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1 Introduction

Topological string theory provides an interesting playground that enables exact computa-

tions of quantum amplitudes and analysis of various phenomena in a simplified setting. It

is related to various other physical systems, such as supersymmetric gauge theories, sur-

face operators, vortex counting, two-dimensional conformal field theory, BPS states, etc.
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Among various techniques to compute topological string amplitudes, a very powerful one

relies on links with Chern-Simons theory. In particular, such links give rise to the topo-

logical vertex formalism [1, 2], which enables computation of closed and open topological

string amplitudes for a large class of toric Calabi-Yau threefolds.

The relation between topological string theory and Chern-Simons theory also results

in the connection with knot theory. On one hand, it is known that knot invariants can be

computed as expectation values of Wilson loops in Chern-Simons theory [3]. On the other

hand, such Wilson loop configurations can be realized in string theory by choosing as a

Calabi-Yau space the deformed conifold T ∗S3, and engineering a knot as an intersection of

the base S3 with an additional lagrangian brane [4, 5]. In this case brane amplitudes turn

out to reproduce Chern-Simons amplitudes associated to the engineered knot. Furthermore,

upon the conifold transition this system is related to a lagrangian brane in the resolved

conifold geometry, and in consequence various knot invariants can be expressed in terms of

topological string amplitudes in the resolved conifold. Moreover, embedding this system in

M-theory gives rise to new knot invariants, referred to as Labastida-Mariño-Ooguri-Vafa

(LMOV) invariants or simply open BPS invariants, which count BPS states of M5 and

M2-branes, and thus are conjecturally integer [5–10].

Recently, motivated by such string theory considerations, knot invariants were related

to yet another branch of mathematics, namely to quiver representation theory. This relation

is referred to as the knots-quivers correspondence [11, 12]; it states that to a given knot one

can associate a quiver, so that various knot invariants are expressed in terms of quantities

that characterize the moduli space of representations of this corresponding quiver. In

particular, LMOV invariants for symmetric representations are expressed as integral linear

combinations of motivic Donaldson-Thomas invariants associated to the quiver. The fact

that the latter invariants are proven to be integer, proves the long sought after integrality

of LMOV invariants, at least for symmetric representations. For related work and other

aspects of knots-quiver correspondence see [13–17].

In order to engineer more complicated knots in the above string theory setup, one

needs to consider more complicated lagrangian branes in the resolved conifold, which is

one of the simplest Calabi-Yau manifold. The main idea in this paper is to consider the

opposite situation — we focus on simple examples of Aganagic-Vafa branes [18, 19], however

embedded in more complicated toric Calabi-Yau manifolds. The manifolds that we consider

do not have four-cycles and are referred to as strip geometries or generalized conifolds.

We show that partition functions for branes in such manifolds can be also expressed as

motivic generating functions of corresponding quivers, which we explicitly identify. This

has various interesting consequences. Among others, it immediately leads to the proof of

integrality of open BPS invariants associated to such brane systems, which are also referred

to as Ooguri-Vafa invariants. Taking advantage of the relation to quivers we also derive

explicit expressions for classical open BPS invariants for manifolds under consideration.

More generally, it follows that various quantities that characterize topological strings can

be reformulated as invariants of moduli spaces of quiver representations. One important

consequence of this relation is the identification of the algebra of BPS states [20] on the

topological string side with the cohomological Hall algebra introduced in [21]. Moreover,
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the moduli space of representations of the corresponding quiver itself can be regarded as a

new topological string invariant, thereby providing a novel categorification of topological

string theory. Furthermore, various operations on both sides of the correspondence are

matched, for example a change of framing of a brane by some number corresponds to

adding the same number of loops at one particular vertex of the quiver. The identification

of quivers corresponding to toric manifolds can be regarded as the generalization of the

knots-quivers correspondence to more general toric Calabi-Yau manifolds.

It is also important to understand the meaning of quivers and the reason why they ap-

pear. Our results imply that vertices in these quivers should have a natural interpretation

as corresponding to discs that represent open BPS states associated to a strip geometry,

one of which is attached to the brane and other ones wrap hemispheres of all local P1’s (for

resolved conifold such discs correspond to its two non-zero BPS invariants). A similar in-

terpretation of quivers’ vertices in the context of knots-quivers correspondence is presented

in [17]. On the other hand, from the physics perspective, analogously as in [11, 12], we

postulate that the resulting quivers are associated to the effective supersymmetric quan-

tum mechanics describing BPS states in the engineered brane systems; it would be nice to

derive such a description more directly.

It is also worth recalling that strip geometries that we consider in this paper have

important properties and various applications. Their toric diagrams can be constructed

as dual diagrams to a triangulation of a rectangular strip. Topological string partition

functions for this class of geometries can be computed using the rules of the “vertex on a

strip” [22], which follow from the topological vertex formalism [1]. Strip geometries are a

large class of manifolds, the simplest examples being C3, the resolved conifold, and resolu-

tions of C3/ZN orbifolds. In particular, the basic Aganagic-Vafa lagrangian brane in the

resolved conifold engineers the unknot, and open topological string amplitudes in this case

reproduce its colored HOMFLY-PT polynomials, so that the corresponding quiver provides

a simple example of the knots-quivers correspondence. On the other hand, resolutions of

C3/ZN orbifolds and other examplse of strip geometries provide building blocks crucial

for engineering of four-dimensional supersymmetric gauge theories, and lagrangian branes

in such geometries engineer surface operators, as well as vortex counting in two normal

spacetime dimensions. All these relations to other systems provide additional important

motivations to study topological strings on strip geometries, and thus the corresponding

quivers that we identify in this work.

Apart from revealing the correspondence to quivers, in this paper we present several

other related, albeit at the same time independent results. First, we show that partition

functions for branes in strip geometries take form of generalized q-hypergeometric func-

tions rφs. General properties of these functions are studied e.g. in [23]. This immediately

leads to a non-trivial statement, that each generalized q-hypergeometric function is en-

coded in a series of integral BPS invariants, or motivic Donaldson-Thomas invariants of

the corresponding quiver, and each such function can be written as the product of quan-

tum dilogarithms. Furthermore these functions, in appropriate limit, reduce to (ordinary)

generalized hypergeometric functions rFs. Therefore the information about each general-

ized hypergeometric function rFs is also encoded in a set of integral BPS invariants, or
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motivic Donaldson-Thomas invariants for the corresponding quiver. Note that brane par-

tition functions in the form of q-hypergeometric functions r+1φr, for a special class of strip

geometries with all P1’s of (−1,−1) type, were derived in [24, 25], however it seems that

the relation between arbitrary strip geometries and all q-hypergeometric functions rφs has

not been discussed before.

Second, the form of brane partition functions motivates us to introduce a novel clas-

sical limit of quiver generating functions, that we refer to as the partial limit. We derive

explicit formulas for coefficients of generating functions in this partial limit. These results

generalize the explicit expressions for the ordinary classical generating functions derived

in [16]. Specializing these results to quivers associated to strip geometries we find explicit

formulas for functions that satisfy mirror curve equations for an arbitrary strip geometry,

and we also derive explicit expressions for classical open Ooguri-Vafa BPS invariants for

an arbitrary strip geometry. This also means that mirror curves for strip geometries pro-

vide a large class of examples of algebraic equations satisfied by generating functions of

Donaldson-Thomas invariants, illustrating the ideas in [26].

Third, we associate to quivers quantum curves, or A-polynomials, and analyze their

properties and various limits. In particular we show that such A-polynomials, for quivers

associated to strip geometries, are identified with quantum and classical mirror curves for

such geometries. This enables us to study properties of mirror curves by taking advantage

of tools of quiver representation theory. Note that various classes of curves associated to

quivers, analogous to A-polynomials, are also studied in [16, 17, 27].

1.1 A brief quantitative summary. . .

Before starting detailed analysis, it may be of advantage to summarize main quantitative

results of this work. Consider an arbitrary strip geometry, as shown in figure 1, and the

Aganagic-Vafa brane with a modulus x in such geometry, in framing f , as shown in figure 2.

We first show that the partition function for such a brane takes form (2.23)

ψf (x) =

∞∑
n=0

(
(−1)nqn(n−1)/2

)f+1 xn

(q; q)n

(α1; q)n(α2; q)n · · · (αr; q)n
(β1; q)n(β2; q)n · · · (βs; q)n

, (1.1)

where closed Kähler parameters Qk are encoded in variables αi and βj , and (α; q)n is the

q-Pochhammer symbol. Second, we show that the quantum mirror curve that annihilates

this partition function, Â(x̂, ŷ)ψf (x) = 0, takes form (2.27)

Â(x̂, ŷ) = (1− ŷ)

s∏
j=1

(1− q−1βj ŷ) + (−1)f x̂

 r∏
j=1

(1− αj ŷ)

 ŷf+1, (1.2)

with ŷ defined such that ŷψ(x) = ψ(qx), so that ŷx̂ = qx̂ŷ. Interestingly, for f = s− r the

brane partition function ψf (x) reduces to the generalized q-hypergeometric function

ψs−r(x) = rφs

[
α1 α2 . . . αr
β1 β2 . . . βr

; q, x

]
, (1.3)
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and the above quantum mirror curve equation takes form of the generalized q-hyper-

geometric equation. These results have also two interesting limits that we discuss. First, for

q → 1 the operator Â(x̂, ŷ) reduces to the classical mirror curve equation A(x, y) = 0, whose

solution for y =
∑

i cix
i we determine explicitly for an arbitrary strip geometry in (4.13),

by taking advantage of the relation to quivers. Second, setting x→ (q−1)1+s−rx, αi = qai ,

βj = qbj , and then taking q → 1 limit, the partition function ψs−r(x) reduces to the ordi-

nary generalized hypergeometric function (2.34), and the operator Â(x̂, ŷ) reduces to (2.32)

that implements the generalized hypergeometric differential equation (2.33).

Consider now a symmetric quiver, whose structure is encoded in a symmetric matrix

C. The motivic generating function associated to such a quiver takes form (3.1)

PC(x1, . . . , xm) =
∑

d1,...,dm

(−q1/2)
∑m
i,j=1 Ci,jdidj

(q; q)d1 · · · (q; q)dm
xd11 · · ·x

dm
m , (1.4)

and motivic Donaldson-Thomas invariants Ωd1,...,dm;j arise from the factorization of this

series into a product of quantum dilogarithms (3.2) [21, 28]. Our main statement (4.4) is

that for an arbitrary strip geometry, the brane partition function (1.1) can be written in

the form (1.4), with x1 = q−(f+1)/2x and x2, . . . , xm identified with αi or βj

ψf (x) = PC(q−(f+1)/2x, q−1/2α1, α1, . . . , q
−1/2αr, αr, q

−1/2β1, β1, . . . , q
−1/2βs, βs), (1.5)

for a particular choice of the quiver of size 1 + 2(r + s) defined by the matrix (4.5). This

statement has deep consequences. In particular, Ooguri-Vafa BPS invariants for such a

brane, which are also defined by the product decomposition into quantum dilogarithm, can

be expressed in terms of combinations of motivic Donaldson-Thomas invariants associated

to (1.4), and thus are immediately proven to be integer. It also follows that all generalized

q-hypergeometric functions are determined by such motivic Donaldson-Thomas invariants.

Having shown the above facts, we analyze various properties of brane partition func-

tions and A-polynomials for quivers associated to strip geometries. This analysis is based

on some general properties of A-polynomials and Donaldson-Thomas invariants for quivers,

in particular the partial limit, which are interesting in their own right, and which we derive

in section 3. As one important outcome of this analysis we find a general expression for

classical open BPS invariants in arbitrary framing f , for an arbitrary strip geometry with

moduli α1, . . . , αr, β1, . . . , βs. These invariants are encoded in the product representation

of the series y = y(x) that is a solution of the classical mirror curve equation A(x, y) = 0

in (2.29), which arises in q → 1 limit of (1.2). This solution arises also from the limit of

the ratio of brane partition functions (2.30) and it takes form (4.14)

y(x) = lim
q→1

ψf (qx)

ψf (x)
=

∏
(n,l1,...,lr,k1,...,ks)>0

(
1− xnαl11 · · ·α

lr
r β

k1
1 · · ·β

ks
s

)nΩn,l1,...,lr,k1,...,ks
,

(1.6)
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and we show that open BPS invariants read (4.19)

Ωn,l1,...,lr,k1,...,ks = − 1

n

∑
i|gcd(n,l1,...,lr,k1,...,ks)

(−1)fn/iµ(i)

(f + 1)n+ |l|+ |k|

(
((f + 1)n+ |l|+ |k|) /i

n/i

)
×

×
r∏
j=1

(−1)lj/i
(
n/i

lj/i

) s∏
j=1

n

n+ kj

(
(n+ kj)/i

kj/i

)
, (1.7)

where µ(i) is the Möbius function, |l| =
∑

i li, and indices n, l1, . . . , lr, k1, . . . , ks are as-

sociated to moduli x, α1, . . . , αr, β1, . . . , βs. The relation to quivers, and independently

string theoretic interpretation, imply that (1.7) are integer, and therefore this expression

provides a large set of number theoretic integrality statements: despite the factor of 1/n

and other denominators, for each fixed (r, s, f, n, l1, . . . , lr, k1, . . . , ks), the above expression

must be integer. This vastly generalizes analogous statements for the framed unknot, or

equivalently a brane in C3 or resolved conifold, presented in [14, 29, 30].

1.2 . . . a brief discussion . . .

Let us also list a few questions that are motivated by our results, and which deserve further

investigation. First, it should be understood in more detail how the structure of various

objects assigned to quivers, e.g. moduli spaces of their representations or cohomologial Hall

algebras, relates to topological string theory and properties of toric manifolds. Second,

while in this paper we identify quivers corresponding to strip geometries, it is important

to understand if analogous quiver description, or some generalization thereof, can be given

for more general toric manifolds that contain compact four-cycles, such as the local P2,

local P1 × P1, or local Hirzebruch surfaces. Third, it would be gratifying to provide more

direct physical derivation of supersymmetric quantum mechanics associated to quivers that

correspond to strip geometries, as well as more general topological string amplitudes, such

as those that arise in the knots-quivers correspondence. Fourth, the role and the meaning of

quivers that we identify should be understood in all other systems related to or engineered

by topological string theory, such as supersymmetric gauge theories, vortex counting, etc.

Fifth, it is of interest to understand if there are relations between quivers that we identify

in this paper, and other quivers identified in related contexts [31–35]. Sixth, it is tempting

to relate the combinatorics of quivers that we identify to crystal models related to the

topological vertex. Seventh, all these relations can be generalized to the refined case.

1.3 . . . and a brief plan

The plan of this paper is as follows. In section 2 we recall basics of topological string theory

and properties of strip geometries, and then we compute brane amplitudes in such geome-

tries, find corresponding quantum mirror curves, and discuss their limits. In section 3 we

recall basics of quiver representation theory for symmetric quivers, introduce the partial

classical limit, and assign quantum curves and A-polynomials to quivers. In section 4 we

show that partition functions for branes in strip geometries can be expressed as motivic

generating functions for quivers, and we identify the corresponding quivers. We also dis-

cuss general properties of quantum and classical mirror curves for strip geometries, and
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properties of BPS invariants, which follow from the relation to quiver representation the-

ory. Finally, in section 5 we consider several examples of strip geometries, and illustrate in

such examples various structures introduced earlier. In appendix A we discuss various con-

ventions related to the definition of motivic Donaldson-Thomas invariants and positivity

of these invariants.

2 Topological string theory, strip geometries, and brane amplitudes

Topological string amplitudes count, in appropriate sense, maps from Riemann surfaces into

a target space. Open topological string amplitudes count maps from Riemann surfaces with

boundaries, and the boundary conditions may be encoded by appropriately chosen branes.

In this paper we consider A-model (holomorphic) amplitudes for target spaces which are

toric Calabi-Yau threefolds that do not contain compact four-cycles; such manifolds are

referred to as strip geometries or generalized conifolds. In this section we first briefly

summarize the general structure of A-model amplitudes, as well as the topological vertex

formalism and its simplifications that arise for strip geometries. We then compute the

open partition function for the Aganagic-Vafa lagrangian brane in arbitrary framing and in

arbitrary strip geometry. This result is given in (2.23) and it will be of our main interest in

what follows. We also determine the quantum mirror curve operator (2.27) that annihilates

this brane partition function, identify the mirror curve that arises in the classical limit of

this operator (2.29), and find the differential operator (2.32) that arises in the modified

classical limit. We also discuss the relation of partition functions (2.23) and the equations

they satisfy to generalized hypergeometric functions and hypergeometric equations.

2.1 Topological string amplitudes and BPS invariants

A-model topological string amplitudes depend on Kähler parameters Q = {Qk} of a given

target Calabi-Yau manifold M , and open moduli x = {xi} that characterize branes. They

are defined in terms of the genus expansion in the topological string coupling ~, and var-

ious terms in such expansion encode closed or open Gromov-Witten invariants. The full

topological string amplitudes factorize into closed string contributions and — in presence

of branes — open contributions, that involve both open and closed moduli

Z = Zclosed(Q) · ψopen(Q, x). (2.1)

From the spacetime interpretation of topological strings [36, 37] it follows that topological

string amplitudes can be expressed in a product form that represents counting of BPS

states, in terms of the variable q = e~. In particular closed string contributions take form

Zclosed(Q) =
∏

β∈H2(M)

∏
j

∞∏
l=1

(1−Qβql+j)lNβ,j , (2.2)

where Nm
β are conjecturally integer Gopakumar-Vafa invariants that count BPS states of

closed M2-branes. Note that for fixed β and m, the contribution from the product over

l is a generalization of the MacMahon function M(q) =
∏∞
l=1(1 − ql)l that counts plane

partitions.

– 7 –



J
H
E
P
0
1
(
2
0
1
9
)
1
2
4

It is known that in certain systems open partition functions satisfy Schrödinger-like

equations, hence they are also referred to as wave-functions, and for this reason we denote

them by the symbol ψopen(Q, x). Spacetime interpretation of BPS counting implies that

in presence of branes open topological string amplitudes also have product decomposition.

First, as argued in [5–7], the open partition function can be written in the form

ψopen(Q, x) =
∑
P

ψopen
P TrPX = exp

( ∞∑
n=1

∑
P

1

n
fP (Qn, qn)TrPX

n

)
, (2.3)

where we encoded brane moduli x = {xi} in a matrix X = diag(x1, x2, . . .), Young diagrams

P under summations represent brane boundary conditions, and

fP (Q, q) =
∑
β,j

NP,β,jQ
βqj

q1/2 − q−1/2
(2.4)

are functions that encode integer multiplicities NP,β,j of open M2-branes in a relative class

β, with spacetime spin j, and labeled by P . Multiplicities NP,β,j are referred to as Ooguri-

Vafa invariants and they provide an interesting reformulation of open Gromov-Witten

invariants. In the context of knots NP,β,j are also referred to as Labastida-Mariño-Ooguri-

Vafa (LMOV) invariants, and ψopen
P are related to colored HOMFLY-PT polynomials [5–7].

Taking advantage of the relation

TrPX
n =

∑
kP

mkP

∏
i

x
nkPi
i , (2.5)

where kP = {kPi } and mkP are respectively weights of the representation P and their

multiplicities, the open partition function (2.3) can be written in the product form

ψopen(Q, x) =
∏

P,j,β,kP

∞∏
l=1

(1− xkPQβql+j−1/2)mkPNP,β,j . (2.6)

Note that for fixed P, j, β, kR, the product over l represents the quantum dilogarithm (with

appropriate arguments), which can also be written as a special case (with n = ∞) of the

q-Pochhammer symbol

(Q; q)n =
n−1∏
i=0

(1−Qqi). (2.7)

More precisely, a single trace TrPX in (2.3) represents one stack of branes; for multiple

stacks the open amplitude would in general take form

ψopen(Q, x) =
∑
{Pi}

ψopen
{Pi}

∏
i

TrPiXi. (2.8)

It is also convenient to write the total amplitude (2.1), including both closed and open

contributions, in the form

Z =
∑
{Pi}

Z{Pi}
∏
i

TrPiXi, Z{Pi} = Zclosed · ψopen
{Pi} (2.9)
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In this paper we consider mainly systems with a single brane. In this case x is just a sin-

gle variable. Then TrPx 6= 0 only for symmetric representations P = Sn, and TrSn(x) = xn,

so that

ψopen(Q, x) =
∏

n≥1;β,j

∞∏
k=1

(
1− xnQβqj+k−1/2

)Nn,β,j
. (2.10)

2.2 Topological vertex and strip geometries

The structure of toric Calabi-Yau threefolds can be encoded in planar diagrams with triva-

lent vertices. Each edge (“leg”) of such a diagram represents a specific locus along which

one circle in the toric fiber degenerates. Each trivalent vertex represents one C3 patch,

and the whole diagram encodes the way in which such patches are glued. Topological

string amplitudes for such threefolds can be computed by means of the topological vertex

CPQR(q), which is the basic building block that gets associated to one trivalent vertex [1].

The topological vertex is labeled by three Young diagrams P , Q, and R, which are as-

signed respectively to the three legs of the trivalent vertex and encode relevant boundary

conditions; moreover the topological vertex amplitude depends on the variable q = e~ that

encodes the topological string coupling ~. The topological vertex amplitude has interpre-

tation in terms of a plane partition with arbitrary boundary conditions at infinity encoded

by diagrams P,Q and R, and it can be expressed in terms of skew Schur functions sP/S [38]

CPQR(q) = q
1
2

(κQ+κR)sQT (qρ)
∑
S

sP/S(qQ
T+ρ)sRT /S(qQ+ρ), (2.11)

where QT denotes a transpose of Q, qQ+ρ ≡ (qQ1−1/2, qQ2−3/2, qQ3−5/2, . . .), and

κR = |R|+
∑
i

Ri(Ri − 2i) = −κRT , |R| =
∑
i

Ri. (2.12)

One can also consider more general framed vertex, with framing specified for each leg by

integers fi for i = 1, 2, 3, whose amplitude reads

Cf1,f2,f3PQR = (−1)f1|P |+f2|Q|+f3|R|q(f1κP+f2κQ+f3κR)/2CPQR. (2.13)

The total amplitude for a given toric manifold is obtained by gluing such vertex amplitudes.

Gluing of two vertices along an edge amounts to the identification (up to a transposition)

of Young diagrams assigned to the two legs being glued, and resummation over all possible

such diagrams. The edge (“internal leg”) that arises from such a gluing operation represents

topologically P1, that arises from a circle in the toric fiber that degenerates at two vertices

in question.

We also recall that mirror manifolds to toric threefolds take form of algebraic varieties

defined by one equation in four-dimensional complex space

uv = A(x, y), (2.14)

where A(x, y) is a polynomial in x, y ∈ C∗, and the locus A(x, y) = 0 is a Riemann

surface referred to as the mirror curve. Mirror B-model topological string amplitudes can
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Figure 1. An example of a strip geometry. The toric diagram (made of thick segments) arises as the

dual diagram to a triangulation of a rectangular strip (made of thin segments). Trivalent vertices

in this case are respectively of type A, A, B, B, B, and A, and P1’s are represented by internal legs

of type (−2, 0), (−1,−1), (−2, 0), (−2, 0), (−1,−1) (from left to right). Brane boundary conditions

encoded in Young diagrams Pi can be imposed at one external leg of each vertex. Thickening the

toric diagram leads to a schematic picture of the mirror curve (shown in thin lines).

be computed by means of the topological recursion for the mirror curve. Mirror curves

can also be quantized into difference operators Â(x̂, ŷ) that impose difference equations

for brane amplitudes [2, 39]. In the tropical limit, in which pairs of pants arising from a

decomposition of the Riemann surface reduce to trivalent vertices, the mirror curve reduces

to the toric diagram of the original toric manifold.

For toric threefolds that do not have compact four-cycles, toric diagrams take form

of trees (without loops). As the legs of the diagram should not intersect, apart from the

closed topological vertex geometry (which involves one vertex connected via three legs to

three other vertices), all other such manifolds are necessarily so called strip geometries (also

called generalized conifolds), whose toric diagrams arise as dual diagrams to a triangulation

of a strip, as shown in figure 1. A toric diagram for strip geometry consists of a chain of

legs that represent various P1’s, which locally represent either the resolved conifold or

the resolution of C3/Z2, and which are referred to respectively as (−2, 0) and (−1,−1)

curves. An example of a strip geometry and the corresponding mirror curve are shown in

figure 1. Topological vertex computations for such geometries can be partly conducted and

simplified, as explained in [22].

Let us recall how to compute the total (including open and closed contributions) topo-

logical string amplitude (2.9) for a strip geometry, following [22]. Each strip consists of a

series of topological vertices. Each two neighboring vertices are connected by an internal

leg that represents P1 of type (−2, 0) and (−1,−1), with Kähler parameter Qk. Apart from

the two external vertices, two legs of each of the other (internal) vertices are connected

to its immediate neighbors, while the third leg is external and can encode arbitrary brane

boundary conditions. Therefore one might assume that brane boundary conditions for the
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i’th external leg of the i’th vertex (including two external vertices, for which we choose one

particular external leg), are labeled by arbitrary Young diagram Pi. It then follows that

the full amplitude is a product of several factors. First, each vertex contributes the Schur

function sPi(q
ρ) ≡ sPi(q−1/2, q−3/2, q−5/2, . . .). Second, consider a pair of vertices from the

strip with attached Young diagrams Pi and Pj , and define

{PiPj} =
∏
k

(1−Qijqk)Ck(Pi,Pj) exp

( ∞∑
m=1

Qmij

m(2 sin m~
2 )2

)
, (2.15)

where Qij = QiQi+1 · · ·Qj−1 is the product of Kähler parameters Qk associated to internal

legs that join the pair of vertices under consideration, and the exponents Ck(P,R) are

defined by

∑
k

Ck(P,R)qk =
q

(q−1)2

1+(q−1)2
dP∑
i=1

q−i
Pi−1∑
j=0

qj

1+(q−1)2
dR∑
i=1

q−i
Ri−1∑
j=0

qj

− q

(1−q)2

(2.16)

where dP denotes the number of rows in the Young diagram P . Furthermore, to the first

vertex in a strip we assign a type A or B, if respectively its amplitude can be written

in the form CS•P or C•SP (where diagrams S are summed over in the internal leg, and

P labels an external leg). We also assign types A or B to all other vertices recursively:

the next vertex has the same type as the preceding one if they are connected by P1 of

type (−2, 0), and it is assigned an opposite type if two vertices are connected by P1 of type

(−1,−1). Then each pair of vertices with boundary conditions Pi and Pj contributes to the

amplitude a factor, which depends on the types of these two vertices; for a pair of vertices of

types (A,A), (A,B), (B,A), (B,B), this contribution respectively takes form {Pi, P Tj }−1,

{Pi, Pj}, {P Ti , P Tj }, {P Ti , Pj}−1, where P T denotes a transposition of a diagram P .

To sum up, the total topological string amplitude (2.9) for a strip geometry, with

boundary conditions at the i’th vertex encoded in a Young diagram Pi, takes form

Z{Pi} =
∏
i

sPi(q
ρ)
∏
i,j

{P ∗i , P ∗j }±1, (2.17)

where powers ±1, as well as P ∗ that denote either just P or P T , depend on types (A or

B) of vertices i and j. Note that this result involves both open and closed contributions,

and the latter ones arise only from the exponential factors in (2.15) and can be rewritten

in the product form (2.2). As an example, the partition function for the toric manifold in

figure 1 reads

ZP1,...,P6 =
{P1P3}{P1P4}{P1P5}{P2P3}{P2P4}{P2P5}{PT3 PT6 }{PT4 PT6 }{PT5 PT6 }

{P1PT2 }{P1PT6 }{P2PT6 }{PT3 P4}{PT3 P5}{PT4 P5}

6∏
i=1

sPi(q
ρ).

(2.18)

2.3 Brane amplitudes and generalized q-hypergeometric functions

We now focus on a particular amplitude we are interested in, which involves open contri-

butions for one brane in arbitrary framing attached to the first vertex. Without loss of
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generality we assume that the first vertex is of type A, and it is labeled by a Young diagram

P . We also assume that the strip consists in total of 1 + r+ s vertices, and apart from the

first one of type A, there are s other vertices of type A and r vertices of type B. We de-

note open contributions to the amplitude (2.17) by ψopen
P , and they are obtained simply by

removing all exponential factors that arise from (2.15) from the resulting total amplitude.

Furthermore, we are interested only in the single framed brane generating function that

is defined as a resummation with a single generating parameter, which for convenience we

denote q−1/2x.

Taking into account the framing factor (2.13) and denoting framing by f ∈ Z, such a

generating function takes form

ψf (x) =
∑
P

(−1)f |P |qfκP /2sP (q−1/2x)ψopen
P =

∑
n

(−1)fnqfn(n−1)/2(q−1/2x)nψopen
(n) , (2.19)

where we used the fact that sP (x) = xn when P = (n) consists of only one row of length

n, and for other Young diagrams sP (x) is zero. The factor ψopen
(n) above therefore denotes

the amplitude with a single brane in the trivial framing, at the first vertex, labeled by a

Young diagram with one row of length n, and its explicit form arises from the following

specialization of (2.17). First, it involves only one Schur function

s(n)(q
ρ) =

(−1)nqn
2/2

(q; q)n
, (2.20)

where (q; q)n =
∏n
k=1(1−qk) is a special case of the q-Pochhammer symbol defined in (2.7).

Second, in this case all factors {P ∗i , P ∗j }±1 take form either {•, •}±1 (with the argument Qij
and with • denoting the empty partition) if i, j 6= 1 (i.e. the first vertex is not involved),

or {(r), •}±1 (with the argument Q1j) if the pair involves the first and the j’th vertex

in the strip. In the former case all Ck(•, •) = 0, so that {•, •}±1 reduces to the closed

string contribution that we ignore in the computation of ψopen
(n) . In the latter case the

coefficients (2.16) take form∑
k

Ck
(
(r), •

)
qk =

1− qn

1− q
= 1 + q + . . .+ qn−1, (2.21)

i.e. Ck
(
(n), •

)
= 1 for 0 ≤ k < n, and Ck

(
(n), •

)
= 0 for k ≥ n, and in such case

{(n),•}=
n−1∏
k=0

(1−Q1jq
k)exp

( ∞∑
m=1

Qm1j

m(2sin m~
2 )2

)
≡ (Q1j ;q)n exp

( ∞∑
m=1

Qm1j

m(2sin m~
2 )2

)
,

(2.22)

so that the contribution to the open amplitude is simply given by the q-Pochhammer

(Q1j ; q)n in appropriate power ±1. As we assumed that the first vertex is of type A, such

q-Pochhammer factors arise in power ±1, respectively if the j’th vertex is of type B or A.

For simplicity we also denote by αi, for i = 1, . . . , r, all Q1j for which the j’th vertex is

of type B, and by βi, for i = 1, . . . , s, those Q1j for which the j’th vertex is of type A.

With this notation, and taking into account all factors discussed above, the framed brane
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Figure 2. A strip geometry with a single brane at the first vertex. The brane modulus is denoted

by x, and internal segments represent P1’s with Kähler parameters Qk.

generating function takes form

ψf (x) =

∞∑
n=0

(
(−1)nqn(n−1)/2

)f+1 xn

(q; q)n

∏
j

(Q1j ; q)
±1
n =

=
∞∑
n=0

(
(−1)nqn(n−1)/2

)f+1 xn

(q; q)n

(α1; q)n(α2; q)n · · · (αr; q)n
(β1; q)n(β2; q)n · · · (βs; q)n

.

(2.23)

This is a very interesting result on which our analysis in what follows will be based. No-

tice that there may exist several strip geometries — which are related by flop transitions —

for which the brane amplitude takes the same form given in the second line above. Nonethe-

less, brane partition functions for such geometries differ in a way in which Kähler param-

eters Qk are related to αi and βj . We present examples of such geometries in section 5.

Furthermore, note that for appropriate choice of framing the result (2.23) reduces to the

generalized q-hypergeometric function. The most common definition of such a function [23]

arises for f = s− r

ψs−r(x) = rφs

[
α1, α2, . . . , αr
β1, β2, . . . , βr

; q, x

]
=

=

∞∑
n=0

(
(−1)nqn(n−1)/2

)1+s−r xn

(q; q)n

(α1; q)n(α2; q)n · · · (αr; q)n
(β1; q)n(β2; q)n · · · (βs; q)n

,

(2.24)

and this is a definition of q-hypergeometric functions we will refer to in what follows (note

that sometimes these functions are defined without including the factor (−1)nqn(n−1)/2,

which in our convention amounts to setting framing to f = −1).

For example, in figure 2 we have r = 3, s = 2, and so the generating function for a

single brane in framing f = s− r = −1 takes form

ψ−1(x) = 3φ2

[
α1 α2 α3

β1 β2
; q, x

]
, (2.25)

where α1 = Q1Q2, α2 = Q1Q2Q3, α3 = Q1Q2Q3Q4, and β1 = Q1, β2 = Q1Q2Q3Q4Q5.
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2.4 Quantum mirror curves and generalized hypergeometric equations

Once we have derived the brane partition function (2.23), we can also find a q-difference

equations it satisfies. Such q-difference equations are interpreted as quantum mirror curves,

and in the q → 1 limit they should reduce to (classical) mirror curves [2, 39]. For strip

geometries we can identify such curves explicitly. To this end we write ψf (x) =
∑

n pnx
n,

where pn is identified with the summand (without xn factor) in (2.23), and we note that

pn satisfies the relation

pn+1(1− qn+1)
s∏
j=1

(1− βjqn) = pn(−1)f+1qn(f+1)
r∏
j=1

(1− αjqn). (2.26)

Multiplying both sides of this relation by xn+1, summing over all n, and recalling that

ŷf(x) = f(qx), we find the operator

Â(x̂, ŷ) = (1− ŷ)
s∏
j=1

(1− q−1βj ŷ) + (−1)f x̂

 r∏
j=1

(1− αj ŷ)

 ŷf+1 (2.27)

that annihilates the brane partition function (2.23)

Â(x̂, ŷ)ψf (x) = 0. (2.28)

We refer to (2.27) as the quantum mirror curve. Note that for f = s− r it reduces to the

operator that imposes the generalized q-hypergeometric equation for the q-hypergeometric

function (2.24) [23].

Clearly, and as expected, for q → 1 the operator Â(x̂, ŷ) reduces to the mirror curve

for a given strip geometry

A(x, y) = (1− y)

s∏
j=1

(1− βjy) + (−1)fxyf+1
r∏
j=1

(1− αjy) = 0. (2.29)

Solving this equation for y = y(x) we obtain a function which can be thought of as the

classical limit of the operator ŷ, and it can also be obtained as the appropriate ratio of

brane partition functions (2.23)

y(x) = lim
q→1

ŷψf (x)

ψf (x)
= lim

q→1

ψf (qx)

ψf (x)
. (2.30)

Taking advantage of the relation to quivers, we will find an explicit expression for coeffi-

cients of the series y(x) in (4.13).

Furthermore, apart from the classical limits q → 1 in which all other parameters are

kept fixed, it is also of interest to consider a limit in which q-difference equations reduce to

differential equations. In this limit we also take q = e~ → 1, however first we appropriately

rescale various variables and parameters. Considering two terms in (2.27), we find that

after setting

x→ (q − 1)1+s−rx, αi = qai , βj = qbj , (2.31)
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writing ŷ = e~x∂x , and expanding in ~ = log q, the leading term in ~ expansion (note

that the rescaling of x is crucial in getting this result) reduces to a non-trivial differential

operator

Ã = ∂x

s∏
j=1

(x∂x + bj − 1) + (−1)1+s−r−f
r∏
j=1

(x∂x + aj). (2.32)

This operator imposes the differential equation

Ãψ̃(x) = 0 (2.33)

for the function that arises as the limit (2.31) of (2.23)

ψ̃(x) =

∞∑
n=0

(−1)n(s−r−f)x
n

n!

(a1)n(a2)n . . . (ar)n
(b1)n . . . (bs)n

, (2.34)

where we used that (qa, q)n ' (−~)n(a)n, and (a)n =
∏n−1
i=0 (a+i) is the ordinary Pochham-

mer symbol. Note that the operator (2.32) and the function (2.34) depend on f in a very

minor way. In particular for f = s− r the function ψ̃(x) reduces to the generalized hyper-

geometric function rFs, which we obtain as the limit of the generalized q-hypergeometric

function (2.24)

lim
q→1

rφs

[
qa1 , qa2 , . . . , qar

qb1 , . . . , qbs
; q, (q − 1)1+s−rx

]
=

= rFs

[
a1, a2, . . . , ar
b1, . . . , bs

;x

]
=
∞∑
n=0

xn

n!

(a1)n(a2)n . . . (ar)n
(b1)n . . . (bs)n

.

(2.35)

The equation (2.33) for f = s− r is nothing but the generalized hypergeometric equation.

3 Quivers, Donaldson-Thomas invariants, and A-polynomials

We now summarize some aspects of a seemingly unrelated theory of quiver representa-

tions [21, 40, 41]. One of the aims of this theory is to characterize properties of the moduli

space of representations of a given quiver. Such properties — in particular homological

structure of the moduli space — are encoded in motivic Donaldson-Thomas invariants,

which can be explicitly determined in particular for a large class of symmetric quivers. Ap-

parently, such symmetric quivers arise in connection with brane amplitudes, as has been

shown in the knots-quivers correspondence in [11, 12], and as we discuss in what follows in

more general context of topological string theory.

After reviewing basic features of representations of symmetric quivers and their

Donaldson-Thomas invariants in section 3.1, in section 3.2 we introduce a novel limit

that we refer to as the partial classical limit. We will show in section 4 that this partial

limit enables to determine explicitly a solution of the mirror curve equation and classical

Ooguri-Vafa invariants for an arbitrary strip geometry.

Furthermore, in section 3.3 we show that certain specializations of quiver generating

series satisfy difference equations that can be interpreted as quantum curves, and which

reduce to differential or algebraic equations in appropriate limits. We refer to operators

that implement these equations as quantum or classical A-polynomials for quivers.
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3.1 Motivic and numerical Donaldson-Thomas invariants for quivers

Let us focus on symmetric quivers with m vertices, whose structure we encode in a sym-

metric square matrix C of size m with integer entries. The element Ci,j of this matrix

denotes the number of arrows from vertex i to vertex j. To this quiver one associates a

motivic generating series, defined by

PC(x1, . . . , xm) =
∑

d1,...,dm

(−q1/2)
∑m
i,j=1 Ci,jdidj

(q; q)d1 · · · (q; q)dm
xd11 · · ·x

dm
m . (3.1)

This generating function has a product decomposition

PC(x1, . . . , xm) =
∏

(d1,...,dm) 6=0

∏
j∈Z

∞∏
k=1

(
1−

(
xd11 · · ·x

dm
m

)
qk+(j−1)/2

)(−1)j+1Ωd1,...,dm;j

, (3.2)

which defines motivic Donaldson-Thomas invariants. More precisely, motivic Donaldson-

Thomas invariants are simple redefinitions of Ωd1,...,dm;j introduced via the above decompo-

sition, as we discuss in detail in appendix A; however for brevity we also refer to Ωd1,...,dm;j

simply as motivic Donaldson-Thomas invariants. It is conjectured in [21] and proven in [28]

that motivic Donaldson-Thomas invariants (identified in appendix A), or equivalently com-

binations (−1)d1+...+dmΩd1,...,dm;j , are positive integers. Motivic Donaldson-Thomas invari-

ants Ωd1,...,dm;j of a symmetric quiver can be interpreted as the intersection Betti numbers

of the moduli space of its semisimple representations, or as the Chow-Betti numbers of the

moduli space of all simple representations [42, 43]. Interestingly, quiver generating func-

tions (3.1) take form of generalized Nahm sums [44], which may indicate their relations to

other systems in which such sums arise.

In the classical limit q → 1 motivic Donaldson-Thomas invariants reduce to numerical

Donaldson-Thomas invariants, which are encoded in the classical generating series defined

by the ratio

y(x1, . . . , xm) = lim
q→1

PC(qx1, . . . , qxm)

PC(x1, . . . , xm)
≡

∑
l1,...,lm

bl1,...,lmx
l1
1 · · ·x

lm
m . (3.3)

In what follows we refer to this limit as the complete classical limit. Numerical Donaldson-

Thomas invariants Ωd1,...,dm are then encoded in the following product decomposition of

the above classical generating series

y(x1, . . . , xm) =
∏

(d1,...,dm) 6=0

(
1− (xd11 · · ·x

dm
m )
)(d1+···+dm)Ωd1,...,dm

. (3.4)

Note that numerical Donaldson-Thomas invariants Ωd1,...,dm are combinations of the mo-

tivic ones

Ωd1,...,dm =
∑
j

(−1)jΩd1,...,dm;j . (3.5)

In [16] explicit expressions for coefficients bl1,...,lm in (3.3) and classical invariants

Ωd1,...,dm for an arbitrary symmetric quiver have been found. The former ones take form

bl1,...,lm = A(l1, . . . , lm)

m∏
j=1

(−1)(Cj,j+1)lj

1 +
∑m

i=1Ci,jli

(
1 +

∑m
i=1Ci,j
lj

)
, (3.6)
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where A(l1, . . . , lm) ≡ AC(l1, . . . , lm) are polynomials of degree m − 1 whose coefficients

depend on entries of the matrix C, and which are defined inductively by

AC(l1, . . . , lm−1, 0) = AC′(l1, . . . , lm−1)

(
1 +

m−1∑
i=1

Ci,mli

)
, (3.7)

where C ′ is the submatrix of C made of its first m−1 rows and columns, and with the initial

condition A(l1) = 1. These polynomials are defined uniquely once their invariance under

permutations σ ∈ Sm is imposed, Aσ◦C(xσ1,...,xσm ) = AC(x1, . . . , xm), where [σ ◦ C]i,j =

Cσi,σj . It also follows that y(x1, . . . , xm) ≡ yC(x1, . . . , xm) are invariant under the action

of σ ∈ Sm
yσ◦C(xσ1 , . . . , xσm) = yC(x1, . . . , xm). (3.8)

For example, for a quiver with one vertex and α loops, encoded in the matrix C = [α],

we get

bi =
(−1)(α+1)i

αi+ 1

(
αi+ 1

i

)
, (3.9)

and for a symmetric quiver with two vertices encoded in the matrix C =
[ α β
β γ

]
we find

bi,j =
(−1)(α+1)i+(γ+1)j(βi+ βj + 1)

(αi+ βj + 1)(βi+ γj + 1)

(
αi+ βj + 1

i

)(
βi+ γj + 1

j

)
. (3.10)

We write down explicit formulas for numerical Donaldson-Thomas invariants Ωd1,...,dm

in (3.23).

3.2 Partial classical limit

In the classical limit that defines the classical generating function y(x1, . . . , xm) each vari-

able xi is treated in the same way, and gets multiplied by q in PC(x1, . . . , xm) in the

numerator in (3.3). However in the context of topological string amplitudes we will con-

sider quiver generating functions in which one variable plays a special role, and it is of

interest to consider a limit in which only such variable gets multiplied by q. This motivates

us to introduce the partial classical limit of the quiver generating function

yj(x1, . . . , xm) = lim
q→1

PC(x1, . . . , xj−1, qxj , xj+1, . . . , xm)

PC(x1, . . . , xm)
≡

∑
l1,...,lm

c
(j)
l1,...,lm

xl11 · · ·x
lm
m ,

(3.11)

where in the numerator only xj is multiplied by q. A simple computation involving the

product decomposition (3.2) and then taking the classical limit shows that yj(x1, . . . , xm)

has an analogous product decomposition to (3.4)

yi(x1, . . . , xm) =
∏

(d1,...,dm) 6=0

(
1− (xd11 · · ·x

dm
m )
)diΩd1,...,dm

, (3.12)

where Ωd1,...,dm are the same numerical Donaldson-Thomas invariants as in (3.4). From this

decomposition we immediately deduce that (3.4) is simply the product of yj(x1, . . . , xm)

y(x1, . . . , xm) =
m∏
j=1

yj(x1, . . . , xm). (3.13)
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It is also easy to see that the following relations hold

yj(x1, . . . , xj−1, 0, xj+1, . . . , xn) = 1,

yj(0, . . . , 0, xj , 0, . . . , 0) = y(0, . . . , 0, xj , 0, . . . , 0).
(3.14)

The functions yj(x1, . . . , xm) ≡ yj;C(x1, . . . , xn) depend on the matrix C and for vari-

ous j they are related by symmetry operations. As above, consider a permutation σ ∈ Sm
that acts on matrices as [σ ◦C]i,j = Cσi,σj . Partial classical limits are covariant under this

symmetry operation

yj;C(x1, . . . , xm) = yσj ;σ◦C(xσ1 , . . . , xσm), (3.15)

so that all yj(x1, . . . , xm) are determined e.g. by y1(x1, . . . , xm). For example, for m = 2

and C =
[ α β
β γ

]
and C ′ =

[ γ β
β α

]
we get

y2;C(x1, x2) = y1;C′(x2, x1). (3.16)

The covariance of the partial limits under the action of the permutation group (3.15) implies

the invariance of the complete classical limit (3.8).

We now postulate explicit expressions for coefficients c
(j)
l1,...,lm

of functions (3.11). In

view of the symmetry properties discussed above, it is sufficient to determine c
(1)
l1,...,lm

. We

find that its form is similar to (3.6)

c
(1)
l1,...,lm

= A1;C(l1, . . . , lm)
m∏
j=1

(−1)(Cj,j+1)lj

δ1,j +
∑m

i=1Ci,jli

(
δ1,j +

∑m
i=1Ci,jli
lj

)
, (3.17)

where A1;C(l1, . . . , lm) is a homogeneous polynomial of degree m − 1 in variables li. This

polynomial is invariant under the action of a subset of permutations acting on all but the

first variable, it satisfies the relation

A1;C(0, l2, . . . , lm) = 0, (3.18)

and it is defined inductively

A1;C(l1, . . . , lm−1, 0) = A1;C′(l1, . . . , lm−1)

m−1∑
i=1

Ci,mli, (3.19)

where the matrix C ′ arises from removing the last row and the last column from the matrix

C. The initial condition for this recursion reads A1;C(l1) = 1. These conditions suffice to

construct polynomials A1;C(l1, . . . , lm). Note also that

c0,...,0 = 1, c0,l2,...,lm = 0 for l2, . . . , lm > 0. (3.20)

To sum up, we determined coefficients (3.17) in the expansion of the y1(x1, . . . , xm)

function defined in (3.11). We can also relate these coefficients to classical Donaldson-

Thomas invariants (3.5), which appear also in (3.12). To this end it is useful to compute

first the logarithm

log y1(x1, . . . , xm) =
∑

(d1,...,dm)>0

d
(1)
d1,...,dm

m∏
j=1

x
dj
j . (3.21)
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The coefficients in this expression are closely related to those in (3.17), analogously as

discussed in [16], and we find that they take form

d
(1)
d1,...,dm

= A1;C(d1, . . . , dm)

m∏
j=1

(−1)(Cj,j+1)dj∑m
i=1Ci,jdi

(∑m
i=1Ci,jdi
dj

)
, (3.22)

where A1;C(d1, . . . , dm) is the same polynomial as in (3.17). It then follows that the classical

Donaldson-Thomas invariants take form

Ωd1,...,dm = − 1

d1

∑
i|gcd(d1,...,dm)

µ(i)

i
d

(1)
d1/i,...,dm/i

=

= − 1

d1

∑
i|gcd(d1,...,dm)

µ(i)A1;C(d1, . . . , dm)

m∏
j=1

(−1)(Cj,j+1)dj∑m
i=1Ci,jdi

(∑m
i=1Ci,jdi/i

dj/i

)
,

(3.23)

where µ(i) is the Möbius function, and we used the fact that A1;C(d1, . . . , dm) is a homo-

geneous polynomial of degree m− 1, so that

A1;C(d1/i, . . . , dm/i)

m∏
j=1

1∑m
i=1Ci,jdi/i

= i A1;C(d1, . . . , dm)

m∏
j=1

1∑m
i=1Ci,jdi

. (3.24)

Let us illustrate the above result for quivers of small size. For m = 1 and C = [α] we

get of course the same result as in (3.9)

y1(x) = y(x) =

∞∑
i=0

(−1)(α+1)ixi

1 + αi

(
αi+ 1

i

)
. (3.25)

For m = 2 and the matrix C =
[ α β
β γ

]
we find A1;C(l1, l2) = βl1 and then

c
(1)
l1,l2

=
(−1)(α+1)l1+(γ+1)l2βl1

(αl1 + βl2 + 1)(βl1 + γl2)

(
αl1 + βl2 + 1

l1

)(
βl1 + γl2

l2

)
≡ c(1)

l1,l2
(C). (3.26)

For m = 3 and the quiver matrix

C =

α β δ

β γ ε

δ ε φ

 (3.27)

the polynomial A1;C(l1, l2, l3) reads

A1;C(l1, l2, l3) = l1(βδl1 + βεl2 + δεl3), (3.28)

and then

c
(1)
l1,l2,l3

=
(−1)(α+1)l1+(γ+1)l2+(φ+1)l3(βδ l21 + βε l1l2 + δε l1l3)

(αl1 + βl2 + δl3 + 1)(βl1 + γl2 + εl3)(δl1 + εl2 + φl3)
×

×
(
αl1 + βl2 + δl3 + 1

l1

)(
βl1 + γl2 + εl3

l2

)(
δl1 + εl2 + φl3

l3

)
.

(3.29)
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Furthermore, note that the relation (3.13) leads to interesting identities that relate

coefficients (3.6) and (3.17). For example, for m = 2, from

y(x1, x2) = y1(x1, x2)y2(x1, x2), (3.30)

and the relation (3.16) we find the following identity for coefficients of y(x1, x2) in (3.10)

and y1(x1, x2) in (3.26)

bi,j =
∑

k1+k2=i,
l1+l2=j

c
(1)
k1,l1

(C)c
(1)
l2,k2

(C ′), (3.31)

where C =
[ α β
β γ

]
and C ′ =

[ γ β
β α

]
. Explicitly, this identity reads

βi+ βj + 1

(αi+ βj + 1)(βi+ γj + 1)

(
αi+ βj + 1

i

)(
βi+ γj + 1

j

)
=

=
∑

k1+k2=i,
l1+l2=j

βk1

(αk1 + βl1 + 1)(βk1 + γl1)

(
αk1 + βl1 + 1

k1

)(
βk1 + γl1

l1

)

× βl2
(γl2 + βk2 + 1)(βl2 + αk2)

(
γl2 + βk2 + 1

l2

)(
βl2 + αk2

k2

)
.

(3.32)

Analogous identities can be easily written down for arbitrary positive integer m.

3.3 Quantum curves and A-polynomials for quivers

Quiver generating functions (3.1) are built out of quadratic powers of q and q-Pochhammers,

and depend on variables xi. Therefore they are examples of q-holonomic functions, and

it is known in general that q-holonomic functions satisfy difference equations, which we

also refer to as q-holonomic equations [45, 46]. It is therefore of interest to determine such

difference equations for quiver generating series.

Recall that one important class of q-holonomic equations are (generalizations of) quan-

tum A-polynomials for knots, which at the same time are important examples of quantum

curves [39, 47]. Furthermore, q-difference equations reduce in appropriate limits to dif-

ferential or algebraic equations. For example quantum A-polynomials for knots reduce to

classical A-polynomial algebraic equations, which on one hand encode information about

Sn-colored knot polynomials for large n, and on the other hand capture classical BPS in-

variants for knots [29]. In case of multiple variables — which arise for example for knots

colored by non-symmetric representations, or for links whose components are independently

colored — higher-dimensional quantum and classical varieties can be considered, such as

those discussed in [48, 49]. Note that via the knots-quivers correspondence, quantum A-

polynomials for knots at the same time provide difference equations for generating series

of quivers associated to knots, in this case with all variables xi identified with a single vari-

able x, as discussed in [16]. This provides an interesting example of one class of difference

equations for quivers mentioned in the previous paragraph, and motivates us to consider

more generally quantum and classical curves and higher-dimensional varieties for quivers,

which we also refer to as A-polynomials for quivers. Below we discuss basic properties of
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such objects, and in the next sections we will take advantage of these results to analyze

generating functions for quivers that are associated to branes in strip geometries.

Let us introduce operators x̂i and ŷi that satisfy the relation

x̂iŷj = qδij ŷj x̂i, (3.33)

and consider a q-series ψ(x1, . . . , xm) that depends on variables xi, on which the above

operators act as

x̂iψ(x1, . . . , xn) = xiψ(x1, . . . , xn),

ŷiψ(x1, . . . , xn) = ψ(x1, . . . , xi−1, qxi, xi+1, . . . , xn).
(3.34)

In general we may ask whether the following set of finite difference equations is satisfied

Âi(x̂1, . . . , x̂m, ŷ1, . . . , ŷm)ψ(x1, . . . , xm) = 0, i = 1, . . . ,m. (3.35)

Such equations would define a higher-dimensional quantum variety, which in the classical

limit q → 1 would reduce to a classical variety defined by a set of algebraic equations

Ai(x1, . . . , xm, y1, . . . , ym) = 0 [48, 49].

Consider now a q-series ψ(x) = PC(x1, . . . , xm) that takes form of the quiver generating

functions (3.1). It turns out that in this case we can identify separate equations that involve

only a single ŷi operator

Âi(x̂1, . . . , x̂m, ŷi)PC(x1, . . . , xm) = 0, i = 1, . . . ,m. (3.36)

In this case in the classical limit we get a set of equations

Ai(x1, . . . , xm, yi) = 0. (3.37)

These equations can be solved for yi = yi(x1, . . . , xm), which are the same functions that

arise in the partial classical limit (3.11). The functions yi(x1, . . . , xm) can be also deter-

mined from the analysis of the asymptotic expansion of the motivic generating series (3.1).

Indeed, taking advantage of the expansion of the q-Pochhammer symbol

(x; q)d ' e
1
~ (Li2(x)−Li2(qdx))+..., (3.38)

and approximating the sums over di in (3.1) by integrals over zi = e~di , we get

PC(x1, . . . , xn) '
∫
dz1 · · · dzm
z1 · · · zm

exp

(
1

~
W (x, z)

)
, (3.39)

with the potential

W (x,z) =
1

2

m∑
i,j=1

Ci,j logzi logzj+

m∑
i=1

(logzi logxi+Li2(zi)−Li2(1)+iπCi,i logzi) . (3.40)

In ~→ 0 limit we can evaluate integrals in (3.39) using the saddle point method, by finding

stationary points of the potential ∂ziW (x, z) = 0. After exponentiating, these saddle point

equations take form

1− zi = (−1)Ci, xi

n∏
j=1

z
Ci,j
j , i = 1, . . . ,m, (3.41)
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and we denote their solutions by z = (zi)i=1,...,m. It follows that the partial classical

limit (3.11) can be also evaluated as

yi(x1, . . . , xn) = e∂xiW (x,z) = zi. (3.42)

Moreover, the complete classical limit (3.3) is simply

y(x1, . . . , xn) = e
∑m
i=1 ∂xiW (x,z) =

m∏
j=1

zi. (3.43)

The last two equations imply that y(x1, . . . , xm) factorizes into

y(x1, . . . , xn) =

m∏
i=1

yi(x1, . . . , xm), (3.44)

in agreement with (3.13).

In what follows we will analyze quantum and classical A-polynomials for those quiv-

ers, which we will associate to strip geometries. We will discuss the relation of these

A-polynomials to quantum and classical mirror curves for strip geometries. Moreover, in

view of the relation of partition functions for branes in strip geometries to generalized

q-hypergeometric functions (2.24), we will also see that A-polynomials for corresponding

quivers are related to q-hypergeometric equations (2.27) and their limits.

4 Topological strings and quivers

In this section we derive the main result of this work, which is the statement that to a

brane in a strip geometry one can associate the corresponding quiver, such that various

characteristics of this brane (its partition function, BPS invariants, etc.) are encoded in

the moduli space of representations of the corresponding quiver. We also propose the

interpretation of vertices of this quiver, as corresponding to discs that represent open BPS

states associated to a given strip geometry. Furthermore, we relate quantum and classical

mirror curves to A-polynomials for quivers, derive explicit expressions for classical BPS

invariants for an arbitrary strip geometry, and discuss constraints on the structure of BPS

invariants for strip geometries that follow from the quiver interpretation.

4.1 Brane amplitudes as quiver generating functions

To start with, recall that we derived the following expression for the brane generating

function in a strip geometry (2.23)

ψf (x) =
∞∑
n=0

(
(−1)nqn(n−1)/2

)f+1 xn

(q; q)n

(α1; q)n(α2; q)n · · · (αr; q)n
(β1; q)n(β2; q)n · · · (βs; q)n

, (4.1)

where x is the open string generating parameter, and αi and βj are appropriate products

of Kähler parameters Qk that characterize the underlying strip geometry. This amplitude

is nothing but a simple generalization of the definition of the q-hypergeometric function,
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which arises from the above formula once the framing f = s − r is chosen (2.24). We

now show that this generating function can be rewritten in the form of the motivic quiver

generating function (3.1). To this end note that the following expansions of the quantum

dilogarithm and its inverse

(α; q)∞ =
∞∑
i=0

(−1)iqi(i−1)/2αi

(q; q)i
,

1

(α; q)∞
=
∞∑
i=0

αi

(q; q)i
, (4.2)

enable to rewrite q-Pochhammers (αi; q)n and their inverses (βj ; q)
−1
n in (4.1) in the form

(α; q)n =
(α; q)∞

(αqn; q)∞
=
∑
i,j

(−q−1/2α)iαj
qi

2/2+jn

(q; q)i(q; q)j
,

1

(β; q)n
=

(βqn; q)∞
(β; q)∞

=
∑
i,j

(−q−1/2β)iβj
qi

2/2+in

(q; q)i(q; q)j
.

(4.3)

Expanding all q-Pochhammers in (4.1) in this way and comparing the resulting expression

with (3.1), we find that the brane generating function can be written in the form of the

quiver generating series

ψf (x) = PC(q−(f+1)/2x, q−1/2α1, α1, . . . , q
−1/2αr, αr, q

−1/2β1, β1, . . . , q
−1/2βs, βs), (4.4)

for a quiver whose structure is encoded by the symmetric matrix of size 2(r + s) + 1

C =



f + 1 0 1 . . . 0 1 1 0 . . . 1 0

0 1 0 . . . 0 0 0 . . . 0

1 0 0 . . . 0 0 0 . . . 0
...

. . .
. . .

0 0 0 . . . 1 0 0 . . . 0

1 0 0 . . . 0 0 0 . . . 0

1 0 . . . 0 1 0 . . . 0 0

0 0 . . . 0 0 0 . . . 0 0
...

. . .
. . .

1 0 . . . 0 0 . . . 1 0

0 0 . . . 0 0 0 . . . 0 0



. (4.5)

In more detail, this matrix has non-zero entries only in the first row, the first column,

and along the diagonal. The first row, and analogously the first column, consist of the

first entry f + 1, followed by r pairs of entries (0, 1), and then s pairs of entries (1, 0).

The diagonal consist of the first entry f + 1, followed by r + s pairs of entries (1, 0). The

structure of this matrix simply follows from the quadratic powers of q in (4.3) and the

framing factor in (4.1).

In particular, for f = s−r we find the following quiver representation of the generalized

q-hypergeometric function

rφs

[
α1, α2, . . . , αr
β1, . . . , βr

; q, x

]
=

= PC(q(r−s−1)/2x, q−1/2α1, α1, . . . , q
−1/2αr, αr, q

−1/2β1, β1, . . . , q
−1/2βs, βs).

(4.6)
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This form implies new interesting properties of generalized q-hypergeometric functions, and

so also ordinary generalized hypergeometric functions.

Furthermore, note that the size of the above matrix 2(r + s) + 1, which is equal

to the number of vertices in the quiver, indicates the interpretation of these vertices as

corresponding to discs associated with each strip geometry, which represent open BPS

states. Recall that to each local P1 one can associate two local discs wrapping its two

hemispheres — for the resolved conifold they are captured by two non-zero BPS invariants,

and they also represent two HOMFLY-PT homology generators of the unknot in knot

theory interpretation. Analogously, a single brane in C3 captures just one disc, representing

a single BPS state. A strip geometry labeled by a pair (r, s) consists of r+ s local P1’s, so

together with one additional disc associated to the brane it then indeed encodes 2(r+s)+1

fundamental discs representing open BPS states, in agreement with the size of the matrix

C. Moreover, the fact that changing framing changes the number of loops only at one

vertex, which corresponds to the entry C1,1 of the quiver matrix and can be associated to

the brane under consideration (and not any other P1), supports this interpretation. Note

that a similar identification of vertices of a quiver corresponding to a knot is proposed in

the context of knots-quivers correspondence in [17].

We note that we can also represent brane amplitudes (4.1) in terms of quivers of smaller

size. When rewriting factors (α; q)n and (β; q)−1
n in (4.3) we can keep the factors (α; q)∞

and (β, q)∞, which equivalently arise from partial resummations in ψf (x). It follows that

ψf (x) =

∏r
j=1(αj ; q)∞∏s
j=1(βj ; q)∞

× PC′
(
q(r−s−1)/2x, α1, . . . , αr, q

−1/2β1, . . . , q
−1/2βs

)
, (4.7)

where a quiver matrix C ′ is of size (r + s+ 1), and it is obtained from C by removing all

rows and columns (other than the first one) whose first entry is zero:

C ′ =



f + 1 1 . . . 1 1 . . . 1

1 0 . . . 0 0 . . . 0
...

. . .
. . .

1 0 . . . 0 0 . . . 0

1 0 . . . 0 1 . . . 0
...

. . .
. . .

1 0 . . . 0 0 . . . 1


. (4.8)

In the rest of this section we discuss several consequences of the relation between topo-

logical string amplitudes for strip geometries and quivers. However, before proceeding,

let us also stress, that while the above relation is analogous to the knots-quivers corre-

spondence [11, 12], there are also several important differences. First, the brane partition

function ψf (x) depends on the modulus x, which is identified only with one generating

parameter x1 of the quiver generating function (4.4), while in the knots-quivers correspon-

dence all quiver generating parameters x1, . . . , xm are proportional to x. On the other

hand, in the present context quiver generating parameters x2, . . . , xm are identified with
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combinations of a number of closed string moduli encoded in αi and βj , while in the knots-

quivers correspondence only one additional variable a of HOMFLY-PT polynomials had to

be taken into account. As already mentioned, for strip geometries the change of framing

changes the number of loops only at one vertex, while for knots it changes by the same

amount the number of loops at each vertex of the corresponding quiver. Because of these

differences, certain aspects of the relation between strip geometries and quivers are different

than in the knots-quivers correspondence.

4.2 Quantum curves and A-polynomials

As we just stressed, and as seen in (4.4), for strip geometries only the first variable x1 in the

motivic generating series is identified with the brane modulus x. Therefore ψf (x) must be

annihilated by the partial Â1 operator in (3.36), with appropriate identification of other pa-

rameters. On the other hand, we have already shown that brane partition functions for strip

geometries (4.1) are annihilated by the operators Â(x̂, ŷ) of the form (2.27). This means

that these two operators, with the identification of parameters as in (4.4), must be equal

Â(x̂, ŷ) = Â1

(
q−(f+1)/2x̂, q−1/2α1, α1, . . . , q

−1/2αr, αr, q
−1/2β1, β1, . . . , q

−1/2βs, βs, ŷ
)
,

(4.9)

and in consequence equations defining mirror curves (2.29) also take form

A(x, y) = A1(x, α1, α1, . . . , αr, αr, β1, β1, . . . , βs, βs, y), (4.10)

with A1(x1, . . . , xm, y1) given in (3.37). In section 5 we will illustrate in various examples

that this is indeed the case.

Moreover, in view of our results concerning the partial classical limit introduced in

section 3.2, we can now write down explicit and exact expressions for the coefficients of

the series

y = y(x) =
∞∑
i=0

cix
i (4.11)

that is a solution of the mirror curve equation A(x, y) = 0 in (2.29), for an arbitrary

strip geometry. Indeed, the coefficients of the function that solves the partial equation

A1(x1, . . . , xm, y1) = 0 in (3.37) are given in (3.17). We can now determine these coefficients

for an arbitrary matrix C in (4.5), or equivalently C ′ in (4.8), corresponding to a given

strip geometry. In view of the identification (4.10), and — using the form C ′ in (4.8) —

identifying quiver variables as

x1 = x, x2 = α1, . . . , x1+r = αr, x2+r = β1, . . . , x1+r+s = βs, (4.12)

and denoting |l| =
∑

j lj , we find

ci =
∑
l1,...,lr

∑
k1,...,ks

(−1)fi

1 + (f + 1)i+ |l|+ |k|

(
1 + (f + 1)i+ |l|+ |k|

i

)
×

×
r∏
j=1

(−1)lj
(
i

lj

)
α
lj
j

s∏
j=1

i

i+ kj

(
i+ kj
kj

)
β
kj
j .

(4.13)
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4.3 BPS invariants and their structure

The fact that brane partition functions can be expressed in terms of motivic generating

functions for quivers has important consequences. First, the product decomposition of

the brane partition function (2.10) into quantum dilogarithms is analogous to the product

decomposition of the quiver generating function (3.2). It follows that open BPS (Ooguri-

Vafa) invariants Nn,β,j can be expressed as combinations, with integer coefficients, of mo-

tivic Donaldson-Thomas invariants Ωd1,...,dm;j . This immediately proves that open BPS

invariants for strip geometries are integer — and this is an important conclusion in itself.

Moreover, using the results from section 3.2 we can write down explicit expressions for

classical BPS invariants for an arbitrary strip geometry. For a quiver C ′ in (4.8), with the

same identification of parameters as in (4.12), the product decomposition (3.12) takes form

y(x, α1, . . . , αr, β1, . . . , βs) =
∏

(n,l,k)>0

(
1− xnαl11 · · ·α

lr
r β

k1
1 · · ·β

ks
s

)nΩn,l,k
, (4.14)

where we now denote the sets of indices as l = (l1, . . . , lr),k = (k1, . . . , ks). The classical

Donaldson-Thomas invariants (3.5)

Ωn,l,k =
∑
j

(−1)jΩn,l,k;j , (4.15)

can be expressed through the coefficients (4.13). To this end we compute the logarithm

of (4.14), on one hand, as

log y(x) =
∑
n,l,k

 ∑
i|gcd(n,l,k)

n

i2
Ωn/i,l/i,k/i

xnαl11 · · ·α
lr
r β

k1
1 · · ·β

ks
s . (4.16)

On the other hand, the same logarithm arises as specialization of (3.21) to (4.8) and (4.10)

log y(x) =
∑
n,l,k

dn,l,k x
n

r∏
j=1

α
lj
j

s∏
j=1

β
kj
j , (4.17)

so that the coefficients (3.22) take form

dn,l,k =
(−1)fn

(f + 1)n+ |l|+ |k|

(
(f + 1)n+ |l|+ |k|

n

) r∏
j=1

(−1)lj
(
n

lj

) s∏
j=1

n

n+ kj

(
n+ kj
kj

)
.

(4.18)

Comparing coefficients in (4.16) and (4.17), or equivalently specializing (3.23) to (4.8)

and (4.10), we find

Ωn,l,k = − 1

n

∑
i|gcd(n,l,k)

µ(i)

i
dn/i,l/i,k/i =

= − 1

n

∑
i|gcd(n,l,k)

(−1)fn/iµ(i)

(f + 1)n+ |l|+ |k|

(
((f + 1)n+ |l|+ |k|) /i

n/i

)
×

×
r∏
j=1

(−1)lj/i
(
n/i

lj/i

) s∏
j=1

n

n+ kj

(
(n+ kj)/i

kj/i

)
.

(4.19)
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This is an explicit expression for open BPS invariants of an arbitrary strip geometry, in

arbitrary framing. Note that this formula gives a large set of integrality statements — as

Ωn,l,k are classical Donaldson-Thomas invariants for the quiver (4.8) we know that they

are integer, despite the factor of 1/n and other denominators. This vastly generalizes anal-

ogous results for the framed unknot, or equivalently a brane in C3 or resolved conifold,

presented in [14, 29]. It would also be interesting to provide a purely number theoretic

proof of integrality of (4.19), generalizing the proof for the extremal unknot invariants (or

equivalently a brane in C3) in [30]; and it is of interest to relate these integrality statements

to the formalism of [50].

Note that we determined classical BPS invariants (4.19) upon the analysis of the func-

tion (4.14), which satisfies mirror curve equation (4.10). As for strip geometries we also

know the form of the quantum curve (2.27), in principle one could construct statistical mod-

els for quantum BPS states and identify corresponding invariants, following the formalism

presented in [13].

Furthermore, we can get some insight into the structure of quantum BPS states more

directly. The fact that brane partition functions for strip geometries take form similar

(just “framed”) to generalized q-hypergeometric functions (4.1), for which the limit (2.34)

exists, already imposes non-trivial constraints on the form of BPS invariants and motivic

Donaldson-Thomas invariants of the corresponding quiver. Indeed, brane partition func-

tions in the decomposition (2.10) or (3.2) are products of quantum dilogarithms. In view

of the asymptotics (3.38), in the limit q = e~ → 1 these functions behave as

ψf (x) ∼ exp

1

~
∑

Li2

x#
∏
i

α#
i

∏
j

β#
j

+O(1) + . . .

 , (4.20)

where # denote certain powers. At first sight this is a singular behavior. Nonetheless,

we know that the non-singular limit (2.34) exists, in which ψ̃ = 1 + O(x). This means,

that the singular 1
~ behavior in (4.20) must cancel. Such a cancellation may arise in two

ways. First, this may follow from the rescaling (2.31), if only 1 + s − r 6= 0; in this case

(q − 1) = ~ + . . ., and altogether after the rescaling x may be multiplied by a non-zero

power of ~. We can then expand Li2(~c1xc2) = ~c1xc2 + . . ., and if here c1 = 1, we get

a cancellation with the overall 1
~ in (4.20), and we get a non-trivial contribution; on the

other hand, for c1 > 1 we will get no contribution in ~→ 0 limit.

The second possibility to cancel 1
~ behavior in (4.20) arises when an intricate relation

between Ωd1,...,dm;j holds, such that several dilogarithm terms cancel each other in the limit

~ → 1. In particular such a behavior must happen when 1 + s − r = 0 in (2.31), as in

this case x cannot get accompanied by any factor of ~, and the only possibility to cancel 1
~

behavior is to cancel dilogarithm terms among themselves.

Moreover, additional constraints on BPS invariants can be deduced from the form of

the differential equation (2.32) that arises in the above limit.

As an illustration of the above statements, consider a quiver with one vertex and α

loops, determined by the matrix C = [α], and suppose that its motivic generating function
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has a product decomposition (3.2) of the form

Pα(x) =

∞∑
d=0

(−q1/2)αd
2

(q; q)d
xd =

∏
d>0

∏
j∈Z

(xdq(j+1)/2; q)
(−1)j+1Ωd;j
∞ . (4.21)

From the asymptotics

(x; q)∞ = exp

(
1

~
Li2(x) +

1

2
log(1− x) +O(~)

)
(4.22)

(which also implies (3.38)) it follows that

Pα(x) = exp

∑
d>0

∑
j∈Z

(−1)j+1Ωd;j

(
1

~
Li2(xd)− j

2
log(1− xd) +O(~)

) . (4.23)

For this limit to exist, there are two possibilities. First, if x would be rescaled as x →
(q − 1)x = ~x + . . ., in the limit the only contribution would arise from the dilogarithm

terms for d = 1, and we would get the exponential function

P̃α(x) = lim
~→0

Pα((q − 1)x) = exp

x∑
j∈Z

(−1)j+1Ω1;j

 . (4.24)

Furthermore, the generating series (4.21) satisfies the difference equation easily obtained

from (2.27) (
1− ŷ − (−1)αqα/2x̂ŷα

)
Pα(x) = 0. (4.25)

Writing ŷ = e~x∂x , rescaling x→ (q−1)x = ~x+ . . ., and taking ~→ 0 limit, this equation

reduces to (
∂x + (−1)α

)
P̃α(x) = 0. (4.26)

The solution of this last equation is e−(−1)αx. It then follows that the coefficient in the

exponent in (4.24) must satisfy ∑
j∈Z

(−1)j+1Ω1;j = −(−1)α. (4.27)

This imposes an additional non-trivial condition on coefficients Ω1;j .

On the other hand, if we assume that the limit ~→ 0 exists but x is not rescaled, we

must require that all dilogarithm terms in (4.23) cancel among each other∑
j∈Z

(−1)j+1Ωd;j = 0 ∀ d > 0. (4.28)

In this case in the ~→ 0 limit we would get the result of the form

lim
~→0

PC(x) =
∏
d>0

(1− xd)−
1
2

∑
j∈Z(−1)j+1jΩd;j . (4.29)
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However in the limit ~ → 0, without rescaling of x, the equation (4.25) does not reduce

to a meaningful differential equation. Therefore, if we insist the such differential equation

should exist, this indicates that x must be rescaled, as analyzed first.

As another example we consider a quiver with 3 vertices, encoded in a matrix C.

Suppose we identify the generating parameters as x1 = x, x2 = qa1 , and x3 = qa2 . We then

find

PC(x, qa1 , qa2) = exp

( ∑
d1,d2,d3

∑
j∈Z

(−1)j+1Ωd1,d2,d3;j×

×
(

1

~
Li2(xd1)− (j + a1d2 + a2d3) log(1− xd1) +O(~)

))
.

(4.30)

If we do not rescale x, in order to avoid a singular behavior we must impose the condition∑
d2,d3

∑
j∈Z

(−1)jΩd1,d2,d3;j = 0 ∀d1, (4.31)

and then in the limit q → 1 we get

lim
q→1

PC(x, qa1 , qa2) =
∏
d1>0

(1− xd1)
∑
d2,d3

∑
j∈Z(−1)jΩd1,d2,d3;j(j+a1d1+a2d2)

. (4.32)

5 Examples

In this section we illustrate various results found above in several examples of strip geome-

tries. It is convenient to label these examples by a pair of integers (r, s), which indicates

their relation to generalized q-hypergeometric functions rφs[ · · · ; q, x]. We identify corre-

sponding quivers, BPS invariants, quantum varieties and A-polynomials, and analyze their

classical limits.

5.1 C3 geometry (r = 0, s = 0)

To start with we consider C3, the simplest toric geometry, whose diagram is shown in

figure 3. It is well known that brane amplitudes in this case encode extremal colored

HOMFLY-PT invariants of the unknot, and the corresponding quiver consists of one vertex

and an arbitrary number of loops, which corresponds to the choice of framing f [11, 12, 41].

The quiver matrix (4.5) is simply C = [f + 1] for arbitrary framing f , and the motivic

quiver generating function (which is just (4.21) with α = f + 1), and the brane partition

function (4.4), respectively take form

PC(x) =
∑
d

(−1)(f+1)dxd
q(f+1)d2/2

(q; q)d
, ψf (x) = PC(q−(f+1)/2x). (5.1)

Even though this is the simplest quiver generating function, for generic values of f it

encodes an infinite number of motivic Donaldson-Thomas invariants (3.2). However for a
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Figure 3. C3.

special choice of f = 0, taking advantage of (4.2), the above sum is an expansion of a single

quantum dilogarithm, and comparing with (3.2)

PC=[1](x) = (q1/2x; q)∞ ≡
∏
d,j

∞∏
k=1

(1− xdqk+(j−1)/2)(−1)j+1Ωd;j (5.2)

it follows that it encodes a single motivic Donaldson-Thomas invariant Ω1;0 = −1; note

that its value is consistent with the constraint (4.27). At the same time, ψf=0(x) is the

simplest example of the q-hypergeometric function (2.24)

ψf=0(x) = (x; q)∞ = 0φ0[ · ; q, x]. (5.3)

For C3 geometry the quantum curve operator that annihilates the brane amplit-

due (2.27) takes form

Â(x̂, ŷ) = 1− ŷ + (−1)f x̂ŷf+1, Â(x̂, ŷ)ψf (x) = 0, (5.4)

and it reduces to the q-hypergeometric equation for f = 0

(1− x)ψf=0(qx)− ψf=0(x) = 0. (5.5)

In the classical limit the quantum curve reduces to the classical mirror curve

A(x, y) = 1− y + (−1)fxyf+1 = 0, (5.6)

and the solution of this equation for y immediately follows from (4.13)

y = y(x) =
∞∑
i=0

(−1)fi

1 + (f + 1)i

(
1 + (f + 1)i

i

)
xi, (5.7)

which nicely illustrates the power of the partial classical limit that led to (4.13). Further-

more, in this case classical BPS invariants (4.19) take form

Ωn = − 1

(f + 1)n2

∑
i|n

µ(i)(−1)fi
(

(f + 1)i

i

)
. (5.8)
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Figure 4. Conifold.

Recall now the well known statement
∑

i|n µ(i) =
{

1 for n=1
0 for n>1 , which implies that for fram-

ing f = 0 we get

Ωn = − 1

n2

∑
i|n

µ(i) =

{
−1 for n = 1

0 for n > 1
(5.9)

This means that there is only one non-zero classical BPS state Ω1 = −1, which is consistent

with (3.5) and having only one non-zero motivic Donaldson-Thomas invariant Ω1;0 = −1,

as mentioned below (5.2).

Finally, the quantum curve is reduced to a differential equation upon the rescal-

ing (2.31)

(∂x − (−1)fx)ψ̃f (x) = 0, (5.10)

and for f = 0 its solution ψ̃f=0(x) is the simplest hypergeometric function (2.35)

ψ̃f=0(x) = rFs[ · ;x] = ex. (5.11)

5.2 Resolved conifold (r = 1, s = 0)

The second example we consider is the resolved conifold, whose toric diagram is shown in

figure 4. In this case the quiver matrix C in (4.5), and the reduced matrix C ′ introduced

in (4.7), take form

Cr=1,s=0 =

f + 1 0 1

0 1 0

1 0 0

 C ′r=1,s=0 =

[
f + 1 1

1 0

]
(5.12)

Note that C is a different quiver (however it leads to the same generating function

upon appropriate identification of parameters) than the one identified in [12], which had

two vertices.

It is known that the brane amplitude in the resolved conifold geometry encodes colored

HOMFLY-PT polynomials (without taking the extremal limit), and for special framing

(f = −1 in our convention) the partition function can be resummed into a product of two

quantum dilogarithms, which represent two BPS states. The brane partition function in
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this case depends just on two parameters, x (brane modulus) and α = Q (conifold Kähler

parameter). However, once considered as the quiver generating function, it arises from the

identification of quiver generating parameters as in (4.4). In this case the quiver C has

three vertices, and its quiver generating function (3.1) provides the refinement of the brane

amplitude ψf (x), and BPS invariants in particular. Indeed in framing f = −1, the general

(without parameter identification) quiver generating series can be resummed to

PC;f=−1(x1, x2, x3) =
(q1/2x2; q)∞(x1x3; q)∞

(x1; q)∞(x3; q)∞
. (5.13)

This means that there are four motivic Donaldson-Thomas invariants associated to this

quiver

Ω1,0,0;−1 = −1, Ω0,1,0;0 = −1, Ω0,0,1;−1 = −1, Ω1,0,1;−1 = 1. (5.14)

As a consistency check, note that these invariants indeed satisfy the condition (4.31).

On the other hand, the brane partition function ψf (x) arises from the identification of

parameters as in (4.4), and for f = −1 it reduces to the q-hypergeometric function (2.24)

with α = Q

ψf=−1(x) = PC(x, q−1/2α, α) = 1φ0

[
α

·
; q, x

]
=

∞∑
n=0

(α; q)n
(q; q)n

xn =
(αx; q)∞
(x; q)∞

. (5.15)

This is indeed well known product representation of the brane partition function in the

conifold, which captures two BPS states that arise from the cancellation of the other two

among those in (5.14). The last equality in (5.15) is known as the q-binomial theorem.

In this example we can also identify difference operators (3.36) that annihilate the

quiver generating function (5.13). For f = −1 we find that they take form

Â1(x̂1, x̂2, x̂3, ŷ1) = (1− x̂1x̂3)ŷ1 − 1 + x̂1, (5.16)

Â2(x̂1, x̂2, x̂3, ŷ2) = (1− q1/2x̂2)ŷ2 − 1, (5.17)

Â3(x̂1, x̂2, x̂3, ŷ3) = (1− x̂1x̂3)ŷ3 − 1 + x̂1, (5.18)

and in q → 1 limit they reduce to classical partial A-polynomials

A1(x1, x2, x3, y1) = (1− x1x3)y1 − 1 + x1, (5.19)

A2(x1, x2, x3, y2) = (1− x2)y2 − 1, (5.20)

A3(x1, x2, x3, y3) = (1− x1x3)y3 − 1 + x1. (5.21)

Because in the identification (4.4) it is just x1 which is identified with the brane modulus x,

it follows that an ordinary quantum A-polynomial that annihilates the unknot generating

function (5.15) is identified simply with Â1 and reads

Â(x̂, ŷ) = Â1(x̂, q−1/2α, α, ŷ) = (1− αx̂)ŷ − 1 + x̂. (5.22)

As a check, this indeed agrees with (4.9), and in the classical limit this operator reduces

to the well known conifold mirror curve

A(x, y) = y − αxy + x− 1 = 0. (5.23)
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Figure 5. C3/Z2.

The coefficients of the series y =
∑

i,j ci,jx
iαj solving this equation follow from (4.13)

ci,j =
(−1)i+j

1 + j

(
j + 1

i

)(
i

j

)
=

{
−1 for j = i− 1

1 for j = i
, for i ≥ 1, (5.24)

so that

y =
∑
i,j

ci,jx
iαj = 1−

∞∑
i=1

xi(1− α)αi−1 =
1− x

1− αx
, (5.25)

which of course reproduces a direct solution of (5.23). One can also check that for f = −1

there are only two (associated to C ′ in (5.12)) non-zero classical BPS numbers (4.19), i.e.

Ω1,0 = −1 and Ω1,1 = 1.

Finally consider the limit that turns (5.15) into an ordinary hypergeometric function.

In the present example 1+s−r = 0, so the variable x is not rescaled, and we identify α = qa

as in (2.31). The quantum curve (5.22) reduces then to the hypergeometric equation (2.32)

(∂x − x∂x − a)ψ̃f=−1(x) = 0, (5.26)

whose solution is the hypergeometric function 1F0, which indeed reproduces (4.32) with

qa1 ≡ qa−1/2 and qa2 ≡ qa

ψ̃f=−1(x) = 1F0

[
a

·
;x

]
= (1− x)−a. (5.27)

5.3 Resolution of C3/Z2 (r = 0, s = 1)

The next example we consider is the resolution of C3/Z2, see figure 5, characterized by

one Kähler parameter β = Q. In this case the corresponding quiver C and its reduced

counterpart C ′ take form

Cr=0,s=1 =

f + 1 1 0

1 1 0

0 0 0

 C ′r=0,s=1 =

[
f + 1 1

1 1

]
(5.28)

In this case the framing that gives rise to the q-hypergeometric function is equal to

f = s− r = 1, and in this case the partition function cannot be represented as a product

– 33 –



J
H
E
P
0
1
(
2
0
1
9
)
1
2
4

of a finite number of quantum dilogarithms. It only has a representation as an infinite

product of quantum dilogarithms. The brane partition function in the representation (4.7)

takes form

ψf=1(x) = 0φ1

[
·
β

; q, x

]
=

1

(β; q)∞
PC′(q

−1x, q−1/2β). (5.29)

The product decomposition (3.2) of the motivic generating function for the quiver C ′ reads

P ′C(x1,x2) =
(q2x2

1;q)(q1/2x2;q)(q5/2x2
1x2;q)(q7/2x2

1x2;q)(q3x2
1x

2
2;q)2(q4x2

1x
2
2;q)(q5x2

1x
2
2;q)

(qx1;q)(q3/2x1x2;q)(q2x1x2
2;q)

+

+O(x3
1,x

3
2), (5.30)

which implies that several first motivic Donaldson-Thomas invariants associated to C ′ are

Ω1,0;1 = −1, Ω0,1;0 = −1, Ω1,1;2 = 1, Ω2,0;3 = 1, Ω2,1;4 = −1,

Ω2,1;6 = −1, Ω1,2;3 = −1, Ω2,2;5 = 2, Ω2,2;7 = 1, Ω2,2;9 = 1.
(5.31)

After the identification of variables x1 = q−1x and x2 = q−1/2β the factor corresponding

to the BPS number Ω0,1;0 cancel with the prefactor (β; q)∞.

In this example we can also identify partial quantum A-polynomials that annihilate

PC;f=1(x1, x2, x3); they take form

Â1(x̂1, x̂2, x̂3, ŷ1) = (qx̂1 − q−1/2x̂2)y2
1 + (1 + q−1/2x̂2)ŷ1 − 1, (5.32)

Â2(x̂1, x̂2, x̂3, ŷ2) = x̂1ŷ
2
2 − (q2x̂2

2 − q3/2x̂2 + qx̂1 + x̂1)ŷ2 + (qx̂1 − q3/2x̂2), (5.33)

Â3(x̂1, x̂2, x̂3, ŷ3) = ŷ3 + x̂3 − 1. (5.34)

The first of these operators, under the identification x̂1 = q−1x̂, x2 = q−1/2β, and ŷ1 = ŷ,

reduces to the quantum A-polynomial that annihilates the brane partition function

Â(x̂, ŷ) = (x̂− q−1β)ŷ2 + (1 + q−1β)ŷ − 1, (5.35)

in agreement with (2.27), and in q → 1 limit we get the mirror curve

A(x, y) = (x− β)y2 + (1 + β)y − 1 = 0. (5.36)

The solution of this equation for y = y(x) follows from (4.13) and of course it reproduces

explicit solution of the quadratic equation

y(x) =
∑
i,j

(−1)3i+2ji

(i+ j)(2i+ j + 1)

(
2i+ j + 1

i

)(
i+ j

j

)
xiβj =

−1− β +
√

1 + 4x− 2β + β2

2(x− β)
.

(5.37)

Furthermore, classical BPS numbers (4.19) (associated to C ′ in (5.28)) take form

Ω1,k = −1,−1,−1,−1,−1, . . . ,

Ω2,k = 1, 2, 4, 6, 9, 12, . . . ,

Ω3,k = −1,−5,−14,−31,−60,−105, . . .

(5.38)

etc., in agreement with (3.5) and (5.31).
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Figure 6. AAB, 1φ1.

On the other hand, in the limit that leads to a differential equation, in (2.31) we need

to rescale x → (q − 1)2x and identify β = qb. The quantum curve (5.35) reduces then to

the hypergeometric equation (2.32)

(x∂2
x + b∂x − 1)ψ̃f=1(x) = 0, (5.39)

whose solution is the hypergeometric function (2.35)

ψ̃f=1(x) = 0F1

[
·
b
;x

]
=

∞∑
n=0

xn

n!(b)n
. (5.40)

5.4 Two Kähler parameters (r = 1, s = 1)

As the next example we consider strip geometries with two Kähler parameters, for which

a brane partition function is expressed in terms of the hypergeometric function 1φ1 with

one argument α and one argument β. There are in fact two such manifolds, whose toric

diagrams are shown in figure 6. The first one includes two curves of type (−1,−1), and

was called a double-P1 in [51]. The second one has one curve of type (−2, 0) and the other

one of type (−1,−1). These two geometries are related by the flop transition on Q2. Even

though brane partition functions for these two geometries are expressed in terms of the same

function 1φ1, the identification of parameters is different in these two cases. Namely, in the

former case, we set α = Q1 and β = Q1Q2. In the latter case we set α = Q1Q2 and β = Q1.

The quiver matrix (4.5) and its reduced form for these manifolds read

Cr=1,s=1 =


f + 1 0 1 1 0

0 1 0 0 0

1 0 0 0 0

1 0 0 1 0

0 0 0 0 0

 C ′r=1,s=1 =

f + 1 1 1

1 0 0

1 0 1

 (5.41)
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For f = 0 the motivic Donaldson-Thomas invariants associated to the quiver C ′ take form

Ω1,0,0;0 = −1, Ω0,1,0;−1 = −1, Ω1,0,1;1 = 1, Ω1,1,0;0 = 1,

Ω1,0,1;1 = 1, Ω1,1,1;1 = −1, Ω1,0,2;2 = −1, Ω1,1,2;2 = −1,

Ω1,1,2;2 = 2, Ω2,0,1;2 = −1, Ω2,0,2;3 = 1, Ω2,0,2;5 = 1,

(5.42)

etc., and the brane partition function is expressed in terms of the q-hypergeometric function

ψf=0(x) = 1φ1

[
α

β
; q, x

]
. (5.43)

The partial quantum A-polynomial Â1 that annihilates the motivic generating func-

tion (3.1) for the quiver (5.41) is

Â1(x̂1, . . . , x̂5, ŷ1) = (−q1/2x̂1x̂3 + q−1/2x̂4)ŷ2
1 − (1− q1/2x̂1 + q−1/2x̂4)ŷ1 + 1. (5.44)

Changing parameters as in (4.6) this operator reduces to the quantum A-polynomial that

annihilates ψf=0(x)

Â(x̂, ŷ) = (−αx̂+ q−1β)ŷ2 − (1− x̂+ q−1β)ŷ + 1, (5.45)

in agreement with (2.27) and (4.9), and for q → 1 it reduces to the mirror curve

A(x, y) = (−αx+ β)y2 − (1− x+ β)y + 1 = 0. (5.46)

The solution of this equation for y = y(x) again follows from (4.13)

y(x) =
∑
i,j,k

(−1)ji

(i+ k)(i+ j + k + 1

(
i

j

)(
i+ k

k

)(
i+ j + k + 1

i

)
xiαjβk =

=
−1 + x− β +

√
(−1 + x− β)2 + 4(αx− β)

2(αx− β)
.

(5.47)

Classical BPS invariants (4.19) in the case read

Ω1,0,k = 1, Ω1,1,k = −1, Ω1,j,k = 0, for j ≥ 2,

Ω2,0,k = 0, 1, 2, 4, 6, 9, . . . , Ω2,1,k = −1,−3,−6,−10,−15,−21, . . . ,

Ω2,2,k = 1, 2, 4, 6, 9, 12, . . . , Ω2,j,k = 0, forj ≥ 3, . . .

(5.48)

etc., in agreement with (3.5) and (5.42).

Furthermore, rescaling x→ (q−1)x and setting α = qa and β = qb according to (2.31),

in the limit q → 1, for f = 0, the above quantum curve reduces to the hypergeometric

equation

(x∂2
x + (b− x)∂x − a)ψ̃f=0(x), (5.49)

and the partition function reduces to the hypergeometric function

ψ̃f=0(x) = 1F1

[
a

b
;x

]
=
∞∑
n=0

(a)n
n!(b)n

xn. (5.50)

– 36 –



J
H
E
P
0
1
(
2
0
1
9
)
1
2
4

Figure 7. ABB, 2φ0.

5.5 Two other Kähler parameters (r = 2, s = 0)

Now we consider another strip geometry with two Kähler parameters, shown in figure 7.

In this case we identify parameters as α1 = Q1 and α2 = Q1Q2. We find that the full and

reduced quiver matrices take form

C =


f + 1 0 1 0 1

0 1 0 0 0

1 0 0 0 0

0 0 0 1 0

1 0 0 0 0

 C ′ =

f + 1 1 1

1 0 0

1 0 0

 (5.51)

For framing f = s − r = −2 the motivic Donaldson-Thomas invariants for the series

PC′(x1, x2, x3) associated to the quiver C ′ take form

Ω1,0,0;−2 = −1, Ω0,1,0;−1 = −1, Ω0,0,1;−1 = −1, Ω1,1,0;−2 = 1, Ω1,0,1,−2 = 1,

Ω1,1,1;−2 = −1, Ω2,0,0;−5 = −1, Ω2,1,0;−5 = 1, Ω2,0,1;−5 = 1, Ω2,1,1;−5 = −1,
(5.52)

etc., which are identified with BPS number upon the identification of parameters (4.6).

For f = −2 the brane partition function takes form of the q-hypergeometric function

ψf=−2(x) = (α1; q)∞(α2; q)∞ PC′(q
1/2x, α1, α2) = 2φ0

[
α1 α2

·
; q, x

]
. (5.53)

The quantum curve can be easily derived from the general expression (2.27), as in

earlier examples. In the classical limit it reduces to the mirror curve

A(x, y) = (1− y)y + x(1− α1)(1− α2y) = 0, (5.54)

and its solution for y = y(x) again follows form (4.13)

y(x) =
∑
i,j,k

(−1)j+k(j + k − 2i+ 2)i−1

i!

(
i

j

)(
i

k

)
xiαj1α

k
2 =

=
−1 + α1x+ α2x−

√
(1− α1x− α2x)2 − 4x(α1α2x− 1)

2(α1α2x− 1)
.

(5.55)
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Figure 8. The resolution of C3/Z3.

5.6 Resolution of C3/Z3 (r = 0, s = 2)

Another example is the resolution of C3/Z3, shown in figure 8. In this case parameters are

identified as β1 = Q1 and β2 = Q1Q2. The reduced quiver matrix takes form

Cr=0,s=2 =


f + 1 1 0 1 0

1 1 0 0 0

0 0 0 0 0

1 0 0 1 0

0 0 0 0 0

 C ′r=0,s=2 =

f + 1 1 1

1 1 0

1 0 1

 (5.56)

For framing f = s− r = 2 the brane partition function takes form of the q-hypergeometric

function

ψf=2 =
1

(β1; q)∞(β2; q)∞
PC′(q

−3/2x, q−1/2β1, q
−1/2β2) = 0φ2

[
·

β1 β2
; q, x

]
. (5.57)

The quantum curve is again derived from the general expression (2.27). In the classical

limit for f = 2 it reduces to the mirror curve

A(x, y) = (1− y)(1− β1y)(1− β2y) + xy3 = 0, (5.58)

and the solution of this cubic equation for y = y(x) also follows form (4.13)

y(x) =
∑
i,j,k

i2

(1+3i+j+k)(i+j)(i+k)

(
1+3i+j+k

i

)(
i+j

j

)(
i+k

k

)
xiβj1β

k
2 =

= 1+
1

(β1−1)(β2−1)
x+

3−2(β1+β2)+β1β2

(β1−1)3(β2−1)3
x2+. . .

(5.59)

5.7 Three Kähler parameters and q-hypergeometric function (r = 2, s = 1)

Finally we consider the geometry with three Kähler parameters, such that — apart from

the first vertex of type A — another r = 2 vertices are of type B and s = 1 vertex is of type

A. There are three manifolds of this type, with vertices distributed in the order ABAB,

AABB, or ABBA. In all these cases the brane partition function can be written in the
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Figure 9. Triple-P1 geometry.

form (4.4), with the corresponding quiver matrix and its reduced form given by

Cr=2,s=1 =



f + 1 0 1 0 1 1 0

0 1 0 0 0 0 0

1 0 0 0 0 0 0

0 0 0 1 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 1 0

0 0 0 0 0 0 0


C ′r=2,s=1 =


f + 1 1 1 1

1 0 0 0

1 0 0 0

1 0 0 1

 (5.60)

These three cases differ by the assignment of Kähler parameters, which respectively take

the following form:

ABAB : α1 = Q1, α2 = Q1Q2Q3, β1 = Q1Q2,

AABB : α1 = Q1Q2, α2 = Q1Q2Q3, β1 = Q1,

ABBA : α1 = Q1, α2 = Q1Q2, β1 = Q1Q2Q3.

(5.61)

As one example, the geometry with vertices ABAB is shown in figure 9.

In all these cases, in the framing f = s− r = −1, the partition function (2.24) reduces

to the (proper, not “generalized”) q-hypergeometric function, which can also be expressed

in terms of the motivic generating function for the reduced quiver

ψs−r(x) =
(α1; q)∞(α2; q)∞

(β1; q)
PC′r=2,s=1

(x, α1, α2, q
−1/2β1) = 2φ1

[
α1 α2

β1
; q, x

]
. (5.62)

The non-zero motivic Donaldson-Thomas invariants associated to the latter generating

series PC′r=2,s=1
(x1, x2, x3, x4), for f = −1, take form

Ω0,0,0,1;0 = −1, Ω0,0,1,0;−1 = −1, Ω0,1,0,0;−1 = −1, Ω1,0,0,0;−1 = −1,

Ω1,0,0,1;0 = 1, Ω1,0,1,0;−1 = 1, Ω1,1,0,0;−1 = 1, Ω1,1,0,1;0 = −1,

Ω1,0,1,1;0 = 1, Ω1,1,1,0;−1 = −1, Ω1,1,1,1,;0 = 1,

(5.63)

etc. After rescaling (2.31) and taking the limit q → 1, for f = −1 the brane partition

function reduces to the ordinary hypergeometric function (2.35)

ψ̃f=−1(x) = 2F1

[
a1 a2

b1
;x

]
=
∞∑
n=0

(a1)n(a2)n
n!(b1)n

xn. (5.64)
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A Quiver generating functions and motivic Donaldson-Thomas

invariants

In this appendix we compare our notation to that of Efimov in [28], who associates to a

symmetric quiver, determined by a symmetric matrix M with non-negative entries Mij ≥ 0,

the motivic generating series of the form

PE
M (x1, . . . , xm; q) =

∑
d1,...,dm≥0

(
−q1/2

)∑
i d

2
i−

∑
i,jMi,jdidj

(q; q)d1 · · · (q; q)dm
xd11 · · ·x

dm
m . (A.1)

It is proved in [28] that the above series encodes non-negative motivic Donaldson-Thomas

invariants cd1,...,dm;k ≥ 0, which are determined by the factorization

PE
M (x1, . . . , xm; q) =

∏
(d1,...,dm)>0

∏
k∈Z

(
qk/2xd11 · · ·x

dm
m ; q

)(−1)k−1cd1,...,dm;k

∞
. (A.2)

Let us compare these definitions to our conventions (3.1) and (3.2). At first, one might

wish to identify our matrix with entries Ci,j with δi,j −Mi,j in (A.1). However, as our Ci,j
are positive (with positive C1,1 at least for appropriately chosen framing f), this would

mean that Mi,j are not all positive, and in this case the proof in [28] would not work (if

some Mi,j are negative, then exponents arising in the factorization (A.2) are still integer,

however not necessarily non-negative).

Nonetheless, we can relate to each other the generating functions (3.1) and (A.1), and

corresponding integer invariants, by inverting q. Indeed, denoting |d| = d1+. . .+dm, we get

PC(x1, . . . , xm; q−1) =
∑

d1,...,dm

(−q1/2)
∑m
i,j=1(δi,j−Ci,j)didj

(q; q)d1 · · · (q; q)dm
(q1/2x1)d1 · · · (q1/2xm)dm =

= PE
C (q1/2x1, . . . , q

1/2xm; q) =
∏

(d1,...,dm)>0

∏
k∈Z

(
q(k+|d|)/2xd11 · · ·x

dm
m ; q

)(−1)k−1cd1,...,dm;k

∞
,

(A.3)

now with non-negative integers cd1,...,dm;k. Let us now compare these cd1,...,dm;k to our

Ωd1,...,dm;j , by relating the product expansion in (A.3) to that in (3.2)

PC(x1, . . . , xm; q) =
∏

(d1,...,dm)>0

∏
k∈Z

(
q−(k+|d|)/2xd11 · · ·x

dm
m ; q−1

)(−1)k−1cd1,...,dm;k

∞
=

=
∏

(d1,...,dm) 6=0

∏
j∈Z

(
q(j+1)/2xd11 · · ·x

dm
m ; q

)(−1)j+1Ωd1,...,dm;j

∞
.

(A.4)

The relation between cd1,...,dm;k and Ωd1,...,dm;j can be found by matching powers of xi’s.

Assume that we have matched the integers up to a certain power, and we wish now to

match the next coefficient at xd ≡ xd11 · · ·xdmm , where dj is already increased by 1. We can

– 40 –



J
H
E
P
0
1
(
2
0
1
9
)
1
2
4

expand the corresponding quantum dilogarithms, and in the leading order we find

(q−k/2−|d|/2xd; q−1)
(−1)k−1cd1,...,dm;k
∞ = 1 + (−1)k−1cd1,...,dm;k

q−k/2−|d/2|+1

1− q
xd + . . . ,

(q(j+1)/2xd; q)
(−1)j+1Ωd1,...,dm;j
∞ = 1− (−1)j+1Ωd1,...,dm;j

q(j+1)/2

1− q
xd + . . . .

(A.5)

As we assumed that all lower orders are already matched, these two terms must be matched

on their own

(−1)k−1cd1,...,dm;kq
−(k+|d|)/2+1 = −(−1)j+1Ωd1,...,dm;jq

(j+1)/2. (A.6)

Fixing j so that the powers of q are equal we find

j = −k − |d|+ 1, (A.7)

and in consequence

cd1,...,dm;k = (−1)|d|Ωd1,...,dm;−k−|d|+1. (A.8)

Note that in all examples considered in the main text, for which all entries of the matrix C

or C ′ are non-negative, multiplying the Ωd1,...,dm;j by (−1)|d| indeed produces non-negative

integers. Moreover, from (A.8) we deduce that

Ωd1,...,dm =
∑
j

(−1)jΩd1,...,dm;j = −
∑
k

(−1)kcd1,...,dm;k ≡ −cd1,...,dm . (A.9)

Therefore numerical Donaldson-Thomas invariants defined either as in (3.5) in terms of

Ωd1,...,dm;j , or analogously in terms of non-negative cd1,...,dm;k introduced in (A.3), differ

only by the overall sign.
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