
defining the dual Chern-Simons partition function on S3 with the link K.
In Section 8, we propose a way to quantize this variety.

Information about all the fillings P is contained in the HOMFLY poly-
nomial of the link. In particular, quantum mechanically, VK(P ) are the
Lagrangian submanifolds of Mn that are associated to different classical
saddle points of the wave function5

ΨK(x1, . . . , xn) =
∑

m1,...,mn

Hm1,...,mn
(K)e−m1x1−...−mnxn .

In general, different saddle points contribute to ΨK :

ΨK(x1, . . . , xn) =
∑

P

cPΨ
P
K(x1, . . . , xn),

where ΨP
K is a wave function canonically associated to the corresponding

saddle point P , and the coefficients cP are integers. Which saddle point
dominates the Chern-Simons path integral depends on the values of the
parameters xi, gs, and N , and the classical action at the saddle point

ΨP
K(x1, . . . , xn) = exp

(
1

gs
WK(P )(x1, . . . , xn) + · · ·

)
,

where WK(P ) is the potential defining the variety VK(P ) via

VK(P ) : pi =
WK(P )

∂xi
.

In the regime where one of the saddle points dominates the others, are
exponentially suppressed.

The above way of writing ΨK is a little bit crude because it neglects the
fact that in general, a single P may give rise to more than one wave function,
as VK(P ) may give rise to several vacua. We will disregard this fact for two
reasons: notational simplicity, and the fact that it is VK(P ) that plays the
crucial role in quantizing the theory. (While the subtlety affects the possible
WK(P ), it does not affect VK(P ).)

The existence of a single function ΨK(x1, . . . , xn) that has all these dif-
ferent classical limits imposes constraints on the structure of VK , viewed as a
reducible variety. As we will discuss in Section 8, quantization of the variety
VK gives rise to a D-module on Mn. The wave function ΨK(x1, . . . , xn) is

5Non-perturbative aspects of topological strings have been studied in [18–20].
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a section of this D-module. The fact that the D-module that arises in this
way is irreducible (it corresponds to a single irreducible quantum system,
rather than being a direct sum of super-selection sectors) implies that dif-
ferent components VK(P ) of VK must fit together in a specific way, encoded
by a graph that we now describe.

To every link K we can associate the graph ΓK as follows. The vertices
of the graph correspond to the primitive partitions P of {1, . . . , n}, corre-
sponding to the ways of partitioning K into non-split sublinks. The set of all
such partitions is a subset of partitions of the set {1, . . . , n}. Two vertices
P and P ′ of the graph are connected by an edge if P ′ is a refinement of
P and there is no other graph vertex P ′′ between the two (where P ′′ is a
refinement of P and P ′ is a refinement of P ′′).

We claim that the graph ΓK obtained in this way captures the geometry
of VK as follows: for any pair of vertices of the graph that are connected by
an edge, we conjecture that

codim(VK(P ) ∩ VK(P ′)) = 1,

where codimension is counted inside either of the n-dimensional varieties
VK(P ), VK(P ′). Note that, based on counting dimensions, a generic inter-
section would be over points (codimension n). The presence of an edge means
that the intersection of VK(P ) and VK(P ′) is as non-generic as possible with-
out them coinciding. In a generic situation thus the graph would consist of
vertices alone. The existence of a single function ΨK implies that this is
never the case for multi-component links. Furthermore, it is natural to gen-
eralize our conjecture as follows: for any two primitive partitions P and P ′,
the codimension of the intersection of VK(P ) and VK(P ′) is at most the
distance between the partitions, defined as the minimum number of edges
in ΓK needed to pass from P to P ′:

codim(VP ∩ VP ′) ≤ d(P, P ′).

If all partitions are primitive and thus give vertices of the graph, then
we can connect the coarsest partition6 Pc = (12 · · ·n) with the finest par-
tition Pf = (1) · · · (n) by a sequence of partitions Pc = P1,P2, . . . , Pn = Pf ,
where Pi = (1) · · · (i− 1)(i · · ·n). Passing successively from P1 to Pn involves
removing the knot components of K one by one, starting with the first
component, until we have removed all of them. We expect that for each i,

6For convenience, we will sometimes abbreviate Pc = (12 · · ·n) by n and Pf =
(1) · · · (n) by 1n when writing VK(Pc) or VK(Pf ).
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VK(Pi) and VK(Pi+1) intersect in codimension 1, and this allows us to move
between components of VK in such a way that each move is between com-
ponents whose intersection has codimension 1. See Section 5.4 for further
discussion for general links and a reformulation of this discussion in terms
of the augmentation variety.

Let us now explain why the irreducibility of the D-module implies the
codimension condition. A way to characterize the fact that ΨK corresponds
to an irreducible D-module is that, first of all, it satisfies a set of differ-
ential (or, more precisely, difference) equations generated by a finite set of
operators

(4.7) AαΨK = 0,

where each of Aα is of the form

Aα =
∑

k1,...,kn

ak1,...,kn
(ex1 , . . . , exn)egs

∑
i
ki∂xi .

where ak1,...,kn
are polynomials in exi . The fact that the equation (4.7) is

linear implies that not only ΨK but also each of ΨP
K satisfy the equation. It

was proven in [21] that the colored HOMFLY polynomial of any link satisfies
such a finite set of difference equations, and that the set is holonomic (or
more precisely, q-holonomic). What this means is that, in the classical limit
gs → 0,

Aα(e
xi , egs∂j ) −→ Aα(e

xi , epj ),

when xi, pj = gs∂xj
become numbers, the set of equations (4.7) parametrize

a Lagrangian submanifold of Mn. This Lagrangian submanifold is just what
we called VK ,

VK : Aα(e
xi , epj ) = 0.

The fact that irreducible components of VK =
⋃

P VK(P ) intersect over the
varieties of codimension 1 is a consequence of a general theory of systems of
differential equations of this type [22–24].7. We will discuss this point further
in Section 8, where we discuss quantization of the system from the physical
perspective.

7The system at hand is q-holonomic, rather than holonomic. The theorems we
need are best developed in the ordinary holonomic case. However, we can view the
q-holonomic system as holonomic, by working locally, so presumably the distinction
is immaterial.



Topological strings, D-model, and knot contact homology 859

4.5. An example: Hopf link

The simplest nontrivial 2-component link is the Hopf link K = Hopf =
K1 ∪K2, with K1,K2 = ©. In this case, we expect two distinct fillings,
corresponding to partitions P = (12) (which we will abbreviate as 2) and
P = (1)(2) (which we will abbreviate as 12). In the first case P = (12),
Lagrangian filling of ΛHopf is the complement of the entire Hopf link in S3,

MHopf = S3 −Hopf,

and this gives rise to VHopf(2). The filling is easy to see from the toric dia-
gram, before and after the transition. The Hopf link is realized by taking
two Lagrangian branes on opposite toric legs before the transition. They can
each glue to one copy of the brane on S3 to move off the S3. The topology
of the resulting Lagrangian is T 2 × R. This has b1 = 2, so the moduli space
is 2-dimensional. Moreover, there are no disk instanton corrections to it8, so
the potential is determined classically. It is easy to see that

(4.8) UHopf(p1, p2) = p1p2,

since the critical points associated to this simply state that the meridian of
one knot in the Hopf link gets identified with the longitude of the other,
once we glue MK from pieces, as we described. Namely, in terms of

epi = µi, exi = e∂pi
UHopf = λi,

we have

VHopf(2) : λ1 = µ2, λ2 = µ1.

The other filling corresponding to P = (1)(2) has two branes LKi
, each

simply a conormal to the unknot, probing the conifold geometry after the
transition. At the level of the disk potential, they cannot talk to each other,

8This is the case because any holomorphic map with an S1 boundary on the T 2

comes in an S1 family. The fact that the Euler characteristic of the S1 vanishes
leads to vanishing of the corrections.
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so

UHopf(1
2)(p1, p2) = U©(p1) + U©(p2),

leading to a direct product of two copies of Riemann surfaces mirror to the
unknot:

VHopf(1
2) : Q− λ1 − µ1 + λ1µ1 = 0, Q− λ2 − µ2 + λ1µ1 = 0.

The variety

VHopf = VHopf(1
2) ∪ VHopf(2)

coincides with the augmentation variety of the Hopf link, as we will see in
the next section.

The same result can be obtained in a number of different ways, two of
which we mention here. First, the result can be obtained by calculating the
HOMFLY polynomials of the Hopf link, colored by totally symmetric repre-
sentations, and taking the classical limit. We will show this in Appendix A
in detail. Second, as we will brush on in Section 8, one can obtain the same
result by considering a pair of branes on the Riemann surface mirror to the
unknot.

These two approaches allow one not only to recover the classical variety
VHopf, but also give a prediction for its quantization. Namely,

ΨHopf(x1, x2) =
∑

m1,m2

Hm1,m2
em1x1+m2x2

is given in terms of the SU(N)n WZW S matrix

Hm1,m2
= Sm1,m2

/S00

evaluated at q = e2πi/(n+N)and Q = qN . Here Sm1m2
is the matrix element

corresponding to the totally symmetric representations with m1,m2 boxes.
Using the well-known explicit expressions (see Appendix A), one can show
that ΨHopf satisfies a set of difference equations

AαΨHopf = 0, α = 1, 2, 3,

where

A1 = −ex1 + ex2 − (1−Qex1)egs∂1 + (1−Qex2)egs∂2 ,

A2 = (1− q−1ex2 − (1−Qex2)egs∂2)(egs∂1 − ex2),

A3 = (1− q−1ex1 − (1−Qex1)egs∂1)(egs∂2 − ex1).
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In the classical limit, these reduce to Aα = 0, where

A1 = −λ1 + λ2 − (1−Qλ1)µ1 + (1−Qλ2)µ2,

A2 = (1− λ2 − µ2 +Qλ2 µ2)(µ1 − λ2),

A3 = (µ2 − λ1)(1− λ1 − µ1 +Qλ1 µ1)(µ2 − λ1).

The Lagrangian solutions to this are precisely the variety VHopf = VHopf(1
2) ∪

VHopf(2). (There are other solutions that do not lead to Lagrangians. These
are not of interest, as they do not describe saddle points.) Finally, note that
the intersection VHopf(1

2) ∩ VHopf(2) is indeed codimension 1: it is a curve,
given by

µ2 = λ1, λ2 = µ1,

where µ1, λ1 lie on the unknot curve

1− λ1 − µ1 +Qλ1µ1 = 0.

The equations are simple enough that we can solve them exactly. Two
linearly independent solutions, with different asymptotics, can be obtained
by considering two different contours of integration C(2), C(12) in

ΨP
Hopf(x1, x2) =

∫

CP

dp2
1

1− e−p2ex1
Ψ©(x1)Ψ

−1
© (p2) e

p2x2/gs

where Ψ©(x) is the partition function of the unknot.9 The wave function
corresponding to VHopf(2) is obtained by taking a contour C(2) which is a
small circle p2 = x1; this gives

Ψ
(2)
Hopf(x1, x2) = ex1x2/gs .

The wave function corresponding to VHopf(1
2) can be obtained by taking the

contour C(12) to run along the real axis. Using the fact that Fourier transform

Ψ−1
© (p) is Ψ©(x), this gives

Ψ
(12)
Hopf(x1, x2) = exp(W©(x1)/gs +W©(x2)/gs + · · · ).

9We have simplified things slightly by shifts of variables. For details see
Appendix A.
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4.6. Knot parallels and higher rank representations

Consider a link K̃ obtained by taking n parallels of a single knot K. This
is closely related to studying n branes on a single Lagrangian associated to
the knot K. As explained in Section 2.2, the partition functions are related
by

ZK̃(x1, . . . , xn) = Z
(n)
K (x1, . . . , xn)/∆(x),

where

∆(x) =
∏

1≤i<j≤n

(e(xi−xj)/2 − e(xj−xi)/2)

arises from integrating out short strings, with boundary on LK alone and
with no boundaries on the S3. This is a sum over annuli and hence has no
gs dependence.

This relation between ZK̃ and Z
(n)
K implies that for every saddle point of

ZK̃ we get a saddle point of Z
(n)
K as well, at least as long ∆(x) has no zeroes

there. Thus we expect the saddle points of ZK to be a subset of saddle points
of ZK̃ . The ones that may be missing are those where short bifundamental

strings get expectation values. These are missing in Z
(n)
K (x1, . . . , xn), where

by assumption these strings are massive and we have integrated them out
to get ∆(x). We will give a rigorous mathematical proof of this statement in
Section 5, from the perspective of knot contact homology. It is satisfying that
the same picture emerges from Chern-Simons theory and large N duality.

5. Knot contact homology

In this section we discuss the connection between knot contact homology
and topological strings in the context of knot and link invariants. We first
give a brief discussion of this connection in the next subsection, before giving
a more detailed discussion in the following subsections and in Section 6.

5.1. Brief summary of relation between topological

strings and knot contact homology

Knot contact homology uses the Lagrangian brane LK in X = T ∗S3, but
with the zero section S3 ⊂ T ∗S3 deleted. In other words, one considers the
geometry far from the apex of the cone where the geometry is R× U∗S3 ≈
R× S3 × S2; this shares the basic feature of the geometry of Y after the
transition, where S2 does not bound.
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For simplicity of notation, we temporarily assume that K is a single-
component knot. Then LK is R× ΛK ≈ R× T 2 and it is natural to view
the R-factor as the “time” direction. Here the torus ΛK can be viewed as
the geometry of the Lagrangian brane at infinity. The knot leaves its imprint
on how the Legendrian submanifold ΛK is embedded in the contact manifold
U∗S3 ≈ S3 × S2.

Consider the physical open string states ending on ΛK . Among these
curves with endpoints on ΛK , the paths that are stationary for the action∫
p dq are “Reeb chords” ai, which are string trajectories that are flow seg-

ments of the Reeb vector field. (Reeb chords also have the property that
holomorphic maps can end on them.) In the physical setup we would say
that the ai are classically annihilated by the BRST symmetry QB:

QB · ai = 0.

However, disk instantons modify the operation of QB in a way similar to
Witten’s formulation of Morse theory [25], where the critical points of the
Morse function correspond to vacua, but instanton corrections, which cor-
respond to gradient flows (rigid up to translation), modify the supersym-
metry algebra. In the case at hand the role of the gradient flows are played
by disk instantons, which are disks D (rigid up to R-translation) that at
t → +∞ start with the Reeb chord ai and at t → −∞ approach the Reeb
chords aj1 , . . . , ajkD

as ordered multi-pronged strips with kD + 1 punctures.
The boundary of the disk maps to R× ΛK and hence (upon choosing some
fixed paths capping the ends of the Reeb chords) represents an element
in H1(ΛK), and thus picks up the holonomy factor exp(lDx+mDp) from
the Wilson lines on the Lagrangian brane. Let nD denote the intersection of
this disk (again suitably capped off) with the 4-cycle dual to S2, i.e. R× S3.
Then there is a deformed QB operator (called ∂ below), which we interpret
as the quantum corrected QB, given by

QB · ai =
∑

rigid disks D

QnDelDx+mDpaj1 · · · ajkD
,

where x, p correspond to the holonomies of the probe brane around the
longitudinal/meridional directions of the knot. Thus the open string states
correspond to nontrivial elements of the deformed QB cohomology. The exis-
tence of a 1-dimensional representation of this cohomology leads to an alge-
braic constraint A(ex, ep, Q) = 0. Such 1-dimensional representations can be
interpreted as the disk corrected moduli space of one such Lagrangian brane
after the large N transition; see Section 6.2, where it is explained how a
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Lagrangian filling with associated moduli space of disks gives an augmenta-
tion. Using the large N duality, this should be the same as the Q-deformed
A-polynomial we defined earlier, which is the quantum corrected moduli
space of the single brane LK . The fact that we find agreement between
these two setups can be interpreted as further evidence for large N duality.

The same setup applies to the case of links. The main novelty there is
that we have n Legendrian tori and thus we have n2 sectors of open strings
associated to the n2 choices for the endpoint components of the Reeb chords.
As in the knot case, we can use disk instantons to find the QB corrected
cohomology. The representation theory of the resulting algebra, where there
are nontrivial open string states between all pairs, leads to an n-dimensional
variety V (n), which we identify with the corresponding moduli space VK(n)
discussed earlier; see Section 6.7 for possible geometric constructions of cor-
responding Lagrangian fillings. Moreover, we can consider other represen-
tations where part of the open strings between some pairs of Legendrian
tori are mapped to zero. This gives other varieties VK(P ) as discussed in
Section 4.

We now turn our attention to a more mathematical description of knot
contact homology. We begin with a brief general introduction to contact
homology, an object associated to contact manifolds and to their Legen-
drian submanifolds. Next we describe knot contact homology, which is the
contact homology associated to the Legendrian torus ΛK ⊂ U∗R3 (which
can be viewed as a patch of U∗S3 = S2 × S3), first geometrically and then
algebraically. We then present augmentations from an algebraic perspective
and use these to define a polynomial knot invariant, the augmentation poly-
nomial, or a variety in the case of a multi-component link. The augmentation
variety is conjectured to agree with the mirror-symmetry variety VK from
previous sections. Besides agreeing with VK in a number of examples, we
will see that the augmentation variety shares many properties of VK . This
will be discussed further in Section 6.

5.2. Mathematical overview of knot contact homology

Here we provide a summary of the mathematics behind knot contact homol-
ogy and augmentations. This goes into more detail than the previous subsec-
tion and also places the construction in the context of contact and symplec-
tic geometry. The full story is rather long, and we will omit many technical
details in the interest of readability. As a result, some of the discussion
below is rather imprecise, but we will provide references to more detailed
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treatments in the literature for the interested reader. A slightly less brief
overview can be found in [26].

Knot contact homology is a special case of Legendrian contact homology,
which is itself a small part of the more elaborate Symplectic Field Theory
package in symplectic topology introduced in [27]. The general setup begins
with a contact manifold, which for our purposes is a (2m− 1)-dimensional
manifold V equipped with a 1-form α such that α ∧ (dα)m−1 is a volume
form on V . The 1-form α determines the Reeb vector field Rα on V given
by dα(Rα, ·) = 0 and α(Rα) = 1. Associated to the contact manifold V is
its symplectization, the 2m-dimensional manifold R× V equipped with the
symplectic form ω = d(etα), where t is the coordinate in the additional R-
factor; on the symplectization we may choose an R-invariant almost complex
structure J pairing ∂/∂t and the Reeb vector field Rα.

Legendrian contact homology is associated to the contact manifold V
along with a Legendrian submanifold Λ ⊂ V , which is a submanifold along
which α is identically 0, of maximal dimension; the contact condition on
α forces this maximal dimension to be m− 1. In this case, R× Λ is a
Lagrangian submanifold of R× V .

Define a Reeb chord of Λ to be a flowline of Rα that begins and ends
on Λ. We define the algebra A = A(Λ) to be the free (tensor) algebra over
the ring Z[H2(V,Λ)] generated by Reeb chords of Λ. That is, if a1, . . . , ar
are the Reeb chords of Λ, then an element of A is a linear combination of
monomials of the form

eγai1 · · · aik

where 1 ≤ i1, . . . , ik ≤ r and γ ∈ H2(V,Λ). (Here the ai’s do not commute
with each other, although for many purposes one can abelianize and replace
A by the polynomial ring generated by a1, . . . , ar.) The algebra A has a
grading (by Conley–Zehnder indices) that we do not describe here.

We can construct a differential map ∂ : A → A by counting certain J-
holomorphic curves in R× V with boundary on R× Λ. More precisely, for
1 ≤ i ≤ r, define

∂(ai) =
∑

k≥0

∑

Δ

(sgn∆)e[Δ]aj1 · · · ajk ,

where the second sum is over all rigid (i.e., 0-dimensional moduli space) J-
holomorphic maps ∆ from a disk with k + 1 punctures along its boundary
to R× V , such that the boundary of the disk is mapped to R× Λ and the
punctures are mapped in order to a neighborhood of ai near t = ∞, and
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aj1
aj2

aj

ai ai ai

Figure 1: Holomorphic disks contributing terms 1, aj , aj1j2 , respectively, to
∂(ai). The cylinders represent R× Λ ⊂ R× V , with top and bottom corre-
sponding to +∞ and −∞ in R, respectively.

neighborhoods of aj1 , . . . , ajk near t = −∞; (sgn∆) is a sign associated to
∆; and [∆] is the homology class of ∆ in H2(V,Λ). See Figure 1.

In appropriate circumstances, ∂2 = 0, ∂ lowers degree by 1, and the
homology of the differential graded algebra (A, ∂) is an invariant of the
Legendrian submanifold Λ, called the Legendrian contact homology of Λ.
(See e.g. [28, 29]. From a physical perspective, the main necessary condition
is that the closed string sector, Reeb orbits, decouples from the open string
sector, Reeb chords.)

As mentioned in previous sections, there is a strong parallel to open
topological strings, where R× Λ is a brane,A keeps track of open topological
strings on R× Λ, and ∂ is the BRST operator QB.

We now apply this general setup to one particular case of interest. Let V
be the bundle U∗S3 consisting of unit-length cotangent vectors in S3; this is
a five-dimensional contact manifold with α = p dq. If K ⊂ S3 is a link, then
define the unit conormal bundle ΛK ⊂ U∗S3 to be the subset consisting of
all unit covectors in T ∗S3 lying over K and annihilating TK. It is an exercise
to check that ΛK is Legendrian in U∗S3. We can then define the knot contact
homology of K to be the homology of the differential graded algebra (A, ∂)
defined above with Λ = ΛK .

If K is an n-component link K1 ∪ · · · ∪Kn, then ΛK = ΛK1
∪ · · · ∪ ΛKn

is a disjoint union of n two-dimensional tori, and we can write
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H2(V,Λ) = H2(S
3 × S2,ΛK) ∼= H2(S

2)⊕H1(ΛK)

∼= Z⊕ Z
2n ∼= Z〈t, x1, p1, . . . , xn, pn〉.

Here t is the generator of H2(S
2) and xi, pi are generators of H1(ΛKi

) =
H1(T

2) such that pi is a meridian and xi is a longitude for Ki with respect
to the standard Seifert framing (so that xi and Ki have linking number 0).
Correspondingly, we can write the coefficient ring for A as

Z[H2(V,Λ)] ∼= Z[Q±1, λ±1
1 , µ±1

1 , . . . , λ±1
n , µ±1

n ]

where Q = et, λi = exi , and µi = epi .
Given a braid withm strands such thatK is the closure of the braid (i.e.,

the result of gluing together corresponding ends of the braid in S3), there is
a combinatorial formula for the differential graded algebra (A, ∂) associated
to K. Outside of computations, we will not need the precise formula, and
we omit it here; please see the Appendix of [26] for the full definition of
the version of the invariant that we use in this paper, noting that our Q
is denoted by U in that paper. (The algebra given in [26] is in turn based
on work that originally appeared in the series of papers [30–33].) For our
purposes, it suffices to note that A is finitely generated as an algebra over
the above coefficient ring Z[Q±1, λ±1

1 , µ±1
1 , . . . , λ±1

n , µ±1
n ], and the generators

of A are all of degree ≥ 0. These generators include m(m− 1) generators of
degree 0 that we write as aij for 1 ≤ i, j ≤ m and i �= j.

As an example, consider the Hopf link, which is represented by the 2-
strand braid σ2

1. For this link, A is generated by the following generators:
a12, a21 of degree 0; b12, b21, c11, c12, c21, c22 of degree 1; and a number of other
generators of degree 1 and 2 that are irrelevant for our purposes. From the
formula from [26], the differential ∂ is given by:

∂(a12) = ∂(a21) = 0

∂(b12) = λ1µ1λ
−1
2 µ−1

2 a12 − a12

∂(b21) = a21 − λ−1
1 µ−1

1 λ2µ2a21

∂(c11) = Q− λ1 − µ1 + λ1µ1 + λ1µ1µ
−1
2 a12a21

∂(c12) = Qa12 + λ1µ
−1
2 a12(µ1µ2 − µ1 − µ2 + µ1a21a12)

∂(c21) = λ2a21 − µ1a21

∂(c22) = Q− λ2 − µ2 + λ2µ2 + λ2a12a21.

We will use this computation in the next subsection.
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5.3. Augmentations, the augmentation variety,

and the A-polynomial

Having defined the differential graded algebra for knot contact homology,
we now turn to augmentations. In general, an augmentation of a differential
graded algebra (A, ∂) is an algebra map ǫ (preserving multiplication) from
A to a ring S, such that ǫ(1) = 1, ǫ ◦ ∂ = 0, and ǫ vanishes on elements of
nonzero degree. Here we will take our augmentations to be graded, where
we think of the ring S as a DGA with trivial differential concentrated in
degree zero. Thus, our augmentations ǫ are nonzero only on generators of
degree zero.

Augmentations arise naturally in symplectic topology in the context
of symplectic fillings. Suppose that V is a contact manifold and W is a
symplectic filling of V ; this is a symplectic manifold whose boundary is V ,
satisfying a certain compatibility condition (V should be a convex end of
W ). We further assume that W is an exact symplectic filling if the contact
1-form α on V extends to a 1-form α on W such that ω = dα, where ω
is the symplectic form on W . Next let Λ ⊂ V be Legendrian, and suppose
that L ⊂ W is a Lagrangian filling of Λ; this is an embedded Lagrangian
submanifold whose boundary is Λ (and which looks like R× Λ near V ).

A special case of this construction is when L is an exact Lagrangian filling
of Λ, i.e., when α|L has a primitive on L. In this case, we can associate to
L a canonical augmentation ǫ of the DGA for Λ,

ǫ : A → Z[H2(W,L)],

obtained by counting holomorphic disks in W with boundary on L and
asymptotic to a Reeb chord for Λ. More generally, if L is non-exact, we can
use L to deduce certain structures on the space of abstract augmentations of
Λ. This perspective relating augmentations to Lagrangian fillings is central
to the mathematical side of this paper, and we return to it in detail in
Section 6.

For now, we examine the space of augmentations in our particular case.
When K is an n-component link and (A, ∂) is its differential graded algebra
with coefficient ring Z[λ±1

1 , µ±1
1 , . . . , λ±1

n , µ±1
n , Q±1], an augmentation to C is

a (graded) algebra map ǫ : A → C such that ǫ(∂(a)) = 0 for all Reeb chords
a. Note that an augmentation restricts to a ring homomorphism from the
coefficient ring of A to C.

With this in mind, define the augmentation variety of the n-component
link K to be the subset of (C∗)2n+1 = (C− {0})2n+1 given by
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VK = {(ǫ(µ1), . . . , ǫ(µn), ǫ(λ1), . . . , ǫ(λn), ǫ(Q)) | ǫ : A → C augmentation}.

(More precisely, the augmentation variety is the closure of the maximal-
dimensional piece of this set.) This variety is the set of ways to assign
nonzero complex numbers to µ1, . . . , µn, λ1, . . . , λn, Q such that a collec-
tion of polynomials in m(m− 1) variables aij (with coefficients involving
µ1, . . . , µn, λ1, . . . , λn, Q), namely the images under ∂ of the generators of
degree one, has a common root. Note that the augmentation variety is alge-
braic (it is cut out in (C∗)2n+1 by the zero locus of some collection of poly-
nomials), and that it is a link invariant since the DGA for knot contact
homology is invariant up to homotopy. Also, in line with previous sections,
one can view the augmentation variety as a one-parameter family of varieties
in (C∗)2n with parameter given by Q.

As an example, for the Hopf link, the expression for the differential from
Section 5.2 implies that any augmentation ǫ must satisfy either ǫ(a12) =
ǫ(a21) = 0, in which case

ǫ(Q)− ǫ(λ1)− ǫ(µ1) + ǫ(λ1µ1) = ǫ(Q)− ǫ(λ2)− ǫ(µ2) + ǫ(λ2µ2) = 0,

or ǫ(a12), ǫ(a21) �= 0, in which case ǫ(λ2) = ǫ(µ1) and ǫ(λ1) = ǫ(µ2). It follows
that

VHopf = {Q− λ1 − µ1 + λ1µ1 = Q− λ2 − µ2 + λ2µ2 = 0}

∪ {λ2 − µ1 = λ1 − µ2 = 0}.

Further examples of augmentation varieties are given in Section 7.
As observed in [30], there is a close connection between the augmenta-

tion variety and the A-polynomial, which we now discuss. First assume that
K is a single-component knot, and let m, l ∈ π1(S

3 −K) denote the merid-
ian and longitude of K. For a representation ρ : π1(S

3 −K) → SL(2,C),
simultaneously diagonalize ρ(m) and ρ(l), and let (µ, λ) and (µ−1, λ−1) be
the corresponding eigenvalues. Then the closure of the (highest-dimensional
part of) the set {(µ, λ)} over all SL(2,C) representations is a curve in (C∗)2

whose defining equation is the A-polynomial AK(λ, µ).
When K is a knot, the augmentation variety VK ⊂ (C∗)3 is also the van-

ishing locus of a polynomial, the augmentation polynomial AugK(λ, µ,Q).
Similarly, the slice VK ∩ {Q = 1} ⊂ (C∗)2 is the vanishing locus of the
two-variable augmentation polynomial AugK(λ, µ). It is conjectured that
AugK(λ, µ) is equal to AugK(λ, µ,Q = 1) up to repeated factors.
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The relation between the augmentation variety and the A-polynomial is
then as follows [30, Prop. 5.9]:

(µ− 1)AK(λ, µ1/2) | AugK(λ, µ).

Here “|” denotes “divides”. In particular, (µ− 1) and (λ− 1) are both fac-
tors of AugK(λ, µ) for any knot K, where the latter comes from reducible
SL(2,C) representations. These two factors have a nice interpretation in
terms of Lagrangian fillings: (µ− 1) comes from the filling of ΛK by the
conormal Lagrangian LK , while (λ− 1) comes from the filling by the knot
complement Lagrangian MK .

We now generalize to the case whereK is an n-component link. There is a
well-known generalization of the A-polynomial to links, as follows. As before,
let ρ : π1(S

3 −K) → SL(2,C) be a representation, and let mi, li denote the
meridian and longitude for component i. For any single i = 1, . . . , n, ρ(mi)
and ρ(li) can be simultaneously diagonalized, with eigenvalues (µi, λi) and
(µ−1

i , λ−1
i ). Then (the closure of the highest-dimensional part of)

{(µ1, . . . , µn, λ1, . . . , λn) | ρ any SL(2,C) representation}

is a variety in (C∗)2n, which we denote by V A
K and call the A-polynomial

variety of K.10

Note that for any fixed i = 1, . . . , n, one can abelianize π1(S
3 −K) and

set all meridians but mi to 0, to obtain Z. It follows that for any µi ∈ C∗,
the curve

Ci = {(µ1, . . . , µn, λ1, . . . , λn, 1) |µj = 1 and λj = µ
aij

i for j �= i, and λi = 1}

is contained in VK . This is the analogue of the fact that (λ− 1) divides the
A-polynomial for knots.

Arguing along the lines of Proposition 5.9 from [30] then yields the
following result: if (µ1, . . . , µn, λ1, . . . , λn) ∈ V A

K , then

(µ2
1, . . . , µ

2
n, λ̃1, . . . , λ̃n, 1) ∈ VK .

Here we define λ̃i = λiµ
ki1

1 · · ·µkin
n , where the kij are integers determined by

[li] =
∑n

j=1 kij [mj ] ∈ H1(S
3 −K). Thus the A-polynomial variety of K can

be viewed as a subset at Q = 1 of the augmentation variety, for links as well
as for knots.

10This is not new; see, e.g., [34].
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We conclude this section with a remark about the nature of the aug-
mentation variety. For all examples where the variety has been computed,
the following holds: for fixed Q, VK ⊂ (C∗)2n is Lagrangian with respect to
the symplectic form

n∑

i=1

1

λiµi
dλi ∧ dµi.

In x, p coordinates, this says that the augmentation variety is Lagrangian
with respect to the symplectic form

∑n
i=1 dxi ∧ dpi, in accordance with the

notion that the variety is locally given by a potential. (In particular, VK

is n-dimensional.) The underlying geometric reason for this observation is
related to Lagrangian fillings and will be discussed further in Section 6 from
the viewpoint of knot contact homology; it agrees well with corresponding
predictions from large N duality and the relation with Chern-Simons theory.
See Section 4.

5.4. Components of the augmentation variety

Here we discuss how partitions give different components of the augmenta-
tion variety of a link, in parallel to the physics discussion from Section 4.4.
As discussed there, for an n-component link K, any partition P of {1, . . . , n}
divides K into a collection of sublinks; if we move these sublinks far from
each other, we obtain a split link K(P ), and a partition is primitive if each
of these sublinks is non-split. (Recall that a link is split if it is the union of
two sublinks that lie in two disjoint solid balls.)

Conjecture 5.1. The augmentation variety VK of a link K is a union of
components

VK =
⋃

P

VK(P )

labeled by the primitive partitions P of {1, . . . , n}. Furthermore, VK(P ) coin-
cides with the augmentation variety of the link K(P ).

In the rest of the subsection we will provide evidence for the conjecture.
First, we will prove that every partition P of {1, . . . , n} leads to a (possibly
empty) component of the augmentation variety of K, which we label VK(P )
in accordance with Section 4.4. Next, we will provide evidence that only
the primitive partitions P lead to nonempty components of augmentation
variety, and that moreover these are all components of VK .
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If we view a link K as a union of two sublinks K1 ∪K2, then the fiber
product

VK1
×Q VK2

= {(�µ1, �µ2, �λ1, �λ2, Q) | (�µ1, �λ1, Q) ∈ VK1
and (�µ2, �λ2, Q) ∈ VK2

}

is contained in VK . Here �µ1 = (µ1, . . . , µn1
), �µ2 = (µn1+1, . . . , µn), and sim-

ilarly for �λ1 and �λ2, where the first n1 components of K belong to K1 and
the remainder to K2. This follows from considering augmentations of the
DGA for K that send all “mixed Reeb chords” aij , i.e., Reeb chords with
one endpoint in ΛK1

and the other in ΛK2
, to 0. The idea of separating the

DGA for a Legendrian link into the DGAs of sublinks by sending mixed
chords to 0 is well-established in contact geometry; see e.g. [35].

By iterating this process, one sees that if P is a partition of {1, . . . , n}
consisting of ℓ subsets, then augmentations of (the DGAs for) the corre-
sponding ℓ sublinks of K produce an augmentation of K, where mixed Reeb
chords connecting different sublinks are sent to 0. Say that an augmentation
of K obtained in this way is associated to the partition P . Note that if P ′ is
a refinement of P , then any augmentation associated to P ′ is also associated
to P , and in particular that all augmentations are associated to the partition
(12 · · ·n).

Say that an augmentation associated to a partition P is irreducible if
it is not associated to any refinement of P . Then we can define VK(P ) to
be the subset of the augmentation variety VK corresponding to irreducible
augmentations associated to P . If P consists of ℓ subsets, then VK(P ) is
a fiber product of the ℓ augmentation varieties associated to the relevant
sublinks. As in Section 4.4, we sometimes abbreviate VK((1 · · ·n)) to VK(n)
and VK((1) · · · (n)) to VK(1n).

For example, for the Hopf link, from the computation in Section 5.3, we
have VHopf = VHopf(2) ∪ VHopf(1

2), where

VHopf(2) = {λ1 − µ2 = λ2 − µ1 = 0}

VHopf(1
2) = {Q− λ1 − µ1 + λ1µ1 = Q− λ2 − µ2 + λ2µ2 = 0}.

Under certain circumstances, VK(P ) may be forced to be empty:

Proposition 5.2. Suppose that K = K1 ∪K2 is a split link; that is, there
is an embedded S2 in S3 that separates K1 from K2. Then any augmentation
of the DGA of K splits into augmentations of the DGAs of K1 and K2, and
thus VK = VK1

×Q VK2
.
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Proof. If K is split, then it can be given as the closure of a braid B that is
also split. In this case, the matrices ΦL,ΦR from the definition of the DGA
for knot contact homology are block-diagonal, and the result follows from
the formula for the differential.

A more geometric proof is as follows: the split link is a connected sum
(S3,K1)#(S3,K2) and the two summands can be joined by a long tube with
the separating S2 in the middle. This shows that there exists a contact form
on U∗S3 for which the length of any Reeb chord connecting ΛK1

to ΛK2
is

arbitrarily long and the result follows. �

By Proposition 5.2, if K = K1 ∪K2 is split and P is the corresponding
two-set partition of {1, . . . , n}, then VK(P ) = ∅. More generally, if K is a
general link and P is an ℓ-set partition for which one of the ℓ sublinks is
split, then VK(P ) = ∅. We are not currently aware of any other circumstance
in which VK(P ) is empty; see also the discussion in Section 4.4.

5.5. The link graph ΓK and the augmentation variety

As in Section 4.4, to an n-component link K we can associate a graph
ΓK whose vertices are the primitive partitions of the link K, and where P
and P ′ are connected if one is a refinement of the other, and there is no
intermediate refinement P ′′ between the two such that P ′′ is also primitive.
Based on computations of the augmentation variety for a number of links,
as well as the D-module argument from Section 4.4, we make the following
conjecture.

Conjecture 5.3. The graph associated to a link is connected, and if P and
P ′ are connected by an edge, then

codim(VK(P ) ∩ VK(P ′)) = 1.

More generally, if P1, . . . , Pr are vertices such that Pi+1 is a refinement of Pi

and Pi, Pi+1 are joined by an edge for all 1 ≤ i ≤ r − 1, then codim(VK(P1) ∩
VK(Pr)) ≤ r.

There is one important special case where we can recast this conjec-
ture in terms of “Lagrangian reduction”. (In Section 6.7 we discuss Con-
jecture 5.3 and Lagrangian reduction from a geometric perspective that
physically corresponds to adding an anti-brane to a filling brane.) Sup-
pose that P = (1 · · ·n) and P ′ = (1 · · · (n− 1))(n). Write K = (K −Kn) ∪
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Kn where Kn is the n-th component of K and K −Kn is the rest. Sup-
pose that both VK(n) = VK(P ) and VK(P ′) = VK−Kn

(k − 1)×Q VKn
(1) are

nonempty. According to the remark at the end of Section 5.3, for fixed Q,
VK(n) is a Lagrangian submanifold of (C∗)2(n−1) with the appropriate sym-
plectic structure, as is VKn

(1) ⊂ (C∗)2 (trivially).
Suppose more generally that we have a product symplectic manifold

W = W1 ×W2, where W1 and W2 are symplectic, and Lagrangian subman-
ifolds L ⊂ W and L2 ⊂ W2. If W1 × L2 is transverse to L in W , then the
projection of L ∩ (W1 × L2) ⊂ W in W1 is also a Lagrangian submanifold
that we call the reduction of L along L2.

In our case (with W1 = (C∗)2n−2, W2 = (C∗)2, W = (C∗)2n), we have
the following conjecture.

Conjecture 5.4. VK−Kn
(n− 1) is a subset of the reduction of VK(n) along

VKn
(1). Concretely, we have:

VK−Kn
(k − 1) ⊂ {(�µ1, �λ1, Q) ∈ (C∗)n−1 × (C∗)n−1 × C

∗ |

there exist µ2, λ2 ∈ C
∗ with (µ2, λ2, Q) ∈ VKn

(1) and

(�µ1, µ2, �λ1, λ2, Q) ∈ VK(n)}.

Conjecture 5.4 has been verified in all computed examples. Note that it
is not necessarily the case that VK−Kn

(n− 1) is precisely equal to, rather
than just a subset of, the reduction of VK(n) along VKn

(1): see Section 7.1.
For our particular choice of P = (1 · · ·n) and P ′ = (1 · · · (n− 1))(n), it

would follow immediately from Conjecture 5.4 that VK(P ) and VK(P ′) have
codimension-1 intersection, since VK−Kn

(n− 1) is (n− 1)-dimensional. This
is a key special case of Conjecture 5.3.

5.6. Higher rank representations of knot

contact homology

Here we trace out the mathematical story that parallels the discussion of
multiple branes in Section 2.2. Augmentations of a differential graded alge-
bra (A, ∂), such as the DGA for knot contact homology, are maps ǫ : A → C,
and can thus be viewed as one-dimensional representations of the DGA. One
can also consider a generalization to arbitrary dimension: define a rank n
representation of a DGA (A, ∂) to be an algebra map

ρ : A → EndCn
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such that ρ ◦ ∂ = 0, ρ sends any element of nonzero degree to 0, and ρ(Q) is a
scalar multiple of the identity. (Here EndCn is the space of endomorphisms
of Cn, or n× n matrices.)

As a technical note, it is important for rank n > 1 representations that
we replace the DGA (A, ∂) described in previous subsections, in which λ, µ
commute with all Reeb chords, with a slight variant, the fully noncommu-
tative DGA, in which λ, µ commute with each other (and with Q) but not
with Reeb chords. This allows ρ(λ) and ρ(µ) to be something besides scalar
multiples of the identity, even in an irreducible representation. See [26] for
a description of the fully noncommutative DGA associated to a knot.

Since λ and µ commute with each other, the matrices ρ(λ) and ρ(µ) can
be simultaneously diagonalized. Say that a rank n representation of (A, ∂)
is diagonal if ρ(λ) and ρ(µ) are both diagonal matrices.

Our goal here is to relate diagonal higher rank representations of the knot
contact homology of a single-component knot K to augmentations of a link
consisting of multiple parallel copies of K. This follows from a more general
result about higher rank representations of Legendrian submanifolds, which
we now describe.

Let Λ be a Legendrian submanifold in a contact manifold V . The Leg-
endrian neighborhood theorem states that a tubular neighborhood of Λ is
contactomorphic to (i.e., diffeomorphic to with the same contact structure
as) the 1-jet space J1(Λ) = T ∗Λ× R. Here J1(Λ) is equipped with the con-
tact 1-form dz − p dq, where z is the R coordinate and p dq is the Liouville
1-form on T ∗Λ. Define a parallel to Λ to be a Legendrian Λ′ ⊂ V such that
Λ′ lies in a small neighborhood of Λ and Λ′ corresponds to the graph of a
function in J1(Λ): there is some f : Λ → R such that

Λ′ = {(q, p, z) ∈ J1(Λ) : z = f(q), p = dfq}.

Finally, let n parallel copies of Λ denote an n-component Legendrian sub-
manifold of V given by the union of Λ and n− 1 parallels of Λ, where these
n components are pairwise disjoint. (This is a generalization of the notion of
an N -copy from [35]. Note that our notion of parallel copies is not unique.)

Let Λ̃ = Λ1 ∪ Λ2 ∪ · · · ∪ Λn be an n-component Legendrian submanifold
of V given by n parallel copies of Λ = Λ1. The Reeb chords of Λ̃ can be
divided into two types: short chords, which lie within the tubular neigh-
borhood of Λ, and long chords, which do not. By shrinking the tubular
neighborhood if necessary, we can ensure that there is an n2-to-1 correspon-
dence between long Reeb chords of Λ̃ and all Reeb chords of Λ: for a Reeb
chord ai of Λ and any j1, j2 ∈ {1, . . . , n}, there is a unique long chord aj1,j2i
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of Λ̃ that begins on Λj1 , ends on Λj2 , and limits to ai as the neighborhood
shrinks to zero.

In the case where K ⊂ S3 is a knot and ΛK is its conormal bundle, one
can consider the conormal bundle ΛK̃ to n parallel copies K̃ of K. (These
parallel copies of K can be given by pushoffs of K with respect to any
framing, or more generally by any collection of n disjoint closed curves in
a tubular neighborhood of K that are each the graph of a section of the
normal bundle to K, viewed as the tubular neighborhood.) It is an exercise
in local coordinates (see [33]) to show that ΛK̃ comprises n parallel copies

of ΛK : write ΛK̃ = Λ̃K . Then the knot contact homology of the link K̃ is

the Legendrian contact homology of Λ̃K . Our main result in this subsection
is now as follows.

Theorem 5.5. Let K be a knot. There is a one-to-one correspondence
between diagonal rank n representations of the knot contact homology of K,
and augmentations of the knot contact homology of the n-component link K̃
that send all short chords to 0.

Proof. Consider any holomorphic disk contributing to the differential in the
Legendrian contact homology of Λ̃K and not involving any short chords.
Each piece of the boundary of this disk lies on some component of Λ̃K .
Conversely, given a holomorphic disk contributing to the differential of ΛK ,
one can label each piece of its boundary by any integer from 1 to n, and
there is a unique holomorphic disk with boundary on Λ̃K whose boundary
pieces lie on the corresponding components of Λ̃K .

Now assemble the long Reeb chords of Λ̃K into n× n matrices Ai =
(aj1,j2i ), and suppose that in the DGA for ΛK , ∂(ai) =

∑
γ0aj1γ1 · · · ajnγn,

where γ0, . . . , γn are words in Q, λ, µ. Then by the above argument, the
differential in the DGA for Λ̃K , omitting short chords, is given by

∂(Ai) =
∑

Γ0Aj1Γ1 · · ·AjnΓn,

where ∂(Ai) is the matrix (∂(aj1,j2i )), multiplication on the right is matrix
multiplication, and Γj is the result of replacing λ, µ in γj by diagonal matri-
ces diag(λ1, . . . , λn), diag(µ1, . . . , µn). The result follows. �

Note that from a diagonal rank n representation of the knot contact
homology of a knot K, we can obtain a variety in (C∗)2n+1 analogous to the
augmentation variety: if ρ is such a representation and ρ(λ) = diag(λ1, . . . ,
λn), ρ(µ) = diag(µ1, . . . , µn), then we obtain a point (µ1, . . . , µn, λ1, . . . , λn,



Topological strings, D-model, and knot contact homology 877

ρ(Q)) in (C∗)2n+1. From the above theorem, the resulting variety in (C∗)2n+1

where ρ ranges over all diagonal rank n representations is a subset of the
augmentation variety of the link K̃ consisting of n parallel copies of K.

We conclude with two examples. First consider the case where K is the
unknot. In this case, a diagonal rank n representation of the knot contact
homology of K is a map ρ with values in n× n matrices such that ρ(λ) =
diag(λ1, . . . , λn), ρ(µ) = diag(µ1, . . . , µn), and

Q Id− ρ(λ)− ρ(µ) + ρ(λ)ρ(µ) = 0.

Any such representation is reducible and a product of n 1-dimensional repre-
sentations. The resulting variety in (C∗)2n+1 is the same as the augmentation
variety VK̃(1n) for any link K̃ consisting of n parallel copies of the unknot.

Note that K̃ could well have augmentations besides the ones in VK̃(1n) (e.g.

if K̃ is a (2, 2m) torus link for m �= 0, where VK̃(2) is distinct from VK̃(12)),
but these extra augmentations do not send short Reeb chords to 0.

Next, suppose that K is the right-handed trefoil. In this case, by a com-
putation of knot contact homology (omitted here), a rank n representation
of the knot contact homology of K is a way to assign n× n matrices to
λ, µ, a such that the following relations hold:

λµ = µλ

λµ6a = aλµ6

λµ6 − λµ5 +Qµ2aµ−Qµaµa = 0

Q− µ− µaµ−1 −Qµ2aλ−1µ−4a = 0.

A diagonal rank n representation further sends λ, µ to diagonal matrices as
above.

When n = 2, diagonal rank 2 representations for the trefoil fall into two
classes. The reducible representations satisfy

Q3 −Q3λ1 −Q2µ1 +Q2λ1µ1 − 2Qλ1µ
2
1 + 2Q2λ1µ

2
1

+Qλ1µ
3
1 − λ2

1µ
3
1 −Qλ1µ

4
1 + λ2

1µ
4
1 = 0

and the corresponding equation with λ1, µ1 replaced by λ2, µ2. (The left
hand side of this equation is the augmentation polynomial for the right-
handed trefoil.) This corresponds to VK̃(12) where K̃ is any link given by
two parallel copies of K. The irreducible representations can be shown to
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satisfy the simultaneous equations

λ1µ
6
1 = λ2µ

6
2

−λ2
1µ

7
1 +Q2λ1µ

3
1µ

2
2 −Qλ1µ

4
1µ

3
2 +Q2µ5

2 = 0.

This corresponds to at least a portion of VK̃(2), namely the subset corre-
sponding to augmentations that send all short Reeb chords to 0. We do not
currently know if this must give all of VK̃(2) for any K̃, due to the difficulty
of computing the augmentation variety for parallel copies of the trefoil.

When n = 3, diagonal rank 3 representations for the trefoil are either
reducible, in which case they come from a direct sum of a rank 1 representa-
tion (i.e., an augmentation of K) and a rank 2 representation, or irreducible.
The latter can be shown to satisfy

λ1µ
6
1 = λ2µ

6
2

λ1µ
6
1 = λ3µ

6
3

−λ3
1µ

13
1 +Qλ2

1µ
9
1µ

2
2µ

2
3 +Q3λ4

1µ
4
1µ

5
2µ

3
3 −Q3µ5

2µ
5
3 = 0,

and correspond to a portion of VK̃(3) where K̃ consists of three parallel
copies of K.

6. Augmentations and Lagrangian fillings

In this section we will consider augmentations of knot contact homology,
induced by exact and non-exact Lagrangian fillings in various ways. We
start however by discussing the underlying general framework. Recall the
setup in Section 5.2: Legendrian contact homology associates a DGA, A(Λ),
to a Legendrian submanifold Λ in a contact manifold V . The algebra A(Λ)
is generated by the Reeb chords of Λ and has differential which counts holo-
morphic disks with one positive puncture and with Lagrangian boundary
condition R× Λ in the symplectization (R× V, d(etα)) of V . In the case of
knot contact homology, the ambient contact manifold is the unit conormal
bundle U∗S3, and the Legendrian submanifold is the conormal tori ΛK of
a link K ⊂ S3. Here the symplectization R× U∗S3 can be identified with
the complement of the 0-section in T ∗S3, and from the point of view of the
conifold, this symplectization together with the Lagrangian R× ΛK repre-
sents the geometry at infinity of Lagrangians associated to the link K. The
knot contact homology, or the DGA A(ΛK), is then entirely determined by
this geometry at infinity through Reeb chords of ΛK and holomorphic disks
in R× U∗S3 with boundary on R× ΛK .
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Returning to the general setting of Legendrian submanifolds, our study
in this section starts from properties of Legendrian contact homology that
are similar to TQFT, which behaves functorially under cobordism, where
the role of cobordisms is played by exact Lagrangian cobordisms (W,L)
defined as follows. The manifold W is a non-compact symplectic manifold
with exact symplectic form ω = dβ, which outside a compact subset consists
of a positive end [0,∞)× V+ where β = etα+ for a contact form α+ on a
contact manifold V+, and a negative end (−∞, 0]× V− where β = etα− for
a contact form α− on a contact manifold V−. The Lagrangian submanifold
L ⊂ W is required to be exact, meaning that the closed form β|L is exact,
i.e. β|L = df for some function f on L, and also to agree with [0,∞)× Λ+

in [0,∞)× V+ and with (−∞, 0]× Λ− in (−∞, 0]× V− for some Legendrian
submanifolds Λ± ⊂ V±, see Figure 2. Now, if A± denotes the DGA of Λ±,

V−

L

Λ+

Λ−

V+

W

Figure 2: An exact Lagrangian cobordism.

then (W,L) induces a DGA-map φ : A+ → A−: that is, φ is an algebra map
that commutes with the differentials, φ ◦ ∂+ = ∂− ◦ φ.

The definition of φ is close to the definition of the DGA differential: φ
counts rigid disks inW with one positive puncture and Lagrangian boundary
condition L. The proof of the chain map equation is analogous to the proof
that the square of the differential is 0; both derive from the identification
of the boundary of 1-dimensional moduli spaces with two-level rigid curves,
compare Theorem 6.1 below. We point out that the exactness assumption is
crucial here: if the Lagrangian cobordism is exact then an elementary argu-
ment using Stokes’ Theorem shows that no nonconstant closed holomorphic
disks can form on L, while in the non-exact case such disks are present and
typically give new boundary components of the moduli spaces that destroy
the chain map property, compare Section 6.3 and Figure 8 below.
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Our discussion of exact Lagrangians L below is a special case of the
above TQFT-like functoriality in the case when the Legendrian subman-
ifold Λ− at the negative end of L is empty. In this case we say that L
is an exact Lagrangian filling of Λ+. Since the empty Legendrian has no
Reeb chords, its DGA simply equals the ground ring, which in this case is
C[H2(W,L)], with the trivial differential. Thus in this case the DGA-map
φ : A+ → C[H2(W,L)] induces augmentations A+ → C upon choosing val-
ues in C∗ of the generators of C[H2(W,L)].

In the case of knot contact homology, we look at exact Lagrangian fillings
of ΛK in T ∗S3, see Section 6.1, which give augmentations ofA(ΛK) withQ =
1. Such exact fillings give only standard branches of the augmentation variety
that contain very little information about the underlying link. (However, in
Section 6.10, we describe how a more involved count of holomorphic disks
on an exact filling with the topology of the link complement, keeping track
of the homotopy classes of the disk boundaries, relates to the so-called cord
algebra [30], which in turn determines the augmentation variety for Q = 1.)

In order to connect augmentations in knot contact homology with Q �= 1
to geometry, it is thus not sufficient to consider exact Lagrangian fillings of
ΛK . This lead us to consider certain non-exact Lagrangian fillings, and our
generalization of the discussion above from the exact to the non-exact case
gave a new and striking relation between the DGA of ΛK , determined by
Reeb chords and holomorphic disks at infinity, and the Gromov-Witten disk
potential of Lagrangian fillings, determined by counting certain configura-
tions of disks in the compact part, see Section 6.4. It is clear that similar
considerations can be applied, restoring functoriality for more general non-
exact Lagrangian cobordisms, but we restrict our discussion to the case most
relevant to knot contact homology.

Consider a non-exact Lagrangian filling L of ΛK lying in the resolved
conifold Y . In Section 6.2 we specify the class of non-exact Lagrangian fill-
ings L and ambient symplectic manifolds more precisely. Here we just men-
tion two key properties: holomorphic disks at infinity with boundary on
L correspond naturally to holomorphic disks in R× U∗S3 with boundary
on R× ΛK , just like in the exact case, and closed holomorphic disks with
boundary L and bounded area lie in a compact subset of Y .

Following ideas of [36], we introduce obstruction chains in L, which are
2-chains that connect boundaries of closed holomorphic disks on L to basic
1-cycles in ΛK . Using these chains, we replace the disk count of an exact
Lagrangian with a quantum corrected disk count for a non-exact Lagrangian
that allows us to restore functoriality, provided the generators of the coeffi-
cient ring lie in the Lagrangian subvariety determined by the Gromov-Witten
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potential W of the filling. For example, for the conormal filling of a knot, the
constraint is p = ∂W

∂x , and consequently (ex, e
∂W

∂x , Q) lies in the augmentation
variety.

Analyzing this a little bit further we note that from the explicit form
of the DGA A(ΛK) one can compute the augmentation variety of a link
and in particular show that it is an algebraic variety. Since any non-exact
Lagrangian filling L admits deformations by shifts along closed forms cor-
responding to H1(L), we find that such a filling, through the constraint
given by its Gromov-Witten disk potential, parametrizes a small piece of
the augmentation variety. However, since the variety is algebraic, the filling
then in fact determines a whole irreducible component of the augmenta-
tion variety. For example, for the conormal filling of a knot, shifting the
Lagrangian and changing the monodromy of its flat U(1)-connection corre-
sponds to changing the real and imaginary parts of x and thus gives a local
parametrization p = ∂W

∂x (as x varies) of the augmentation variety, which
then determines a whole irreducible component of the variety (and in par-
ticular the whole variety if it is irreducible). Summarizing the discussion so
far: the Gromov-Witten disk potential for non-exact fillings of ΛK near a
given filling determines an irreducible component of the augmentation vari-
ety. Whether there exists a suitable Lagrangian filling for each irreducible
component is not known at present, see Section 6.7 for partial results.

We can also view this correspondence between the augmentation variety
and potentials of non-exact fillings from another perspective as follows. If L is
a non-exact Lagrangian filling of ΛK , then it determines a Gromov-Witten
disk potential as explained above. It is difficult to say how this potential
changes under deformations (e.g. of L, the almost complex structure, etc.)
and, a priori, we have very little control of this change. However, the fact that
the potentials of nearby fillings parametrize the augmentation variety means
that possible Gromov-Witten potentials of Lagrangian fillings, which are
defined by counting disks in the interior, are in fact (explicitly) restricted by
the augmentation variety, which only counts disks at infinity. For example, in
the case of the conormal filling of a knot, the fact that the equation p = ∂W

∂x
parametrizes a branch of the augmentation variety determinesW (x) in terms
of the augmentation variety (up to finite ambiguity since there are in general
many branches of the augmentation variety at x).

Connecting to the physical perspective, this relation between knot con-
tact homology and the Gromov-Witten potential shows that near augmenta-
tions that are geometrically induced by a Lagrangian filling, the augmenta-
tion variety of a link as defined through knot contact homology agrees with
the physically defined mirror variety VK ; in particular, in the case of knots,
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the Q-deformed A-polynomial and the augmentation polynomial have zero
sets that agree locally. As above, “locally” is in the algebro-geometric sense,
so the subsets where the two agree are rather large. In fact, for many knots
the augmentation variety is known to be irreducible; in these cases, since
there is always the conormal filling, we know that the two polynomials must
agree.

Here is an outline of the remainder of this section. In Section 6.1, we
discuss the most well-studied case of augmentations of contact homology
DGAs that are induced by exact Lagrangian fillings. This gives a geometric
explanation of the trivial branches of the augmentation variety for any link.
We then generalize this to certain non-exact Lagrangian fillings, which are
the central objects for a geometric understanding the augmentation variety:
in Section 6.2 we describe the class of non-exact filling that we use; in Sec-
tions 6.3 and 6.4, following [36], we introduce obstruction chains that allow
us to generalize the augmentation maps in the exact case to more involved
chain maps induced by our class of non-exact Lagrangian fillings.

We then turn to geometric constructions of Lagrangian fillings. In par-
ticular, we aim at constructing connected Lagrangian fillings of the conor-
mal of a n-component link K, that leads augmentations in the component
VK(n) corresponding to the trivial partition, and that would as for knots
above explain why the physical and the mathematical varieties agree. In Sec-
tions 6.5 and 6.6, we discuss these geometric constructions of Lagrangian fill-
ings in connection with the conjecture on codimension-1 intersection between
augmentation varieties of non-split links from Section 4.4. In Section 6.7 we
discuss a gluing operation for Lagrangian fillings that from the physical
perspective corresponds to adding an anti-brane along a Lagrangian and
that conjecturally leads to unobstructed connected Lagrangian fillings of
the conormal of any link. Such Lagrangians would, as mentioned above,
serve as actual geometric sources of the branch VK(n) of the augmentation
variety corresponding to the trivial partition of a n-component link K. In
Section 6.8 we discuss geometric constructions and gluing explicitly in a
simple example and in Section 6.9 we look at Legendre duality of potentials
from a geometric viewpoint. Finally, in Sections 6.10 and 6.11 we study other
ways of obtaining augmentations from Lagrangian fillings by coupling to flat
connections on the fillings in the exact and the non-exact case, respectively.

We would like to point out that many of the arguments given here are
at best outlines of possible proofs, and indeed all of them need more details.
When we state a result as a theorem we believe that it can be proved with
existing technology. Rather than providing proofs, the main purpose of this
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section is to give some idea of the geometry behind the behavior of augmen-
tation varieties.

6.1. Exact Lagrangian fillings and chain maps

As always, let K be a knot in S3 and let ΛK denote its conormal torus. An
exact Lagrangian filling of ΛK is an exact Lagrangian submanifold FK ⊂
T ∗S3 that agrees with the Lagrangian conormal LK of K outside some
finite-radius disk subbundle of T ∗S3. For grading reasons we also assume
that the Maslov class of FK vanishes. If a is a Reeb chord of ΛK , let Mτ (a)
denote the moduli space of holomorphic disks u : D → T ∗S3 with boundary
on FK and with one positive puncture where the disk is asymptotic to the
Reeb chord a, and which (after capping) represents the homology class τ ∈
H2(T

∗S3, FK). Then the dimension of the moduli space is given by the
grading of a, dim(Mτ (a)) = |a|. Define the map ǫFK

: A → C[H2(T
∗S3, FK)]

by counting holomorphic disks with one positive puncture:

(6.1) ǫFK
(a) =

∑

τ

|Mτ (a)| e
τ ,

where |a| = 0 and |Mτ (a)| denotes the algebraic number of disks in Mτ (a).

Theorem 6.1. The map ǫFK
is an augmentation of A, which we call “the

augmentation induced by FK”.

Proof. We need to check the chain map condition ǫFK
◦ ∂ = 0. By SFT com-

pactness [37], the two level broken curves that contributes to ǫFK
◦ ∂ are in

one to one correspondence with the boundary of the compact oriented 1-
manifold

⋃

|b|=1,τ∈H2(T ∗S3,FK)

Mτ (b),

see Figure 3. �

There are two natural exact Lagrangian fillings of ΛK in T ∗S3: its conor-
mal LK and its complement MK ≈ S3 −K. Here LK is an exact Lagrangian
filling of ΛK by definition. In order to see MK as a Lagrangian we include a
brief general description of fronts.

Let F ⊂ T ∗M be an exact Lagrangian submanifold in the cotangent
bundle of a smooth manifold M and let z : F → R be a primitive of the
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dim = 0 dim = 0

in T ∗S3

dim = 1

in R× U∗S3

Figure 3: A two level holomorphic building in the boundary of a 1-
dimensional moduli space of disks with one positive puncture.

pullback of the action form. Then

{(q, z(q)) ∈ T ∗M × R : q ∈ F}

is a Legendrian submanifold in T ∗M × R with the contact form dz − p dq,
and its projection into M × R is called the front of F . For generic F the
front is stratified. The top-dimensional smooth stratum consists of graphs of
functions g : U → R for U ⊂ M and the corresponding part of F is given by
the graph Γdg of the differential of g. Here we recover the fiber coordinates
yj uniquely by

yj =
∂z

∂xj
,

where (x1, . . . , xm) are coordinates on U . The front has certain restricted
singularities along lower dimensional strata that allows us to patch the solu-
tions for yj corresponding to different sheets of the front. See Figure 4 for
an example. We will sometimes make use of a specific non-generic front that
we call the Lagrangian cone, see Figure 5.

Using fronts we can represent LK and MK rather concretely. A front
of the conormal LK is shown in Figure 6. To represent MK , pick a Bott-
Morse function on S3 with a Bott maximum along K. Remove the Bott
maximum to obtain an exact Lagrangian isotopic version by instead gluing
in the conormal along the Bott minimum of the negative of the function. It
is clear that MK agrees with LK outside a compact set, see Figure 7.

The second relative homologies H2(T
∗S3, LK) and H2(T

∗S3,MK) are
both isomorphic to Z and are generated by the longitude class x and the
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xj

yj

z

x1

yj =
∂z
∂xj

xn

Figure 4: The front of the standard immersed Lagrangian n-sphere: two
smooth sheets come together over a cusp edge that locally is a product of
a semi-cubical cusp x3 = z2 and Rn−1. The intersection of the Lagrangian
immersion with a symplectic coordinate plane is shown on the right.

Figure 5: A Lagrangian cone.

meridian class p, respectively. On coefficients, the augmentation map in (6.1)
is by definition the map on homology induced by the inclusion. Thus, the
following result is immediate.
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K

fiber disk

Front over fiber disk

z

Figure 6: The front of the conormal Lagrangian.

K

fiber disk cone

Fronts of MK

Figure 7: Two fronts giving exact Lagrangian-isotopic Lagrangian versions
of the link complement.

Theorem 6.2. The augmentation induced by the exact conormal filling LK

of ΛK takes x to x and p to 0, and the augmentation induced by the exact
knot complement filling MK takes p to p and x to 0 (or in multiplicative
notation ex �→ ex and ep �→ 1 respectively ex �→ 1 and ep �→ ep). Both aug-
mentations take Q to 1.

We note that this explains the geometric origin of the trivial branches
ex = 1 and ep = 1 of the augmentation variety of K at Q = 1.

The construction of the Lagrangian complement MK discussed above
generalizes immediately to the case when K is a several-component link
K = K1 ∪ · · · ∪Kn. In this case the map on homology is a bit more involved
and we get the following result.
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Theorem 6.3. If K = K1 ∪ · · · ∪Kn is an n-component link, then the aug-
mentation induced by the exact knot complement filling MK takes the merid-
ian class pj of the jth component to pj and the corresponding longitude class
xj to

∑
k �=j lkkj pk, where lkkj is the linking number of Kk and Kj, and as

above takes Q to 1.

6.2. Non-exact Lagrangian fillings

Our next goal is to generalize the discussion of Section 6.1 to a certain class
of non-exact Lagrangian fillings. We discuss concrete constructions of non-
exact Lagrangian fillings of this type in Section 6.5. Here we concentrate on
basic properties that are crucial for the augmentations to be constructed in
Section 6.3.

We will consider Lagrangian submanifolds in T ∗S3 or R× U∗S3, or in
the resolved conifold Y . For the general discussion all these ambient spaces
can be treated on equal footing and we will denote the ambient symplectic
manifold E and have either one of these in mind. In particular, outside a
compact set, E agrees with the complement of a finite-radius disk bundle
of T ∗S3, which we can think of as the symplectization of U∗S3, and we
write ER ⊂ E for the complement of a disk bundle of radius R. Compare
the treatment of holomorphic curves in [38].

Consider the conormal Lagrangian LK of a knot K, represented as a
front, see Figure 6. Then LK ∩ ER projects to a punctured tubular neigh-
borhood U of K in S3. If η is a closed 1-form in U then the shift map

Sη : T
∗U → T ∗U, Sη(q, p) = (q, p+ η(q))

is a symplectomorphism.
We will consider non-exact Lagrangian submanifolds FK and adjusted

almost complex structures J on E that satisfy the following three conditions:

• The Maslov class of FK vanishes.

• For any A > 0 there is a compact subset CA ⊂ E such that any J-
holomorphic disk with boundary on FK of area at most A lies in CA.

• There exists R0 such that FK ∩ ER0
is the image of a part of LK under

a shift map Sη for some uniformly bounded closed 1-form η on U .

We call such Lagrangians augmentation admissible fillings of ΛK .
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Lemma 6.4. If FK is an augmentation admissible filling of ΛK , then the
following version of SFT compactness holds. Any holomorphic disk of energy
≤ A < ∞ either is contained in the compact subset CA or has at least one
positive puncture where it is asymptotic to a Reeb chord. Furthermore, any
sequence of holomorphic disks of energy ≤ A has a subsequence that con-
verges to a several-level holomorphic building with a first level in E and
higher levels consisting of holomorphic disks in the symplectization of U∗S3.

Proof. This is a small extension of [37]. Consider the case when a non-trivial
part of the disk goes to infinity. In order to recover the limit, we use the
invariance of the almost complex structure under rescaling. Take t to t− T
for some large T > 0, so that level T maps to level 0 in the symplectization.
Under this rescaling the image of Sη maps to the image of ST = Se−T η.
For such small shift we find that the adjusted almost complex structure
J is at distance of the order of magnitude e−T from an almost complex
structure J ′ = S̃T ◦ J ◦ S̃−1

T , where S̃T is a diffeomorphism that agrees with
ST and is suitably cut off in T ∗U , and the holomorphic disks for the latter
structure agree with the ordinary holomorphic disks with boundary on LK .
Standard bootstrap arguments show that J- and J ′-holomorphic disks lie
within distance of order of magnitude e−T . �

The condition on vanishing Maslov class of FK and the fact that E is
Calabi-Yau shows that the formal dimension of any closed holomorphic disk
with boundary on FK equals zero. Assume that a perturbation scheme for
rigid holomorphic disks with boundary FK has been fixed. The moduli space
M(FK) of rigid disks in E with boundary on FK then constitutes a weighted
branched 0-manifold, see [36, 39].

6.3. Quantum corrected chain maps

We consider first our main geometric example: let K be a knot and take
FK to be the conormal filling LK ≈ S1 × R2 shifted off of the zero section,
LK ⊂ E. In this case H2(E,LK) is generated by the class of t in H2(E),
represented by the fiber 2-sphere, and the longitude class x ∈ H1(ΛK). (In
case E = T ∗S3, the fiber class is trivial and Q = 1 below.)

In order to motivate the use of obstruction chains below let us try to
carry over the construction of augmentations from the case of an exact filling
to the current more general case in the most naive way. Define ǫ : A →
C[H2(E,LK)] as in (6.1). As there, we try to prove the chain map equation
ǫ ◦ ∂ = 0 by looking at the boundary of 1-dimensional moduli spaces M(b).
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Here, however, not all boundary components contribute to ǫ ◦ ∂ because of
boundary bubbling with nodal disks with two components, one in M(b) and
the other in M(LK), see Figure 8. Consequently ǫ as defined here is not a
chain map. In order to remedy this we will introduce a change of variables
on the coefficients A, guided by obstruction chains much like in [36].

Figure 8: Boundary bubbling gives new codimension one boundary strata
that destroys the chain map property.

Consider a holomorphic disk u ∈ M(LK). Then u : ∂D → LK is a cycle
that represents the homology class kx ∈ H1(LK), where k is some integer
and x is the longitude class in ΛK . Fix a circle ξ in ΛK representing the
class x. For each u as above fix a smooth obstruction chain σu that connects
the cycle u(∂D) to the fixed circle in ΛK traversed k times. More precisely,
recall that outside a compact subset of E, LK is the image of R× ΛK under
a shift map Sη; we take the chain σu to agree with R× ξk, where ξk denotes
the curve ξ traversed k times, with the appropriate weight, reflecting the
weight of the curve u, in this region, see Figure 9.

Let σ = {σu : u ∈ M(LK)} denote the collection of all the fixed obstruc-
tion chains. The collection σ then associates to each Reeb chord a a moduli
space of quantum corrected disks with positive puncture at a and boundary
on LK . An element in this space is a holomorphic disk u ∈ M(a), i.e. a disk
with boundary on LK and with positive puncture at a,

u : (D − {1}, ∂D − {1}) → (E,LK),

and with additional boundary marked points ζ1, . . . , ζs ∈ ∂D such that u(ζj) ∈
σuj

for some uj ∈ M(LK). Furthermore, any disk uj attached in this first
level also has additional boundary marked points which map to σuj′

for disks
uj′ distinct from the ones already used, which are the disks attached at the
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σu

u(∂D)

ξk

Figure 9: An obstruction chain connecting the boundary of a holomorphic
disk to a fixed homology generator at infinity.

second level. If the rth level disks has been defined the (r + 1)th level is
obtained by attaching obstruction chains at marked points in the rth level.
A quantum disk is such an object with finitely many levels, see Figure 10.
Schematically, we can view a quantum corrected disk as a rooted tree, where

u4

u1

u2

u3

u5

σu4

σu5σu1

σu2

σu3

Figure 10: Schematic picture of a quantum corrected disk with positive
puncture. (In reality σuj

is 2-dimensional and intersects the boundary u(∂D)
or ui(∂D) transversely inside the 3-dimensional LK .)

the root is the holomorphic disk u and the other vertices are the disks uj . If
we orient this tree so that all edges point away from the root, then an edge
from uj to uj′ corresponds to a way to map a boundary marked point on uj
to a point in the cycle σuj′

.
We define the homology class represented by the quantum corrected disk

to be the homology class in H2(E,LK) given by the sum of the classes of u
(after capping) and all the attached disks uj . We then write

Mkx+rQ(a;σ)
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for the moduli space of quantum corrected disks with positive puncture at a
that represent the homology class kx+ rQ, and M(a) for the union of such
spaces over all homology classes. In order to make sense out of counting
quantum corrected disks, we note that there is a natural filtration by total
area inside a fixed compact set where all closed disks lie, and that below every
energy level there are only finitely many configurations that contribute. The
following lemma shows how quantum corrected holomorphic disks, although
their definition is rather involved, give rise to a simplification of the boundary
of moduli spaces.

Lemma 6.5. The boundary of a 1-dimensional moduli space M(b;σ) of
quantum corrected disks consists of two-level quantum corrected disks, with
one level being a disk in the symplectization in a 1-dimensional moduli space,
and the other level being rigid disks in E.

Proof. This is a standard application of obstruction chains: Figure 11 indi-
cates why boundary bubbling no longer is to be considered as a boundary
of the moduli space, while in Figure 12 a typical boundary configuration is
depicted. �

M(a; σ)

smooth disk

a aa

broken disk quantum disk

σ

Figure 11: Obstruction chains turn boundary bubbles to interior points in
the moduli space.
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1
σ σ

0

0 0
0

0 0

0

0

0 0σ

σ

σ

σ
σ

σ σ
σ

Figure 12: A two-level quantum corrected disk in the boundary of the mod-
uli space. The top level lies in R× U∗S3, while the bottom level lies in E.
Numbers inside the disks refer to the dimension of their moduli space.

6.4. The GW-potential and chain maps

We define the GW-potential as the generating function of the holomorphic
disk configurations that are attached to a quantum corrected disk. More
precisely, we count trees whose vertices are rigid holomorphic disks ui with
boundary on LK . To each such tree, we associate a weight as follows. First,
each vertex ui in a tree has a weight given by the weight of ui viewed as a
point in the moduli space of holomorphic disks. Next, let ui1 and ui2 be disks
connected by an edge, and let σui1

and σui2
be the corresponding obstruction

chains; then let the weight of the edge between ui1 and ui2 be the linking
number of ui1 and ui2 , which can be defined as the intersection number
between ui1(∂D) and σui2

in LK , or equivalently the intersection number
between ui2(∂D) and σui1

. (If necessary, we can shift the obstruction cycle
off of itself before counting this intersection number.) Finally, the weight of
a tree is defined to be the product of the weights at all of its vertices and
edges.

To motivate this definition of weight, suppose that we choose a vertex
of the tree to be the root, and orient the tree so that all edges point away
from this root. An edge from ui1 to ui2 should then be viewed as a choice
of marked point on the boundary of ui1 that is mapped to σui2

, as in the
definition of quantum corrected disk above. The weight of a tree measures
the number of ways to choose these marked points. It is important for the
definition of the GW-potential to note that because of the symmetry of the
linking number, this weight is independent of the choice of root for the tree.
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Write M(LK , σ) for the moduli space of (unrooted) trees, and define
the homology class of a tree in H2(E,LK) to be the sum of the homology
classes of the disks in the tree. We now define the GW-potential as follows:

W (ex, Q) =
∑

k,r∈Z

Ck,r e
kxQr,

where Ck,r is the sum of the weights of the tree configurations in M(LK ;σ)
that represent the homology class kx+ rt.

We claim that this GW-potential parametrizes a part of the augmen-
tation variety of K. Consider the specialization (Â, ∂̂) of the DGA (A, ∂)
to an algebra Â = A|p= ∂W

∂x

over (a completion of) C[e±x, Q±1], obtained by
setting

(6.2) p =
∂W

∂x
=
∑

k,r∈Z

kCk,r e
kxQr.

Define the graded algebra map

ǫLK
: Â → C[e±x, Q±1]

as follows on generators a with |a| = 0:

(6.3) ǫLK
(a) =

∑

k,r∈Z

|Mkx+rt(a;σ)| e
kxQr.

Theorem 6.6. The map ǫLK
is a chain map, i.e. ǫLK

◦ ∂̂ = 0.

Proof. This follows from the fact that contributions to ǫLK
◦ ∂̂(b) correspond

to two-level disks in the boundary of M(b;σ). To see this, consider a holo-
morphic disk u in the symplectization R× U∗S3 with positive puncture at
b and negative punctures at a1, . . . , am which (after capping) represents the
homology class kx+mp+ rt in H1(ΛK). To obtain a two-level structure as
in Figure 12, we attach a quantum corrected disk in E with positive punc-
ture at ai (i.e., a point in scM(ai)) to each negative puncture a1, . . . , am,
and a tree of holomorphic disks in E at marked points on the boundary of
u (note that such a tree can be rooted and oriented by choosing the root
to be the disk whose obstruction cycle contains the marked point). Now in
the boundary of the one-dimensional moduli space M(b;σ), this precisely

gives a contribution of ekxem
∂W

∂x Qr: first note that each rooted tree of disks
in E is counted with multiplicity given by the weight of the tree, and second
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recall that at infinity the obstruction cycles are products of the form R× ξl

that intersect any curve in the class kx+mp, m · l times. (In the formula
m is explicitly visible and l comes from the differentiation.) By definition
of the specialized differential, this contribution (summed over k and r) is
ǫLK

(∂̂(b)), which must then be equal to 0. �

Remark 6.7. As a consequence of Theorem 6.6, the equation p = ∂W
∂x is a

parametrization of a branch of the augmentation variety of K, which is in
agreement with the parametrization (2.3) derived from physical arguments,
and which in fact proves the mathematical and physical definitions of the
variety agree if the augmentation variety is irreducible.

In general it is difficult to find augmentation admissible Lagrangian fill-
ings with the topology of a link complement that do not intersect the zero
section, but e.g. for fibered links it is possible; see Section 6.7, where we
will discuss alternative constructions. Here we will discuss such Lagrangian
fillings in order to see the main properties of the more general fillings in the
simplest possible context. Thus, let K = K1 ∪ · · · ∪Kn be an n-component
link. LetMK ⊂ E be an augmentation admissible Lagrangian filling with the
topology of the link complement MK ≈ S3 −K. Then H2(E,MK) is gener-
ated by the meridian classes pj ∈ H1(ΛKj

) (j = 1, . . . , n) of the components
and the fiber class t. In analogy with the case of the conormal discussed
above, we fix circles ηj in ΛKj

that represent the class pj , j = 1, . . . , n, and
for each u ∈ M(MK) we fix an obstruction chain σu connecting u(∂D) to
a linear combination of multiples of the fixed curves ηj in ΛKj

, where as
above we take the obstruction chains to be (weighted) cylinders on the fixed
curves outside a compact subset. Let again σ denote the collection of all the
fixed obstruction chains σu, u ∈ M(MK).

Let p = (p1, . . . , pn) and let Ũ(p,Q) denote the GW-potential of MK ,
defined as a sum over tree configurations exactly as above:

Ũ(p,Q) =
∑

k∈Zn, r∈Z

Bk,r e
k·pQr,

where Bk,r is the sum of the weights of the configurations inMk·p+rt(MK ;σ).
Furthermore, exactly as above, if a is a Reeb chord of ΛK , then let the

quantum corrected moduli space of holomorphic disks with positive puncture
at a and boundary on MK that represent the homology class k · p+ rt be
denoted Mk·p+rt(MK ;σ)(a). Then Lemma 6.5 holds for such moduli spaces
of dimension 1.
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Unlike in the case of knots, for links there is also a classical part of
the potential which we discuss next. If lkij = lk(Ki,Kj) denotes the linking
number betweenKi andKj , then the homology class inH1(MK) represented
by the longitude xj of Kj is

∑
i �=j lkij pi. Define the superpotential U(p,Q)

of MK as

(6.4) U(p,Q) =
∑

1≤i<j≤n

lkij pipj + Ũ(p,Q).

After adding this quadratic form (related to classical rather than quan-
tum homology) the construction is parallel to that for the conormal. Con-
sider the specialization (Â, ∂̂) of the DGA (A, ∂) to Â = A|xj=

∂U

∂pj

over (a

completion of) C[e±p1 , . . . , e±pn , Q±1], obtained by setting

(6.5) xj =
∂U

∂pj
, j = 1, . . . , n.

Define the graded algebra map

ǫMK
: Â → C[e±p1 , . . . , e±pn , Q±1]

as follows on generators a with |a| = 0:

(6.6) ǫMK
(a) =

∑

k∈Zn,r∈Z

|Mk·p+rt(a;σ)| e
k·pQr.

Theorem 6.8. The map ǫLK
is a chain map, i.e. ǫLK

◦ ∂̂ = 0.

Proof. The proof is analogous to the proof of Theorem 6.6: a disk in the sym-
plectization with positive puncture at b and negative punctures at a1, . . . , am
which represents the homology class m · x+ k · p+ rt should be counted

with coefficient ek·pe
m·

(
∂U

∂x1
,..., ∂U

∂pn

)

Qr in the boundary of M(b), where the
classical part

n∑

i=1

mi

⎛
⎝
∑

j �=i

lkij pj

⎞
⎠

corresponds to the homology class represented by the disk itself and

m ·

(
∂Ũ

∂x1
, . . . ,

∂Ũ

∂pn

)
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corresponds to intersections with the obstruction chains at infinity. By def-
inition, this is also the contribution to ∂̂. �

Remark 6.9. It follows from Theorem 6.8 that the equations

xj =
∂U

∂pj
, j = 1, . . . , n,

give a parametrization of an n-dimensional branch of the augmentation vari-
ety of the link K, in agreement with (4.5). In general this branch involves
mixed augmentations (where Reeb chords between different components are
augmented) and hence appears to correlate with VK(n).

Remark 6.10. As an example of the above, consider the Hopf link K1 ∪
K2. It follows from (4.8) that the part of the augmentation variety corre-
sponding to mixed augmentations is given by the equations

x1 = p2, x2 = p1.

In terms of potentials this corresponds to U(p1, p2) = p1p2, which means
that Ũ(p1, p2) = 0. This is related to the fact that the Hopf link admits a
exact Lagrangian filling MHopf in T ∗S3 − S3, on which no nonconstant holo-
morphic disks can form. To see this, note that there exists a Bott function
on S3 with maxima along K1 and minima along K2 and no other critical
points. Such a Bott function can be obtained by pulling back a Morse func-
tion on S2 with exactly two critical points by the Hopf map S3 → S2. Then
adding cones along these Bott manifolds, we get a front that gives an exact
Lagrangian MHopf that does not intersect the 0-section.

6.5. Embedded augmentation admissible Lagrangians

In this section we consider basic constructions of embedded Lagrangian fill-
ings in T ∗S3 − S3. Together with the conjecture on intersections of branches
of the augmentation varieties corresponding to partitions of links, we get a
(correspondingly conjectural) geometric source of the augmentations corre-
sponding to the trivial partition of any link.

Consider first the case of the conormal filling. First we move LK off of
the 0-section using shifts by the angular form dθ supported in a tubular
neighborhood of the knot.

Lemma 6.11. For non-planar links, the shifted version of LK is augmen-
tation admissible.
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Proof. We must check the second property for augmentation admissibility.
Let R > 0 be large and write ER for the complement in T ∗S3 of a radius
R disk bundle. We argue using monotonicity: if a disk does not lie entirely
outside ER

2

but still leaves ER then its area is bounded below by CR2 for
some constant C > 0, which is a contradiction for R sufficiently large. Thus
the entire disk must lie outside ER

2

. However, in this region the symplectic
form is exact and the area is given by some constant times the number of
times its boundary goes around S1. Assuming that the link does not lie in
a plane, the length of such a curve is bounded below by δR for some δ > 0,
and monotonicity for holomorphic disks again gives a lower area bound of
the form Cδ2R2, which gives a contradiction. �

We next consider moving link complements off of the 0-section.

Lemma 6.12. If a link K is fibered then ΛK admits an augmentation
admissible Lagrangian filling MK ≈ S3 −K in T ∗S3 − S3.

Proof. SinceK is fibered, there exists a non-vanishing 1-form on S3 −K that
can be taken to agree with the standard circular form dθ of the meridian
circles in a small neighborhood of a knot. Consider a small Bott function
with maximum along the link, and add in the conormal along the Bott
maximum as in Figure 7. Then the exact Lagrangian is parametrized as
follows over the fiber disks:

x(r, ξ) = rξ, y(r, ξ) = α(r)ξ,

where (r, ξ) ∈ (−δ, δ)× S1 and α(r) > 0. Consequently, the Lagrangian shifted
by c · dθ is given by

x(r, ξ) = rξ, y(r, ξ) = α(r)ξ + cRπ

2
ξ,

where Rπ

2
denotes rotation by π

2 . Thus adding the conormal along the
Bott maximum does not introduce any intersections with the 0-section.
Finally, the argument confining closed disks is a repetition of the proof of
Lemma 6.11. �

If a link K is not fibered then we can move off the complement MK′ of
a link K ′ = K ∪K0 where K0 is a braid axis for K. More precisely, fix a
braid presentation of K and let K0 be a braid axis.

Lemma 6.13. With K ′ as above, ΛK′ admits an augmentation admissible
Lagrangian filling MK′ ≈ S3 −K ′ in T ∗S3 − S3.
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Proof. There is a non-vanishing 1-form dθ along a tubular neighborhood of
an unknot dual to the braid axis, i.e. along the tubular neighborhood N
of an unknot U such that the link lies in N and projects with everywhere
nonzero derivative to U . Add a small Bott maximum along the link; a similar
analysis as in the proof of Lemma 6.12, where this time the shift is in the
direction of the knot which is perpendicular to the ξ-plane, shows that there
are no intersections introduced by adjoining the conormal. �

We next combine Lemma 6.13 with Conjecture 5.3 on codimension-one
intersections of augmentation varieties (see also the discussion in Section 4.4)
to get a description of the part of the augmentation variety of the original
link K that corresponds to the trivial partition in terms of that of K ′ = K ∪
K0. For convenience we express our result in terms of potentials. Let W©(x)
and U©(p) denote the potentials of the unknot. Setting the augmentation
polynomial of the unknot (see (3.6)) to zero determines ep uniquely in terms
of ex, or symmetrically ex in terms of ep. We thus find that p = ∂W©

∂x (x)

implies x = ∂W©

∂x (p) = ∂U©

∂p (p) and that the potentials are equivalent.
Let K be a non-split link with n components K = K1 ∪ · · · ∪Kn. As in

Lemma 6.13, let K ′ = K ∪K0, where K0 is a braid axis for K. Then also K ′

is non-split and for an appropriate choice of orientation of K0, lk0j = ℓj > 0
for all j > 0. Write x = (x1, . . . , xn), p = (p1, . . . , pn) and ℓ = (ℓ1, . . . , ℓn).
Let UK′(p0, p) denote the superpotential determined by MK′ ,

UK′(p0, p) = p0(ℓ · p) +
∑

i<j

lkij pipj + ŨK′(p0, p).

As MK′ is connected, this gives rise to the following local parametrization
of VK′(n+ 1):

x0 =
∂UK′

∂p0
, x =

∂UK′

∂p
.

Consider now the intersection V (n+ 1) ∩ (V (1)× V (n)). Assuming Con-
jecture 5.3, this intersection has dimension n. On the other hand K0 is
an unknot, we know the first factor V (1) explicitly, and equating the x0-
coordinates of a point in the intersection gives

∂UK′

∂p0
(p0, p) =

∂U©

∂p
(p0)

or equivalently

∂W©

∂x

(
∂UK′

∂p0
(p0, p)

)
= p0.
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Solving for p0 we get solutions p0 = g(p), say. Letting UK(p) be a potential
for VK(n), we find, by equating the x-coordinates of a point in the intersec-
tion, that

∂UK′

∂p
(g(p), p) =

∂UK

∂p
(p).

Now, our assumption on the dimension of the intersection implies that this
equation must be trivially satisfied for all p since otherwise the intersection
would have dimension < n. This thus gives the following formula for the
potential of K corresponding to VK(n):

(6.7) UK(p) = UK′(g(p), p)− U©(g(p)),

which is an example of “Lagrangian reduction” (see Section 5.4), rephrased
in the language of potentials.

6.6. Immersed Lagrangian fillings

In this section we first discuss immersed Lagrangians, and then indicate a
geometric counterpart of intersecting augmentation varieties that physically
corresponds to adding an anti-brane along a Lagrangian. This conjecturally
yields a connected geometric Lagrangian which is a source for the augmenta-
tions in the branch of the augmentation variety corresponding to the trivial
partition of any link, and indicates a geometric origin for Conjecture 5.3.

We use the notion E for the ambient symplectic manifold as in Sec-
tion 6.2. Consider a generically immersed Lagrangian submanifold FK which
satisfies the Maslov class condition and the condition at infinity of an aug-
mentation admissible Lagrangian. Then FK has a finite number of transverse
double points in a compact part of E. Let q be a double point of E; then q
is the transverse intersection of two local branches of FK . We write q± for
q considered as an ordered intersection of the two branches. One can asso-
ciate a Maslov type index |q±| to q±, see [28], such that the dimension of the
moduli space M(q±) of holomorphic disks with boundary on FK and one
puncture where the disk is asymptotic to q±, with the boundary orientation
inducing the order of the sheets corresponding to the decoration, equals

dim(M(q±)) = |q±| − 1,

and where |q−| = (dim(E)− 2)− |q+| = 1− |q+|, see Figure 13.
Under additional conditions, the curve counting formula corresponding

to (6.3) and (6.6) defines an augmentation also for immersed FK . In order
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1 2

2 1

q

Figure 13: Holomorphic disks with one puncture at an intersection point
and the induced ordering of the local sheets.

to understand the additional condition, we consider the boundary of a 1-
dimensional moduli space M(b;σ) of quantum corrected holomorphic disks
with boundary on FK and a positive puncture at a Reeb chord b. Here a
new boundary phenomenon appears: there are two-component broken disks
where one component is a disk in M(b, q∓;σ) with two punctures, a positive
puncture at b and another puncture at q∓ for some double point q, and the
other is a disk in M(q±;σ), see Figure 14. We have

dim(M(b, σ)) = dim(M(b, q∓)) + dim(M(q±)) + 1,

which by genericity equals 1 only if dim(M(b, q∓)) = dim(M(q±)) = 0. Con-
versely, any such configuration can be glued uniquely to a 1-dimensional
quantum corrected disk. In particular we see that if for every double point
q with |q+| = 1, the count of elements in the moduli space of quantum
corrected disks M(q+;σ) equals zero, then there is no contribution to the
boundary from this type of breaking and consequently the chain map equa-
tion holds.

We call an immersed Lagrangian FK as above, which can be equipped
with an obstruction chain σ so that it has this property with respect to rigid
once-punctured disks, unobstructed. In these terms the above arguments can
be summarized in the following way.

Lemma 6.14. Unobstructed Lagrangian fillings define augmentations.

6.7. Geometric Lagrangian fillings and anti-branes

We next construct a connected Lagrangian filling of any link (or more pre-
cisely, of the split union of the link with an unknot). Let K be a link and
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Figure 14: In the presence of double points, disks with one puncture at
the double point can break off, leading to new codimension-one boundary
phenomena that can destroy the chain map property.

consider the auxiliary link K ′ = K0 ∪K, where K0 is a braid axis for K as in
Lemma 6.13. We use notation as there. Let MK′ ⊂ E denote the Lagrangian
complement of K ′ shifted off the 0-section. Recall that the braid axis is an
unknot which links all components of K positively. Consider a Hopf link
K ′′ = K0 ∪K−1, where K−1 is a meridian circle of the unknot K0 and hence
in particular K−1 is itself an unknot. Let MK′′ denote the complement of
the Hopf link K ′′, see Remark 6.10. Noting that p0 and ℓ · p determine the
shift of the conormal torus of K0 in the direction of the meridian and the
longitude, respectively, in MK′ , we find that for p−1 = ℓ · p, the shifts of the
conormal tori in MK′ and MK′′ agree.

The next step of our construction is to glue MK′ to MK′′ along ΛK0
.

From a physical perspective this corresponds to adding an anti-brane along
MK′′ . In Figure 15, the gluing operation is described in terms of fronts. The
result of this gluing is an immersed Lagrangian filling NK∪K−1

. Since the
complement of the unknot is diffeomorphic to S1 × R2, we find that NK∪K−1

has the topology of the complement of a link K ∪K−1 in S1 × S2. Here S2

is the union of two hemispheres S2 = H− ∪H+, K is a braid in S1 ×H−,
and K−1 is the trivial one-strand braid S1 × h+ ⊂ S1 ×H+ for h+ a point
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joining fronts:

MK ′′

MK ′LK0
T ∗S3

NK∪K−1

S3

Figure 15: Gluing the Lagrangian complements MK′ and MK′′ along ΛK0
,

where K ′ = K0 ∪K and K ′′ = K0 ∪K−1, to obtain a new Lagrangian
NK∪K−1

.

in the interior of H+. Viewed as a link in S3, K ∪K−1 is a split link formed
by adding a distant unknot component K−1 = © to the link K.

Consider the GW-potential ŨK∪K−1
of NK∪K−1

. Holomorphic disks with
boundary on NK∪K−1

(i.e. closed disks without punctures) lie on either MK′

or MK′′ . However, MK′′ is the complement of a Hopf link which supports
algebraically zero disks, see Remark 6.10. Noting that x−1, p1, . . . , pn gener-
ate H1(NK∪K−1

) and that p0 is homologous to x−1, we then find that

ŨK∪K−1
(x−1, p) = ŨK′(x−1, p).

Furthermore, since p−1 is homologous to ℓ · p in NK∪K−1
, we get the corre-

sponding superpotential

UK∪K−1
(x−1, p) = UK′(x−1, p).

We consider finding conditions that guarantee that the immersed Lagrangian
filling NK∪K−1

of ΛK∪K−1
is unobstructed. Assuming that is the case, we
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find that

p−1 =
∂UK′

∂x−1
, x =

∂UK′

∂p

is a parametrization of VK∪K−1
. On the other hand, since K ∪K−1 is split,

we know that VK∪K−1
= VK × VK−1

, and since K−1 is an unknot, we con-
clude that

(6.8)
∂UK′

∂x−1
=

∂W©

∂x
(x−1)

or equivalently

∂W©

∂x

(
∂UK′

∂x−1
(x−1, p)

)
= x−1.

Solving this equation, we get x−1 = g(p), and in complete agreement with (6.7),
we find that

UK(p) = UK′(g(p), p)− U©(g(p)) = UK∪K−1
(g(p), p)− U©(g(p)),

is a potential for VK(n).
This leads us to conjecture that the immersed Lagrangian filling NK∪K−1

is unobstructed provided that

(6.9)
∂W©

∂x

(
∂UK∪©

∂x−1
(x−1, p)

)
= x−1,

in the case that K is an non-split link. This conjecture gives a connected
unobstructed Lagrangian filling NK∪© of K ∪© for any link K, where ©
is an unknot split from K. The corresponding potential UK for K is then
obtained by subtracting the unknot potential from the geometrically defined
potential UK∪© and gives a geometric source for augmentations in VK(n).

We next consider the classical limit of UK . In this limit, ∂UK′

∂p0
= ℓ · p �= 0

and (6.8) becomes

ℓ · p = p−1,

where (x−1, p−1) is a point on the augmentation variety of the unknot. But
in the classical limit the augmentation variety of the unknot is {x−1 =
0} ∪ {p−1 = 0}, so x−1 = 0 and the potential UK limits to

∑
i<j lkij pipj ,

which from the viewpoint of augmentations agrees with the Lagrangian link
complement in T ∗S3.
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We will often denote NK∪K−1
equipped with the potential

UK(p) = UK∪K−1
(g(p), p)− U©(g(p))

by MK , see Section 4.2.
We next consider a possible geometric source of Conjecture 5.3 in a

similar spirit. Consider a link K = K1 ∪K2 where K1 is a knot and K2 a
link such that bothK andK2 are non-split. LetMK andMK1

be Lagrangian
fillings of K ∪K−1 and K1 ∪K−1, respectively. Here we use the same braid
axis K0 for K and K1 and for suitably values of p1, the shifts of ΛK1

in MK

and MK1
agree. We next glue MK1

to MK along ΛK (add an anti-brane
along MK1

). Denote the resulting Lagrangian filling MK/K1
. Then MK/K1

is a filling of K2 ∪©∪©, where ©∪© is a two-component unlink split
from K2.

Assuming that MK/K1
is unobstructed, we consider conditions under

which it would define an augmentation. As above, the holomorphic disks
with boundary onMK/K1

are exactly the holomorphic disks inMK and those
in MK1

(the latter counted with opposite signs), and we have obstruction
chains from the two pieces. In MK/K1

, however, the obstruction chains going
to p1 no longer go off to infinity, but end at a finite distance. In order to have
the chain map property (see the proof of Theorem 6.6), we must deal with
the discontinuity that may appear when a disk crosses the reference cycle
p1. This is however straightforward: by equating the one-point functions of
the potential of the pieces,

(6.10)
∂UK∪K−1

∂p1
=

∂UK1∪K−1

∂p1
,

the total homology class of one parameter families of quantum corrected
disks varies continuously as the punctured disk crosses p1. As in the proof of
Theorem 6.8, the classical part of the superpotentials in (6.10) is related to
the homology class of the boundary of the punctured disk, and the Gromov-
Witten part is related to insertions. Imposing this condition, MK/K1

thus
gives an augmentation of K2.

Note that in (6.10) we can replace UK∪K−1
with UK since

∂UK

∂p1
(g(p), p) =

∂UK∪K−1

∂p1
(g(p), p) +

(
∂UK∪K−1

∂p−1
(g(p), p)−

∂U©

∂p−1
(g(p), p)

)
∂g

∂p1

=
∂UK∪K−1

∂p1
(g(p), p)
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and similarly for UK1
. We thus find that the augmentation variety VK2

con-
tains a branch given by the potential

UK2
(p2) = UK(p1(p2), p2)− UK1

(p1(p2)),

where p1(p2) is a solution of the equation

∂UK

∂p1
(p1, p1)−

∂UK1

∂p1
(p1) = 0.

This is exactly “Lagrangian reduction” rephrased in terms of potentials, see
Conjecture 5.4, and thus gives a possible explanation for the codimension-
one intersection property of Conjecture 5.3. In order to turn this into an
actual proof, the main point would be to verify the assumptions we made on
the immersed Lagrangians being unobstructed under the conditions stated.

6.8. Geometric constructions in a simple example

In this section, we study a basic example that illustrates Conjecture 5.3 as
well as the geometric constructions in Section 6.7.

Consider two knots K1 and K2 and their connected sum K1#K2.
Assume that we have Lagrangian fillings M1 = MK1

and M2 = MK2
with

GW-potentials U(p1, Q) and U2(p2, Q) respectively. Then we construct a
Lagrangian filling M12 = MK1#K2

with potential U12(p,Q). Studying the
augmentations of ΛK1#K2

presented with a short Reeb chord near the con-
necting point, one can show that the GW-potentials are related by

U12(p,Q) = U1(p,Q) + U2(p,Q)− U©(p,Q),

where U©(p,Q) is the potential of the Lagrangian complement of the unknot
(which is isomorphic to the conormal). To see this, recall from Section 5 how
the augmentation polynomial behaves under connected sum, and note that
is a restatement of that in terms of GW-potentials.

We now consider the example K of an (n+ 1)-component link con-
sisting of an unlink K ′ on n components with a braid axis K0, see Fig-
ure 16. Consider adding an anti-brane along MK0

to MK . This results in a
Lagrangian that lies over a tubular neighborhood of an unknot K−1 dual
to (Hopf linked with) K0 and with front as depicted in Figure 17. By the
above connected sum result and our knowledge of the potential of the Hopf
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Figure 16: The n+ 1 component link K

... ...

K0

K0

fiber disk

K−1

= conormal

= intersection

Figure 17: Left, the configuration of K0 and K−1; middle, the front of
NK′∪K−1

over a fiber; right, the front of NK′∪K−1
seen from above.

link (see Section 4.5), we can compute the superpotential UK for K as

UK(p0, p1, . . . , pn) = p0(p1 + · · ·+ pn)− (n− 1)U©(p0).

Adding an anti-brane along MK0
introduces the homology relation p1 +

· · ·+ pn = 0 and gives the superpotential

UK/K0
(x1, p2, . . . , pn) = x1(p1 + · · ·+ pn)− nU©(x1),

where we keep additional cycles in order to keep track of obstruction chains.
The continuity argument from Section 6.7 requires that we remove x1, where
different obstruction cycles meet by passing to the critical point. Using the
symmetry of the unknot potential under exchange of x and p, we find the
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critical point condition

x1 =
∂U©

∂p

(
1

n
(p1 + · · ·+ pn)

)
.

Re-substituting this, we find that a “potential” for K ′ is given by

UK′ = nU©

(
1

n
(p1 + · · ·+ pn)

)
,

which, in the light of our knowledge of augmentations for split links, gives
correct augmentations only if p1 = · · · = pn.

Looking at the Lagrangian filling, we can see these phenomena from a
geometric perspective. Applying [40], we get a description of holomorphic
disks in terms of flow trees and in this case this is straightforward. The
Lagrangian MK/K0

obtained by anti-brane addition has Bott circles of self-
intersection points. Perturbing to a Morse situation leaves two intersection
points on each circle, and the rigid disks have a puncture at the double point
with the smallest action. By [40], these rigid disks correspond to flow lines
starting at saddle points and hitting the cusp edge as shown in Figure 18.
These rigid disks are indeed obstructions, with difference classes p1, p1 + p2,
. . . , p1 + · · ·+ pn−1 as indicated there. In the exact case, we find that the
obstructions then vanish only if p1 = · · · = pn = 0. In the general case, one
would expect these equations to be quantum corrected to

pj =
∂U©(p0)

∂p0
, j = 1, . . . , n,

which is indeed the case if we use a model where the rigid disks lie close
to each conormal piece and look like the disks on the conormal of the cor-
responding unknot, i.e. the disks lie near the cones in Figure 17. This is in
agreement with the above algebraic analysis.

6.9. Legendre transform of superpotentials from

a geometric perspective

In this section we consider the duality between the potentials of different
Lagrangian fillings mentioned in Section 3.2 from a geometric perspective.
Let K be a knot, let LK be its conormal filling, and let MK be a filling that
fills in the longitude, e.g. the knot complement if the knot is fibered or the
filling NK∪© constrained by (6.9). Consider a branch of the augmentation
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Figure 18: The flow trees that correspond to rigid disks, and the boundaries
of the corresponding rigid disks lying in a fiber punctured sphere of NK/K1

.

variety defined by LK and parametrized by x:

x �→

(
x,

∂W

∂x

)
.

Parametrizing the curve by p instead, we get a function p �→ x(p), and the
corresponding potential is given by

U(p) =

∫
x(p) dp = x(p)p−

∫
p dx = x(p)p−W (x(p))

=
∂U

∂p
(p) ·

∂W

∂x
(x(p))−W (x(p)).

This indicates that the GW-potential of MK should be Legendre dual to
the GW-potential of LK . We next discuss this duality heuristically from a
geometric viewpoint.

First consider holomorphic disks with boundary on LK . We fix a per-
turbation scheme so that no holomorphic disk intersects the central S1 in
the conormal. Note that the construction of MK involves gluing LK to the
0-section. We assume that the disks on MK are exactly those that come
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W (x)∂U
∂p

· ∂W
∂x

U(p)

Figure 19: The three boundary configurations.

from LK . In order to shift MK off the 0-section, we glue with a twist, taking
a curve in the class x+ p in ΛK ⊂ MK to the curve in class x in ΛK ⊂ LK .

Looking at the holomorphic disks of MK in a neighborhood of the knot,
we see that they look like the disks in LK except they all link with linking
number 1. Consider now a 1-parameter deformation which changes this,
energy level by energy level. First we let the disk on the second energy level
cross the disk on the first energy level to change the linking number, and
inductively we let the disk on energy level k cross the disks of all lower energy
levels. Below a fixed energy level we thus find three boundary components
of the parametrized moduli spaces: disks of LK , disks of MK , and broken
disks of two components that intersect at a boundary point. In the latter
configuration, one of the disks is a disk of higher energy and can be viewed
as a disk on LK , and the other has already been moved in place and can
be viewed as a disk on MK . Summing over the ends of the weighted 1-
dimensional moduli space, we find

U(p) =
∂U

∂p
·
∂W

∂x
−W (x(p)),

where x(p) is the function discussed above. See Figure 19.
Differentiating with respect to p gives

p

(
∂x

∂p
−

∂2U

∂p2

)
= 0.

Hence x(p) = ∂U
∂p ,

U(p) =
(
xp−W (x)

)∣∣
x critical

,

and U(p) is the Legendre transform of W (x).
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6.10. Augmentations, the cord algebra, and flat

connections on exact fillings

In order to find other geometric sources for augmentations, we consider the
exact Lagrangian filling MK with topology of the link complement S3 −
K from a different perspective, in line with the discussion at the end of
Section 4.2.

Let Zπ denote the group ring of the fundamental group π := π1(S
3 −

K) = π1(MK). We define a chain map Φ: A(ΛK) → Zπ, where Zπ is endowed
with the trivial differential mimicking the usual augmentation map. More
precisely, let γ ∈ π and let c be a Reeb chord of ΛK . Write Mγ(c) for the
moduli space of holomorphic disks u : D → T ∗S3 with u(∂D) ⊂ MK , with
one positive puncture where the disk is asymptotic to the Reeb chord strip
of c, and with u(∂D) representing the homotopy class γ ∈ π (after being
closed up by a capping path for c). Define Φ as follows: Φ takes Q to 1
and λ = ex and µ = ep to the corresponding elements in Zπ; and for a Reeb
chord c,

Φ(c) =
∑

γ : dimMγ(c)=0

|Mγ(c)|[γ],

where |Mγ(c)| denotes the algebraic number of disks in Mγ(c) and where [γ]
is the element in Zπ corresponding to γ ∈ π. The usual argument using the
description of the boundary of the 1-dimensional moduli space as two-level
disks gives the chain map property Φ ◦ ∂ = 0.

Recall the concrete construction of MK (see Figure 7), where the conor-
mal of the link was added to the 0-section via Lagrange surgery. Com-
pactness properties of the space of holomorphic disks with boundary on
LK ∪ S3 ⊂ T ∗S3 were studied in [41], where it was shown that for generic
data there is a constant C > 0 such that the number of corners (where the
disk boundary switches between LK and S3) for any disk is at most C. The
corners of disks with boundary on LK ∪ S3 can be smoothed to give a disk
on MK , and conversely, disks with boundary on MK limit to disks with
corners on LK ∪ S3 as the surgery degenerates. For isolated double points
this relation was studied in [36].

In order to describe the relation between holomorphic disks with bound-
ary on LK ∪ S3 and disks with boundary on MK , we first characterize the
corners of disks. At any corner the boundary orientation of the disk gives
one incoming and one outgoing arc. We say that a corner with incoming arc
along S3 and outgoing along LK is positive and that a corner with the oppo-
site behavior is negative. Generically, rigid disks have only non-degenerate
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corners. In 1-parameter families of disks with boundary on LK ∪ S3, there
are also degenerate corners where the disk has a vanishing derivative in the
fiber direction and in a neighborhood of which two nondegenerate corners
collide.

The relation between disks on LK ∪ S3 and disks on the “surgered”
version MK were studied in [36]. Using this result, or alternatively the cor-
respondence between flow trees and holomorphic disks established in [40]
together with standard gluing theorems, one establishes the following results,
beginning with the case of rigid disks.

Theorem 6.15. For all sufficiently small surgery parameters, there is the
following many-to-one correspondence between rigid holomorphic disks with
boundary on MK and disks with boundary on LK ∪ S3:

To each disk with 2k corners corresponds 2k disks obtained by smoothing
the corners of the disk. At a positive corner the smoothing is unique, see
Figure 20, and at each negative corner there are two smoothings and the
homotopy class of the corresponding boundaries differ by the meridian class
in ΛK , see Figure 21.

Figure 20: Smothing at a positive corner.
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Figure 21: Smothing at a negative corner.

We next consider 1-parameter families of disks. Consider such a 1-
parameter family M. Outside of a finite set of points in M, the disks have
nondegenerate corners that can be smoothed exactly as in Theorem 6.15.
It thus remains to describe the smoothed family for parameters in a small
neighborhood of a disk with a degenerate corner. Consider such a family
parametrized by t ∈ [−δ, δ], with two nondegenerate corners for t ∈ [−δ, 0),
a degenerate corner at t = 0, and no corner at t ∈ (0, δ]. Note that the disk
with degenerate corner also lies in a moduli space of disks without corners
that simply cross through K, see Figure 22. Choose smoothings at all cor-
ners except for the corners near the degenerate corner. Write M± for the
two branches of the moduli space corresponding to the two smoothings of
corners of disks (−δ, 0), see Figure 23. Also write N± for the two compo-
nents of the moduli space without corners in the complement of the disk
that intersects K, see Figure 24.

Theorem 6.16. For all sufficiently small surgery parameters, the moduli
space of disks with boundary on MK corresponding to the intersecting family
and the crossing family is obtained by joining M+ to N+ and M− to N−,
see Figures 23 and 24.
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Figure 22: Holomorphic disks with boundary on LK ∪ S3 near a disk inter-
secting the knot.

There is a topological interpretation for knot contact homology in homo-
logical degree 0 (and Q = 1) known as the cord algebra [30]. Theorems 6.15
and 6.16 precisely match with the generators and relations of the cord alge-
bra. Indeed, work in progress [42] aims at establishing that the map counting
holomorphic disks with boundary on LK ∪ S3 gives an isomorphism between
the degree zero contact homology of ΛK and the cord algebra using a version
of string topology. Together with Theorems 6.15 and 6.16, this would lead
to a proof of the following result that we state as a conjecture:

Conjecture 6.17. The chain map Φ induces an isomorphism between the
degree 0 knot contact homology (with Q = 1) and the cord algebra.

The fact that these two algebras are isomorphic is already known [30], but
this conjecture would give a geometric reason for the isomorphism.

As an aside, it is straightforward to show that the chain map Φ is sur-
jective: over each geodesic binormal chord γ of the knot sits a trivial half
strip with boundary on LK ∪ S3 and which ends at the corresponding Reeb
chord γ. After smoothing the corners, this gives the element (1− µ)[γ] in
the cord algebra, proving surjectivity.
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Figure 23: Smoothings of the family of disks with two colliding corners. The
lower picture shows the smoothed boundary in MK .

Figure 24: Subdivision of the 1-parameter family N .

As a consequence of Conjecture 6.17, we would have that augmentations
of A(ΛK) to C (at Q = 1) coincide with algebra morphisms of the cord alge-
bra of K into C. In particular, as shown in [30], any flat SL(2,C)-connection
on MK induces such a map from the cord algebra, which explains why the
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A-polynomial divides the (classical) augmentation polynomial. Further, in
examples some of the factors of the augmentation polynomial which do not
appear in the A-polynomial arise from flat GL(n,C) connections for n > 2
in a similar way [26, 43].

6.11. The cord algebra and small non-exact deformations

In this section we discuss a possible generalization of the material in Sec-
tion 6.10 and consider maps from the DGA of ΛK into the group ring of the
fundamental group of a knot complement in presence of quantum correc-
tions. The picture studied here applies for small shifts (i.e. for Lagrangian
fillings that are sufficiently close to being exact).

Let K = K1 ∪ · · · ∪Kn be an n-component link with complement MK

that can be shifted off of the 0-section; for example,K could be a link with an
adjoined braid axis, as discussed in Section 6.7. In the limit where periods are
small, it is reasonable to expect that the boundaries of all rigid holomorphic
disks lie in a small neighborhood of the link. Here the disks look basically
like the corresponding disks in the conormals of the link components that
are glued in with a twist. We restrict attention to this case and write x =
(x1, . . . , xn) and p = (p1, . . . , pn) for the longitude and meridian homology
generators in ΛK , where H1(ΛK) = H1(ΛK1

)⊕ · · · ⊕H1(ΛKn
) and xj , pj ∈

H1(ΛKj
). Since boundaries of holomorphic disks lie in a (punctured) tubular

neighborhood of K we fix obstruction chains from the disks’ boundaries to
linear combinations of fixed homology generators xj , pj at infinity. As above
tree configurations then define a generating function (GW-potential)

W (x, p) =
∑

k,l,r

Nk,l,re
k·x+l·pQr,

where k = (k1, . . . , kn) and l = (l1, . . . , ln) both range over all vectors in Zn

and r ranges over Z.
In analogy with the above, we change variables in the coefficient ring of

the DGA of ΛK by

(6.11) xj �→ Xj = xj −
∂W

∂pj
, pj �→ Pj = pj −

∂W

∂xj
,

and write Aml for the DGA with transformed coefficient variables.
Let CQπ denote the group ring of the fundamental group of the link

complement π = π1(S
3 −K) over C, with the commutative variable Q±1

adjoined. Define the algebra map Φ: Aml → CQπ on Reeb chord generators
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as

Φ(a) =
∑

dimMγ(a;σ)=0

|MQk;γ(a;σ)|[γ],

where γ ∈ π is the homotopy class of the boundary of the configuration, σ
is an obstruction chain as above, and Mγ(a;σ) is the moduli space of quan-
tum corrected holomorphic disks with boundary on MK and one positive
puncture at the Reeb chord a. Note that this map makes sense as a map
into CQπ: since this is a module over the commutative ring C[π1(ΛK)], we
need not keep track of the order of intersections of the reference chains in
the boundary when all holomorphic disks lie near the link components.

The usual argument analyzing the boundaries of 1-dimensional moduli
spaces shows that the map Φ: Aml → CQπ is a chain map. Thus if RQπ
denotes the subalgebra of CQπ that is generated by the image of Φ, then
any algebra map RQπ → C induces an augmentation. We next argue that
the parts of the augmentation variety which come from representations of
RQπ are Lagrangian with respect to the symplectic form

∑n
j=1 dxj ∧ dpj .

To see this, write Xj and Pj for the “logarithmic coefficient variables”
in the algebra Aml, see (6.11). Fix a link component Kj of K and write
the function lkj , defined on generators γ ∈ π of Cπ, for the linking num-
ber with Kj : lkj(γ) = lk(Kj , γ). Write lk−1(0) for the set of generators
with vanishing linking number with each Kj . Since any generator γ in
lk−1(0) is zero in homology, it is homotopic to a product of commutators:
γ = Πm

s=1αjβjα
−1
j β−1

j in Cπ.
Consider now an algebra morphism parametrized by Pj and note that

1

γ

∂γ

∂Pj
=

m∑

s=1

(
1

αs

∂αs

∂Pj
+

1

βs

∂βs
∂Pj

−
1

αs

∂αs

∂Pj
−

1

βs

∂βs
∂Pj

)
= 0

We have

eXk = e
∑

j �=k
lkj(Xk)Pjξk,

where ξk ∈ lk−1(0). Thus

∂Xk

∂Pj
= lkj(Xk) = lkk(Xj) =

∂Xj

∂Pk
,

since by symmetry of linking numbers, lk(Kj ,Kk) = lk(Kk,Kj). Hence X =
X(P ) is Lagrangian with respect to the symplectic form

∑n
j=1 dXj ∧ dPj ,

and since the change of coordinates (X,P ) to (x, p) takes
∑n

j=1 dXj ∧ dPj to∑n
j=1 dxj ∧ dpj , we find that the original augmentation variety is Lagrangian

as well.
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7. Examples

Here we provide a few computations of augmentation varieties for links.
The augmentation variety and the mirror-symmetry variety coincide in all
cases where they have both been computed, and we denote both by VK . In
addition, we present evidence for the conjectures presented in sections 4 and
5.

Let us summarize what we expect, based on the discussion of the pre-
vious sections. Let K be an n-component link. The mirror/augmentation
variety VK has a Zariski-closed subset (union of irreducible components)
VK(P ) for each primitive partition P of {1, . . . , n}, where we recall that
primitive partitions divide K into non-split sublinks Kα. For fixed Q, we
have

VK(P ) =
∏

α

VKα
(Pα)

, whereKα corresponds to the subset Pα ⊂ {1, . . . , n}. Moreover, for fixed Q,
VKα

⊂ (C∗)2nα is expected to be a complex-Lagrangian variety of dimension
nα, where nα is the cardinality of Pα, and the corresponding potential defin-
ing VKα

is associated to the Lagrangian filling MKα
as follows. Let exi , epi

denote the coordinates of (C∗)2nα ; then

xi =
∂

∂pi
W (p1, ..., pnα

)

and

W (p1, ..., pnα
) = limλ→0 (λ logHp1/λ,...,pnα/λ

(K(P ))),

where

Hp1/λ,...,pnα/λ
(K(P ))

are the HOMFLY invariants of the link K(P ) colored by symmetric repre-
sentations of length pni

/λ.
Furthermore, let P1, P2 be primitive partitions such that P2 is a refine-

ment of P1. If there is no primitive P ′ such that P ′ is a refinement of P1 and
P2 is a refinement of P ′, then we expect

codim(VK(P1) ∩ VK(P2)) = 1.

More generally, if we have a sequence P1, . . . , Pr of primitive partitions such
that each is a refinement of the previous one and the sequence cannot be
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lengthened by inserting another partition in the middle, then we expect

codim(VK(P1) ∩ VK(Pr)) ≤ r.

In particular, we expect VK(n) = VK(1 · · ·n) and VK(1n) = VK((1) · · · (n))
to intersect at least in a curve.

Finally, the case of knots and links colored by representations higher
than the symmetric representation translates back to the case of links col-
ored by totally symmetric representations. For any sublink Kα colored by a
representation with m rows corresponding to m branes on the corresponding
Legendrian, we get an equivalent description in terms of a link containing
m parallel copies of Kα with a single brane on each Legendrian. The only
distinction between the two are the contributions of short strings, which can
potentially kill some of the VK(P ).

We will see that all the examples we have considered are consistent
with the above predictions. The polynomials determining the augmentation
varieties in this section, along with a number of other examples, are available
in a Mathematica notebook at the third author’s web site:

http://www.math.duke.edu/~ng/

A number of the links considered in this section are depicted, along with their
graphs, in Figure 25. Details of the computations are mostly suppressed; all
computations use a Mathematica package also available at the web site. For
notational purposes, note that the varieties VK and VK(P ) are subsets of
(C∗)2n+1 with coordinates given by λi = exi , µi = epi , and Q = et.

7.1. Torus links

Here we give the augmentation varieties for various torus links, obtained
from knot contact homology. In all cases, each link component is an unknot,
and so VK(1n) is the vanishing set of

(Q− λ1 − µ1 + λ1µ1, . . . , Q− λn − µn + λnµn),

where n is the number of components.

• Hopf link ((2, 2) torus link): VK = VK(12) ∪ VK(2) with

VK(2) = (λ1 − µ2, λ2 − µ1) .

• (2, 4) torus link: VK = VK(12) ∪ VK(2) with

VK(2) =
(
λ1µ

2
1 − λ2µ

2
2, µ1λ

2
1 + (−µ1µ

2
2 +Qµ2)λ1 − µ3

2

)
.
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(123)

(23)(1)

(13)(2)

(1)(2)(3)

(123)

(12)(3)

(1)(2)(3)

(13)(2)
(23)(1)

(12)

(1)(2)

21

3

1
2
3

(123)

(1)(2)(3)

(12)(3)

(123)

(1)(2)(3)

(12)

(1)(2)

Figure 25: Examples of links K and their graphs ΓK . Left to right, top
to bottom: Hopf link ((2, 2) torus link), Whitehead link; (3, 3) torus link,
Borromean link; connected sum of two Hopf links, L8n5. Where relevant,
the components of the link are numbered; where no numbers appear, there
is a symmetry given by interchanging components.

• (2, 6) torus link: VK = VK(12) ∪ VK(2) with

VK(2) =
(
λ1µ

3
1 − λ2µ

3
2, µ3

1λ
3
1 + (−µ3

1µ
3
2 +Qµ2

1µ
2
2 − µ2

1µ
2
2)λ

2
1

+(Qµ1µ
4
2 − µ1µ

4
2 −Q2µ3

2)λ1 + µ6
2

)
.

• (2, 8) torus link: VK = VK(12) ∪ VK(2) with

VK(2) =
(
λ1µ

4
1 − λ2µ

4
2, µ6

1λ
4
1 + (−µ6

1µ
4
2 +Qµ5

1µ
3
2 − µ5

1µ
3
2 +Qµ4

1µ
2
2)λ

3
1

+ (−µ4
1µ

6
2 + 2Qµ3

1µ
5
2 − 2µ3

1µ
5
2 −Q2µ2

1µ
4
2)λ

2
1

+(µ2
1µ

8
2 +Q2µ1µ

7
2 −Qµ1µ

7
2 −Q3µ6

2)λ1 + µ10
2

)
.

All of the listed examples of (2, 2f) torus links satisfy the Lagrangian
reduction property, Conjecture 5.4. That is, if we write K = K1 ∪K2 and
fix Q, then the intersection of VK(2) with (C∗)2 × VK2

(1) = {Q− λ2 − µ2 +
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λ2µ2 = 0} projects in λ1, µ1 space to a curve containing VK1
(1) = {Q− λ1 −

µ1 + λ1µ1 = 0}. Note that in general this projection contains more than just
VK1

(1). For instance, when K is the (2, 4) torus link, a quick calculation
shows that the reduction is the union of VK1

(1) and {(Q+ µ1)
2 + λ1µ1(1 +

µ1)
2 = 0}.
We now also compare these computations to our Conjectures 5.1 and 5.3

relating the structure of the augmentation variety to the geometry of the
link. The (2, 2f) torus links have two knot components which are linked for
f �= 0 and unlinked for f = 0. For f = 0, we get a single primitive partition
P = (1)(2) (which we have written as 12), and for f �= 0 we get two: P = (12)
(which we have written as 2) and P = (1)(2). Thus, by our Conjecture 5.1,
we expect one (for f = 0) or two (for f �= 0) components of the augmentation
variety in these cases, one of which, VK(12), is the variety of the unlink. This
is exactly what we found.

For f = 0, the graph ΓK has one vertex and no edges. For f �= 0, ΓK

has two vertices, (12) and (1)(2), and one edge connecting them. (This is
depicted for f = 1 in Figure 25.) The intersection of the subvarieties joined
by this edge has codimension 1, in accordance with Conjecture 5.3.

• (3, 3) torus link: Here we have

VK = VK((1)(2)(3)) ∪ VK((12)(3)) ∪ VK((13)(2)) ∪ VK((23)(1)) ∪ VK((123)),

where VK((1)(2)(3)) = VK(13) is given at the beginning of this section,

VK((123)) = VK(3) = (λ1µ1 − λ2µ2, λ1µ1 − λ3µ3,

µ1λ
3
1 − µ1µ2µ3λ

2
1 −Qµ2µ3λ1 + µ2

2µ
2
3),

and the other components are given by

VK((12)(3)) = (λ1 − µ2, λ2 − µ1, Q− λ3 − µ3 + λ3µ3)

and cyclic permutation of indices.

One can show that VK(3) intersects VK((12)(3)) in a surface, which
projects in (λ1, µ1, λ2, µ2) space to a curve containing VHopf(2), where the
Hopf link is seen here as the sublink of the (3, 3) torus link consisting of
components 1 and 2. Similarly, VK((12)(3)) intersects VK(13) in a surface;
this fact is a direct result of the fact that VHopf(2) and VHopf(1

2) intersect in
a curve. Finally, VK(3) and VK(13) intersect in a curve.

The graph ΓK for the (3, 3) torus link is shown in Figure 25, and the
intersection dimensions are in accord with Conjecture 5.3.
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7.2. Torus links from Chern-Simons theory

Before presenting other examples, in this subsection we will study torus links
from the perspective of Chern-Simons theory. We will show that for the
(2, 2f) torus links considered in the previous subsection, the mirror variety
of the link, obtained from Chern-Simons theory and large N duality, agrees
with the augmentation variety. Moreover, we will see that the geometry of
the mirror variety is indeed captured by the link graph ΓK . We expand our
discussion to (n, nf) torus links, which provide a good testing ground of the
general relation we spelled out earlier between a link K̃ that is an n-parallel
of a knot K, and the knot K itself, just colored by representations with n
rows. In this case, if we let K̃ be the (n, nf) torus link, the corresponding
knot K is the (1, f) torus knot, i.e., the unknot in framing f¿

Recall from Section 2.2 that there is a relation between the HOMFLY
polynomial HR(K) of a knot K colored by representations R with n rows
and certain colored HOMFLY polynomials of the link K̃ consisting of n
parallel copies of K. One can see this by simply observing that, on the one
hand, the HOMFLY polynomial in any representation is the expectation
value of the Wilson loop

HR(K) = 〈TrRU(K)〉,

and on the other hand, tensoring n copies of the symmetric representation,
we can get any representation with up to n rows, so

Trm1
U · · ·Trmn

U =
∑

R

NR
m1,...,mn

TrRU,

where NR
R1,...,Rn

are tensor product coefficients for a unitary group of rank
greater than n. This holds inside the expectation values as well, leading to
a relation between the HOMFLY’s:

Hm1,...,mn
(K̃) =

∑

R

NR
m1,...,mn

HR(K).

The only novelty is that

Hm1,...,mn
(K̃) = 〈Trm1

U · · ·Trmn
U〉,

containing n parallel Wilson loops along K, is interpreted as the expectation
value of the link K̃ rather than the knot K.
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For the unknot K in framing f , colored by an arbitrary representation
R, the HOMFLY polynomial is given by a well-known expression:

HR(K) = T f
R S0R/S00,

where SRR′ and TRR′ = TRδ
R
R′ are the SU(N) WZW S and T matrices, as

before. In particular, S0R/S00 is just the quantum dimension of the SU(N)
representation R. From this, the partition function of n branes on K is easy
to compute:

Z(K)(x1, . . . , xn) =
∑

R

HR(K) TrR(e
x1 , . . . , exn)∆(ex1 , . . . , exn).

As we show in Appendix B, it follows that

Z(K)(x1, . . . , xn) =
∑

m1,...,mn≥0

n∏

i=1

Bf (mi)e
m1x1+···+mnxn∆(qm1 , . . . , qmn).

In the above, ∆(z1, . . . , zn) is the usual Vandermonde determinant

∏

1≤i<j≤n

(zi − zj),

and Bf (m) is the HOMFLY polynomial for an unknot in framing f , colored
by a totally symmetric representation of rank m:

Bf (m) ∝ q(f−1)m2/2
m∏

i=1

1− Q̂qi−1

1− qi
.

By ∝ we mean equality up to overall normalization. We also drop factors
that ultimately only shift what we mean by holonomy.

In the classical limit, the Vandermonde determinant does not contribute,
correspondingly, up to terms suppressed by gs relative to the leading order:

Z(K)(x1, . . . , xn) ∼
n∏

i=1

Z(K)(xi).

This is simply a product of n copies of a single brane partition function

Z(K)(x) =
∑

m≥0

Bf (m)emx ∼ exp

(
1

gs
WK(x)

)
.
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It is easy to show that (µ, λ) = (ep, ex) with p defined by

p =
∂

∂x
WK(x)

lies on a Riemann surface that is mirror to the unknot with framing f (the
unusual framing replaces λ by λµf ):

VK : (1− µ)− λµf (1−Qµ) = 0.

Thus, with rank n representations coloring the knot K,

Z(K)(x1, . . . , xn) ∼ exp

(
1

gs
(WK(x1) + · · ·+WK(xn))

)
.

Geometrically, this comes from n Lagrangians conormal to the unknot, which
corresponds to the partition

P = (1)(2) · · · (n).

The corresponding mirror variety is just n copies of VK :

VK̃(1n) = (VK)n.

This is consistent with the analysis of higher representations based on knot
contact homology which we gave in Section 5.6.

Now consider the partition function of the link K̃:

Z(K̃)(x1, . . . , xn) =
∑

m1,...,mn

Hm1,...,mn
(K̃) Trm1

(ex1) · · ·Trmn
(exn).

By either the reasoning of Section 2.2, or the above relation of the HOM-
FLY’s and the fact that

TrR(e
x1 , . . . , exn) =

∑

m1,...,mn

NR
m1,...,mn

em1x1 · · · emnxn ,

it follows that

Z(K̃)(x1, . . . , xn) = Z(K)(x1, . . . , xn)/∆(ex1 , . . . , exn).

We will consider the case n = 2 in some detail. The partition function
has two saddle points. At one, corresponding to P = (1)(2), we have

Z(K̃)(12)(x1, x2) ∼ exp

(
1

gs
(WK(x1) +WK(x2))

)
,
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where WK is the potential of a single knot, and

VK̃(12) = (VK)2.

This agrees with our statements in Sections 4.6 and 5.6 that rank n represen-
tations of a knot are a subset of the augmentations of the link which is the
n-copy of the knot. In this filling, both meridians are filled, µ1,2 = ep1,2 ∼ 1,
and we get two disconnected Lagrangians, as befits the fact that the corre-
sponding partition is P = (1)(2).

There is one more saddle point, which as we will see corresponds to
P = (12), and which gives a filling that is a single Lagrangian, the link
complement.

As we will see, at this saddle point, we can make the holonomy around
the meridian, µ1,2, as large as we wish, as befits the complement of a link.
In this case it is better to consider the Fourier transform of the amplitude,
and consider the coefficient Hm1,m2

of em1x1+m2x2 . Assuming m1 ≥ m2, we
can write

Hm1,m2
(K̃) =

m2∑

k=0

Bf (m1 + k)Bf (m2 − k)(qm1+k − qm2−k).

Now we will show that this has a saddle point for m1,2 ≫ 0. Assume that the
saddle point exists in this regime. Then, in the perturbative gs expansion
around it, we can replace the sum by an integral:

Hp1/gs,p2/gs(K̃) =

∫
dq Bf (p1 + q)Bf (p2 − q)(ep1+q − ep2−q).

It is easy to find the saddle point of this integral; we will show that it indeed
occurs for µ1,2 ≫ 1. If we let

Bf (p) ∼ exp(UK(p)/gs + · · · ),

then Uf (p) is the Legendre transform of the framed unknot potential Wf (x),
corresponding to working in terms of the meridian variable p, which is canon-
ically conjugate to x:

UK(p) =crit WK(x) + px.

This means that the potential UK̃(p1, p2) corresponding to VK̃ is

UK̃(p1, p2) =crit UK(p1 + q) + UK(p2 − q),
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where the right hand side is taken at the critical point, obtained by extrem-
izing with respect to q. The corresponding variety V (2) is given by the
intersection of

(7.1) λ1 = λ2

and a variety obtained by eliminating z = eq from the equations

(7.2)
(1− µ1z)(µ1z)

f − λ1(1−Qµ1z) = 0

(1− µ2/z)(µ2/z)
f − λ2(1−Qµ2/z) = 0.

We can solve for λ1,2 and z in these equations for any µ1,2, consistent with
our assumption that treating µ1,2 as a continuous variable was justified.
Thus we have shown the saddle point corresponding to V (2) indeed exists.

It is easy to show that for integer values of f , this reproduces the V (2)
varieties of (2, 2f) links obtained for integer values of f . Moreover, we can
prove that, for any f �= 0, the two varieties intersect on a curve.

For example, for f = 2, corresponding to the (2, 4) link, the variety V (2)
is given by a pair of equations consisting of (7.1), which is the same for all
f and

λ2
1 + λ1µ1µ2(1− µ1µ2Q)− µ3

1µ
3
2 = 0.

from solving (7.2). After a shift of framing

λ1,2 → λ1,2µ
2
1,2

followed by a change of orientation λ1,2, µ1,2 → λ−1
1,2, µ

−1
1,2, this agrees with

the V (2) component of the augmentation variety of the (2, 4) link in the
previous subsection.

For f = 3, or the (2, 6) link, we get (7.1) together with

λ3
1 − λ2

1µ
2
1µ

2
2(1−Q+ µ1µ2Q

2) + λ1µ
3
1µ

3
2(−1 + µ1µ2(−1 +Q)) + µ6

1µ
6
2 = 0.

After a shift of framing

λ1,2 → λ1,2µ
3
1,2

followed by inverting λ1,2, µ1,2, this agrees with the V (2) component of the
augmentation variety of (2, 6) link we gave earlier.
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Finally, for f = 4, or the (2, 8) link, we get (7.1) and

λ4
1 + λ3

1µ
2
1µ

2
2(1 + µ1µ2(−Q+Q2)− µ2

1µ
2
2Q

3)− λ2
1µ

4
1µ

4
2(1− 2µ1µ2(−1 +Q)

+µ2
1µ

2
2Q

2) + λ1µ
6
1µ

6
2(1 + µ1µ2)(−1 + µ1µ2Q) + µ10

1 µ10
2 = 0,

which gives the surface of the previous section, upon replacing

λ1,2 → λ1,2µ
4
1,2

and inverting λ1,2, µ1,2.
The intersection of the two varieties VK̃(2) and VK̃(12) corresponds to

asking that z = z(µi, λi), which solves the equations (7.2) provided µi, λi

live on V (2), in fact takes a specific value: z = 1. This is because along
the locus z = 1, V (2) and V (12) coincide, as is easily seen from the two
equations. Since a priori z is a function of µi, λi, this puts one additional
constraint on these variables, which reduces V (2) to a curve—this is the
curve of its intersection with VK̃(12). Moreover, the curve itself is easily
seen to be nothing but a copy of VK(1):

VK̃(2) ∩ VK̃(12) = VK(1).

7.3. Whitehead link

The Whitehead link, the closure of the 3-braid σ1σ
−1
2 σ1σ

−1
2 σ1, consists of

two unknot components that have linking number 0 but are nonetheless
linked. Here we find that VK = VK(12) ∪ VK(2) with VK(12) as usual and

VK(2) =
(
(λ1µ1 − λ1µ2 − µ1µ2 +Q)λ2 + λ1µ1µ2 −Qλ1 −Qµ1 +Qµ2,

µ2
1µ2λ

4
1 + (−µ2

1µ
2
2 −Qµ2

1µ2 +Qµ1µ
2
2 + 2Qµ1µ2 −Qµ2

1 −Q2µ2

+Q2µ1)λ
3
1 + (Qµ2

1µ
2
2 +Qµ2

1µ2 − 2Qµ1µ
2
2 +Q2µ2

1 − 4Q2µ1µ2

+Q2µ2
2 − 2Q2µ1 +Q2µ2 +Q3)λ2

1 + (−Q2µ2
1µ2 +Q2µ1µ

2
2

+ 2Q2µ1µ2 −Q2µ2
2 +Q3µ1 −Q3µ2 −Q3)λ1 +Q3µ2

)
.

One can show easily that VK(12) and VK(2) intersect on codimension
1; this is consistent with our conjectures. As depicted in Figure 25, the
graph ΓK has two vertices, corresponding to the partitions (12) and (1)(2),
connected by an edge. (Note that K(P ) = K for P = (12); for P = (1)(2),
K(P ) is the split link consisting of two unknots.)

It would be interesting to compare this with the direct computation of
the mirror variety VK of the Whitehead link, based on HOMFLY coming
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from symmetric representations. The recent progress in computing HOM-
FLY invariants of links colored by totally symmetric representations should
make this possible [44–52].

7.4. Borromean link

The Borromean link, the closure of the 3-braid σ1σ
−1
2 σ1σ

−1
2 σ1σ

−1
2 , consists

of three unknot components, any two of which are unlinked. Here we have
VK = VK(13) ∪ VK(3) (note that there is no separate VK(P ) for P = (12)(3),
(13)(2), or (23)(1), since any two-component sublink is split) with

VK(3) =
(
(λ1µ2 − λ1µ1 + µ1µ2 −Q)λ2 + (−λ1µ1µ2 +Qλ1 +Qµ1 −Qµ2),

(λ1µ3 − λ1µ1 + µ1µ3 −Q)λ3 + (−λ1µ1µ3 +Qλ1 +Qµ1 −Qµ3),

P (λ1, µ1, µ2, µ3, Q)
)
,

where P is a certain polynomial of degree 6 in λ1 (see the Mathematica
notebook for the precise polynomial). It would be interesting to compare
this with the direct computation of VK based on HOMFLY coming from
symmetric representations on the Borromean link.

For the Borromean link, VK(3) and VK(13) intersect on a surface, i.e.
in codimension 1, as expected from the D-module picture discussed in Sec-
tion 4. For generic Q, one can calculate that the following surface in (C∗)6

is contained in VK(3) ∩ VK(13):

{
(µ1, µ2, µ3, λ1, λ2, λ3) =

(
Q1/2, µ2, µ3,−Q1/2,

µ2 −Q

µ2 − 1
,
µ3 −Q

µ3 − 1

)}

with two parameters µ2, µ3 ∈ C∗. (In fact, VK(3) ∩ VK(13) contains a union
of three surfaces; the other two are obtained by cyclically permuting the
indices 1, 2, 3.)

This structure agrees with the conjectures of Sections 4 and 5: in this
case, the link graph ΓK has only two vertices, corresponding to the two
primitive partitions of the link. One partition, (123), is the original Bor-
romean link itself. Removing any strand of the link, we get the unlink, so
the only other primitive partition is (1)(2)(3), corresponding to the unlink.
The two vertices of the graph are connected, as we need to move only one
component to go between the two links. The fact that there are only two
vertices, one of which is (1)(2)(3), is consistent with the fact that the aug-
mentation variety has two components, one of which corresponds to the V
of the unlink with three components. Finally, the fact that the vertices of
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the graph are connected by an edge is consistent with the fact that VK(3)
and VK(13) intersect in codimension 1. See Figure 25.

7.5. Other three-component links

Here we briefly consider two more 3-component links. The first is the link
K given by the connected sum of two Hopf links. In other words, K consists
of three unknots, with two of the unknots, K1 and K2, being meridians of
the third, K3. Thus K1,K3 are Hopf linked, as are K2,K3, and K1,K2 are
unlinked. This is a special case of the link considered in Section 6.8 (where
K3 here is K0 there). Here there is no component of VK corresponding to
the partition (12)(3), since K1 ∪K2 is split, but all other partitions are
primitive, and we have:

VK(3) = VK((123)) = (λ1 − µ3, λ2 − µ3, (Q− µ3)λ3 + µ1µ2(µ3 − 1))

VK((13)(2)) = (λ1 − µ3, λ3 − µ1, Q− λ2 − µ2 + λ2µ2)

VK((23)(1)) = (λ2 − µ3, λ3 − µ2, Q− λ1 − µ1 + λ1µ1)

VK(13) = VK((1)(2)(3)) = (Q− λi − µi + λiµi)
3
i=1.

The graph for this link is shown in Figure 25, and intersections are in accor-
dance with Conjecture 5.3.

Another illustrative example is the 3-component link L8n5, also shown
in Figure 25. Here the components are all unknots, and K1,K3 are unlinked,
as are K2,K3. We omit the calculation of the augmentation variety here, but
simply state that there are three components to the augmentation variety,
corresponding to primitive partitions (123), (12)(3), and (1)(2)(3), and these
intersect pairwise in codimension 1. In particular, it is the case that VK(3)
and VK(13) intersect in codimension 1, showing that equality need not hold
in the inequality

codim(VK(P1) ∩ VK(Pr)) ≤ r

in Conjecture 5.3: choose r = 3, P1 = (123), P2 = (12)(3), P3 = (1)(2)(3).

8. D-modules and quantization: the D-model and

the D-mirror

One of the most central objects of our study in this paper is the mirror
variety VK , the moduli space of disk instanton corrected Lagrangian fillings
of the Legendrian conormal ΛK in the resolved conifold Y , associated to a
linkK. The purpose of this section is to propose a way to quantize the mirror
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variety VK , and thereby obtain quantum invariants of Y with Lagrangian
branes that approach R× ΛK at infinity. In fact this leads to a new way of
thinking about mirror symmetry (at least for non-compact branes) which
may be more general than the usual picture and which we call the D-model
on VK . Even though our primary examples will be the mirrors for links and
knots, it should be clear that our proposal is more general.

We start in the case when K is a knot. Then we have a single D-brane
probing the conifold Y . The mirror of Y as probed by the brane was conjec-
tured in [1] to be the topological B-model string on the Calabi-Yau threefold

(8.1) YK : AK(ex, ep, Q) = uv.

We consider a single B-brane wrapping the subvariety {(w, u, v) ∈ YK : w ∈
VK , v = 0}, where VK is the curve with equation AK = 0. By large N dual-
ity, the partition function of the B-brane should compute the HOMFLY
polynomial of the knot colored by totally symmetric representations,

ΨK(x, gs) =
∑

m

Hm(K) e−mx.

The topological B-model on Calabi-Yau manifolds of type (8.1) was
shown in [53] to be a theory of a single fermion ψ(x) on the correspond-
ing Riemann surface

VK : AK(ex, ep, Q) = 0.

The fermion ψ(x) is the operator that inserts the D-brane at a point x on
the Riemann surface11, so that

ΨK(x) = 〈ψ(x)〉VK
.

The expectation value of the fermion is determined by the geometry of the
Riemann surface. In particular, near the classical limit,

〈ψ(x)〉VK
∼ exp

(
1

gs
WK(x) + · · ·

)
,

11The Calabi-Yau manifolds that arise from mirror symmetry are a fair bit sub-
tler, as the underlying Riemann surfaces are singular, and one has to describe how
the singularities get resolved as a part of the data of quantization. Note that the
fermion number conservation requires that a conjugate fermion ψ∗(∞) be placed
at infinity on VK , which we will often include only implicitly.
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which corresponds to (p, x) lying on the Lagrangian submanifold VK

p =
∂WK

∂x
(x).

In quantum theory, as shown in [53], x and p do not commute, but
instead

(8.2) [x, p] = gs,

and we can view them as operators arising by quantization of VK viewed as
a Lagrangian submanifold of

M1 = T ∗(T 2)

with symplectic form

Ω = dx ∧ dp,

which has its origin in the holomorphic three-form du
u ∧ dx ∧ dp on YK . From

the present perspective, the quantization (8.2) expresses the fact that x and p
are mirror to the holonomies of the brane on Y around the longitude or (1, 0)
and the meridian or (0, 1) cycles, respectively, of the torus ΛK at infinity.
Indeed, as discussed in Section 2.4, the theory on the brane is Chern-Simons
theory, and the commutation relation between the monodromies along the
dual cycles in quantum Chern-Simons theory is well known.

The existence of a fermion and the above non-commutative structure for
the space that the Riemann surface lives on was rederived in [54] (see also
[55, 56]) using string dualities, mapping topological string amplitudes to the
partition function of type IIA strings in flat space in a background with D4
and D6 branes intersecting on a Riemann surface, leading to a fermion living
on the intersection. This picture was later simplified [57] and reformulated
in terms of yet another topological string theory on M1. This reformulation
involves coisotropic branes for A-models introduced in [58] and studied in a
similar context in [59, 60]. In that context, one studies only the conformal
theory. However, in the context of topological strings, we consider the same
worldsheet theory, but couple it to 2d gravity, i.e. we view it as a string
theory and in the usual way couple topological strings to the worldsheet
metric. The usual topological string theory amplitudes can be reformulated
as amplitudes of this simpler topological string theory, where one is studying
topological strings on M1 with a canonical coisotropic brane filling M1 and
a Lagrangian brane wrapped on the Riemann surface. This string theory is
simpler because there are no higher string loop corrections and the theory is
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exact at the level of one-loop (annulus) computations! We call this picture
the ‘D-mirror’ and the corresponding model the ‘D-model’ (so labeled for
its relation to D-modules). Note that the A-model, B-model, and D-model
are dual to each other. The A-model is the most difficult to solve, since even
the genus 0 amplitude is hard to compute. The B-model is simple in genus
0, but more difficult at higher loops, and the D-model is exact at the level of
one loop (and disk amplitudes). In this way the D-model picture represents
a satisfactory solution to the A-model.

We next consider the case of many-component links. In this case we have
branes with many moduli and multiple brane probes, and this naturally leads
to higher dimensional mirrors. This imposes the problem of how to define
a critical topological strings in higher dimensions. We will now argue that
the above reformulation of topological strings for the case of knots can be
extended to the case of links leading to the resolution of this problem. For
the case of knots or ordinary mirror symmetry, the D-model can be viewed
as simply a restatement of what one had learned in the context of topological
vertex formalism. However, for the case of links, the D-model provides the
only candidate for the mirror theory.

The D-mirror variety of a n-component link K,

VK =
⋃

P

VK(P ),

is a Lagrangian submanifold of the torus

Mn = T ∗T 2n

with coordinates

xi, pj , i, j = 1, . . . , n,

corresponding to the complexified holonomies around longitudes and merid-
ians of the components of ΛK at infinity of Y (recall that ΛK is a union
of n T 2’s, one for each knot component of K). The quantum theory on
the R× ΛK brane is again GL(1) Chern-Simons theory, so we know that
quantization leads to the standard commutation relations (with xi and pi
non-commuting):

(8.3) [xi, pj ] = gsδij , 1 ≤ i, j ≤ n.
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This means that quantization of the theory must be quantization of Mn,
viewed as a phase space with symplectic form

Ω =
∑

i

dxi ∧ dpi.

Moreover, we must associate to the Lagrangian submanifold VK a wave
function that corresponds to

(8.4) ΨK(x1, . . . , xn) =
∑

m1,...,mn

Hm1,...,mn
(K)e−m1x1−···−mnxn

whose various semi-classical expansions lead to the Lagrangians VK(P ),

ΨK(x1, . . . , xn) ∼ exp

(
1

gs
WK(P )(x1, . . . , xn) + · · ·

)
.

Generalizing what we already discussed in the context of mirror sym-
metry and knots, we propose that the mirror is based on the D-model on
VK . To define it, we start with the topological A-model on Mn studied in
[59, 60]. This leads to quantization of the phase space, by putting a sin-
gle coisotropic A-brane wrapping all of Mn. Studying the algebra of open
string states on this A-brane leads to viewing coordinates of Mn as opera-
tors satisfying (8.3). Adding an A-brane on VK , the bifundamental strings
with one boundary on VK and one on the coisotropic brane have a unique
ground state which leads to a fermion ψ(x1, . . . , xn) living on VK . The the-
ory of this fermion is the D-model on VK . In particular, we conjecture that
computing the expectation value of this fermion living on VK leads to ΨK :

ΨK(x1, . . . , xn) = 〈ψ(x1, . . . , xn)〉VK
.

This conjecture is naturally motivated by extending the case of knots, which
we already know works, to the case of links.

Note that the D-model is exact at the annulus level. In this context
we interpret the worldsheet of bifundamental string states between the
coisotropic brane and the Lagrangian brane as corresponding to holomor-
phic annuli with one boundary on Mn and the other on the VK . Such annuli
lie in the intersection Mn ∩ VK , which is similar to what happens for holo-
morphic curves with boundary components mapping to either Mn or VK

considered in a suitable complexification of Mn, and in that setup the for-
mal dimension of a curve of genus g with h boundary components is, see
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e.g. [41],

dim = (n− 3)(2− 2g − h).

In particular, dim = 0 for the annulus g = 0, h = 2, and thus all the holo-
morphic annuli that contribute are rigid. (This in principle also gets a con-
tribution from the Maslov index; the latter should vanish in this case since
the annulus amplitude cannot be zero.) This is parallel to the situation when
the Maslov index vanishes in the Calabi-Yau case for m = 3, when the first
factor in the dimension formula vanishes.

Our proposal for quantization of VK in terms of the A-model topological
string onMn naturally leads to D-modules [59], and provides an a priori way
to associate a quantum D-module to the classical Lagrangian VK . Namely,
the fermion ψ is a bifundamental string with one boundary on VK and the
other on the coisotropic brane on Mn. As such, ψ, and hence ΨK as well,
provides a module for strings with two endpoints on the coisotropic brane.
The latter simply correspond to functions onMn, whose algebra is deformed
by (8.3). Thus, ΨK(x1, . . . , xn) generates a D-module for the algebra (8.3).

A strong piece of evidence for our conjecture is the fact, recently proven
in [21], that the HOMFLY polynomial of a link H(K)m1,...,mn

colored by
totally symmetric representations generates a D-module for the Weyl algebra
D, acting by

epi Hm1···mi···mn
(K) = qmiHm1···mi···mn

(K),

and

exi Hm1···mi···mn
(K) = Hm1···(mi+1)···mn

(K),

whose characteristic variety is a Lagrangian submanifold. This is equivalent,
by the discrete Fourier transform in (8.4), to the action of xi and pi on
ΨK(x1, . . . , xn).

12 This fact is predicted by our conjecture for quantization
of VK . As an aside, note that the present perspective provides a prediction
that the HOMFLY polynomial of the link K colored by representations of
n rows is q-holonomic as well.

In the rest of this section we will review the work of [59] and show how
this applies to our context.

12Another way of saying the same thing is to say that ΨK is q-holonomic [61].
The work [21] showing that the HOMFLY polynomial colored by symmetric rep-
resentations is holonomic generalizes earlier work of [61] showing that the colored
Jones polynomial is q-holonomic.
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8.1. Review of A-model on Mn

To begin with, notice that the torus

Mn = T ∗T 2n

is in fact hyper-Kähler. In the complex structure we have used so far on
Mn, which we call I, there is a holomorphic (2, 0) form

Ω =
∑

i

dxi ∧ dpi

and a (1, 1) form

k = i
∑

i

(dxi ∧ dx̄i + dpi ∧ dp̄i).

With this choice, the torus T 2n is Lagrangian, and the variety VK is holo-
morphic. However, if we let

Ω = ωJ + iωK ,

k = ωI ,

then the triplet of forms

ωI , ωJ , ωK

are the three Kähler forms of Mn, viewed as a hyper-Kähler manifold. Note
that, in the other two complex structures, J and K, VK becomes Lagrangian
rather than holomorphic as it is for I. This fact will be important later.

We consider A-model defined on Mn with real symplectic structure

ω = Im(Ω) = ωK .

The A-model admits, in addition to the usual Lagrangian branes, which
are half the dimension of the symplectic manifold, coisotropic branes [58]
that can have lower codimension. On Mn, which is hyper-Kähler, there is
a canonical example of such a coisotropic brane of rank one that in fact
wraps all of Mn. We will denote the canonical coisotropic brane by Bc.c.
The discussion in this subsection borrows from [59].
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On any coisotropic brane there is a line bundle whose curvature F sat-
isfies

(ω−1F )2 = −1

where we view ω−1F as a map that takes TMn to itself. In the present case,
on the canonical coisotropic brane, F is simply

F = Re(Ω) = ωJ ,

and the coisotropic condition is satisfied since Mn is hyper-Kähler, with
triplet of Kähler forms ωI , ωJ , ωK that satisfy

ω−1
I ωK = J,

ω−1
J ωI = K,

ω−1
K ωJ = I.

Here I, J,K satisfy I2 = J2 = K2 = −1, IJ = −JI = K, etc., and are the
three complex structures onMn. Thus, the Bc.c brane is a canonical coisotropic
brane in complex structure I. In fact, with respect to the three complex
structures I, J,K, the canonical coisotropic brane is an

(A,B,A)

brane. We have already seen it is an A-brane in complex structure I. It is
also an A-brane in complex structure K, where we take ωI as the symplectic
form, simply because ω−1

I F = ω−1
I ωJ = K. Finally, in complex structure J

it is a B-brane, since in that complex structure F = ωJ is the (1, 1) form.
Consider now topological open string with two boundaries on the Bc.c

brane. The action of the A-model on a disk can be written up to Q-exact
terms as

S =

∫

Σ
Φ∗(Ω),

where we used Ω = F + iω. This reflects the fact that the instantons of the
A-model are holomorphic in complex structure K, ω = ωK . It is easy to
show that only degenerate maps contribute [59].

The algebra of open strings is associative, as usual, but due to the pres-
ence of the flux F , it becomes non-commutative. Since Ω =

∑
i dxi ∧ dpi is
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exact, the action above introduces a boundary coupling

S = −
∑

i

∫

∂Σ
pidxi

so that pi and xi are canonically conjugate and thus satisfy the standard
commutation relations

[pi, xj ] = gsδij .

Note that gs corrections in this duality frame are not string loop corrections,
but α′ corrections instead. Locally, this simply implies that

pi = gs∂xi
,

and the coordinates exi and epj of the torus Mn = (C∗)2n become operators,
with

epj = egs∂xj or equivalently epiexj = egsδijexjepi ,

and Laurent polynomials in these operators generate the (exponentiated)
Weyl algebra

(8.5) Dn =
〈
ex1 , . . . , exn , egs∂x1 , . . . , egs∂xn

〉
.

The algebra of open strings on Mn is locally simply the space of differential
operators of the Weyl algebra Dn above acting on functions of x1, . . . , xn.
The elements of this algebra are operators A ∈ Dn of the form

A =
∑

k1,...,kn

ak1,...,kn
(ex1 , . . . , exn)e

∑
i
kigs∂xi .

The quantization of Mn defined by the A-model on Mn is nothing but
deformation quantization, where the operator product is simply the star
product of functions on Mn.

8.1.1. Branes and D-modules. Every A-brane in Mn in complex
structure K provides a module on which the elements of Dn act. This follows
from a general fact in string theory: given a pair of branes B, B′, the (B,B′)
strings form a module on which (B,B) strings act by multiplication on the
left. In the present case, we apply this with the brane B being the canonical
coisotropic brane. For the B′ brane, we will eventually take a Lagrangian
brane defined by VK of the n-component link K; for now, we will simply take
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the brane to wrap a Lagrangian submanifold V of the same type, namely V
is given by equations13

V : Aα(e
xi , epi) = 0, α = 1, . . . , n

in Mn. This brane is a Lagrangian A-brane in complex structures J and
K: both ωJ and ωK , which are the (1, 1) forms in those complex structures,
vanish along V . Moreover, it is clearly holomorphic in complex structure I,
so it defines a B brane for the B-model on Mn. Thus V gives rise to a

(B,A,A)

brane. It was shown in [59] that such an A-brane provides a Dn-module for
the differential operators acting on the square root of the canonical bundle

of V , K
1/2
V .

From quantization of (Bc.c,B
′) strings we get a single fermion living on

V , which is naturally a section of K
1/2
V [59]. Consider first the case where the

(B,A,A) brane is given simply by pi = 0 for i = 1, . . . n, so that in this case
V is a flat Lagrangian, V = N = (C∗)n. The problem of quantizing open
strings translates into a problem in supersymmetric quantum mechanics
with target space N . To compute the spectrum of open string states, we need
to find the ground states of the quantum mechanics problem. Fermions in
the supersymmetric quantum mechanics on N are sections of TN . When we
quantize this, we get spinors on N . All together, the states of open (Bc.c,B

′)

are sections of the spin bundle on N , which is K
1/2
N ⊗ (⊕n

j=0Ω
0,j(N)). These

are (0, j) forms with values in K
1/2
N . Here we are using the fact that N is

a complex manifold in complex structure I. The supersymmetric ground
states are states annihilated by the supersymmetry operator Q, modulo the
Q-exact states. In this case, Q is just the ∂̄ operator acting on Ω(0,j) forms
on N ; locally only the j = 0 cohomology is nontrivial. This is where the
fermion

ψ(x)

lives and is thus a section of K
1/2
N . When we consider more complicated

(B,A,A) branes V , locally the Lagrangian always looks like a copy of N .
The question about the spectrum of the bifundamental strings is local, so
we should always get a single fermion ψ(x) at the intersection.

13The set of equations is taken to be such that it defines a Lagrangian submani-
fold, by assumption.
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8.2. Second-quantizing D-modules

We consider now the A-model string theory with a Bc.c brane on Mn and
a Lagrangian B brane wrapping V . Since Mn is hyper-Kähler, there are no
higher string loop corrections. The theory is exact at the semi-classical level,
and the fermions are free. The only corrections come from the sigma model
loops, and these are controlled by gs. Thus, we expect to get a theory of a
single free fermion living on V , yet one that is a section of the Dn-module.

Consider the one point function of the fermion, viewed as the string field,
inserted at a point x on V , in the background of a single anti-fermion, which
we insert at infinity,

(8.6) Ψ(x) = 〈ψ(x)〉V = 〈ψ(x)ψ∗(∞)〉V .

As it stands, this is not gauge invariant, since ψ is charged under the gauge
fields on both the Bc.c and the B′ brane. To fix this, we can modify the
correlator by inserting

(8.7) ψ(x)ψ∗(∞) → ψ(x)ψ∗(∞) e
1

gs

∫
x

∞
(A−A′),

where A is the connection on the Bc.c brane and A′ the connection on the
Lagrangian brane B′. The coupling to gauge fields is natural from the world-
sheet perspective where the correlator is computed by the disk amplitude
of the topological A model, and the coupling to gauge fields comes from the
standard way the target space gauge fields couple to the worldsheet of the
string.14

If the B′ brane were the flat brane at pi = 0, in the flat target space
Mn = (C∗)2n, then we would find that Ψ(x) = 1, corresponding to expecta-
tion value of a fermion in a free field theory. Here however the correlator is
modified, and to leading order

(8.8) Ψ(x) ∼ exp

(
1

gs
W (x) + · · ·

)
,

14More precisely, we consider a worldsheet which is a ribbon with one boundary
on the Bc.c brane and the other on the B′ brane, and we integrate over all paths
that start at the point with coordinates x at the worldsheet time τ → −∞ and go
off to x = ∞ at τ → +∞. The propagation in infinite time automatically projects
to the vacuum states, and these correspond to fermion insertions.
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where W (x) is determined by the local equation of the B′-brane in Mn, as
the set of points with coordinates (x, p) where

pi =
∂W

∂xi
(x).

Existence of such a function W (x) is equivalent to vanishing of
∑

i dpi ∧
dxi on V , which in turn follows by the definition of V being a Lagrangian
submanifold of Mn in complex structure K.

We next discuss how this relates with (8.6). Recall that the connection on
the coisotropic brane Bc.c does not vanish identically. Rather, the presence
of curvature on the coisotropic brane,

F = Re

(
∑

i

dpi ∧ dxi

)
,

implies that F = dA, where

(8.9) A = Re

(
∑

i

pi dxi

)

and

pi = pi(x)

is the local equation of V as embedded inMn. In the topological A-model on
any manifold, holomorphy of the amplitudes implies that the gauge field on
the brane is always paired with the symplectic form ω, so it is only the com-
bination F + iω =

∑
i dpi ∧ dxi that appears. Consequently, the dependence

of the amplitude (8.6) on
∫
A implies it depends on

∫ ∑
i pidxi.

This does not quite lead us to conclude that (8.6) takes the value (8.8)
for the following reason: the expectation value (8.6) depends on not only
the gauge field A on the coisotropic brane, but also the gauge field A′ on
the Lagrangian brane. However, the condition F = dA does not uniquely
determine A to satisfy (8.9), but only determines it up to a gauge transfor-
mation. As we shall see, the two deficiencies cancel. Like on the coisotropic
brane, on the Lagrangian brane wrapping V one finds two sets of fields that
are naturally paired: one set is the components A′

i of the flat gauge field,
and the other is scalar fields φi that are sections of the normal bundle to V
and describe deformations of the Lagrangian. Since V is a Lagrangian and
Mn symplectic, the normal bundle is just the cotangent space, T ∗V . In the
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A-model in complex structure K, the connection on V and the scalars φi

always appear in the combination

∑

j

(A′
j + iφj)dx

j =
∑

j

p′j(x)dx
j ,

where we defined p′j(x) = A′
j(x) + iφj(x) which in effect parametrizes a

choice of GL(1) connection on V . This gives us two different yet equivalent
ways of deforming the Lagrangian: one by varying the local defining equa-
tion pi = pi(x), and the other by turning on the GL(1) connection p′j(x).
We can use the fact that that p′j itself is not gauge invariant to soak up
the gauge dependence of the statement that Ai = pi. We see that the only
invariant combination is the difference pi − p′i =

∂W
∂xi

(x), and that describes
the embedding of the branes. Thus, gauge invariance of the amplitude (8.6)
and holomorphy of the topological A-model imply that the one point func-
tion takes the value (8.8).

We conclude that the A-model on Mn with the two sets of A-branes, the
canonically coisotropic brane Bc.c and the Lagrangian brane on B′, leads to
a holonomic D-module for the Weyl algebra Dn. Among all the D-modules,
the holonomic ones are special: they arise from quantization of Lagrangian
(rather than coisotropic) submanifolds, and hence precisely correspond to B′

branes that are Lagrangian. In particular, it is well known that holonomic
D-module are cyclic, i.e. generated by a single element. This corresponds to
the fact that among all the (Bc.c,B

′) strings there is a unique special one,
the ground state, which is our fermion.

The D-module V is the set of all operators in Dn modulo the ideal
I ⊂ DK of those that annihilate Ψ(x):

V = D/I, I = {A ∈ Dn : AΨ = 0}.

The fact that V is generated by a single element Ψ means that any element
Θ ∈ V can be obtained by acting on Ψ with elements of Dn, Θ = AΨ for
some A ∈ D. The ideal I is typically generated by a finite set ofm generators
Aα satisfying

(8.10) Aα(e
xi , egs∂xj )Ψ = 0,

so that

I = Dn · 〈A1, . . . , Am〉.
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Recall that any element of Dn can be written in the form

A =
∑

k1,...,kn

ak1,...,kn
(ex1 , . . . , exn) e

∑
i
kigs∂xi .

From the semi-classical limit of Ψ in (8.8), it follows that the classical
Lagrangian V that we started with is the set of points in Mn satisfying

Aα(e
xi , epj ) = 0, α = 1, . . .m,

which in the language of D-modules means that V is the characteristic vari-
ety of the D-module V.

There is another, equivalent perspective on the problem. Every A-brane
wrapping an arbitrary submanifold V of Mn = (C∗)2n can be viewed as r
branes on N = (C∗)n for some r. Such a brane is equipped with a flat GL(r)
connection A′, which complexifies the U(r) gauge group on the branes, with

dA′ +
1

gs
A′ ∧A′ = 0.

There is a set of r fermions Ψa, a = 0, . . . , r − 1, transforming in the fun-
damental representation of GL(n), that give rise to a covariantly constant
section with respect to this connection:

(
∂i +

1

gs
A′

i

)
⎛
⎜⎝

Ψ0
...

Ψr−1

⎞
⎟⎠ = 0.

The flatness of the GL(n) connection guarantees that there are r linearly
independent solutions to this equation. The r linearly independent solutions
naturally correspond to r fermions living on the r sheets of V . The fact
that these two different descriptions exist is well known in the theory of
D-modules: the fact that they get related to flat connections is one of the
key aspects of the theory. Moreover, the relation between the two pictures is
also well known. One can prove that there is a basis and a set of r operators
P0, P1, . . . , Pr−1, which are generators of the module V, such that

Ψ0 = P0Ψ, Ψ1 = P1Ψ, . . . ,Ψr−1 = Pr−1Ψ.

The operators P0, . . . , Pr−1 form a basis of the module V viewed as a free
module over functions on (C∗)n (that is, with coefficients given by functions
of exi). Different choices of basis are related byGL(n) gauge transformations.
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In particular, we can always choose 1 to be one of the generators, so up to
GL(n) transformations, we can set P0 = 1. In this description, we effectively
flatten out the Lagrangian brane, and make it manifest that the theory on
the branes is a free theory.

8.3. Knots and D-modules

We next consider the general theory developed in Section 8.2 in the special
case of Lagrangian submanifolds V = VK of Mn where VK is the variety
associated to a link K. Above we treated V as smooth, whereas, as we saw
in Sections 4, 5, and 6, VK is a union of Lagrangians

VK =
⋃

P

VK(P )

intersecting according to the graph ΓK . At the outset, classically, the fact
that VK is reducible implies that the connection A′ on the V -brane is
reducible, and we get one fermion ψP for each P . From the physical per-
spective, when the link is non-split, we expect to get a single theory that
unifies all these different VK(P ) into a single object, quantum mechanically.
Thus one would expect all the different components of VK to play a role
in the quantization. The fact that the characteristic varieties of irreducible
D-modules are in general reducible is a general feature of D-modules, and
indeed, here it is naturally forced on us.

Now, recall that we observed that in all computed cases, the graph ΓK

encodes the geometry of the intersections of the components in VK . The
vertices of the graph correspond to components VK(P ) and for a pair of ver-
tices P , P ′ connected by an edge of the graph, VK(P ) and VK(P ′) intersect
in codimension 1. For every intersection between VK(P ) and VK(P ′) we get
additional states at the intersection which are bifundamental (P, P ′) strings.
If the intersection is in codimension 1, then by giving expectation value to
these bifundamental matter fields, one can fuse the two Lagrangians.15 One
can think of these as corresponding to the off-diagonal components of the
connection A′ on (C∗)n, connecting blocks corresponding to P and P ′.

15Near the intersection we can model the two Lagrangians by p1x1 = 0, and
p2 = · · · = pn = 0, which can be smoothed out to p1x1 = µ, which describes the
single Lagrangian. Here µ ∼ λ, since at λ = 0 we must get the classical Lagrangian
that factors.
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This structure matches the mathematical theory very well: it is known
[22] that every D-module whose characteristic variety is a union of two com-
ponents that intersect in codimension greater than 1 is in fact reducible.
Thus, both physically and mathematically, the interaction between the com-
ponent VK(P ) for different P comes from intersections of codimension 1.

8.4. Examples

The simplest case to consider is when the link is totally split: each component
is separated from all the rest. In this case, as already noted in Section 5,
the augmentation variety has a single component, with P = 1n. This is the
product of V (1)′s of the individual knots, and all the other VK(P )’s are
empty. This also implies that

VK =
∏

i

VKi
(1)

and that Bc.c is the product of the individual Bc.c’s for each link component.
Thus the partition function of the topological string should be the product
of the partition function for each knot component. This is consistent with
the factorization property of HOMFLY for totally split links:

HK =

n∏

i=1

HKi
,

where HKi
is the HOMFLY invariant associated with the i-th knot compo-

nent Ki.
Now let us consider more general links. For every link K, VK will include

VK(1n), which is indeed known to be part of the full amplitudes, where we
ignore worldsheet configurations that can end in distinct knots. If there were
no other components to VK , or if there were other components but all inter-
sected over codimension higher than 1, then we would again simply get the
above product formula for the HOMFLY, since the theory on each compo-
nent is that of a free fermion. However, there is a correction to this formula,
because there are components to VK other than V (1n), with the graph ΓK

describing how VK(P )’s intersect each other pairwise over codimension-1
loci. On each of these codimension-1 loci, there is a bifundamental matter
field coming from the off-diagonal components of the gauge field A′. If these
bifundamentals get expectation values of order gs, then they are not vis-
ible classically, so classically the connection is reducible and we get a free
fermion for each P . At finite gs we end up unifying the different components.
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So the intersection locus and the degrees of freedom of open strings localized
at such intersections could in principle provide the necessary correction of
order gs.

To see how this may come about, it is instructive to consider the simple
example of the Hopf link. As described previously, the two components of
VK are given by:

VK(12) : Q−Xi − Pi +XiPi = 0, i = 1, 2

VK(2) : X1 = P2, P1 = X2.

If the two unknot components were unlinked, we would only have VK(12),
and we would get the product of the partition function of two unknots. How-
ever, the fact that VK(2) is also there changes the story. From the HOMFLY
polynomial, we can read off the exact answer for the ideal I of operators
that annihilate Ψ. We can write this in two different ways. One is from
the perspective of the coisotropic brane, describing which of the Bc.c − Bc.c

strings act trivially on the fermion. This gives the ideal I determined by
three quantum difference equations:

(
(−X1 +X2)− (1−QX1)P1 + (1−QX2)P2

)
Ψ = 0(

(1− q−1X2)X2 − (1− q−1X2)P1 − (1−QX2)q
−1X2P2

+ (1−QX2)P1P2

)
Ψ = 0(

(1− q−1X1)X1 − (1− q−1X1)P2 − (1−QX1)q
−1X1P1

+ (1−QX1)P1P2

)
Ψ = 0.

In the above, X1,2 = ex1,2 and P1,2 = egs∂x1,2 are operators that do not com-
mute, due to the flux on the coisotropic brane. Viewed as a set of linear
differential equations, this has two solutions, as discussed in Section 4, asso-
ciated to V (12) and V (2), so that the general solution is

Ψ = cV (12)ΨV (12) + cV (2)ΨV (2),

with two a priori arbitrary constants c. As previously discussed, ΨV (2) simply
solves

(P1 −X2)ΨV (2) = 0,

(P2 −X1)ΨV (2) = 0,

but ΨV (12) is more complicated.
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Another way to characterize this is from the perspective of the Lagrangian
brane. From this perspective, the fact that the brane has two components
VK(12) and VK(2), each of which covers the X1, X2 plane once, means that
we can describe the vacuum of the theory in terms of a flat rank 2 connection
on N = (C∗)2. Indeed, one can show that the above system of equations is
equivalent to a set of two linear equations:

P1

(
Ψ0

Ψ1

)
=

(
X2 (1−QX2)(1−X1)/(1−QX1)
0 (1−X1)/(1−QX1)

)(
Ψ0

Ψ1

)

P2

(
Ψ0

Ψ1

)
=

(
X1 1−X1

0 (1−X2)/(1−QX2)

)(
Ψ0

Ψ1

)
,

where Ψ0 is what we previously called Ψ.
In this language, we can see how the solution corresponding to VK(12) is

corrected by the presence of VK(2). To get ΨVK(12), consider the projection
sending (Ψ0,Ψ1) to Ψ1. This gives the VK(12) brane embedded in M2 in
isolation, associated to two unlinked unknots. This is not the exact solu-
tion, since the off-diagonal components of the connection do not vanish. But
once we have picked a specific solution for Ψ1, it determines Ψ0 in perturba-
tion theory for small gs. In particular, one can easily show that classically,
ΨV (12) = Ψ1(1 +O(gs)), where the subleading corrections are determined
from Ψ1 by off-diagonal components of A′. Finally, to this solution, we can
add any multiple of a solution associated to VK(2).

Finally, note that in the case of the Hopf link, we can recover all the data
of the link from studying more branes—or more fermions, on the Riemann
surface V© mirror to the unknot. The exact answer for the HOMFLY for
the case of the Hopf link is known to be obtainable by putting two branes on
the curve associated to the conifold, one along the x-leg and one along the p-
leg [53]. We have seen examples of this in Section 7 as well, when we studied
torus links. This should be an example of a more general phenomenon, where
the topological string on Mk for any k provides a way to get a hierarchy
of D-modules for free, simply by inserting more fermions. For any number
k of fermions inserted, we get a module for the kn-th Weyl algebra, and
moreover all the D-modules that arise are holonomic, with the n-fermion
correlation function being the cyclic generator of the D-module.

As an example, consider the link K̃ given by n parallel copies of a given
knot K. In this case, we have two descriptions of the theory. One is the
standard one in terms of Mn = T ∗(T 2n) with a Bc.c brane and a single
Lagrangian brane wrapping VK̃ . In this theory, the partition function of the
system
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(8.11) ZK̃(x1, . . . , xn) =
∑

m1,...,mn

Hm1,...,mn
(K̃)e−m1x1−···−mnxn

should be the one point function of the fermion

(8.12) ZK̃(x1, . . . , xn) = 〈ψ(x1, . . . , xn)〉VK̃

inserted at a point in VK̃ . One of the components of VK̃ is VK̃(1n); this simply

equals n copies of VK(1). For most framed knots K, K̃ is a nontrivial link,
and when this is the case, VK̃ has additional components.16 Correspondingly,
the partition function (8.12) does not factor. Instead, the Sn symmetry of
the link translates into the permutation symmetry of VK̃ and the fermion
one point function is totally symmetric in its n variables.

The second description is based on the Riemann surface VK in M1 =
T ∗(T 2) which is the mirror for the knot K. We insert n fermions

〈ψ(x1) · · ·ψ(xn)〉VK

at n points on the Riemann surface VK̃ (with n fermions at infinity to cancel
the charge). Since the n fermions are totally identical particles that anti-
commute, the partition function is totally antisymmetric. As we discussed
in Section 4, the correspondence between the two pictures is

〈ψ(x1, . . . , xn)〉VK̃
= 〈ψ(x1) · · ·ψ(xn)〉VK

/∆(x1, . . . , xn).

Dividing by the Vandermonde restores the invariance of the partition func-
tion under all permutations of n strands. We saw an example of this in the
case of (n, nf) links we studied in Section 7.2. There we showed that the
partition function (8.11) of the link has the form:17

(8.13) 〈ψ(x1, . . . , xn)〉VK̃
= det(wi−1(xj))/∆(x1, . . . , xn).

The simplicity of this expression has a natural explanation in the second
viewpoint: the right hand side is the wave function of n free fermions on
VK , provided we treat the fermions as sections of the D-module. Here wj(x)
is a basis of fermion wave functions that arises from VK . These shift the

16Only when K is the unknot in trivial framing is K̃ a split link.
17In the present case, wi(x) =

∑
m Bf (m)qmie−mx, i = 1, 2, . . . , and Bf (m) is

given in Section 7.2 and Appendix B.
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vacuum of the theory on VK from the canonical one, where the single par-
ticle wave functions are zj(x) = ejx, to wj , so that 〈ψ(x1) · · ·ψ(xn)〉VK

=
det(wi−1(xj)).
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Appendix A. Hopf link

The simplest nontrivial link is the Hopf link. The corresponding Chern-
Simons expectation value is given by the matrix element of the SU(N)k
S matrix in the representations coloring the two components of the link,
normalized as in Section 2 to set the partition function with no insertions
equal to 1. In the present case, we take in addition the representations to
be totally symmetric:

HHopf
m1,m2

= Sm1,m2
/S00,

where m1,2 as before denote totally symmetric representations with m1,2

boxes. The corresponding wave function

ΨHopf(x1, x2) =
∑

m1,m2

HHopf
m1,m2

em1x1em2x2 ,
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after redefining e−xi by a constant shift of (Qq−1)1/2, can be written as

ΨHopf(x1, x2) =
∑

m2

(Q, q)m2

(q, q)m2

em2x2 ×
1

1− qm2ex1
×
∑

m1

(Qq−1, q)m1

(q, q)m1

em1x1 ;

while it is not manifest from this expression as written, one can show that
the partition function is invariant under exchanging the two knots.

We will now show that this has two distinct saddle points. Note that we
can rewrite the amplitude as

ΨHopf(x1, x2) =
1

1− egs∂x2ex1

Ψ©(x1, Q)Ψ©(x2, Qq−1),

where Ψ©(x,Q) is the partition function corresponding to the unknot in the
shifted variable x:

Ψ©(x,Q) =
∑

m

(Q, q)m
(q, q)m

emx.

One of the saddle points, corresponding to VHopf(1
2), corresponds to the

wave function being dominated by

ΨHopf(x1, x2) =
1

1− e−p2ex1
exp(

1

gs
WHopf(1

2)(x1, x2) + · · · ),

where the missing terms are suppressed by powers of gs. The saddle point
potential is

WHopf(1
2)(x1, x2) = W©(x1) +W©(x2),

the sum of two unknot potentials W©(xi, Q), with longitude xi. Denoting

exi = λi, epi = e−∂xi
W©(xi,Q) = µi,

then λi, µi live on a 2-complex-dimensional variety which is Lagrangian and
a direct product of two copies of the Riemann surface mirror to the unknot:

VHopf(1
2) : Q− λ1 − µ1 + λ1µ1 = 0, Q− λ2 − µ2 + λ1µ1 = 0.

The potential WHopf(1
2)(x1, x2) dominates the saddle point as long as

the factor 1
1−e−p2ex1

is analytic there. To study the opposite case, consider
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the Fourier transform Ψ̃Hopf of ΨHopf :

Ψ̃Hopf(p1, p2) =

∫
dx1dx2 e

p1x1/gs+p2x2/gsΨHopf (x1, x2).

The integral over x2 at fixed x1 is a Fourier transform

Ψ̃Hopf(p1, p2) =

∮
dx1

1

1− e−p2ex1
exp(−p1x1/gs)Ψ©(x1)Ψ

−1
© (p2),

where we used the fact that the Fourier transform of the unknot inverts the
wave function. Now, due to the pole in the integrand, the integral will depend
on the contour. The saddle point corresponding to VHopf(2) corresponds to
choosing a contour which makes a small circle around the pole at ep2 = ex1 .
Making this choice, the integral is the residue of the pole

Ψ̃Hopf(p1, p2) = e−p1p2/gs ,

which is exact up to non-perturbative corrections. The potential correspond-
ing to this is simply

WHopf(2)(p1, p2) = p1p2

and the corresponding mirror variety is

VHopf(2) : λ1 = µ2, λ2 = µ1.

We could have chosen a different contour, which would have led to the
ordinary Fourier transform, and we would have gotten the saddle point cor-
responding to P = 12 instead. The two distinct fillings of ΛK at infinity,
associated with the partitions 12 and 2, thus correspond to two distinct
contours of integration that pick out different saddle point contributions to
Ψ̃Hopf(p1, p2).

Appendix B. Chern-Simons and torus link invariants

Here we consider the case of a (n, nf) torus link K̃, for f ∈ Z. This link
consists of n parallel copies of an unknot K in framing f , i.e., a (1, f) torus
knot. The HOMFLY polynomial for the unknot in this framing colored by
an arbitrary representation R is

HR(K) = T f
RS0R/S00,

where SRR′ and TRR′ = TRδ
R
R′ are the SU(N) WZW S and T matrices as

before. The explicit expressions for these are well known. Using the fact that
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S0R/S00 is the dimension of the corresponding quantum group representa-
tion, we have

S0R/S00 =
∏

s∈R

(Qq)−1/2q−a′(s) 1−Qqa
′(s)−ℓ′(s)

1− q−a(s)−ℓ(s)−1
;

here the product runs over all boxes at position s = (i, j) in the Young
diagram corresponding to R, and a(s) = Ri − j, ℓ(s) = RT

j − i, a′(s) = j −

1, l′(s) = i− 1. Furthermore, TR = q
1

2
(λR,λR+2ρ), where λR is the highest

weight vector of an SU(N) representation R, and ρ is the Weyl vector. This
gives

TR = q
1

2

∑
i
Ri(Ri−2i+1)Q

∑
i
Ri/2.

There is a nice way to rewrite this by considering the representations Rn

whose Young diagrams have at most n of rows of length Ri for i = 1, . . . , n.
Then

HRn
(K) ∼

n∏

i=1

Bf (mi)
∏

1≤i<j≤n

∆(qm1 , . . . , qmn)

where mi = Ri + n− i, and

Bf (m) = q(f−1)m2/2
m∏

i=1

1− Q̂qi−1

1− qi
Q̂(f−1)m/2 q−m(n(f−1)+1)/2

with Q̂ = Qq−n+1; here we have dropped the overall normalization, and
∆(z1, . . . , zn) =

∏
i<j(zi − zj) is the Vandermonde determinant. Note that

the shift that replaces Ri by mi simply ensures that no two mi,j are equal.
Next, consider

Z(K̃)(x1, . . . , xn) =
∑

Rn

HRn
(K)TrRn

(ex1 , . . . , e
x
n).

Using the fact that

TrRn
(ex1 , . . . , e

x
n) =

det(exj(Ri+n−i))

∆(ex1 , . . . exn)

and antisymmetry, we can replace

Z(K̃)(x1, . . . , xn) =
∑

m1>m2>···>mn≥0

Bf (mi) ∆(qm1 , . . . , qmn)
det(exjmi)

∆(ex1 , . . . exn)
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with

Z(K̃)(x1, . . . , xn) =
∑

m1,m2,...,mn≥0

Bf (mi) e
m1x1+···+mnxn

∆(qm1 , . . . , qmn)

∆(ex1 , . . . exn)
.
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