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Abstract. We propose a general correspondence which associates a non-
perturbative quantum-mechanical operator to a toric Calabi–Yau mani-
fold, and we conjecture an explicit formula for its spectral determinant in
terms of an M-theoretic version of the topological string free energy. As
a consequence, we derive an exact quantization condition for the oper-
ator spectrum, in terms of the vanishing of a generalized theta func-
tion. The perturbative part of this quantization condition is given by the
Nekrasov–Shatashvili limit of the refined topological string, but there are
non-perturbative corrections determined by the conventional topological
string. We analyze in detail the cases of local P

2, local P
1
×P

1 and local F1.
In all these cases, the predictions for the spectrum agree with the exist-
ing numerical results. We also show explicitly that our conjectured spec-
tral determinant leads to the correct spectral traces of the corresponding
operators. Physically, our results provide a non-perturbative formulation
of topological strings on toric Calabi–Yau manifolds, in which the genus
expansion emerges as a ’t Hooft limit of the spectral traces. Since the
spectral determinant is an entire function on moduli space, it leads to a
background-independent formulation of the theory. Mathematically, our
results lead to precise, surprising conjectures relating the spectral theory
of functional difference operators to enumerative geometry.

1. Introduction

As it is well-known, string theory is in principle only defined perturbatively.
In the last years, thanks to the AdS/CFT correspondence, non-perturbative
formulations have been found in certain backgrounds, in terms of a dual gauge
theory. The combination of this duality with localization and integrability tech-
niques have provided us with concrete non-perturbative expressions for many
quantities. In general, these quantities have a perturbative genus expansion
determined by string perturbation theory, but they involve additional non-

http://crossmark.crossref.org/dialog/?doi=10.1007/s00023-016-0479-4&domain=pdf


3178 A. Grassi et al. Ann. Henri Poincaré

perturbative contributions. A particularly interesting example of such a quan-
tity is the partition function of ABJM theory [1] on the three spheres. Using
localization, this partition function can be expressed in terms of a matrix inte-
gral [2]. The ’t Hooft expansion of this integral, fully determined in [3], gives
the genus expansion of the dual-type IIA superstring. However, there are addi-
tional non-perturbative corrections which were first pointed out in [4] and then
uncovered in a series of papers [5–11]. One key idea in the study of the non-
perturbative structure beyond the genus expansion is the formulation of the
matrix model in terms of an ideal Fermi gas [5], which can be in turn reduced
to the spectral problem of an integral operator.

The study of the ABJM matrix model indicated a close connection to
topological string theory: its ’t Hooft expansion is identical to the genus expan-
sion of the topological string on the Calabi–Yau (CY) manifold known as local
P

1 × P
1 [3,12]. In addition, the WKB analysis of the spectral problem of the

Fermi gas is related to the refined topological string on the same manifold
[10,11], in the so-called Nekrasov–Shatashvili (NS) limit [13]. It is then nat-
ural to speculate that similar structures could be found in topological string
theory on other local CY manifolds. This had been already pointed out in
[5,14]. In [10], a concrete proposal was made for a non-perturbative topologi-
cal string free energy, inspired by the results on ABJM theory. This proposal
has two pieces: the perturbative piece is given by the standard genus expansion
of the topological string, while the non-perturbative piece involves the refined
topological string in the NS limit. A crucial rôle in the proposal was played
by the HMO cancellation mechanism [7], which guaranteed that the total free
energy was smooth.

A dual point of view on the problem has been proposed in [11], where
the starting point is the spectral problem associated to the quantization of
the mirror curve. Let X a toric CY manifold, and let ΣX be the curve or
Riemann surface encoding its local mirror. The equation describing this curve
(sometimes called the spectral curve of X) is of the form

WX(ex, ep) = 0. (1.1)

This curve can be “quantized”, and various aspects of this quantization have
been studied over the last years, starting with [15]. The quantization of the
curve promotes it to a functional difference operator, which can then be stud-
ied in the WKB approximation. Inspired by the work of [13], it was found in
[16–18] that the perturbative WKB quantization condition for the spectrum
of these operators is closely related to the NS limit of the refined topolog-
ical string on X. However, it was pointed out in [11] that, if one looks at
the actual spectrum of these operators, this perturbative quantization condi-
tion cannot be the whole story, and additional non-perturbative information
is needed. Moreover, [11] proposed a non-perturbative quantization condition,
based on the results of [10], in which the perturbative result is complemented
by instanton effects coming from the standard topological string. This condi-
tion turned out to lead to the correct spectrum in some special cases [11,19].
Although [11] focused on the case of local P

1 × P
1, relevant for ABJM theory,
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it was suggested there that a similar story should apply to more general toric
CY manifolds. This suggestion was pursued in [20], where the spectrum of
the operators associated to some other toric CYs was studied numerically in
full detail. The results of [20,21] indicated that, in general, the quantization
condition suggested in [11] required additional corrections.

In this paper, we will propose a detailed conjecture on the relation
between non-perturbative quantum operators and local mirror symmetry. We
will associate to each spectral curve (1.1) an operator ρ̂X with a positive, dis-
crete spectrum, such that all the traces Tr ρ̂n

X , n = 1, 2, . . ., are well defined
(technically, ρ̂X is a positive-definite, trace class operator). A natural question
is then: what is the exact spectrum of this operator? This is a sharp and con-
crete question, since as it was first noted in [11] and further studied in [20], it is
possible to calculate this spectrum numerically. Our proposal is that the spec-
tral determinant of ρ̂X is encoded in the non-perturbative topological string
free energy JX constructed in [10]. As we will explain, this free energy (which
we will call the modified grand potential of X) defines a generalized theta
function. The zeros of the spectral determinant are the zeros of this general-
ized theta function, and this leads to an exact quantization condition for the
spectrum that agrees with all existing numerical results for these operators. In
particular, the proposal of [11] is a natural first approximation to our full quan-
tization condition, and our conjecture explains naturally why it predicts the
right spectrum in some special cases. In the general case, we can compute ana-
lytically the corrections to the quantization condition of [11], and we find that
they perfectly agree with the numerical results for the spectrum found in [20].
The proposal we make in this paper clarifies the rôle of the non-perturbative
free energy of [10], and its precise relation to the exact quantization condition.
But it also gives more information on the spectrum than just the quantization
condition, since it provides in principle an exact expression for the spectral
determinant of the corresponding operators. In addition, the spectral traces of
the operators can be obtained from the behavior of topological string theory
near the orbifold point.

As it was already emphasized in [10,11], our proposal can be regarded
as a non-perturbative completion of the topological string, in which the topo-
logical string and the refined topological string complement each other non-
perturbatively. There have been many proposals for a non-perturbative defin-
ition of the topological string, and in a sense this is not a well-posed problem,
since there might be many different non-perturbative completions (as it hap-
pens, for example, in 2d gravity). In fact, there is strong evidence [3,22] that in
many cases the genus expansion of the topological string is Borel summable, so
one could take the Borel resummation of this series as a non-perturbative def-
inition. We believe that our proposal is an interesting solution to this problem
for three reasons.

First of all, our starting point is the spectral determinant of the opera-
tor ρ̂X , which is well-defined and an entire function on the moduli space of
X. This means in particular that our starting point is background indepen-
dent. At the same time, different approximation schemes for the computation
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of this spectral determinant are encoded in different perturbative topological
string amplitudes. For example, given the operator ρ̂X , we can define a parti-
tion function ZX(N, �), which is well-defined for any integer N and any real
coupling �. In the ’t Hooft limit,

N → ∞,
N

�
fixed, (1.2)

this partition function has a ’t Hooft expansion which is determined by the
standard genus expansion of the topological string on X.

Second, our proposal can be regarded as a concrete M-theoretic version
of the topological string, in the spirit of the M-theory expansion of Chern–
Simons–Matter theories [5,23]. For example, the partition function ZX(N, �)
has an M-theory expansion at large N but fixed � which involves in a crucial
way the Gopakumar–Vafa invariants of X. However, it also includes additional
non-perturbative corrections which in particular cure the singularities of the
Gopakumar–Vafa free energy, as in the HMO mechanism. We also have, nat-
urally, that

− log ZX(N, �) ≈ N3/2
�

1/2, N ≫ 1, (1.3)

as in a theory of N M2-branes [24]. This suggests that the physical theory
underlying the spectral theory of the operator ρ̂X might be a theory of M2-
branes. It should be noted as well that what our proposal can be understood
as a Fermi gas formulation of topological string theory, similar to the Fermi
gas formulation of ABJM theory in [5]: the spectrum of the operator ρ̂X gives
the energy levels of the fermions, and the spectral determinant is naturally
interpreted as the grand canonical partition function of this gas.

Third, our proposal has a surprising mathematical counterpart: it leads to
precise and testable predictions for the spectral determinant and the spectrum
of non-trivial functional difference operators. According to our conjecture, the
answer to these questions involves the refined BPS invariants of local CYs. In
this way, we link two mathematically well-posed problems (the spectral theory
of these operators, and the generalized enumerative geometry of CYs) in a
novel way.

Although we believe that our proposal will hold for very general toric CY
manifolds, in this paper we will focus for simplicity on those geometries whose
mirror curve has genus one. In that case, the theory is simpler and we can make
precision, non-trivial checks of our proposal. The details of the generalization
to higher genus will be studied in a forthcoming publication.

This paper is organized as follows. In Sect. 2 we present the correspon-
dence between mirror curves and quantum operators. In Sect. 3 we state our
conjecture for the spectral determinant of these operators, we derive the quan-
tization condition implied by our conjecture, we comment on the physical
implications of our results, and we study the simplest cases of our theory,
which we call the “maximally supersymmetric cases”. Section 4 presents a
detailed illustration of our claims in the case of local P

2. Section 5 presents
additional evidence for our conjecture by looking at two other geometries: local
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F1, and local P
1 × P

1, which was the original testing ground due to its rela-
tionship to ABJM theory. Finally, in Sect. 6 we conclude and list various open
problems. In appendix A, we give a derivation of the first quantum correction
to the grand potential of local P

2.

2. From Mirror Curves to Quantum Operators

In this section, we will present a correspondence between mirror curves and
quantum operators. Aspects of this correspondence have been explored in var-
ious papers, starting in [15] and, more relevant to our purposes, in [16,17],
building on the work of [13] for gauge theories. However, our interest will be
in defining a non-perturbative spectral problem, from which one can compute
a well-defined spectrum. This was first proposed in [11] and then pursued in
[20].

Let us start by reminding some basic notions of local mirror symmetry
[25,26]. We consider the A-model topological string on a (non-compact) toric
CY threefold, which can be described as a symplectic quotient

X = C
k+3//G, (2.1)

where G = U(1)k. Alternatively, X may be viewed physically as the moduli
space of vacua for the complex scalars φi, i = 0, . . . , k+2 of chiral superfields in
a 2d gauged linear, (2, 2) supersymmetric σ-model [27]. These fields transform
as

φi → eiQα
i θαφi, Qα

i ∈ Z, α = 1, . . . , k (2.2)

under the gauge group U(1)k. Therefore, X is determined by the D-term
constraints

k+2∑

i=0

Qα
i |Xi|2 = rα, α = 1, . . . , k (2.3)

modulo the action of G = U(1)k. The rα corresponds to the Kähler parameters.
The CY condition c1(TX) = 0 holds if and only if the charges satisfy [27]

k+2∑

i=0

Qα
i = 0, α = 1, . . . , k. (2.4)

The mirrors to these toric CYs were constructed by [28], extending [25,
29]. They involve 3+k dual fields Y i, i = 0, . . . , k+2, living in C

∗. The D-term
Eq. (2.3) leads to the constraint

k+2∑

i=0

Qα
i Y i = log zα, α = 1, . . . , k. (2.5)

Here, the zα are moduli parametrizing the complex structures of the mirror

X̂, which is given by

w+w− = WX , (2.6)
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where

WX =

k+2∑

i=0

eYi . (2.7)

The constraints (2.5) have a three-dimensional family of solutions. One of the
parameters corresponds to a translation of all the fields

Y i → Y i + c, i = 0, . . . , k + 2, (2.8)

which can be used for example to set one of the Y is to zero. The remaining
fields can be expressed in terms of two variables which we will denote by x,
p. The resulting parametrization has a group of symmetries given by transfor-
mations of the form [30],

(
x
p

)
→ G

(
x
p

)
, G ∈ SL(2, Z). (2.9)

After solving for the variables Y i in terms of the variables x, p, one finds a
function

WX(ex, ep). (2.10)

Note that, due to the translation invariance (2.8) and the symmetry (2.9), the
function WX(ex, ep) in (2.11) is only well defined up to an overall factor of the
form eλx+μp, λ, μ ∈ Z, and a transformation of the form (2.9). It turns out
[31,32] that all the perturbative information about the B-model topological

string on X̂ is encoded in the equation

WX(ex, ep) = 0, (2.11)

which can be regarded as the equation for a Riemann surface ΣX embedded
in C

∗ × C
∗.

In this paper, we will focus for simplicity on toric CY manifolds X in
which ΣX has genus one, i.e. it is an elliptic curve.1 The most general class of
such manifolds are toric del Pezzo CYs, which are defined as the total space
of the canonical bundle on a del Pezzo surface2 S,

O(KS) → S. (2.12)

These manifolds can be classified by reflexive polyhedra in two dimensions (see
for example [26,33] for a review of this and other facts on these geometries).
The polyhedron ∆S associated to a surface S is the convex hull of a set of
two-dimensional vectors

ν(i) = (ν
(i)
1 , ν

(i)
2 ), i = 1, . . . , k + 2. (2.13)

1 When ΣX has genus zero, the operator associated to X does not seem to have a discrete
spectrum, therefore, we will not consider this case in this paper.
2 Sometimes a distinction is made between del Pezzo surfaces and almost del Pezzo surfaces.
Since our results apply to both of them, we will call them simply del Pezzo surfaces.
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The extended vectors

ν(0) = (1, 0, 0),

ν(i) = (1, ν
(i)
1 , ν

(i)
2 ), i = 1, . . . , k + 2,

(2.14)

satisfy the relations

k+2∑

i=0

Qα
i ν(i) = 0, (2.15)

where Qα
i is the vector of charges characterizing the geometry in (2.3). Note

that the two-dimensional vectors ν(i) satisfy,

k+2∑

i=1

Qα
i ν(i) = 0. (2.16)

It turns out that the complex moduli of the mirror X̂ are of two types: one
of them, which we will denote ũ as in [33,34], is a “true” complex modulus
for the elliptic curve Σ, and it is associated to the compact four-cycle S in X.
The remaining moduli, which will be denoted as mi, should be regarded as
parameters. For local del Pezzos, there is a canonical parametrization of the
curve (2.11), as follows. Let

Y 0 = log ũ,

Y i = ν
(i)
1 x + ν

(i)
2 p + fi(mj), i = 1, . . . , k + 2.

(2.17)

Due to (2.16), the terms in x, p cancel, as required to satisfy (2.5). In addition,
we find the parametrization

log zα = log ũQα
0 +

k+2∑

i=1

Qα
i fi(mj), (2.18)

which can be used to solve for the functions fi(mj), up to reparametrizations.
We then find the equation for the curve,

WX = OX(x, p) + ũ = 0, (2.19)

where

OX(x, p) =

k+2∑

i=1

exp(ν
(i)
1 x + ν

(i)
2 p + fi(mj)). (2.20)

Let x̂ and p̂ be standard quantum-mechanical operators satisfying the
canonical commutation relation

[x̂, p̂] = i�. (2.21)

In this paper, � will be a real parameter. We need to consider as well the
exponentiated operators

X̂ = ex̂, P̂ = ep̂. (2.22)

These operators are self-adjoint and they satisfy the Weyl algebra

X̂P̂ = qP̂ X̂, (2.23)
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where

q = ei�. (2.24)

However, the domains of X, P should be defined appropriately, since they lead
to difference or displacement operators acting on wavefunctions (for example,
if we work in the x representation, P is a difference operator). The domain of
the operator X, D(X), consists of wavefunctions ψ(x) ∈ L2(R) such that

exψ(x) ∈ L2(R). (2.25)

Similarly, the domain of P , D(P ), consists of functions ψ(x) ∈ L2(R) such
that

epψ̂(p) ∈ L2(R), (2.26)

where

ψ̂(p) =

∫
dx√
2π�

e−ipqψ(q) (2.27)

is the wavefunction in the p representation, which is essentially given by a
Fourier transform. The condition (2.26) can be translated into a condition
on ψ(x) (see for example [35]): this is a function which admits an analytic
continuation into the strip

S−� = {x − iy ∈ C : 0 < y < �} , (2.28)

such that ψ(x − iy) ∈ L2(R) for all 0 ≤ y < �, and the limit

ψ (x − i� + i0) = lim
ǫ→0+

ψ (x − i� + iǫ) (2.29)

exists in the sense of convergence in L2(R).

We want now to associate a self-adjoint quantum operator ÔX of the
form

ÔX(x̂, p̂) =
∑

r,s∈Z

ar,se
rx̂+sp̂, ar,s ≥ 0, (2.30)

to each toric del Pezzo X, in such a way that we have a well-defined eigenvalue
problem

ÔX(x̂, p̂)|ψn〉 = eEn |ψn〉, n = 0, 1, . . . , (2.31)

i.e. we want to have a discrete and positive spectrum, so that the energies En

are real. It is convenient to consider the inverse operator

ρ̂X = Ô−1
X (x̂, p̂) . (2.32)

The spectral traces of ρ̂X are defined by

Zℓ = Tr ρ̂ℓ
X =

∞∑

n=0

e−ℓEn , ℓ = 1, 2, . . . , (2.33)

and we will require them to be well defined (i.e. finite). The semiclassical limit
of these traces is given by,

Zℓ ≈ 1

�
Z

(0)
ℓ , � → 0, (2.34)
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where

Z
(0)
ℓ =

∫
dxdp

2π

1

(OX(x, p))
ℓ
, (2.35)

and OX(x, p) denotes the classical function underlying (2.30), or more formally,
the Wigner transform of the operator (2.30) (this classical function is simply
given by the expression (2.30) where we replace x̂, p̂ by the corresponding
classical variables). If the semiclassical limit is smooth, as we will assume
here, we should have

Z
(0)
ℓ < ∞. (2.36)

This leads to useful constraints on the form of OX(x, p).
Let us explain how to associate a quantum operator to a given local

del Pezzo. We have seen in (2.19) that, for local del Pezzo’s, the function

WX(ex, ep) can always be written in the form (2.19). The operator ÔX(x̂, p̂) is
obtained by promoting the classical function OX(x, p) in (2.20) to a quantum
operator. In this promotion, we use Weyl’s prescription for ordering ambigui-
ties. This associates

erx+sp → erx̂+sp̂, (2.37)

so that the resulting operator is Hermitian. Clearly, if the parameters mi satisfy
appropriate reality and positivity conditions, the resulting quantum operator
will be of the form (2.30). Since this operator is a sum of operators of the
form erx̂+sp̂, its domain is given by the intersection of the domains of all the
operators of this type appearing in the sum in (2.30).

Example 2.1. To illustrate this procedure, let us consider the well-known exam-
ple of local P

2. In this case, we have k = 1 and the toric CY is defined by a
single charge vector Q = (−3, 1, 1, 1). The corresponding polyhedron ∆S for
S = P

2 is obtained as the convex hull of the vectors

ν(1) = (1, 0), ν(2) = (0, 1), ν(3) = (−1,−1). (2.38)

In the mirror, the variables Y i satisfy

− 3Y 0 + Y 1 + Y 2 + Y 3 = −3 log ũ, (2.39)

and the canonical parametrization is given by

Y 0 = log ũ, Y 1 = x, Y 2 = p, Y 3 = −x − p, (2.40)

so that

WX(ex, ep) = ex + ep + e−x−p + ũ, (2.41)

after changing ũ → −ũ. Therefore, the quantum operator is given by

ÔX (x̂, p̂) = ex̂ + ep̂ + e−x̂−p̂. (2.42)

This operator was studied, from a semiclassical point of view, in [36]. Its spec-
trum was studied numerically in [20]. �
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Table 1. In this table we list the operators associated to
some local del Pezzo CYs, as well as the values of the constant
C defined by (3.22) and the index r by (3.17)

X OX(x, p) C r

Local P2 ex + ep + e−x−p 9/2 3
Local F0 ex + me−x + ep + e−p 4 2
Local F1 ex + me−x + ep + e−x−p 4 1
Local F2 ex + me−x + ep + e−2x−p 4 2
Local B2 m2ex + m1ep + e−x + e−p + ex+p 7/2 1
Local B3 m1e−x + ex + m2e−p + ep + m3ex+p + e−x−p 3 1

Following the procedure in the previous example, we can write down oper-
ators for other local del Pezzo CYs. A list with some useful examples can be
found in Table 1, where we used for convenience the classical version OX(x, p).
The conventions for the parametrization of the curves (in particular, for the
parameters m, mi appearing in the equations) are those of [33,34]. Note that
a transformation of the form (2.9) corresponds to a canonical transformation,
and will not change the spectrum of the operator. Note as well that, after
changing ũ → −ũ, the spectral problem (2.31) can be written as

WX

(
ex̂, ep̂

)
|ψn〉 = 0, (2.43)

where we use the form (2.19). The spectral problem leads then to a quantiza-
tion of the modulus ũ, which after the change of sign above, can be interpreted
as the exponential of the energy:

ũ = eE . (2.44)

We can regard ÔX(ex̂, ep̂) as the exponential of a Hamiltonian ĤX , while ρ̂X

can be interpreted as the canonical density matrix,

ÔX(ex̂, ep̂) = eĤX , ρ̂X = e−ĤX . (2.45)

The operator Ĥ has a complicated Wigner transform (as in the closely related
examples of [5]). Its explicit form will not be needed in this paper, but it might
be useful to test some of our statements in a semiclassical analysis, as in [5].

To gain some insight into these operators, and to verify that the require-
ment (2.36) holds for them, we can consider their semiclassical limit and the
corresponding Bohr–Sommerfeld quantization condition. The region of phase
space with energy less or equal than E is defined by the equation,

R(E) = {(x, p) ∈ R
2 : OX(x, p) ≤ eE}. (2.46)

As is well known, in the semiclassical limit each cell of volume 2π� in R(E)

will lead to a quantum state. Therefore, if we want the spectrum of ÔX to be
discrete, we should require R(E) to have a finite volume. The geometry of the
region R(E) at large energies is easy to understand (and very similar to the
situations considered in [5,37]): for large E, we should consider the tropical
limit of the curve (2.20), which in the canonical parametrization (2.19) reads
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Figure 1. The figure on the left shows the region (2.46) in
phase space for the quantum operator associated to local B2,
for E = 35 and m1 = m2 = 1. The figure on the right is the
polyhedron representing toric B2

ν
(i)
1 x + ν

(i)
2 p + fi(mj) = E, i = 1, . . . , k + 2. (2.47)

The boundary of the region R(E) is the polygon limited by the lines (2.47).
This polygon is nothing but the boundary of the dual polyhedron ∆⋆

S defining
the toric del Pezzo, see for example Figs. 1 and 2 for nice illustrations involving
local B2 and local B3, respectively. Therefore, the region (2.46) has a finite
volume. This also guarantees that the classical function

ρX(x, p) =
1

OX(x, p)
(2.48)

decays exponentially at infinity, so that (2.36) is verified.

We expect the difference operators ÔX(x̂, p̂) constructed in this way to
have a positive and discrete spectrum. Specifically, we expect their inverses ρ̂X

to be positive-definite and trace class operators. This is clearly indicated by
the behavior of the semiclassical limit, but it would be important to prove it
from first principles, to make sure that the spectral problem and the spectral
traces are defined rigorously.3

In practice, one can calculate the spectrum of the operators ÔX(x̂, p̂) as
in [20]4: one chooses a system of orthonormal wavefunctions |ϕn〉 which belongs
to D(X)∩D(P ). A useful choice is the basis of eigenfunctions of the harmonic

3 A rigorous proof for some special cases, like the operator for local P2, appears in [38].
4 In the case of ABJM theory, it is possible to obtain an explicit form for the integral
kernel of ρ̂, and one can use standard techniques for the computation of the eigenvalues and
eigenfunctions of such kernels, see [6,11].
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Figure 2. The figure on the left shows the region (2.46) in
phase space for the quantum operator associated to local B3,
for E = 35 and m1 = m2 = m3 = 1. The figure on the right

is the polyhedron representing toric B3

oscillator, since they have Gaussian decay along all parallel directions to the
real axis in the complex plane. Then, the infinite-dimensional matrix

(ÔX)nm = 〈ϕn|ÔX(x̂, p̂)|ϕm〉 (2.49)

can be diagonalized numerically: one first truncates it to an L×L dimensional

matrix, computes the eigenvalues E
(L)
n , n = 0, 1, . . ., and observes numerical

convergence as L grows,

E(L)
n → En, L → ∞, n = 0, 1, . . . (2.50)

In this paper we will rely on this method to check our analytical results on the
spectrum. Detailed numerical results for the spectrum of the first two operators
in Table 1 can be found in [20].

3. Spectral Determinants and Topological Strings

In this section we state our main conjecture, which gives a conjectural expres-
sion for the spectral determinant of the operator ρ̂X introduced in the previous
section. We also discuss the quantization condition for the spectrum derived
from our conjecture, as well as its physical meaning.

3.1. The Spectral Determinant

The spectral information about the operators ρ̂X and ÔX can be encoded
in various useful ways. Given a trace class operator ρ̂ with eigenvalues e−En ,
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n = 0, 1, . . ., and depending on a real parameter �, its spectral determinant

(also called Fredholm determinant) is defined by

Ξ(κ, �) = det(1 + κρ̂) =

∞∏

n=0

(1 + κe−En). (3.1)

We will refer to κ as the fugacity, and we will often write it as

κ = eμ, (3.2)

where μ is called the chemical potential. We will use the arguments κ and μ
interchangeably. The reason for this terminology is that Ξ(κ, �) can be physi-
cally interpreted as the grand canonical partition function of an ideal Fermi gas
where the one-particle problem has energy levels En. Note that our spectral
determinant is different from the one usually studied in Quantum Mechanics
[39–41]:

D(μ, �) =
∏

n≥0

(
1 +

μ

En

)
. (3.3)

Our definition (3.1) uses instead the canonical density matrix. It has better
convergence properties and does not need to be regularized, in contrast to
(3.3). For example, in the case of the quantum harmonic oscillator, the spectral
determinant (3.3) leads, after regularization, to

D(μ, �) =

√
π

Γ(1/2 + μ/�)
, (3.4)

while with our definition we would obtain

Ξ(κ, �) =
∞∏

n=0

(1 + κe−�(n+1/2)) = (−e−�/2κ; e−�)∞, (3.5)

which is the quantum dilogarithm [42].
The spectral determinant has two important properties: first, it is an

entire function of the fugacity κ (see for example [43], chapter 3, for a proof
of this fact). Second, after setting

κ = −eE , (3.6)

it has simple zeros, as a function of E, at the energies of the spectrum En.
This means that one can in principle read the spectrum of the operator ρ̂ by
looking at the zeros of the spectral determinant. The grand potential is defined
as

J (μ, �) = log Ξ(μ, �), (3.7)

and it has the following useful expression in terms of the spectral traces defined
in (2.33):

J (μ, �) = −
∞∑

ℓ=1

Zℓ
(−κ)ℓ

ℓ
. (3.8)
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There are certain special combinations of the traces which appear when one
expands the spectral determinant around κ = 0:

Ξ(κ, �) = 1 +
∑

N≥1

Z(N, �)κN . (3.9)

We will call the Z(N, �), for N = 1, 2, . . ., the (canonical) partition functions
associated to the operator ρ̂. We can obtain Z(N, �) by taking an appropriate
residue at the origin,

Z(N, �) =

∫ πi

−πi

dμ

2πi
eJ (μ,�)−Nμ. (3.10)

If we denote by

ρ(x1, x2) = 〈x1|ρ̂|x2〉, (3.11)

then the Z(N, �) can be interpreted as the canonical partition functions of an
ideal Fermi gas of N particles with energy levels En:

Z(N, �) =
1

N !

∑

σ∈SN

(−1)ǫ(σ)

∫
dNx

∏

i

ρ(xi, xσ(i)). (3.12)

In this equation, SN is the permutation group of N elements and ǫ(σ) is the
signature of a permutation σ ∈ SN . The canonical partition functions encode
the information in the spectral traces in a slightly different way, as one can see
by combining (3.9) with (3.8), and they are related by

Z(N, �) =
∑

{mℓ}

′
∏

ℓ

(−1)(ℓ−1)mℓZmℓ

ℓ

mℓ!ℓmℓ
, (3.13)

where the
′

means that the sum is over the integers mℓ satisfying the constraint
∑

ℓ

ℓmℓ = N. (3.14)

We note that the grand potential J (μ, �) has a well-defined classical limit:
when � → 0, one has

J (μ, �) =
1

�
J0(μ) + �J1(μ) + . . . , (3.15)

where the leading contribution

J0(μ) = −
∑

ℓ≥1

(−κ)ℓ

ℓ
Z

(0)
ℓ (3.16)

involves the classical limit of the spectral traces (2.35). As first noted in [5],
the study of this limit for the operators appearing in Chern–Simons–Matter
theories leads to many insights on their behavior, see for example [44,45].

We will now make a proposal for the spectral determinant of the operators
ρ̂X that we associated to toric CY manifolds. We will focus on the case in which
the mirror curve has genus one, i.e. on the case of toric (almost) del Pezzo.
We sketch the generalization to higher genus in the final section of the paper.
For simplicity, we will first write down our formulae in the case in which the
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parameters mi appearing in the operator take their most symmetric value.
This value is obtained as follows: the parameters mi are linear sigma model
parameters, and they are related to their corresponding Kähler parameters or
flat coordinates tmi

by an algebraic mirror map. The most symmetric value
of the mi corresponds to setting tmi

= 0. For example, in the case of local
P

1 ×P
1 and local F1, the most symmetric value is m = 1. We will consider the

more general case in Sect. 3.5.
Once we restrict ourselves to the value tmi

= 0 for the parameters mi,
the del Pezzo surfaces considered in the previous section have a single modulus
z, which is related to the modulus ũ introduced before as

z =
1

ũr
. (3.17)

Here, the value of r is determined by the geometry of X (in particular, by
the canonical class of S). For example, for local P

2 we have r = 3, while for
local P

1 × P
1 we have r = 2 (see Table 1 for other cases). For each of these

geometries, there is also a quantum mirror map [17] relating the modulus z to
a flat coordinate t, and of the form

− t = log(z) +
∑

m≥1

âm(�)zm. (3.18)

We will now introduce, in analogy with ABJM theory [9], an “effective” μ
parameter

μeff = μ +
1

C(�)
Ja(μ, �), (3.19)

where Ja(μ, �) is defined by a series expansion

Ja(μ, �) =
∑

ℓ≥1

aℓ(�)e−rℓμ, (3.20)

and C(�) has the form

C(�) =
C

2π�
. (3.21)

The coefficient C is given as follows. Let us consider the volume of the region
R(E) defined in (2.46), which we will denote as vol0(E). At large E, the region
becomes polygonal, and its volume will behave as

vol0(E) ≈ CE2 + 2π

(
B0 − π2

6
C

)
+ O

(
e−E

)
. . . , E ≫ 1. (3.22)

The coefficient C in (3.21) is the same one determining the asymptotics of
the volume (3.22). It can be easily computed from the polygonal limit of the
region R(E).

Example 3.1. Let us consider again the case of local P
2. At large E, the region

R(E) becomes the triangle whose boundaries are appropriate segments of the
lines

x = E, p = E, x + p + E = 0, (3.23)
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which are read immediately from the tropical limit of the mirror curve. The
area of this triangle is 9E2/2, so we conclude that

C(�) =
9

4π�
. (3.24)

We will verify this value with other techniques later on. �

The coefficients am(�) appearing in (3.20) are determined by the quantum
mirror map (3.18), as follows

aℓ(�) = −C(�)

r
âℓ(�). (3.25)

Note from (3.18) and (3.20) that the complex modulus (3.17) is identified with

z = e−rμ. (3.26)

This is natural, since the chemical potential μ plays the rôle of the energy, and
the above relation follows from (2.44) and (3.17).

We are now ready to introduce the crucial quantity determining the spec-
tral determinant. In analogy with [7,10,19], we will call it the modified grand

potential. It is essentially the non-perturbative topological string free energy
introduced in [10], and it has the structure

JX(μ, �) = J (p)(μeff , �) + JM2(μeff , �) + JWS(μeff , �). (3.27)

In this equation, the perturbative piece is given by

J (p)(μ, �) =
C(�)

3
μ3 + B(�)μ + A(�). (3.28)

The coefficient B(�) has the structure

B(�) =
B0

�
+ B1�, (3.29)

where B0 is the coefficient appearing in the sub-leading asymptotics of
vol0(E), in (3.22). The coefficient B1 can be determined from the first quantum
correction to the B-period, as in the calculations of [5,11,20]. The coefficient
A(�) is more difficult to determine, although in some special cases it can be
guessed and/or computed numerically. It can be also fixed by a normaliza-
tion condition, as we will see in a moment. However, since it is independent
of μ, it plays a relatively minor rôle. In particular, it does not enter into the
quantization condition. The function JM2(μeff , �) has the structure

JM2(μeff , �) = μeff J̃b(μeff , �) + J̃c(μeff , �), (3.30)

where J̃b and J̃c are given by,

J̃b(μeff , �) =
∑

ℓ≥1

b̃ℓ(�)e−rℓμeff ,

J̃c(μeff , �) =
∑

ℓ≥1

c̃ℓ(�)e−rℓμeff .
(3.31)

The coefficients b̃ℓ(�) are determined by the so-called refined BPS invariants of
X [46–48], which we will denote by Nd

jL,jR
. Here, d is a positive integer which
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denotes the degree w.r.t. the flat coordinate or Kähler modulus t in (3.18),
and jL, jR are the spins of the corresponding BPS multiplets. We have the
following expression,

b̃ℓ(�) = − rℓ

4π

∑

jL,jR

∑

ℓ=dw

∑

d

Nd
jL,jR

sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)

w2 sin3 �w
2

. (3.32)

Note that our conventions for the Nd
jL,jR

are as in [10] [in particular, they do

not include the sign (−1)2jL+2jR ]. The coefficients c̃ℓ(�) are determined by a
generalization of the relationship found in [9] for ABJM theory,

c̃ℓ(�) = −�
2

rℓ

∂

∂�

(
b̃ℓ(�)

�

)
. (3.33)

Finally, the worldsheet instanton part of the modified grand potential is defined
by

JWS(μ, �) =
∑

m≥1

dm(�)(−1)Bme−2πmrμ/�, (3.34)

where dm(�) is also determined by the BPS invariants,

dm(�) =
∑

jL,jR

∑

m=dv

∑

d

Nd
jL,jR

2jR + 1

v
(
2 sin 2π2v

�

)2

sin
(

4π2v
�

(2jL + 1)
)

sin 4π2v
�

, (3.35)

and the B-field B in (3.34) is such that

(−1)2jL+2jR−1 = (−1)Bd (3.36)

for all the values of d, jL, jR which lead to a non zero BPS invariant Nd
jL,jR

.
There is a geometric argument, explained in [10], which shows that there is
a natural choice of B field which guarantees (3.36). In the toric del Pezzo’s
that we are considering, we can set B = r, since they are both determined
by the canonical class of S. It is important to notice that the combinations of
BPS invariants which enter into the modified grand potential are very specific.
Namely, the combination entering in (3.34) involves only the Gopakumar–Vafa
invariants nd

g appearing in the standard topological string [46],

dm(�) =
∑

g≥0

∑

m=dv

∑

d

nd
g

1

v

(
2 sin

2π2v

�

)2g−2

, (3.37)

while (3.32) involves the combination of the invariants appearing in the NS
limit of the refined topological string. Indeed, in this limit, the instanton part
of the topological string free energy can be written as5

F inst
NS (t, �) =

∑

jL,jR

∑

ℓ=wd

Nd
jL,jR

sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)

2w2 sin3 �w
2

e−ℓt, (3.38)

5 This differs from the convention used in [10] in a factor of i.
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and we conclude that

J̃b(μeff , �) =
r

2π
∂tF

inst
NS (t, �)

∣∣∣∣
t=rμeff

, (3.39)

i.e. J̃b is essentially the quantum B-period of [17].
One of the most important aspects of the grand potential (3.27) is the

following: the worldsheet instanton piece JWS(μeff , �) has double poles when �

is of the form 2π times a rational number. The functions J̃b and J̃c have poles
at the same values. However, in the total function JX(μ, �) these poles cancel.
The proof of this statement is a trivial generalization of the proof offered in
[10], but we present it here for the convenience of the reader, since it is an
important point of the construction. The coefficient (3.35) has double poles
when � ∈ 2πv/N. The coefficient (3.32) has a simple pole when � ∈ 2πN/w,
and due to (3.33) the coefficient c̃ℓ(�) will have a double pole at the same values
of �. These poles contribute to terms of the same order in e−μeff precisely when
� takes the form

� =
2πv

w
=

2πm

ℓ
. (3.40)

We have then to examine the pole structure of (3.27) at these values of �.
Since both (3.35) and (3.32) involve a sum over BPS multiplets with quantum
numbers d, (jL, jR), we can look at the contribution to the pole structure
of each multiplet. In the worldsheet instanton contribution, the singular part
associated to a BPS multiplet around � = 2vπ/w is given by

(−1)Bm

π

[
vπ

w4
(
� − 2πv

w

)2 +
1

� − 2πv
w

(
1

w3
+

mrμeff

2vw2

)]
(1 + 2jL)

× (1 + 2jR)Nd
jL,jR

e− mrw
v

μeff . (3.41)

The singular part in μeff J̃b(μeff , k) associated to a BPS multiplet is given by

− 1

2π

ℓr

w3
(
� − 2πv

w

) (−1)v(2jL+2jR−1)(1 + 2jL)(1 + 2jR)Nd
jL,jR

μeffe−rℓμeff .

(3.42)

Using (3.33), we find that the corresponding singular part in J̃c(μeff , �) is given
by

− 1

π

[
vπ

w4
(
� − 2πv

w

)2 +
1

w3
(
� − 2πv

w

)
]

× (−1)v(2jL+2jR−1)(1 + 2jL)(1 + 2jR)Nd
jL,jR

e−rℓμeff . (3.43)

Using (3.36), it is easy to see that all poles in (3.41) cancel against the poles in
(3.42) and (3.43), for any value of μeff . This cancellation phenomenon was of
course one of the guiding principles for the proposal of [10] and it generalizes
the HMO cancellation mechanism for the modified grand potential of ABJM
theory [7].
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We are now ready to make our main proposal: we conjecture that, given a
toric del Pezzo CY X, the spectral determinant of the operator ρ̂X associated
to it is given by

ΞX(μ, �) = eJX(μ,�)ΘX(μ, �), (3.44)

where JX(μ, �) is the modified grand potential (3.27), and ΘX(μ, �) is given
by

ΘX(μ, �)

=
∑

n∈Z

exp

{
−4π2n2C(�)μeff + 2πin(C(�)μ2

eff + B(�)) − 8π3in3

3
C(�)

+ 2πinJ̃b(μeff , �) + JWS(μeff + 2πin, �) − JWS(μeff , �)

}
. (3.45)

We will refer to this quantity as the generalized theta function associated to
X. The reason for this name is that, in some special cases, it actually becomes
a theta function, as we will see. Notice that we can write

ΞX(μ, �) =
∑

n∈Z

eJX(μ+2πin,�), (3.46)

and it leads to a periodic function of μ. This type of relationship between
the grand canonical partition function and the modified grand potential was
proposed in [7] and recently exploited in [19] to obtain many new results in
N = 8 ABJ(M) theories. It also leads to a very useful formula for the canonical
partition function as a contour integral: we can use (3.46) to replace JX(μ, �)
by the modified grand potential in the integrand of (3.10), and to extend
simultaneously the integration contour along the full imaginary axis. We then
deform it to the contour C shown in Fig. 3, which is the appropriate one in

π

3

−π

3

C

Figure 3. The contour C in the complex plane of the chem-
ical potential, which can be used to calculate the canonical
partition function from the modified grand potential
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view of the cubic behavior in μ of JX(μ, �), and is in fact the contour used
to define the Airy function, as in [5]. We finally obtain the contour integral
representation,

ZX(N, �) =
1

2πi

∫

C

eJX(μ,�)−Nμdμ. (3.47)

Another way to obtain the canonical partition functions is by simply expanding
the spectral determinant around κ = 0. This corresponds to ũ → 0, which is
the point

z = ∞ (3.48)

in the moduli space of the CY. This is usually the orbifold limit of the geometry.
Therefore, according to our conjecture, the spectral traces of the operator ρ̂X

are determined by topological string theory near the orbifold point. We will
see some concrete examples of how this works in the examples.

We would like to note that our proposal can be already tested at the
semiclassical level. Indeed, it is easy to see that the WKB expansion of
JX(μ, �) = log ΞX(μ, �) is given, according to our conjecture, by

J WKB
X (μ, �) = J (p)(μeff , �) + JM2(μeff , �). (3.49)

The l.h.s. of this equation can be in principle computed systematically as in
(3.15), and this should be reproduced by the expansion of the r.h.s. around
� = 0. We will see examples of this later on.

Let us make some clarifications on the analytic properties of the functions
that we have introduced. First of all, note that we have defined the modified
grand potential based on an expansion at large μ, which corresponds to the
large radius expansion of topological string theory. Since this function involves
the all-genus free energy of the topological string, one could suspect that it
leads to a divergent expansion. However, extensive evidence based on concrete
examples shows that, when � is real, the modified grand potential JX(μ, �) is
analytic around μ = ∞ [10,19], i.e. it is analytic in a region of the form

Re(μ) > μ∗. (3.50)

Similarly, the generalized theta function (3.45) seems to be analytic in the same
region. On the other hand, and as we have mentioned above, the spectral
determinant of a trace class operator is an entire function on the fugacity
plane. Therefore, if our conjecture (3.44) is true, the product in (3.44), which
involves two functions which are analytic only in a region of the fugacity plane,
is entire.6 Finally, the canonical partition function ZX(N, �) is only defined in
principle for positive integer N . However, using the Airy type of integral in
(3.47), we can extend it to an entire function on the complex plane of the N
variable, exactly as argued in [19]. Note that, in this formalism, the value of
ZX(0, �) is naturally fixed to be one

6 The fact that the product of a theta function with an appropriate factor leads to an entire
function is not unheard of. It happens for example in the analysis of blowup functions in
Donaldson–Witten theory, see for example [49] for a review and references.



Vol. 17 (2016) Topological Strings from Quantum Mechanics 3197

ZX(0, �) = 1, (3.51)

since this is the first term in the expansion of the spectral determinant (3.9).
This can be used as a normalization condition which fixes completely the μ-
independent function A(�).

3.2. The Quantization Condition

The first piece of information that we can extract from the spectral determi-
nant (3.44) is the spectrum of the operator, which can be read from its zeros.
Let us then analyze the zeros of (3.44). This function is the product of two
factors: the first factor behaves as exp(μ3), while the second one, which we
have called a generalized theta function, is oscillating. Therefore, it is natural
to search for the spectrum by looking at the zeros of this generalized theta
function. To search for the zeros, we write, as suggested by (3.6),

μ = E + πi, (3.52)

therefore,

μeff = Eeff + πi, (3.53)

where

Eeff = E +
1

C(�)
Ja(E + πi). (3.54)

Note that this introduces a sign depending on the parity of rm,

Ja(E + πi) =
∑

m≥1

(−1)rmam(�)e−rmE . (3.55)

We then find

ΘX(E + πi, �)

= eζ
∑

n∈Z

exp

{
−4π2(n + 1/2)2C(�)Eeff − 8π3i(n + 1/2)3

3
C(�)

+ 2πi(n + 1/2)(C(�)E2
eff + B(�) + J̃b(Eeff + πi, �))

+ fWS(Eeff + πi, n) − 1

2
fWS(Eeff + πi,−1)

}
. (3.56)

In this equation, we have introduced the functions,

fWS(μ, n) = JWS(μ + 2πin, �) − JWS(μ, �)

=
∑

m≥1

dm(�)(e−4π2imrn/� − 1)(−1)Bme−2πmrμ/�, (3.57)

for n = 0, and by definition fWS(μ, 0) = 0. We have, in particular,

fWS(Eeff + πi,−1) = 2i
∑

m≥1

dm(�) sin
2π2mr

�
(−1)Bme−2πmrEeff/�. (3.58)
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The overall factor ζ is given by

ζ = π2C(�)Eeff − πi(C(�)E2
eff + B(�) + J̃b(Eeff + πi, �))

+
1

2
fWS(Eeff + πi,−1) +

π3iC(k)

3
. (3.59)

To extract a quantization condition from this equation, we will think of the
generalized theta function as a sum of exponentially small corrections, in which
the leading order is given by the terms n = 0,−1 in (3.56). If we keep only
these two terms, we see that (3.56) is given by

exp
(
ζ − π2C(�)E2

eff

)
cos (πΩ(E)) (3.60)

where

Ω(E) = Ωp(E) + Ωnp(E), (3.61)

and

Ωp(E) = C(�)E2
eff + B(�) − π2

3
C(�) + J̃b(Eeff + πi),

Ωnp(E) = − 1

π

∑

m≥1

dm(�) sin
2π2mr

�
(−1)Bme−2πmrEeff/�.

(3.62)

In this approximation, in which we keep only the first two terms in the gener-
alized theta function, the quantization condition reads

Ω(E) = s +
1

2
, s = 0, 1, 2, . . . (3.63)

Although (3.60) also vanishes for negative, integer s, the condition (3.63) does
not seem to have solutions in E for those values.

Let us pause a moment to examine this quantization condition. It has a
perturbative part in �, given by Ωp(E), and a non-perturbative part given by
Ωnp(E). The perturbative part is what one would find using just the NS limit
of the refined topological string, or the perturbative WKB approach of [17].
As pointed out in [11], this perturbative quantization condition can not be the
whole story: the operator ρ̂X has a well-defined spectrum at values of � of the
form 2π times a rational number, but for these values of � the perturbative
part has poles. Therefore, the perturbative approach is fundamentally incom-
plete. As pointed out in [11], one should include instanton corrections, and
these should cancel the poles in the perturbative part. The proposal of [11] for
these non-perturbative corrections is in fact to add Ωnp(E) to the perturba-
tive function Ωp(E), as in (3.61), so that the modified quantization condition
is (3.63). This condition was originally proposed for ABJM theory, which is a
particular case of the above construction, and then extended to ABJ theory
in [50].

The quantization condition (3.63) of [11] has two virtues: first of all, in
contrast to the perturbative WKB condition, it makes sense for any real value
of �. Second, it reproduces the spectrum of the operators in some special cases.
However, it does not lead to the right energies for generic values of �. This was
noted experimentally in some examples in [20], based on an extensive numerical
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analysis (see also [21]). But it is now clear why this is so: the quantization
condition (3.63) has corrections due to higher order terms in the generalized
theta function (3.56). These corrections can be determined analytically, as
follows. Let us write the exact quantization condition as

Ω(E) + λ(E) = s +
1

2
, s = 0, 1, 2, . . . , (3.64)

where λ(E) is the sought-for correction. Let us denote

fc(n) =
∑

m≥1

(−1)Bmdm(�)

×
(

cos

(
2π2rm(2n + 1)

�

)
− cos

(
2π2rm

�

))
e−2πrmEeff/�,

fs(n) =
∑

m≥1

(−1)Bmdm(�)

×
(

sin

(
2π2rm(2n + 1)

�

)
− (2n + 1) sin

(
2π2rm

�

))
e−2πrmEeff/�,

(3.65)

for n = 0, and fc(0) = fs(0) = 0. Note that, as functions of �, they do not
have singularities, and they are determined by the Gopakumar–Vafa invariants
entering into dm(�). A simple calculation shows that λ(E) is determined by
the equation

∞∑

n=0

e−4π2n(n+1)C(�)Eeff (−1)nefc(n)

× sin

(
4π3n(n + 1)(2n + 1)

3
C(�) + fs(n) + 2π(n + 1/2)λ(E)

)
= 0.

(3.66)

Although this equation looks complicated, λ(E) can be obtained as a power
series in the small parameter

exp(−2πCEeff/�). (3.67)

We have written C(�) as in (3.21) to make manifest that all these corrections
are non-perturbative in �. The zeroth order approximation is obtained by
picking just n = 0 in the above sum, which leads to λ(E) = 0, and we reproduce
(3.63). The leading non-trivial correction is

λ(E) ≈ 1

π
exp(−4πCEeff/�)efc(1) sin

(
8π3C(�) + fs(1)

)
, (3.68)

which has itself an expansion in powers of exp (−2πrEeff/�) due to the fac-
tors of fc(1), fs(1). As we will see in concrete examples, this reproduces the
proposed corrections in [20], and therefore it agrees with the numerical results
obtained so far for the spectrum of the operators.
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3.3. Physical Interpretation

Let us now pause a little bit to comment on the physical significance of the
above conjectures for a description of the topological string.

First of all, let us understand in detail how the standard perturbative
expansion of the topological string emerges from this picture. The modified
grand potential JX(μ, �) can be studied in various regimes. In the semiclassical
regime, we have μ fixed and � → 0. But as pointed out in [5,51,52], there is a
’t Hooft limit given by

� → ∞, μ̂ =
μ

�
fixed. (3.69)

In this regime, the modified grand potential has an expansion of the form

J ’t Hooft
X (μ, �) =

∑

g≥0

�
2−2gJ

(g)
X (μ̂) , (3.70)

which selects precisely the worldsheet instanton part JWS(μ, �) (in this limit,
μeff = μ). Indeed, if we assume that the function A(�) has an asymptotic
expansion in this regime of the form

A(�) =
∑

g≥0

Ag�
2−2g, (3.71)

we find that the J
(g)
X (μ̂) are essentially the genus g free energies of the standard

topological string at large radius. We have, for example,

J
(0)
X (μ̂) =

C

6π
μ̂3 + B1μ̂ + A0 +

1

16π4

∑

w,d≥1

nd
0

(−1)Bdw

w3
e−2πrwdμ̂,

J
(1)
X (μ̂) = B0μ̂ + A1 +

∑

w,d≥1

(
nd

0

12
+ nd

1

)
(−1)Bdw

w
e−2πrwdμ̂. (3.72)

The basic quantity in our approach is the spectral determinant ΞX(μ, �). It
follows from our main conjecture that, in the ’t Hooft limit (3.69), the spectral
determinant has the asymptotic expansion

log ΞX(μ, �) ∼ J ’t Hooft
X (μ, �). (3.73)

The theta function gives an oscillatory, non-perturbative correction which is
similar to the oscillatory corrections to the large N asymptotics of matrix
models [54].

In terms of the canonical partition function ZX(N, �), the regime (3.69)
corresponds to the standard ’t Hooft regime

� → ∞,
N

�
fixed. (3.74)

In this regime, ZX(N, �) has an expansion at strong ’t Hooft coupling which is
obtained by a Laplace or Fourier transform of (3.70), as it follows from (3.47).
The expansion (3.70) indicates as well that the parameter � plays the rôle of
the inverse topological string coupling constant,

gtop ∼ 1

�
. (3.75)
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The above results are structurally very similar to what has been obtained
for ABJM theory, and our conjectures have been inspired by the structure of
the ABJM partition function on S

3. Indeed, what we are proposing is an inter-
pretation of the topological string as an ideal Fermi gas, where the Hamiltonian
ĤX is given by (2.45). This Fermi gas provides a microscopic description of
the topological string, which is weakly coupled when the topological string
is strongly coupled, due to (3.75) (that such a description should exist was
already anticipated in [14], based on the results of [5]). The perturbative genus
expansion emerges as a particular asymptotic expansion of this microscopic
description, as we have seen above.

This Fermi gas picture of the topological string has various important
properties, which we now comment in some detail.

First of all, it includes non-perturbative effects in the topological string

coupling constant. These effects are encoded in the functions Ja, J̃b and J̃c,
which come from the refined topological string in the NS limit. This of course
was already pointed out in [10]. Conversely, from the dual point of view of the
spectral problem, it is the worldsheet instanton contribution which leads to
non-perturbative effects in �, as explained in [11].

Second, our description is M-theoretic, in the same way that the Fermi
gas approach to ABJM theory captures its M-theory regime. In particular, our
description involves in a crucial way an M-theoretic aspect of topological string
theory, which is the Gopakumar–Vafa resummation of the genus expansion.
We need this resummation to find results at finite �. At the same time, in our
picture, this resummation is not enough, and in particular it cannot be used to
analyze the spectral problem, due to the presence of poles. To cancel these poles
we need, as in the HMO mechanism [7], the non-perturbative contributions
encoded in the NS limit of the refined string.

Third, our description is background independent, in the following sense.
The perturbative topological string free energy depends on a choice of “dual-
ity frame”, and different frames are appropriate for different regions of moduli
space. This is reflected in the fact that the genus g free energies have a rel-
atively complicated analytic structure, displaying branch cuts which lead to
different “phases” [27]. In contrast, in our Fermi gas approach, the basic object
is the spectral determinant or grand canonical partition function. Since the
operators we are considering seem to be of trace class, the spectral determi-
nant is an entire function on the fugacity plane. From the point of view of the
topological string, this means that it is an entire function on the CY moduli

space parametrized by ũ. In particular, it does not depend on the choice of
frame [although its asymptotic expansions in different regimes might pick a
convenient frame, like in (3.73)]. Of course, the modified grand potential is
not an entire function: it rather has a complicated analytic structure, inher-
ited from the non-trivial analytic structure of the CY periods. However, if
our conjecture is true, the inclusion of the generalized theta function (3.45)
as in (3.44) leads to an entire function. This is of course reminiscent of the
proposal of [53] for a background independent partition function for topo-
logical strings on local CYs. In that paper, and based on previous results
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[54,55], it was noticed that including a theta function with a similar structure
than (3.45) led to a function which was essentially modular invariant.7 How-
ever, the “non-perturbative partition function” constructed in [53] by including
the theta function is only defined as a formal expansion in 1/N , while the r.h.s
of (3.44) is well defined in a region of the μ plane and for any real value of �,
and it should extend to an entire function.

Finally, and on a more speculative note, our description suggests that the
underlying microscopic theory behind the operator ρ̂X is a theory of N M2
branes, which provides a holographic description of topological strings. A first
piece of evidence for this speculation is that the canonical free energy, defined
by

FX(N, �) = − log ZX(N, �) (3.76)

has a universal large N behavior of the form,

FX(N, �) ≈ 2

3

√
2π

C
�

1/2N3/2, N ≫ 1, (3.77)

where C is the constant defined by (3.22). This can be deduced from (3.47)
using the techniques of [5]. Of course, this is the expected behavior in a theory
of N M2 branes [24]. In relation to this, recall that, if Y8 is a cone over a
Sasaki–Einstein manifold X7, and we put N M2 branes on

R
3 × Y8, (3.78)

located at the tip of the cone, this background is described at large N by
M-theory on

AdS4 × X7. (3.79)

In [59] it was suggested that topological string theory on the CY X is defined
by M-theory on the background

TN × (X × S
1), (3.80)

where TN is the four-dimensional Taub–Nut space. It might happen that the
background (3.80) emerges by backreaction of N M2 branes in a related space,
in the same way as (3.79) emerges from (3.78). If the proposal of [59] is correct,
this approach might give a hint of what is this theory of M2 branes.

3.4. The Maximally Supersymmetric Cases

There are some special values of � for which the general results presented above
simplify considerably. The modified grand potential becomes simpler when

� = π or � = 2π. (3.81)

We will refer to these two cases as the “maximally supersymmetric cases”, in
analogy with what happens in ABJM theory, where these values correspond
to the enhancement of supersymmetry from N = 6 to N = 8. This is the

7 The fact that background independent formulations of topological string theory should
involve theta functions in some way or another goes back of course to [56]. See, for example,
[57,58] for related discussions.
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situation analyzed in [19], and the analysis of this subsection is very similar
to what was done in that paper. The reason why the supersymmetric cases
are special is that, in those cases, all the contributions to dm(�) in (3.37) with
g ≥ 2 vanish, and we only have contributions of the conventional topological
string up to one-loop. Similarly, the contributions coming from the refined
topological string involve the � expansion of the NS limit up to next-to-leading
order. Finally, the generalized theta function (3.45) becomes a standard Jacobi
theta function.

We will now present some general formulae for the grand potential and
the spectral determinant in the case � = 2π. The case with � = π is similar
and can be worked out as in [19].

Let us first analyze the behavior of the coefficients b̃ℓ(�) and c̃ℓ(�) as
� → 2π. They will have a singular part, and a finite part. The singular part
will cancel against similar contributions in the worldsheet instantons, by the

generalized HMO mechanism. It is easy to see that the coefficient b̃ℓ(�) has
the following behavior as � → 2π:

b̃ℓ(�) =
b̃−1
ℓ

ξ
+ b̃1

ℓξ + O(ξ2), ξ = � − 2π, (3.82)

therefore, its finite part vanishes when � → 2π. The behavior of c̃ℓ(�) is, from
(3.33),

c̃ℓ(�) =
c̃−2
ℓ

ξ2
+

c̃−1
ℓ

ξ
− 2π

rℓ
b̃1
ℓ + O(ξ). (3.83)

From (3.32) we find the following expression,

b̃1
ℓ =

rℓ

48π

∑

jL,jR

∑

ℓ=dw

Nd
jL,jR

(−1)Bℓ

w
mLmR

(
−3 + m2

L + m2
R

)
, (3.84)

where we have denoted

mL = 2jL + 1, mR = 2jR + 1, (3.85)

and we have taken into account the relationship (3.36). We would like to
express the above quantity in terms of functions known in closed form. To do
this, we compare the BPS expansion of the refined free energy in the NS limit,
given in (3.38), to its perturbative expansion in �. We also have to take into
account the term (−1)Bℓ in (3.84). If we write,

F inst
NS (t + πiB, �) =

∑

n≥0

�
2n−1F̂NS,inst

n (t), (3.86)

we deduce that the finite part of J̃c(μeff) as � → 2π is simply

F̂NS, inst
1 (t). (3.87)

As in (3.39), we have to identify t = rμeff . Note that this free energy differs
from the usual one in the shift of t by a B field, as in (3.34).

Let us now consider the worldsheet instanton part. As mentioned before,
all the terms in dm(�) with g ≥ 2 vanish. The g = 1 contribution survives
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in the limit � → 2π, and we have to keep the finite part of g = 0. A simple
calculation shows that the finite part as � → 2π of

(
2 sin

2π2w

�

)−2

e− 2πrdwμ
� (3.88)

is

e−rdwμ

12π2w2

(
3 + π2w2 + 3rdwμ +

3

2
d2w2r2μ2

)
. (3.89)

The finite piece of (3.34) as � → 2π is then,

r2μ2
eff

8π2
∂2

t F̂ inst
0 (t) − rμeff

4π2
∂tF̂

inst
0 (t) +

1

4π2
F̂ inst

0 (t) + F̂ inst
1 (t), (3.90)

where we denoted

F̂ inst
0 (t) =

∑

w,d≥1

nd
0

(−1)wdB

w3
e−dwt,

F̂ inst
1 (t) =

∑

w,d≥1

(
nd

0

12
+ nd

1

)
(−1)wdB

w
e−dwt. (3.91)

These are the genus zero and genus one free energies of the standard topological
string, but with the inclusion of an extra B-field. Here, and for the moment
being, we only keep the instanton part of these free energies (i.e. we drop all
the polynomial parts in t), and we use that t = rμeff . We conclude that

JX(μ, � = 2π) = J (p)(μeff , 2π) +
r2μ2

eff

8π2
∂2

t F̂ inst
0 (t) − rμeff

4π2
∂tF̂

inst
0 (t)

+
1

4π2
F̂ inst

0 (t) + F̂ inst
1 (t) + F̂NS, inst

1 (t). (3.92)

A more compact expression is obtained if we introduce the full prepotential,

F̂0(t) =
C

3r3
t3 + F̂ inst

0 (t). (3.93)

Then, we can write

JX(μ, � = 2π) = A(2π) +
1

4π2

(
F̂0(t) − t∂tF̂0(t) +

t2

2
∂2

t F̂0(t)

)

+
B(2π)

r
t + F̂ inst

1 (t) + F̂NS, inst
1 (t), (3.94)

where we have taken into account (3.21) and (3.28). Like before, we have to
set t = rμeff .

It is also easy to obtain the generalized theta function in the case � = 2π.
One finds,

ΘX(μ, 2π) =
∑

n∈Z

exp

{
πin2r2

4
τ + 2πin (ξ + B(2π)) − 2πin3C

3

}
, (3.95)

where

τ =
2i

π
∂2

t F̂0(t) (3.96)



Vol. 17 (2016) Topological Strings from Quantum Mechanics 3205

and

ξ =
r

4π2
(t∂2

t F̂0(t) − ∂tF̂0(t)). (3.97)

Although (3.95) does not look like a theta function, it can be reduced to one
if C is an integer or half-integer. Indeed, since

n(n2 − 1)

3
(3.98)

is even for any n ∈ Z, we can write (3.95) as

ΘX(μ, 2π) =
∑

n∈Z

exp

{
πin2r2

4
τ + 2πin

(
ξ + B(2π) − C

3

)}
, (3.99)

which is a standard Jacobi theta function,

ΘX(μ, 2π) = ϑ3

(
v,

r2τ

4

)
, (3.100)

with

v = ξ + B(2π) − C

3
. (3.101)

Note that, due to the properties of special geometry, we have that Im(τ) >
0; therefore, the above theta function is well defined. The spectral determinant
is given by

ΞX(μ, 2π) = eJX(μ,2π)ϑ3

(
v,

r2τ

4

)
. (3.102)

This is similar to the result obtained in [19] for maximally supersymmetric
ABJ(M) theories. It was shown in [53] that the combination

exp

(
1

4π2

(
F̂0(t) − t∂tF̂0(t) +

t2

2
∂2

t F̂0(t)

)
+ F̂1(t)

)
ϑ

[
α
β

](
v,

r2τ

4

)
,

(3.103)

involving a general theta function with characteristics, is essentially invari-
ant under modular transformations. The exponent in (3.103), involving
JX(μ, 2π), is slightly different from the one in (3.103). However, in all exam-
ples we have studied, this difference is a modular invariant function of z, there-
fore (3.102) inherits the modular properties of (3.103). We conclude that, in
the maximally supersymmetric case, our conjectural expression for the spec-
tral determinant is given by a modular invariant expression. We now have a
natural explanation for this property: it is due to the fact that the spectral
determinant is an entire function on the complex moduli space of the CY X.

Finally, let us consider the quantization condition in the maximally super-
symmetric cases. It is easy to see that, in those cases, the function fs(n) defined
in (3.65) vanishes for all n = 1, 2, . . . In addition, if C is a half-integer, the first
term in the argument of the sine in the second line of (3.66) is always an inte-
ger multiple of π. Therefore, the solution to (3.66) is λ(E) = 0 and there are
no corrections to the quantization condition (3.63) of [11]. As in [19], we can
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now write the quantization condition for � = 2π in terms of the prepotential.
A simple calculation from (3.62) gives

CE2
eff + 4π2B(2π) − π2C

3
+ r2Eeff∂2

t F inst
0 (t) − r∂tF

inst
0 (t)

= 4π2

(
s +

1

2

)
, s = 0, 1, 2, . . . (3.104)

where as usual we set t = rEeff .
It is easy to see that there can be other values of � for which the correc-

tions (3.66) vanish. For example, if � = πs, where s is a divisor of 2r, fs(n) is
also zero. Although the vanishing of λ(E) also depends on the value of C, it
can be seen that, in all examples, one has again λ(E) = 0 for these values of �.
However, the modified grand potential will still have higher genus corrections.

3.5. The Case with General Parameters

So far we have restricted ourselves to the case in which the values of the
parameters mi are such that their corresponding Kähler parameters tmi

vanish.
The general case is a straightforward generalization of the above results. We
will denote

Qmi
= e−tmi . (3.105)

Let us also denote the Kähler parameters of X by ti, in an arbitrary basis (the
choice of basis can be dictated for example by the geometry of the CY). They
can be always written down as linear combinations of the Kähler parameter
which corresponds to ũ, and the tmi

. The Kähler parameter associated to ũ
(which is the true modulus of the geometry) should be set to μeff , and we will
write

ti = ciμeff − αij log Qmj
, (3.106)

where ci, αij depend on the geometry. For example, for local P
1 × P

1, we have
one single parameter Qm = m, and

t1 = 2μeff − log m, t2 = 2μeff . (3.107)

The appropriate generalization of our conjecture for the modified grand poten-
tial is already implicit in the proposal of [10]. Let us consider the NS limit of
the topological string free energy, which we write as

F inst
NS (t, �) =

∑

jL,jR

∑

w,d

Nd

jL,jR

sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)

2w2 sin3 �w
2

e−wd·t, (3.108)

where t is the vector of Kähler parameters, and d is the vector of degrees. We
now introduce a variable λs and consider the function

F inst
NS (T, λs) =

∑

jL,jR

∑

w,d

Nd

jL,jR

sin πw
λs

(2jL + 1) sin πw
λs

(2jR + 1)

2w2 sin3 πw
λs

e−wd·T/λs .

(3.109)
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Note that this is equivalent to introduce

Ti =
2π

�
ti (3.110)

and set

λs =
2π

�
. (3.111)

Then, let us define

JM2(μ, �) = − 1

2π

∂

∂λs

(
λsF

inst
NS (T, λs)

) ∣∣∣∣
λs= 2π

�

. (3.112)

In taking the derivative, we assume that Ti are independent of λs. One finds

JM2(μeff ,mi, �) = μeff J̃b(μeff ,mi, �) + J̃c(μeff ,mi, �), (3.113)

where
J̃b(μeff ,mi, �)

= − 1

2π

∑

jL,jR

∑

w,d

(c · d) Nd

jL,jR

sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)

2w sin3 �w
2

e−wd·t,

J̃c(μeff ,mi, �)

=
1

2π

∑

i,j

∑

jL,jR

∑

w,d

diαij log Qmj
Nd

jL,jR

× sin �w
2 (2jL + 1) sin �w

2 (2jR + 1)

2w sin3 �w
2

e−wd·t

+
1

2π

∑

jL,jR

∑

w,d

�
2 ∂

∂�

[
sin �w

2 (2jL + 1) sin �w
2 (2jR + 1)

2�w2 sin3 �w
2

]
Nd

jL,jR
e−wd·t.

(3.114)

The grand potential is now given by

JX(μ,mi, �) = J (p)(μeff ,mi, �) + JM2(μeff ,mi, �) + JWS(μeff ,mi, �),

(3.115)

where J (p)(μeff ,mi, �) is the perturbative part of the grand potential, which
might involve now quadratic terms in μ2,

J (p)(μ,mi, �) =
C(�)

3
μ3 + D(mi, �)μ2 + B(mi, �)μ + A(mi, �). (3.116)

This corresponds to the fact that the perturbative genus zero and genus one
free energies are in general cubic and linear polynomials in the ti, respectively.
In (3.115),

JWS(μeff ,mi, �) =
∑

g≥0

∑

d,v

nd

g

1

v

(
2 sin

2π2v

�

)2g−2

e−vd·( 2π
�

t+πiK). (3.117)

Here, K is the vector representing the canonical class of X, in the homol-
ogy basis chosen to represent the ti. As explained in [10], this is needed to
implement the cancellation of poles.
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The above formulae generalize the results presented before for the general
case in which tmi

= 0. The spectral determinant is defined again by (3.46),
and it is straightforward to write quantization conditions and explicit formulae
in the maximally supersymmetric cases from (3.115). A more detailed study
of this general case will appear elsewhere.

4. The Case of Local P
2

In the previous section we have presented our conjecture in some generality.
We will now perform a detailed analysis of the benchmark example for any
statement about local mirror symmetry, namely local P

2. We will first get
some intuition and useful data from a semiclassical analysis.8 We will then
derive the quantization condition for the spectrum in the general case, and we
will recover analytically all the results obtained in [20] by numerical fitting.
Finally, we will focus on the maximally supersymmetric case and give direct
evidence that the spectral determinant is indeed given by (3.44).

4.1. Semiclassical Analysis

Let us then study the operator (2.42). A very important source of information
on this operator is obtained from its semiclassical limit, which can be analyzed
as in [5]. In particular, we would like to compute the classical limit of the grand
potential, given in (3.15). It turns out that, in this case, the semiclassical traces
(2.35) can be computed in closed form,

Z
(0)
ℓ =

Γ( ℓ
3 )3

6πΓ(ℓ)
, (4.1)

and one finds the explicit formula

J0(μ) =
κ

36π

{
6Γ

(
1

3

)3

3F2

(
1

3
,
1

3
,
1

3
;
2

3
,
4

3
;−κ3

27

)

+κ

(
κ 4F3

(
1, 1, 1, 1;

4

3
,
5

3
, 2;−κ3

27

)

− 3Γ

(
2

3

)3

3F2

(
2

3
,
2

3
,
2

3
;
4

3
,
5

3
;−κ3

27

))}
. (4.2)

Expanding around κ = ∞ we obtain

J0(μ) =
3

4π
μ3 +

π

2
μ +

4ζ(3)

3π
+

(
9

2π
μ2 − 9

2π
μ + π − 3

π

)
e−3μ + O(e−6μ).

(4.3)

As derived in Appendix A, the first correction J1(μ) in (3.15) is given by

J1(μ) = − 1

72
J ′′

0 (μ). (4.4)

8 Some of these results were obtained in the fall of 2013 in [36].
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Thus, one finds

J1(μ) = − μ

16π
+

(
− 9

16π
μ2 +

21

16π
μ − 1

8π
− π

8

)
e−3μ + O(e−6μ). (4.5)

From these formulae we can immediately deduce that

C(�) =
9

4π�
, B(�) =

π

2�
− �

16π
, (4.6)

and

A(�) =
4ζ(3)

3π�
+ O(�3). (4.7)

The semiclassical result for the grand potential also makes it possible to verify
that (3.33) holds in the limit � → 0. In addition, it is a testing ground for the
results for J(μ, �) at finite �, which we now explain.

4.2. The Grand Potential and the Quantization Condition

Let us now write down the results for the modified grand potential at finite
�. Since this will be needed in the following, we recall some basic facts about
mirror symmetry of local P

2. In this case, r = 3, therefore, the parameter z is
related to ũ by

z = ũ−3, (4.8)

and we can identify

z = e−3μ. (4.9)

We can take then the B-field to be B = 1. The two basic periods at large
radius are given by,

˜̟ 1(z) =
∑

j≥1

3
(3j − 1)!

(j!)3
(−z)j ,

˜̟ 2(z) =
∑

j≥1

18

j!

Γ(3j)

Γ(1 + j)2
{ψ(3j) − ψ(j + 1)} (−z)j . (4.10)

The prepotential is defined by the standard relations,

Q = e−t = z exp ( ˜̟ 1(z)) = z − 6z2 + . . . ,

∂tF0(t) =
1

6

(
log2(z) + 2 ˜̟ 1(z) log(z) + ˜̟ 2(z)

)
, (4.11)

which leads to

F0(t) =
t3

18
+ F inst

0 (t), F inst
0 (t) = 3Q − 45

8
Q2 +

244

9
Q3 − . . . (4.12)

Note that, when computing the modified grand potential, t is given by rμeff

or rEeff , which depends explicitly on �.
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Let us now write down the modified grand potential. The first ingredient
we need is μeff . Using the quantum mirror map of local P

2 [17], the relation
(3.19) and (3.25), we find that

μeff = μ +
4π�

9
Ja(μ)

= μ + (q1/2 + q−1/2)e−3μ −
(

6 +
7

2
(q + q−1) + q2 + q−2

)
e−6μ + . . .

(4.13)

where q is defined by (2.24). One can check that the limit � → 0 of this
expression reproduces the result for the aℓ coefficients of the semiclassical
grand potential.The coefficients C(�), B(�) in the perturbative part (3.28)
can be read from (4.6). The series appearing in (3.31) can be also computed
explicitly from (3.32) and (3.33), and they read, to the very first orders,

J̃b(μeff , �) = − 3

4π
(2 cos(�) + 1) csc

(
�

2

)
e−3μeff

+
3

8π
sin(3�)

(
4 csc2

(
�

2

)
− csc2(�)

)
e−6μeff + . . . ,

J̃c(μeff , �) =
1

8π
csc2

(
�

2

)(
−2 sin

(
3�

2

)
− 4� cos

(
�

2

)
+ � cos

(
3�

2

))

×e−3μeff + . . . (4.14)

Finally, the worldsheet instanton part of the modified grand potential is deter-
mined by the Gopakumar–Vafa invariants of local P

2, which are given by

n1
0 = 3, n2

0 = −6, . . . , (4.15)

and JWS(μ, �) reads

JWS(μ, �) = −3

(
2 sin

2π2

�

)−2

e−6πμ/� + . . . (4.16)

The only ingredient in the modified grand potential which we have not specified
is A(�), since for the moment being our theory does not determine it its general
form. However, we have the following educated guess for it. Let

Ac(k) =
2ζ(3)

π2k

(
1 − k3

16

)
+

k2

π2

∫ ∞

0

x

ekx − 1
log(1 − e−2x)dx (4.17)

be the function appearing in the modified grand potential of ABJM theory.
This function first appeared in the Fermi gas formulation of [5], and a closed
form expression for it was found in [61] using the constant map contribution
to the topological string free energy. This form was further simplified in [62]
to (4.17). Then, we propose that the A(�) function of local P

2 is given by

A(�) =
3Ac(�/π) − Ac(3�/π)

4
. (4.18)
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Using the known results for Ac(k), it is easy to see that this function has the
small � expansion (4.7). In addition, we have verified numerically for many
values of � that it leads to the normalization condition (3.51).

We are now ready to analyze the quantization condition determining the
spectrum of the operator (2.42). The exact result is given in (3.64), where
Ω(E) is given by the approximate quantization condition of [11], and λ(E)
can be determined from (3.66) as a power series in exp(−6πEeff/�). We get,

λ(E) = λ1e
−18πEeff/� + λ2e

−24πEeff/� + λ3e
−30πEeff/� + λ4e

−36πEeff/�

+O(e−42πEeff/�), (4.19)

with

λ1 =
1

π
sin (18x) ,

λ2 =
3

π
sin2 (6x) sin (24x) csc2 (2x) ,

λ3 =
3

π
sin (6x) sin (30x) csc2 (2x)

×
(
16 sin (2x) sin2 (6x) + 20 sin (2x) sin (10x) sin (6x) + 7 sin (18x)

)
,

λ4 =
csc2(2x)

8π
(−36 sin(4x) − 74 sin(8x) − 140 sin(12x) − 146 sin(16x) (4.20)

− 184 sin(20x) − 64 sin(24x) + 68 sin(28x) + 391 sin(32x)

+ 478 sin(36x) + 391 sin(40x) + 68 sin(44x) − 64 sin(48x)

− 184 sin(52x) − 146 sin(56x) − 140 sin(60x) − 74 sin(64x)

− 56 sin(68x) − 14 sin(72x) − 20 sin(76x)), (4.21)

and we have denoted

x =
π2

�
. (4.22)

To test this corrected quantization condition, we should compute the spectrum
of the operator (2.42) and see if we can reproduce it. Fortunately, this has been
done in detail by Huang and Wang [20], where they compute the spectrum
numerically for many values of �. In their study, they noticed that (3.63) fails
for generic values of �, and they computed a series of correction terms by
fitting their numerical data. It turns out that the first three terms in (4.19)
coincide exactly with the corrections proposed in [20] from numerical analysis!
We conclude that our exact quantization condition reproduces the available
numerical data of the spectrum of (2.42).

We have actually improved the numerical analysis of [20] to further test
our conjecture. We first note that the matrix element (2.49) for the operator
(2.42) has the following form:
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M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m1 0 0 m8 0 0 m9 . . .

0 m2 0 0 m10 0 0

0 0 m3 0 0 m11 0

m8 0 0 m4 0 0 m12

0 m10 0 0 m5 0 0

0 0 m11 0 0 m6 0

m9 0 0 m12 0 0 m7

...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.23)

In particular this matrix can be decomposed into three matrices M (0),M (1)

and M (2) where

M (i)
mn = M3m+i,3n+i, i = 0, 1, 2. (4.24)

Due to the peculiar form (4.23), one finds that the eigenvalues of M (i) corre-
spond to

eE3n+i , n = 0, 1, . . . (4.25)

The M (i) are still infinite-dimensional matrices; however, when one truncates

them to an L × L matrix, the corresponding eigenvalues E
(L)
3n+i behave as

E
(L)
3n+i = E3n+i + O

(
1

L

)
, L ≫ 1, (4.26)

where E3n+i are the exact eigenvalues. Therefore, one can apply the method
of Richardson extrapolation to accelerate the convergence of these eigenvalue
as L → ∞ and obtain high-precision numerical results. In Tables 2 and 3 we
compare the analytic and the numerical results for the ground state energy,
for � = 4π and � = 5π, respectively. The analytic values are computed by
looking at the zeros of the generalized theta function (3.56). As expected, the
more instantons we include in the analytic computation of the grand potential,
the better we approach the numerical value. This result can be illustrated by
looking at

∆(�,m) = log10 |Enum
0 (�) − E

(m)
0 (�)|, (4.27)

where Enum
0 (�) is the numerical value of the ground state energy, and E

(m)
0 (�)

is the value computed from (3.56) by including the first m instanton correc-

tions. As shown in Fig. 4 in the case of � = 4π, E
(m)
0 (4π) converges to Enum

0 (4π)
as m grows. This is precisely what we expect if our conjecture is correct.

Let us now consider the quantization condition in the maximally super-
symmetric case � = 2π. The quantum mirror map simplifies considerably, and
we find

Eeff = E − 1

3
˜̟ 1

(
e−3E

)
. (4.28)

The quantization condition can be written in terms of the prepotential, as
shown in (3.104). After taking into account the various signs, we find that it
is given by
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Table 2. The first energy level for local P
2 with � = 4π

calculated analytically, from the zeros of the generalized theta
function

Degree E0

1 3.7776432527296085597046797
3 3.7777062505593500784461494
6 3.7777062585822008247337693
8 3.7777062585822069972270331
10 3.7777062585822069986877030
11 3.7777062585822069986880502
12 3.7777062585822069986880709

Numerical value 3.7777062585822069986880709

In the first column the degree d indicates that we are including instantons corrections up
to e−3dE/2 in the generalized theta function (3.56). In the last line the numerical value is

given

Table 3. The first energy level for local P
2 with � = 5π

calculated analytically

Degree E0

1 4.3514491328672074939635
3 4.3514374958036556904823
6 4.3514374971260209085142
8 4.3514374971260202980640
9 4.3514374971260202981011
10 4.3514374971260202981017

Numerical value 4.3514374971260202981017

In the first column the degree d indicates that we are including instantons corrections up
to e−6dE/5. In the last line the numerical value is given

2 4 6 8 10 12

−20

−15

−10

−5

Figure 4. The difference ∆(4π,m), defined in (4.27), for the
local P

2 geometry
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9

2
E2

eff − π2 − 3∂tF
inst
0 (t) + 9Eeff∂2

t F inst
0 (t) = 4π2

(
s +

1

2

)
, s = 0, 1, 2, . . .

(4.29)

This expression can be written explicitly in terms of Meijer G-functions. From
(4.29) it is possible to determine the spectrum with very high accuracy. For
example, for the ground state energy, and with 25 significant digits, the above
quantization condition gives,

E0 = 2.562642068623819370817399 . . . (4.30)

which should be compared to the numerical value obtained directly by diago-
nalizing the matrix (2.49) with size L = 800,

E
(800)
0 = 2.5626420686238193708 . . . (4.31)

4.3. The Spectral Determinant

We have given what we feel is convincing evidence that our conjecture leads
to the right spectrum for the operator (2.42), but our proposal is actually
stronger: it leads to an explicit prediction for the spectral determinant of (2.42).
We now test this last point in detail. A simple testing ground is the maximally
supersymmetric case � = 2π. Our strategy will be the following: first, we
will compute the spectral traces (2.33) numerically from the spectrum. Since
our quantization condition reproduces the numerical spectrum, we can use
(4.29). From this and (3.13) we can compute the canonical partition function
Z(N, � = 2π) for low values of N . However, according to our conjecture, this
can be also computed from the spectral determinant, i.e. from the modified
grand potential, using (3.9) or (3.47). Agreement of both calculations gives a
strong support to our conjecture. This is similar to the procedure followed in
[19] for the maximally supersymmetric ABJ(M) theories.

Let us first consider the spectral traces. Although we have computed them
numerically, the results can be fitted to exact expressions with high precision.
We find,

Z1 =
1

9
,

Z2 =
1

27
− 1

6π
√

3
,

Z3 =
1

81
− 1

24π2
− 1

24π
√

3
,

Z4 = − 1

729
+

1

72π2
. (4.32)

The fact that the spectral traces have such nice forms already indicates that
this is a particularly beautiful spectral theory. Let us now see if we can repro-
duce these results from our conjecture (3.44). We first calculate J(μ, 2π) from
the general formula (3.94). The effective chemical potential is given by

μeff = μ − 1

3
˜̟ 1

(
−e−3μ

)
. (4.33)
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The genus zero free energy is obtained by mirror symmetry. The genus one
free energy has the closed form expression,

F̂1(t) =
1

2
log

(
−dz

dt

)
− 1

12
log

(
z7 (1 − 27z)

)
, (4.34)

where we have switched the sign z → −z in the standard expressions due to the
presence of the B field and of the form (4.33) of the effective chemical potential.
The refined genus one free energy in the NS limit can be also computed in
closed form [63], and it is given by

F̂NS
1 (t) = − 1

24
log

(
1 − 27z

z

)
, (4.35)

where we have again changed the sign in z due to the non-trivial B field. Notice
also that

F̂NS,inst
1 (t) = F̂NS

1 (t) +
t

24
, (4.36)

and

F̂ inst
1 (t) = F̂1(t) − t

12
. (4.37)

Since

B(2π) =
1

8
, (4.38)

we conclude that

J(μ, 2π) = A(2π) +
1

4π2

(
F̂0(t) − t∂tF̂0(t) +

t2

2
∂2

t F̂0(t)

)
+ F̂1(t) + F̂NS

1 (t),

(4.39)

and we have to set,

t = 3μeff . (4.40)

The value A(2π) can be found from the conjecture (4.18) and the results of
[62] for the explicit values of Ac(k). We find,

A(2π) =
1

6
log(3) − ζ(3)

3π2
, (4.41)

which leads to the normalization condition (3.51) with high numerical preci-
sion.

With all this information we can already write down the full large μ
expansion of J(μ, 2π). We find for the very first orders,

J(μ, 2π) =
3μ3

8π2
+

μ

8
+

1

6
log(3) − ζ(3)

3π2
+

(
−45μ2

8π2
− 9μ

4π2
− 3

4π2
+

3

8

)
e−3μ

+

(
−999μ2

16π2
− 63μ

16π2
+

9

32

(
34 − 5

π2

))
e−6μ + . . . (4.42)
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We conclude that the spectral determinant is given by the specialization of
(3.102) to our case, namely

Ξ(κ, 2π) = exp (J(μ, 2π)) ϑ3

(
ξ − 3

8
,
9τ

4

)
, κ = eμ. (4.43)

We are now ready to verify that (4.43) leads to the correct spectral prop-
erties. Instead of checking the traces (4.32), we can equivalently check the
values of the first few canonical partition functions, which are determined by
(4.32) and (3.13). We have for example,

Z(1, 2π) =
1

9
, Z(2, 2π) =

1

12
√

3π
− 1

81
, (4.44)

and so on. These can then be compared to the canonical partition functions
as computed from (4.43). A convenient way to do this computation is, like in
[7,19], using (3.47). The r.h.s. of (3.47) can be computed as a convergent sum
of Airy functions and their derivatives. Indeed, let us expand

eJ(μ,2π) = eJ(p)(μ,2π)
∞∑

l=0

e−3lμ
2l∑

n=0

al,nμn. (4.45)

After integration, the expansion in μ can be translated into derivatives with
respect to N , and this leads to the expression

Z(N, 2π) =
eA(2π)

(C(2π))
1/3

∞∑

l=0

2l∑

n=0

al,n

(
− ∂

∂N

)n

Ai

(
N + 3l − B(2π)

(C(2π))
1/3

)
,

(4.46)

where Ai(z) is the Airy function. This can be computed numerically with a
very high precision, and we find an impressive agreement with the values of
Z(N, 2π) computed directly from the spectrum. For example, for N = 1, the
above Airy calculation, including ten terms in the expansion in e−3μ, agrees
with Z(1, 2π) = 1/9 with a precision of 160 digits. Including more corrections
increases the precision arbitrarily. In fact, (3.47) gives an interpolating function
defined for all complex values of N , as in [19]. In Fig. 5, we show the function
− log Z(N, 2π) obtained from (3.47), as a function of N , together with the
values for N = 1, 2, 3, 4 obtained from the spectral traces.

There is an alternative way to obtain the above results for the canonical
partition functions, which is simply to expand the spectral determinant (4.43)
around κ = 0 and read the Z(N, 2π) from this expansion. This is also geomet-
rically interesting, since it involves local P

2 near the orbifold point z = ∞. In
practice, to compute this expansion from our formula (3.44), we must expand
separately the functions JX(μ, �) and the generalized theta function. It turns
out that, in this case, both functions have branch cuts in the real z-axis, and as
we go to the orbifold point we hit the conifold singularity. Therefore, the ana-
lytic continuation of each factor is not well defined. However, since the product
is itself well defined, this is easily solved: we just have to change κ → −κ in
(4.43). This only flips the sign in the expansion (3.9), which is the expansion
of an entire function at the origin, but now the analytic continuation from
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15

20

Figure 5. The smooth line gives the free energy F (N, 2π) of
local P

2 as a function of N , computed from (3.47), while the
points give the values of of the free energy as computed from
the spectral traces (4.32)

z = 0 to z = ∞ avoids the conifold singularity. A simple calculation shows
that, after this change, the spectral determinant is given by

Ξ(−κ, 2π) = exp(Jorb(κ, 2π))Θorb(κ, 2π). (4.47)

In this formula, Jorb(κ, 2π) is given by the same formula of (4.39), but where
the hatted free energies are replaced by the conventional free energies. In addi-
tion, we have

t = 3μ − ˜̟ 1

(
e−3μ

)
. (4.48)

The advantage of this formulation is that all the ingredients have now an
analytic continuation to the orbifold point z = ∞, and one finds (see for
example [64,65]):

t = κ
Γ

(
1
3

)

Γ
(

2
3

)2 3F2

(
1

3
,
1

3
,
1

3
;
2

3
,
4

3
;−κ3

27

)

−κ2 Γ
(

2
3

)

2Γ
(

1
3

)2 3F2

(
2

3
,
2

3
,
2

3
;
4

3
,
5

3
;−κ3

27

)
,

∂tF0(t) = κ
πΓ

(
1
3

)

3
√

3Γ
(

2
3

)2 3F2

(
1

3
,
1

3
,
1

3
;
2

3
,
4

3
;−κ3

27

)

+κ2 πΓ
(

2
3

)

6
√

3Γ
(

1
3

)2 3F2

(
2

3
,
2

3
,
2

3
;
4

3
,
5

3
;−κ3

27

)
− π2

9
. (4.49)

In the analytic continuation of the orbifold prepotential we find a non-trivial
integration constant, as in related examples [3]:

F0(κ) =
4

3
ζ(3) − π2Γ

(
1
3

)

Γ
(
− 1

3

)2 κ + O(κ2). (4.50)
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The generalized theta function transforms non-trivially under the flip of sign,
since the n in (3.95) gets shifted to n+1/2 (as in (3.56)), and the second factor
appearing in (4.47) is given by

Θorb(κ, 2π)

=
∑

n∈Z

exp

{
9πi(n + 1/2)2

4
τ + 2πi(n + 1/2)

(
ξ +

1

8

)
− 3πi (n + 1/2)

3

}
,

(4.51)

where ξ, τ are now evaluated with the formulae (3.96) and (3.97), but using
instead the standard prepotential. Like in previous cases, this function can be
massaged into a conventional Jacobi theta function, and we find

Θorb(κ, 2π) = eπi/8ϑ2

(
ξ − 1

4
, τorb

)
, (4.52)

where we have denoted

τorb =
9τ

4
− 1

2
. (4.53)

All the quantities involved in (4.47) have now a well-defined expansion around
κ = 0, and we can proceed as in the related calculations in [19]. However,
there is a difference: at the orbifold point, τorb is a cubic root of unity, and the
expansion involves the values of the Jacobi theta function ϑ2 and its derivatives
at

τorb(κ = 0) = e
2πi
3 , ξ(κ = 0) =

1

12
. (4.54)

We are not aware of closed form expressions for these quantities, but by con-
sistency with our results we find for example

ϑ2

(
1

6
, e

2πi
3

)
= 3−7/24

√
Γ

(
1
3

)

Γ
(

2
3

) e−πi/8,

∂τϑ2

(
1

6
, e

2πi
3

)
=

i
√

Γ
(

1
3

) (
π3/2 + 12Γ

(
7
6

)3
)

2π3/2319/24Γ
(

2
3

) e−πi/8, (4.55)

which can be checked numerically to high precision. After taking into account
these and similar identities, one finds the expected result,

Ξ(−κ, 2π) = 1 − 1

9
κ +

(
1

12
√

3π
− 1

81

)
κ2 + . . . (4.56)

We conclude that the orbifold theory of local P
2 contains information

about the spectral traces of the operator (2.42), as in the related calculation
of [19]. It is also remarkable that the complicated numbers involved in the
expansion of each of the factors in (4.47) finally combine into the simpler
types of quantities appearing in the traces and the canonical partition functions
Z(N, 2π). This seems to be the number theory counterpart of the underlying
analytic simplicity of the spectral determinant, as compared to its factors.
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It might also lead to interesting experimental identities for the values of the
Jacobi theta function and its derivatives.

5. Other Examples

In this section, we will present more evidence for our conjecture by analyzing
two further examples: local F1 and local P

1 × P
1. In both cases, the spectrum

of the relevant quantum operators has been extensively studied numerically in
[20], and this makes it possible to check our analytic results on the spectrum.
In addition, we present tests of the conjecture (3.44).

5.1. Local F1

The quantum operator corresponding to local F1 can be read from Table 1.
This model has one parameter m, and for simplicity we will restrict ourselves
to the case in which tm = 0. This corresponds to setting m = 1, so that

Ô(x̂, p̂) = ex̂ + e−x̂ + ep̂ + ex̂−p̂. (5.1)

The semiclassical analysis of the grand potential of this operator is technically
more involved than in other cases, although it can be deduced from the cal-
culation of the classical volume of phase space using the results of [11]. Let
us then proceed directly with the calculation of the quantum, modified grand
potential.

In the case of local F1, r = 1, and the B field is B = 1. The special
geometry of the model is encoded in its Picard–Fuchs operator. In the current
case it is given by the third-order differential operator [33]

L = (−12m2 + 9ũ − 18mũ2 + 8m2ũ3)∂3
ũ

+ (−108m − 128m4 + 144m2ũ + 27ũ2

− 64m3ũ2 − 52mũ3 + 24m2ũ4)∂2
ũ + (−9 + 8mũ)(−27 + 16m3 + 36mũ

− 8m2ũ2 − ũ3 + mũ4)∂ũ, (5.2)

and we can solve for the periods in the case of interest m = 1. As usual, there
is a trivial solution ̟0(z) = 1, and

̟1(z) = log(z) + ˜̟ 1(z),

̟2(z) = log2(z) + 2 ˜̟ 1(z) log(z) + ˜̟ 2(z), (5.3)

where ˜̟ 1(z) and ˜̟ 2(z) can be easily found order by order in an expansion
around z = 0,

˜̟ 1(z) = z2 − 2z3 +
3

2
z4 − 12z5 +

55

6
z6 + . . . ,

˜̟ 2(z) = −1

4
z +

15

16
z2 − 91

36
z3 +

231

64
z4 − 6403

300
z5 +

115

3
z6 + . . . (5.4)
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The standard prepotential is determined by

Q = e−t = z exp ( ˜̟ 1(z)) = z + z3 − 2z4 + 2z5 − 14z6 + 22z7 + O(z8),

∂tF0(t) = 4(log2 z + 2 ˜̟ 1(z) log z + ˜̟ 2(z)).

(5.5)

Then we easily find,

F̂0(t) =
4

3
t3 − Q − 15Q2

8
− 82Q3

27
− 15Q4

64

−626Q5

125
− 205Q6

36
− 2402Q7

343
+ O(Q8), (5.6)

and we have

JWS(μ, �) = −
(

2 sin
2π2

�

)−2

e−2πμ/� + . . . (5.7)

The value of C(�) can be read from the value C = 4. The value of B(�) has
been computed in [20], and we have

C(�) =
2

π�
, B(�) =

π

3�
− �

12π
. (5.8)

Using the quantum mirror map of local F1, which has been worked out in
[20,34], we obtain

μeff = μ − e−2μ +
1 + q√

q
e−3μ − 3

2
e−4μ +

1 + 5q + 5q2 + q3

q3/2
e−5μ + . . . (5.9)

With these ingredients, we can already find the quantization condition. As for
local P

2, we write it as (3.64), where Ω(E) is given in (3.61), and the correction
λ(E) is determined by (3.66). We find, for the very first orders,

λ(E) = λ1e
−16πEeff/� + λ2e

−18πEeff/� + λ3e
−22πEeff/� + O(e−24πEeff/�),

(5.10)

where

λ1 =
1

π
sin(16x),

λ2 =
1

π
sin(18x),

λ3 =
2

π
(sin(16x) + 2 sin(20x) + sin(24x)). (5.11)

The coefficient λ1 agrees with the correction computed in [20] by numerical
fitting. This already gives a non-trivial test for our conjecture in the case of
local F1, and at the level of the spectrum.

To test our conjecture for the spectral determinant, let us focus again on
the supersymmetric case � = 2π. In this case, the effective chemical potential
is given by

μeff = μ − ˜̟ 1(−z) = μ − e−2μ − 2e−3μ − 3

2
e−4μ − . . . (5.12)
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We can now use the general formula (3.94) to write down the modified grand
potential. As in the case of local P

2, the genus one free energies can be written
in closed form (for F1, see for example [60]), and we find,

F̂1(t) = −1

2
log

(
d

dz
log Q

)
− 1

12
log ∆(z) − 2

3
log z,

F̂NS
1 (t) = − 1

24
log

(
∆(z)

z4

)
, (5.13)

where the discriminant ∆(z) is given by

∆(z) = 1 + z − 8z2 − 36z3 − 11z4. (5.14)

For � = 2π, one has B(2π) = 0. From the general expression (3.94) one can
compute the large μ expansion of J(μ, 2π):

J(μ, 2π) =
μ3

3π2
+ A(2π) −

(
μ2

8π2
+

μ

4π2
+

1

4π2
+

1

8

)
e−μ

−
(

31

16π2
μ2 +

15

16π2
μ +

15

32π2
− 1

16

)
e−2μ

−
(

133

24π2
μ2 +

41

18π2
μ +

41

54π2
− 11

24

)
e−3μ + . . . (5.15)

The value of A(2π) can be computed numerically from the condition (3.51),
and it reads

A(2π) ≈ 0.3075779653 . . . (5.16)

In this case it is more difficult to fit it to an exact expression. This might be
related to the fact that the value of the coordinate z at the conifold point
has a non-trivial expression, since it is the solution to an algebraic equation of
degree four. From all this information, we find the spectral determinant as a
particular case of (3.102),

Ξ(μ, 2π) = eJ(μ,2π)ϑ3

(
ξ +

1

3
,
τ

4

)
. (5.17)

The quantization condition when � = 2π is given by the specialization of
(3.104) to our case. Note that, now,

Eeff = E − ˜̟ 1

(
e−E

)
. (5.18)

From this quantization condition we can compute the spectrum with very high
precision. For example, for the ground state energy, we find

E0 = 2.8640042594081906825951812 . . . (5.19)

to be compared to the numerical result obtained by diagonalizing (2.49) with
L = 300,

E
(300)
0 = 2.8640042594... (5.20)

We can then compute the spectral traces numerically from the quantiza-
tion condition, and from them the values of the canonical partition functions
Z(N, 2π). We find again that the results obtained in this way agree with the
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Figure 6. The smooth line gives the free energy F (N, 2π) of
local F1 as a function of N , computed from (3.47), while the
points give the values of of the free energy as computed from
the spectral traces

prediction of (3.44), i.e. with the formula (3.47), as shown in Fig. 6. We could
in principle obtain the spectral traces from the expansion of (5.17) around the
orbifold point z = ∞, as we did in the case of local P

2.

5.2. Local P
1

× P
1

The case of local P
1 ×P

1 is known to be closely related ABJ(M) theory, whose
spectral determinant was analyzed in [19] in the maximally supersymmetric
cases. The general ABJ(M) theory will be the object of a separate publication
[66]. We will then summarize the most important points of this case, since
some of our results can be taken verbatim from [19,66].

The quantum operator can be read from Table 1. This model has one
parameter m, and for simplicity we will restrict ourselves again to the case in
which tm = 0. This corresponds to setting m = 1, and the operator reads

Ô(x̂, p̂) = ex̂ + e−x̂ + ep̂ + e−p̂. (5.21)

This operator has an additional interest, since it corresponds to the simplest
case of the quantum, relativistic Toda lattice (see for example [67]). The results
we will find have then implications for this integrable system.

As in the case of local P
2, it is easy to work out the semiclassical limit

of the grand potential, which turns out to be identical to the case of ABJM
theory studied in [5]. The classical spectral traces are given by

Z
(0)
ℓ =

1

2π

Γ4(ℓ/2)

Γ2(ℓ)
, (5.22)

which lead to

J0(μ) = −κ2

8π
4F3

(
1, 1, 1, 1;

3

2
,
3

2
, 2;

κ2

16

)
− πκ

4
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;
κ2

16

)
.

(5.23)
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Expanding around κ = ∞ we find

J0(μ) =
2μ3

3π
+

πμ

3
+

2ζ(3)

π
+

(
−4μ2

π
+

4μ

π
− 2π

3
+

4

π

)
e−2μ + O(e−4μ).

(5.24)

It follows that

C(�) =
2

π�
, B(�) =

π

3�
+ O(�). (5.25)

Let us now obtain the results for the modified grand potential at finite �. In
this case we have that r = 2. The large radius periods are given by

˜̟ 1(z) =
∑

n≥1

16n 1

n

(
Γ

(
n + 1

2

)

Γ
(

1
2

)
n!

)2

zn,

˜̟ 2(z) =
∑

n≥1

4

n
16n

(
Γ

(
n + 1

2

)

Γ
(

1
2

)
n!

)2

×
(

− 1

2n
− ψ(n + 1) + ψ

(
n +

1

2

)
+ log(4)

)
zn. (5.26)

The prepotential is then given by

F inst
0 (t) = −4Q − 9Q2

2
− 328Q3

27
− 777Q4

16
+ O(Q5), (5.27)

where Q = e−t is obtained by the mirror map

Q = z + 4z2 + O(z3). (5.28)

The B field is in this case B = 2 and has no effect on the signs. The worldsheet
instanton piece of the grand potential, JWS(μ, �), reads

JWS(μ, �) = −4

(
2 sin

2π2

�

)−2

e−4πμ/� + . . . (5.29)

Using the quantum mirror map for local P
1 × P

1 [17], one has

π�Ja(μ) = −4e−2μ +

(
−2q − 2

q
− 14

)
e−4μ

+

(
−4q2 − 4

q2
− 24q − 24

q
− 232

3

)
e−6μ + . . . , (5.30)

where q is again given by (2.24). The coefficients appearing in (3.28) are given
by

C(�) =
2

π�
, B(�) =

π

3�
− �

12π
, (5.31)

where the quantum correction to B(�) is found in [20]. As in local P
2, the

constant term is related to the constant map contribution

A(�) =
3

2
Ac

(
�

π

)
− Ac

(
2�

π

)
. (5.32)
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As in the previous cases, we can write down the quantization condition from
the generalized theta function. If we write

λ(E) = λ1e
−16πEeff/� + λ2e

−20πEeff/� + λ3e
−24πEeff/�

+λ4e
−28πEeff/� + O(e−32πEeff/�), (5.33)

we find from (3.66)

λ1 =
1

π
sin(16x),

λ2 =
4

π
csc2(2x)

(
4 sin2(4x) sin(20x)

)
,

λ3 =
8

π
csc2(2x)

×
(
3 sin2(4x) sin2(6x)+sin2(2x) sin2(8x)+sin2(10x)

)
sin(24x), λ4

=
8

π
csc2(2x) sin3(4x)

(
45 + 52 cos(4x) + 90 cos(8x) + 52 cos(12x)

+87 cos(16x) + 48 cos(20x) + 68 cos(24x) + 26 cos(28x) + 22 cos(32x)

+4 cos(36x) + 3 cos(40x), (5.34)

where x is given again by (4.22). The first three coefficients reproduce precisely
the corrections to the approximate quantization condition (3.63) found in [20]
by numerical fitting.

To test our conjecture (3.44), let us focus again on the maximally super-
symmetric case with � = 2π. It turns out that, in this case, the spectral
problem becomes identical to the one in ABJ theory with k = 2 and M = 1.
This is due to the fact that the partition function of ABJ theory with level k
and flux M can be also described by topological string theory on local P

1 ×P
1

[68,69]. The value of the parameter m appearing in the operator of Table 1 is
related to k and M by

m = exp (iπk − 2iπM) . (5.35)

Therefore, for k = 2, M = 1, we have m = 1, as in the case we are considering
here. It is easy to confirm that the quantization condition for � = 2π,

4E2
eff − 4π2

3
− 2∂tF

inst
0 (t) + 4Eeff∂2

t F inst
0 (t) = 4π2

(
s +

1

2

)
, s = 0, 1, 2, . . .

(5.36)

where

Eeff = E − 2z 4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16z

)
, (5.37)

can be written as

4π
K(1 − 16e−2E)

K(16e−2E)

(
E − 2e−2E

4F3

(
1, 1,

3

2
,
3

2
; 2, 2, 2; 16e−2E

))

− 2

π
G3,2

3,3

(
16e−2E

∣∣∣∣
1
2 , 1

2 , 1
0, 0, 0

)
= 4π2 (s + 1/2) , s = 0, 1, 2, . . . (5.38)
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In this equation, K(k2) is the elliptic integral of the first kind. This is precisely
the quantization condition found in [19] for ABJ theory with M = 1 and
k = 2 (in this maximally supersymmetric case, it agrees with the approximate
quantization condition (3.63), which was studied in [50]). This condition leads
for example to a ground state energy

E0 = 2.881815429926296782477 . . . (5.39)

The analysis of the spectral determinant is in this case almost identical to
what was done in [19]. In particular, the traces, as computed from the energy
spectrum, are given by

Z1 =
1

4π
,

Z2 =
12 − π2

64π2
,

Z3 =
12 − π2

384π3
,

Z4 =
96 + 80π2 − 9π4

9216π4
, (5.40)

and so on. We will now verify that we can reproduce this result from (3.44). We
have to compute first the modified grand potential. For � = 2π, the effective
chemical potential is given by

μeff = μ − 1

2
˜̟ 1(e

−2μ). (5.41)

The standard genus one free energy is given by

F1(t) = −1

2
log

(
K(16z)

π

)
− 1

12
log(64z(1 − 16z)), (5.42)

while the refined genus one free energy is given by [63]

FNS
1 (t) = − 1

24
log

1 − 16z

z2
. (5.43)

Using that

C(2π) =
1

π2
, B(2π) = 0, (5.44)

we get9

J(μ, 2π) = A(2π) +
1

4π2

(
F0(t) − t∂tF0(t) +

t2

2
∂2

t F0(t)

)
+ F1(t) + FNS

1 (t),

(5.45)

where

t = 2μeff , (5.46)

9 Notice that the convention for F0 is the same as in [19], except for the fact that here we do
not include the constant A(2π) in it. Moreover, in [19] t = 2µeff + iπ, while here t = 2µeff .
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and the constant A(2π) is given by [62]

A(2π) =
1

2

(
log(2) − ζ(3)

π2

)
. (5.47)

We then find, for the large μ expansion of the grand potential,

J(μ, 2π) =
μ3

3π2
+

1

2

(
log(2) − ζ(3)

π2

)
−

(
4μ2 + 2μ + 1

)

π2
e−2μ

+

(
−52μ2 + μ + 9

4

2π2
+ 2

)
e−4μ + O(e−6μ), (5.48)

which agrees with the result for ABJ theory with k = 2, M = 1 [62,69]. The
spectral determinant is given by10

Ξ(κ, 2π) = exp (J(μ, 2π)) ϑ3

(
ξ − 1

3
, τ

)
. (5.49)

To reproduce the spectral traces (5.40), we have to expand this determinant
around z = ∞ or κ = 0. As in the case of local P

2, this means expanding the
spectral determinant around the orbifold point of local P

1 ×P
1. To do this, we

have to write it in terms of orbifold quantities. One has

Ξ(κ, 2π) = exp (Jor(κ, 2π)) ϑ1

(
ξ̄ +

1

2
, τ̄

)
, (5.50)

where

τ̄ = −1

τ
, ξ̄ =

ξ + 1
6

τ
. (5.51)

In this formula the grand potential Jorb(κ, 2π) is given by (5.45), where we
subtract the constant pice A(2π) and we do the following replacements: we
replace F1 by

F orb
1 = − log(η(2τ̄)), (5.52)

we replace t by

λ =
iκ

8π
3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;
κ2

16

)
, (5.53)

and the the genus zero free energy F0 should be replaced by F orb
0 , where

∂λF orb
0 (λ) = −iκG2,3

3,3

(
1
2 , 1

2 , 1
2

0, 0, − 1
2

∣∣∣∣
κ2

16

)
+ 2π2κ 3F2

(
1

2
,
1

2
,
1

2
; 1,

3

2
;
κ2

16

)
.

(5.54)

The integration constant is fixed by requiring

F orb
0 = 16π2λ2

(
log(2πλ) − 3

4
− log 4

)
+ . . . , λ ≪ 1. (5.55)

10 The parameter τ is as in [19], while the ξ variable there is given in terms of our ξ variable

by ξ + 1

4
+ τ

4
. This is due to the difference in the definition of t.
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A simple computation shows that

ξ̄ = −1

4
− i

16π3

(
λ∂2

λF orb
0 − ∂λF orb

0

)
,

τ̄ =
1

32π2i
∂2

λF orb
0 . (5.56)

With the above ingredients we find

Ξ(κ, 2π) = 1 +
κ

4π
+

κ3

128

(
1 − 8

π2

)
+ . . . (5.57)

From this expansion we can read the canonical partition functions Z(N, 2π),
which correspond indeed to the traces (5.40).

6. Conclusions and Outlook

In this paper, inspired by recent results on ABJM theory, and in particular by
the work of [10,11], we have proposed a correspondence between the spectral
theory of functional difference operators, and the enumerative geometry of
toric CY manifolds. This proposal leads to concrete and testable conjectures
on the spectral properties of the operators obtained by quantization of mirror
curves. One important point in our proposal is that the NS limit of the refined
topological string is not enough to give a consistent description of the spectrum,
as it was already pointed out in [11]: non-perturbative effects involving the
conventional topological string have to be added. The quantization condition
proposed in [11] can be now understood as a first approximation to the full
quantization condition obtained in this paper, which matches all known results
for the spectrum and in particular the beautiful numerical study performed in
[20].11

Another important ingredient of our conjecture is that the quantiza-
tion condition determining the spectrum arises as a consequence of a stronger
result, namely, an explicit formula for the spectral determinant of the oper-
ators. We have tested this new ingredient in some examples. It should be
emphasized that having explicit formulae for spectral determinants is rather
rare. Even in elementary Quantum Mechanics, there are very few cases where
this happens, besides the harmonic oscillator. For example, in the work of Voros
and of Dorey and Tateo on polynomial potentials in QM [39,40], functional
difference equations for spectral determinants have been shown to determine
the spectrum uniquely, but one is far from having explicit formulae like the
ones we are proposing. In this sense, our results provide a full new family of
solvable models in spectral theory.

11 In [11], the relationship between the grand potential and the quantization condition was
analyzed by integrating the density of states. Although this is very useful from the point
of view of the WKB expansion (see Appendix A for example), it leads to many technical
complications in the study of the non-perturbative sector. In [11] it was assumed that there
would be cancellations leading to a simple quantization condition, but these only occur in
some cases, like in the maximally supersymmetric situations.
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From a physical point of view, our proposal can be understood as a
microscopic description of the topological string in terms of a Fermi gas, as it
was done in [5] for ABJM theory. This proposal has many appealing features
as a non-perturbative description of topological string theory: it is based on
a background independent object, it involves an M-theoretic version of the
topological string free energy, it leads to the standard genus expansion in the
’t Hooft approximation, and it suggests an underlying description in terms of
M2 branes.

Our work leads to many interesting problems. The first one is clearly: why
such a conjecture should be true? From the point of view of spectral theory,
what we are saying is that there are instanton corrections to the quantization
condition (a well-known fact, see for example [11] for a discussion and refer-
ences), and that these corrections are determined by the conventional topolog-
ical string. In the case of ABJM or local P

1 ×P
1, this is largely “explained” by

the fact that the canonical partition function ZX(N, �) has an explicit matrix
model representation, whose ’t Hooft expansion involves the standard topolog-
ical string [12,70]. Our conjecture is based on the idea that such a remarkable
structure cannot be peculiar to local P

1 ×P
1, and should be shared by all toric

CY manifolds. The data seem to indicate that our conjecture is largely correct,
but if so it is definitely begging for a deeper explanation, and eventually for a
proof.

In the meantime, we should check the conjecture in more detail. Already
in the original realm of toric del Pezzo’s considered here, many things should
be clarified and new examples should be addressed. For example, it would be
important to have closed formulae for the constant A(�), which so far we had
to compute numerically or to guess. In ABJM theory there is a proposal for
this function based on the resummation of the constant map contribution to
the topological string free energies [61]. It is clear that this resummation will
be one of the ingredients in A(�), but it is likely that there are additional
ingredients.

Another important issue is to analyze the spectral determinant in detail
away from the “maximally supersymmetric” cases. This involves dealing with
the all-genus topological string free energy, resummed in the way proposed
by Gopakumar–Vafa. Although this can be computed systematically at large
radius (using for example the topological vertex [71]) it is not clear what is its
behavior at other special points of moduli space. This raises the issue whether
there is a Gopakumar–Vafa reorganization of the topological string free energy
at those points. We have some evidence that, in some circumstances, the all-
genus expansion can be resummed into an explicit function of the moduli,
which can then be studied at different points of the moduli space, and in
particular near the orbifold point [66]. In fact, one can reverse the logic and
argue that, for our conjecture (3.44) to work, and to be able to expand the
spectral determinant around κ = 0, a Gopakumar–Vafa resummation near the
orbifold point must be possible.

It would be also interesting to see if we can relax the reality and positivity
conditions set on the parameters of the spectral problem. We have imposed



Vol. 17 (2016) Topological Strings from Quantum Mechanics 3229

such conditions to have self-adjoint operators with a positive, discrete spec-
trum, but it might be possible to extend our results to cases in which � and
the complex moduli of the CY are not necessarily real.

In this paper, we have focused on the case of toric CYs whose mirror
curve has genus one. It would be important to work out the details of the
extension to higher genus. Many of the ingredients of this extension are rela-
tively straightforward, so let us outline how this should work. First of all, we
will have, instead of a single modulus ũ, g different moduli ũi, i = 1, . . . , g. The
mirror curve WX will now depend on the ũi. Our formalism can be generalized
immediately to this situation, since the modified grand potential is still given
by the non-perturbative free energy proposed in [10]. It will now depend on g
chemical potentials μi, i = 1, . . . , g, corresponding to the moduli ũi, so we will
write it as JX(μi, �). The grand canonical partition function is now given by

ΞX(μi, �) =
∑

ni∈Z

exp (JX(μi + 2πini, �)) , (6.1)

and will lead to a generalization of the Riemann–Siegel theta function. A
generalized quantization condition can be obtained in a similar way, as the
vanishing condition for this generalized theta function. There is, therefore, a
natural extension of our conjecture to the case of general toric manifolds, but
more work is needed to understand the higher genus case in detail.

It is likely that some readers will wonder what is the relation between the
non-perturbative effects unveiled here, and the resurgence approach, which has
been recently applied to ABJM theory and topological string theory. Resur-
gence provides a general strategy for constructing formal trans-series, which
complement the standard perturbative expansion by adding exponentially
small effects. This leads to a multi-parameter family of asymptotic expan-
sions, which should be then Borel resummed (in particular, resurgence does
not determine a unique non-perturbative completion). Our approach here is
very different. As we emphasized at several places in this paper, we use the
power of M-theory to resum the asymptotic genus expansion, so we are again
in the realm of analytic functions: our modified grand potential has a region
of analyticity, and our basic quantity—the spectral determinant—is in fact
an entire function. At the same time, we do find non-perturbative correc-
tions, and it might be possible to re-code them in the language of resurgence
and of conventional instanton corrections (i.e. in the language of string per-
turbation theory plus D-brane corrections). We can, for example, regard the
contribution of the refined topological string to the modified grand potential,
as a non-perturbative correction to the conventional topological string free
energy. One might then try to reproduce such a contribution using a trans-
series, constructed perhaps with the techniques proposed recently in [72,73].
Some preliminary exploration of this issue was already made in [22], where the
Borel resummation of the genus expansion of the topological string on local
P

1 × P
1 was compared to the corresponding modified grand potential, and it

was concluded that they differ in a trans-series contribution.
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Finally, it would be important to understand the implications of our
conjecture for the correspondence between quantum integrable systems and
supersymmetric gauge theories put forward in [13]. It is well known that N = 2
gauge theories can be geometrically engineered as limits of topological string
theory on certain CY geometries [25]. In this way, we might be able to recover
from our results, not only exact quantization conditions for the corresponding
quantum integrable systems, but also explicit results for their spectral deter-
minants, which are not covered by the original conjecture of [13].
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Appendix A. Semiclassical Correction to the Grand Potential

Here we derive the result (4.4). We follow the procedure in [11]. In the semiclas-
sical limit � → 0, the spectrum is determined by the usual WKB quantization
condition. In our setup, this is nothing but the condition

Ωp(E) = s +
1

2
, s = 0, 1, 2, . . . , (A.1)

where Ωp(E) is given by (3.62).12 This function has the semiclassical expansion

Ωp(E) =

∞∑

k=1

�
2k−1Ωk(E). (A.2)

For the local P
2 case, the leading and the next-to-leading contributions Ω0(E)

and Ω1(E) were computed in [20]

2πΩ0(E) =
9E2 − π2

2
+ 9

∞∑

n=1

(3n − 1)!

(n!)3
[ψ(3n) − ψ(n + 1) − E]e−3nE ,

Ω1(E) = −Ω′′
0(E)

72
. (A.3)

The energy also has the expansion around � = 0,

E(s) =

∞∑

k=0

�
kE(k)(s) = log 3 +

√
3(2s + 1)

6
� + O(�2). (A.4)

12 The function Ω(E) is related to the quantum volume in [11] by vol(E) = 2π�Ω(E).
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Following the argument in [11], we find

J0(μ) =

∫ ∞

log 3

dE
Ω0(E)

eE−μ + 1
,

J1(μ) =

∫ ∞

log 3

dE
Ω1(E)

eE−μ + 1
− 1

24
√

3(1 + 3e−μ)
. (A.5)

One can numerically check that the expression of J0(μ) in (A.5) precisely
reproduces the analytic result (4.2). The analytic form of J1(μ) can be com-
puted as follows. Using (A.3) and integration by parts, we obtain

∫ ∞

log 3

dE
Ω1(E)

eE−μ + 1
= − 1

72

∫ ∞

log 3

dE
Ω′′

0(E)

eE−μ + 1

=
1

24
√

3(1 + 3e−μ)
− 1

72
∂2

μ

(∫ ∞

log 3

dE
Ω0(E)

eE−μ + 1

)
,

(A.6)

where we have used Ω0(log 3) = 0, Ω′
0(log 3) =

√
3 and

∂E

(
1

eE−μ + 1

)
= −∂μ

(
1

eE−μ + 1

)
. (A.7)

From (A.5) and (A.6), we finally obtain (4.4).
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