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A topological superconductor (TSC) is characterized by the topologically-protected gapless surface
state that is essentially an Andreev bound state consisting of Majorana fermions. While a TSC has
not yet been discovered, the doped topological insulator CuxBi2Se3, which superconducts below ∼3
K, has been predicted to possess a topological superconducting state. We report that the point-
contact spectra on the cleaved surface of superconducting CuxBi2Se3 present a zero-bias conductance
peak (ZBCP) which signifies unconventional superconductivity. Theoretical considerations of all
possible superconducting states help us conclude that this ZBCP is due to Majorana Fermions and
gives evidence for a topological superconductivity in CuxBi2Se3. In addition, we found an unusual
pseudogap that develops below ∼20 K and coexists with the topological superconducting state.

PACS numbers: 74.45.+c, 74.20.Rp, 73.20.At, 03.65.Vf

The recent discovery of the topological insulator [1–
24] stimulated the search for an even more exotic state of
matter, the topological superconductor (TSC) [25–28]. A
topological state of matter is characterized by a topologi-
cal structure of the quantum-mechanical wavefunction in
the Hilbert space. In topological insulators, a non-trivial
Z2 topology of the bulk valence band leads to the emer-
gence of Dirac fermions on the surface [22, 23]. Similarly,
in TSCs non-trivial Z or Z2 topologies of the supercon-
ducting (SC) states lead to the appearance of Majorana
fermions on the surface [25–27]. Majorana fermions are
peculiar in that particles are their own antiparticles, and
they were originally conceived as mysterious neutrinos
[29]. Currently their realization in condensed matter is
of significant interest because of their novelty as well as
the potential for quantum computing [29].

The CuxBi2Se3 superconductor [30–33] is a prime can-
didate of TSC because of its peculiar band structure
and strong spin-orbit coupling [34]. In this material, Cu
atoms are intercalated into the layered topological insu-
lator Bi2Se3 and the SC state appears for the Cu concen-
tration x of about 0.2 – 0.5, which causes electron doping
with the density of ∼ 1020 cm−3. This material has not
been well studied because of the difficulty in preparing
high-quality samples [30, 31] but a recent breakthrough
in the synthesis of CuxBi2Se3 by using electrochemistry
[32, 33] made it possible to prepare reliable junctions and
perform a conductance spectroscopy in the superconduct-
ing state.

In the present work, we employed the so-called “soft”
point-contact technique [35]: The contacts were prepared
at room temperature in ambient atmosphere by putting
a tiny (∼20 µm) drop of silver paste on the cleaved (111)
surface of a CuxBi2Se3 single crystal below a 30-µm-
diameter gold wire [Figs. 1(a) and 1(b)]. In this type of
junctions, ballistic transport occurs sporadically through
parallel nanometer-scale channels formed between indi-

FIG. 1: (Color online) Point-contact experiment and the sam-
ple. (a) Sketch of the “soft” point contact and the measure-
ment circuit. (b) Scanning-electron-microscope picture of the
actual sample; inset magnifies the silver-paste spot where the
point contact is formed. (c) 3D presentation of nanometer-
scale terraces on a typical cleaved surface of CuxBi2Se3 seen
by an atomic-force microscope. Typical terrace width is 0.5
µm. (d) A false color mapping of (c). (e) SQUID data for
the SC transition in the sample (x = 0.3) used for the point-
contact measurements shown in Fig. 2. Both the zero-field-
cooled (ZFC) and the field-cooled (FC) data measured in 0.2
mT are shown, and the former gives the SC shielding fraction
of 46%. Inset shows the temperature dependence of the zero-
bias differential conductance of the point contact reported in
Fig. 2.

vidual grains in the silver paste and the sample surface
[see Figs. 1(c), 1(d) and Ref. 36]. The dI/dV spectra
were measured with a lock-in technique by sweeping a
dc current that is superimposed with a small-amplitude
ac current [1.35 µA (rms), corresponding to 0.5 A/cm2].
We used a quasi-four-probe configuration, in which the
current was applied between a contact pad and the gold
wire, and the voltage between the wire and another con-
tact pad was measured [Fig. 1(a)]. The Quantum Design
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FIG. 2: (Color online) Zero-bias conductance peak. (a) Point-contact spectra (dI/dV vs bias voltage) of CuxBi2Se3 with
x = 0.3 for 0.35–2 K measured in 0 T for a wide energy window. (b) A narrower window of (a). (c) The spectra at 0.35 K
measured in perpendicular magnetic fields of 0–0.8 T. The vertical dashed lines in (b) and (c) indicate the energy position of
the dips.

PPMS was used for cooling the samples down to 0.35 K
and applying the magnetic field up to 9 T.

A set of point-contact data taken on a CuxBi2Se3 sam-
ple with the bulk onset Tc = 3.2 K is shown in Fig. 2,
where one can see that a pronounced zero-bias conduc-
tance peak (ZBCP) develops at low temperature [36].
The inset of Fig. 1(e) shows the temperature depen-
dence of the zero-bias conductance, which indicates that
this peak appears below 1.2 K [36]. We note that es-
sentially the same ZBCP data have been obtained on
another sample (see Fig. S2 of Ref. 36).

Since heating effects can cause a spurious ZBCP [37],
it is important to elucidate that it is not the case here.
It was argued by Sheet et al. [37] that in samples with
a large normal-state resistivity when the point contact is
in the thermal regime, a spurious ZBCP could show up
if the increase in the bias voltage causes the local current
to exceed the critical current, which leads to a voltage-
dependent decrease in the differential conductivity. If
this is the case, the conductivity at zero bias (which is
always measured below the critical current) should not

change with a weak magnetic field; the role of the mag-
netic field in this case is primarily to reduce the criti-
cal current, so the width of the spurious ZBCP would
become narrower, but the height at V = 0 should be
mostly unchanged as long as the superconductor is in
the zero-resistivity state. In the magnetic-field depen-
dence of our spectra shown in Fig. 2(c), by contrast,
the ZBCP is strongly suppressed with a modest magnetic
field while its width is little affected, which clearly speaks
against the heating origin of the ZBCP. (The magnetic
field was applied perpendicular to the cleaved surface.)
Another well-known signature of the heating effect is a
sharp, spike-like dip at energies much larger than the gap
[35, 37], which is caused by the local transition to nor-
mal state; in fact, when we made the point contact on a
disordered surface, we observed a widening of the peak
and a lot of sharp dips at relatively high energies, which
are obviously caused by the heating [36]. In contrast, the
data shown in Fig. 2 are free from such features, which

corroborates the intrinsic nature of the ZBCP. Therefore,
one can safely conclude that the ZBCP observed here is
not due to the heating effects and is intrinsic.

One should also keep in mind that, even when the
ZBCP is intrinsic, it can be caused by several mechanisms
in point contacts [38]: conventional Andreev reflection
[39, 40], reflectionless tunneling [41–43], magnetic scat-
tering [44, 45], and the unconventional Andreev bound
state (ABS) [38, 40]. In this respect, it is important
to notice that the ZBCP shown in Fig. 2 is accompa-
nied by pronounced dips on its sides and the peak does
not split into two even at the lowest temperature (0.35
K). These features are clearly at odds with the Blonder-
Tinkham-Klapwijk (BTK) theory for conventional An-
dreev reflection [39]. Also, the reflectionless tunneling
and the magnetic scattering are obviously irrelevant, be-
cause the former is suppressed by a very small magnetic
field of less than 0.1 T [46] and the latter presents a peak
splitting in magnetic fields [47]. Hence, one can conclude
that the ZBCP observed here is a manifestation of the
ABS [38].

Previously, it was inferred [32] from the specific-heat
data that the superconducting gap of CuxBi2Se3 at T = 0
K, ∆(0), would be about 0.7 meV. In Fig. 2, one can see
that the minima in the pronounced dips are located at
∼ ±0.6 meV at 0.35 K; since the ZBCP due to the ABS
is usually accompanied by dips near the gap energy [38],
the energy scale of the dip is assuring.

Given that the observed ZBCP is intrinsic and is due
to the ABS, it is important to understand its concrete
origin. The ABS is caused by the interference of the
SC wavefunction at the surface, and it is a signature of
unconventional superconductivity [38]. Its occurrence is
determined by the symmetry of the SC state, which in
turn is determined by the symmetry of the Hamiltonian
and the pairing mechanism. Also, it has been elucidated
that Majorana fermions reside in an ABS when it is spin
non-degenerate [48]. Hence, we examined all possible
SC states in CuxBi2Se3 and the nature of the ABS to
elucidate whether the observed ZBCP is due to Majo-
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FIG. 3: (Color online) Model calculations of the topological band structure in the superconducting state of CuxBi2Se3. Theo-
retically calculated spectral functions A(k, ω) of the bulk (a) and the surface on the xy plane (b) in Γ–M and Γ–K directions in
the surface Brillouin zone shown in the inset of (b), as well as the LDOS (c), in the superconducting state for the topological
gap function ∆4 (∆12

↑↑ = ∆12

↓↓ = −∆21

↑↑ = −∆21

↓↓); the model Hamiltonian and the band parameters used are described in detail
in Ref. 36. The false colour mappings of A(k, ω) in (a) and (b) are in arbitrary units. ∆(0) was set to be 0.05 eV for the
convenience of the calculations.

rana fermions. The microscopic model to describe the
band structure of CuxBi2Se3 has already been developed
[34, 49–51], and it was shown [34] that, if both short-
and long-range interactions are considered, the symme-
try of the Hamiltonian allows four different types of the
SC gap function, ∆1 to ∆4 [36], with three of them being
unconventional. Following Ref. 51, we have theoretically
calculated the spectral functions of the bulk and the sur-
face as well as the local density of states (LDOS) for all
possible gap functions (see Ref. 36 for details), similar
to those done in Refs. 52 and 53.

Firstly, the conventional even-parity SC state ∆1 was
found to give no two-dimensional (2D) ABS [36]. While
in this case the surface could become a 2D TSC due to the
proximity effect as proposed by Fu and Kane [28], the sur-
face of a three-dimensional (3D) superconductor is con-
tinuously connected and has no topological edge; hence,
the one-dimensional Majorana fermions that might ap-
pear at the edge of a 2D TSC [28] would not exist in the
present case.

Among the remaining three possible SC states that
are all unconventional, the fully-gapped, odd-parity SC
state ∆2 gives rise to 2D helical Majorana fermions as
the ABS. However, because of the Dirac-like dispersion
of this ABS, the surface LDOS tends to have a minimum
at zero energy [36], which does not agree well with our
data; nevertheless, it was very recently proposed that
the ZBCP could appear even in this fully-gapped state
due to a peculiar “twisting” of the ABS dispersion [54].
In the case of the other two odd-parity SC states, ∆3

and ∆4, both of which have two point nodes, a single
ZBCP naturally shows up in the surface LDOS [Figs.
3(a) – 3(c)]; this is because the point nodes lead to a
partially flat dispersion of the helical Majorana fermions,
concentrating the LDOS near zero energy. Therefore, it
is most likely that the observed ZBCP signifies 2D Ma-
jorana fermions due to the odd-parity bulk SC state, al-
though it is difficult to determine the exact pairing state
from the three possibilities at this stage. The fact that

the ZBCP is strongly suppressed with a modest mag-
netic field [Fig. 2(c)] supports this conclusion, because
the helical Majorana fermions are naturally suppressed as
the time-reversal symmetry is broken with the magnetic
field. Note that, while there are nanometer-scale terraces
on the cleaved surface [Figs. 1(c), 1(d) and Ref. 36],
electron transmissions in the in-plane directions through
the side walls of the terraces are much less likely to take
place compared to the transmissions in the out-of-plane
direction, because the typical terrace height (< 10 nm)
is much smaller than the typical Ag grain size of 50 nm
[36]. Therefore, our data are expected to reflect mostly
the ABS on the (111) surface.

We now discuss the topological nature of the possi-
ble SC states ∆3 and ∆4. The presence of the point
nodes might seem to preclude the topological supercon-
ductivity, which is usually considered to require a full
gap. However, for the ∆3 and ∆4 states one can define
a non-trivial topological invariant, “mod-2 winding num-
ber”, which is immune to weak perturbations and assures
that the ∆3 and ∆4 states are robustly topological [36].
In fact, a time-reversal-invariant SC state with a pair of
point nodes is adiabatically connected to a fully-gapped
state in the “mod-2 winding number” topological class,
and having an odd parity is sufficient for this case to
become topologically non-trivial [36].

Previously, we reported that the specific-heat data was
most consistent with a fully-gapped SC state [32]. It is
fair to note, however, that the entropy contribution of
the quasiparticles excited near the point node of a 3D
SC state is very small and, indeed, the T 3 dependence
of the specific heat expected for point nodes is difficult
to be distinguished [55], particularly in inhomogeneous
samples. Therefore, the ∆3 or ∆4 state with point nodes
does not necessarily contradict the existing specific-heat
data.

An interesting and unexpected feature in our data is
that a pseudogap develops below ∼20 K [Fig. 4(a)]. As
shown in Figs. 4(b) – 4(g), this pseudogap appears to
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FIG. 4: (Color online) Pseudogap in CuxBi2Se3. (a) dI/dV vs
bias voltage for 1.15–80 K measured in 0 T. (b – g) Compar-
isons of the spectra in 0 and 9 T. At low temperature below
∼20 K, the spectra in 9 T show smaller dI/dV near zero bias
compared to that at 0 T, indicating that the pseudogap deep-
ens with the magnetic field. (h, i) False colour mappings of
dI/dV in the bias-voltage vs temperature plane in 0 T (h)
and in the bias-voltage vs magnetic-field plane at 0.35 K (i),
summarizing how the spectra change with temperature and
magnetic field; note that the vertical axes are in logarithmic
scales in both (h) and (i).

be enhanced by the magnetic field, and it is most pro-
nounced at 0.35 K in high magnetic fields. This pseudo-
gap coexists with the superconductivity below the upper
critical field Hc2 [56] and may give us a clue to under-
standing the paring mechanism in CuxBi2Se3. Finally,
how the spectra change with temperature and magnetic
field is summarized in false colour mappings shown in
Figs. 4(h) and 4(i).

As is clear from the above discussions, one can con-
clude that the ZBCP in CuxBi2Se3 signifies an ABS con-
sisting of 2D Majorana fermions and that CuxBi2Se3 is
hosting a topological superconductivity. It is therefore
an urgent task to determine the exact pairing symme-
try in CuxBi2Se3. Regarding the Majorana physics, an
interesting question is the existence of the Majorana zero-
mode in the vortex core [57]. The 2D Majorana fermions
living on the surface of a 3D TSC are different from the
non-Abelian Majorana fermions of a 2D TSC proposed
for topological quantum computing [22, 28], but estab-
lishing a general understanding of Majorana fermions is
important for both fundamental physics and future in-
formation technologies.

In summary, our point-contact spectroscopy of the
CuxBi2Se3 superconductor found an unusual pseudogap
below ∼20 K and a pronounced ZBCP in the SC state.
The latter signifies an unconventional SC state that can
only be topological in CuxBi2Se3, and therefore our ob-
servation gives evidence for a topological superconductiv-
ity in this material. One can fully expect that CuxBi2Se3
as the first concrete example of a TSC will greatly help

advance our understanding of topological states of matter
and associated exotic quasiparticles.
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Supplemental Material

S1. Surface of CuxBi2Se3 single-crystal samples

Although the cleaved surface of CuxBi2Se3 single crystals is essentially flat [Fig. S1(a)], there are a lot of nanometer-
scale terraces as revealed by an atomic-force microscope [Figs. S1(b) and S1(c), and also Figs. 1(c) and 1(d) of the
main text]. The heights of those terraces are often larger than the one quintuple-layer unit (0.95 nm) but are typically
less than 10 nm. There is no clear preferential direction for the edges of the terraces. While there are several tens of
terraces in the lateral area of a 20-µm point contact in which nanometer-scale silver grains (typically 50-nm diameter)
are distributed, electron transmissions into the Ag grains from the (111) surface is expected to be dominant because
the typical terrace height (< 10 nm) is much smaller than the typical Ag grain size (50 nm).

S2. Reproducibility of the ZBCP

To demonstrate the reproducibility of the observed ZBCP, Figs. S2(a) and S2(b) present a set of point-contact
spectra showing the ZBCP below 1 K, taken on another CuxBi2Se3 sample with the bulk onset Tc = 3.2 K. At 0.35
K, the minima in the dips are located at about ±0.4 meV, which suggests that the SC gap in this sample was a bit
smaller compared to the sample shown in the main text.
We note that the chances of observing the ZBCP were not very high: We have so far measured 47 samples, and 25

of them showed no ZBCP down to 0.35 K (an example is shown in Fig. S3). In other words, 22 out of 47 samples
have been found to present a ZBCP in our experiment. This seems to be correlated with the fact that our samples
are inhomogeneous and show the SC shielding fractions of around 40%.

S3. Onset temperature of the ZBCP

As mentioned in the main text, the enhancement of the zero-bias conductance of the sample reported in Fig. 2
occurred below 1.2 K, which is lower than the bulk onset Tc of 3.2 K. One possibility for this difference is that the
ZBCP is prone to thermal smearing and needs a low temperature to become observable. Another possibility is that the
Tc was locally 1.2 K at the position beneath the point contact; this is conceivable because the temperature dependence
of the diamagnetic signal [Fig. 1(e)] suggests a broad distribution of local Tc. If this second possibility is actually the
case, our observation that the energy scale of the dip in the point-contact spectra [0.6 meV, see Fig. 2(b)] agrees with
the estimated bulk SC gap may suggest an interesting situation where the pair potential ∆(0) is essentially the same
in all the superconducting portions of the sample but the local Tc is determined by the local carrier density, because
the carrier density in CuxBi2Se3 is very low and the Tc may well be governed by the superfluid density [58].

S4. Effects of heating and/or critical currents on the point-contact spectra

When the point contacts were made on disordered surfaces, such as the as-prepared surface after the electrochemical
reaction [Figs. S4(c) and S4(d)], we observed a widening of the central peak and a lot of sharp dips at the tail, as
shown in Figs. S4(a) and S4(b). Those sharp dips have been discussed [37] to be due to the effects of heating and/or
critical currents. Although the spectra in Fig. S4 are contaminated by the heating effects, it should be noted that the
sharp central part within the two vertical dashed lines in Fig. S4(b) is likely to signify the intrinsic ZBCP, because
its width is less than 2 meV and is consistent with twice the gap energy.

S5. Theoretical calculations of the surface states of CuxBi2Se3

It is known from the studies of the tunneling spectroscopy of unconventional superconductors [38] that the measured
conductance of actual experiments of a point contact between a normal metal and a superconductor corresponds to
the local density of states (LDOS) of the superconductor at the surface. Therefore, we theoretically calculate the
LDOS of CuxBi2Se3 based on a model Hamiltonian for the topological insulator Bi2Se3 proposed by H. Zhang et al.

[49]. The Hamiltonian H(k) of the present system becomes 8 × 8 matrix, due to the presence of two orbitals, spin

indices and electron-hole space [34, 51]. We denote H(k) using the 4× 4 matrices ξ̂(k) and ∆̂ as

H(k) =

(

ξ̂(k) ∆̂

∆̂† −ξ̂∗(−k)

)

. (1)
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gap type parity energy gap structure

∆1 ∆11

↑↓ = −∆11

↓↑ = ∆22

↑↓ = −∆22

↓↑ even full gap
∆11

↑↓ = −∆11

↓↑ = −∆22

↑↓ = ∆22

↓↑

∆2 ∆12

↑↓ = −∆12

↓↑ = ∆21

↑↓ = −∆21

↓↑ odd full gap
∆3 ∆12

↑↓ = ∆12

↓↑ = −∆21

↑↓ = −∆21

↓↑ odd point node
∆4 ∆12

↑↑ = ∆12

↓↓ = −∆21

↑↑ = −∆21

↓↓ odd point node
∆12

↑↑ = −∆12

↓↓ = −∆21

↑↑ = ∆21

↓↓

TABLE I: Four types of pair potentials introduced by Hao and Lee [51]. Odd-parity gap functions correspond to unconventional
SC states.

The normal-state Hamiltonian ξ̂(k) is given by

ξ̂(k) =









ε(k) +M(k) 0 A1(k) A−
2 (k)

0 ε(k) +M(k) A+
2 (k) −A1(k)

A1(k) A−
2 (k) ε(k)−M(k) 0

A+
2 (k) −A1(k) 0 ε(k)−M(k)









(2)

with

ε(k) = D̄1(2− 2 cos (kzc)) (3)

+
4

3
D̄2

(

3− 2 cos

(√
3

2
kxa

)

cos

(

1

2
kya

)

− cos (kya)

)

− µ

A1(k) = Ā1 sin (kzc) (4)

A±
2 (k) =

2

3
Ā2 (5)

×
{

√
3 sin

(√
3

2
kxa

)

cos

(

1

2
kya

)

± i

(

cos

(√
3

2
kxa

)

sin

(

1

2
kya

)

+ sin (kya)

)}

M(k) = M0 − B̄1(2 − 2 cos (kzc)) (6)

− 4

3
B̄2

(

3− 2 cos

(√
3

2
kxa

)

cos

(

1

2
kya

)

− cos (kya)

)

.

Note that in the present calculations, we consider the hexagonal lattice with the lattice constants a and c, where the
2D triangular lattices stack along the c-axis direction. We use the same values of parameters M0, Ā2, B̄2 and D̄2 as
given in Ref. [49], with the transformation Ā2 = A2/a, B̄2 = B2/a

2 and D̄2 = D2/a
2. The values of Ā1, B̄1, and D̄1

are chosen as Ā1 = 0.32 eV, B̄1 = 0.216 eV, and D̄1 = 0.024 eV to fit the energy dispersion for the Γ− Z direction
obtained in Ref. [49]. The chemical potential µ, which is measured from the Dirac point, was estimated form the
experimental data [31] to be µ = 0.5 eV.
The 4× 4 pair-potential matrix ∆̂ is expressed as

∆̂ =









∆11
↑↑ ∆11

↑↓ ∆12
↑↑ ∆12

↑↓

∆11
↓↑ ∆11

↓↓ ∆12
↓↑ ∆12

↓↓

∆21
↑↑ ∆21

↑↓ ∆22
↑↑ ∆22

↑↓

∆21
↓↑ ∆21

↓↓ ∆22
↓↑ ∆22

↓↓









. (7)

Upon treating ∆̂, we neglect the k-dependence for simplicity. Following Hao and Lee [51], we consider the four types
of ∆̂ as shown in Table 1. Note that in Ref. [51] the total number of possible ∆̂ are six; however, two of them have
their counterpart which is the same gap type, so the four types of ∆̂ summarized in Table 1 are exhaustive. In all the
gap types, ∆lm

σσ′ = −∆ml
σ′σ is satisfied in accordance with the Fermi-Dirac statistics.

To obtain the LDOS, we used the same calculation technique as that employed in Ref. [53]; namely, we calculate
the Green’s function for the (001) flat surface [which corresponds to the (111) surface in the rhombohedral notation]
without disorder, where the momentum parallel to the surface k‖ = (kx, ky) is conserved. The surface Green’s function
is constructed by introducing an infinite potential barrier at z = z0; with a sufficiently large system size along the
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z-direction, one can identify the surface states as the states at z = z1 which is next to the infinite potential barrier
in our lattice calculations. The surface Green’s function Ǧs(k‖, ω) is obtained from the Fourier-transformed form of

the bulk Green’s function Ǧb(z − z′;k‖, ω) which is written as

Ǧb(z − z′;k‖, ω) =
1

Nz

∑

kz

Ǧb(k‖, kz, ω)e
ikz(z−z′), (8)

with

Ǧb(k‖, kz, ω) =
1

ω −H(k)
, (9)

and Ǧs(k‖, ω) is given by

Ǧs(k‖, ω) = Ǧb(z1 − z1; ky, ω)

− Ǧb(z1 − z0; ky, ω){Ǧb(z0 − z0; ky, ω)}−1Ǧb(z0 − z1; ky, ω), (10)

based on the T-matrix method. The resulting momentum-resolved spectral function A(k‖, ω) is given by

A(k‖, ω) = − 1

π

∑

α=1−4

Im{Ǧs(k‖, ω)}αα. (11)

Finally, we obtain the LDOS ρs(ω) by integrating A(k‖, ω) over momentum,

ρs(ω) =
1

NxNy

∑

k‖

A(k‖, ω). (12)

In the actual calculations, we took the mesh size of Nx = Ny = 516 and Nz = 512, and used the maximum gap size,
∆(0), of 0.05 eV for convenience.
Let us discuss the calculated A(k‖, ω) shown in Figs. S5 to S8 for the four gap types. In those figures, A(k‖, ω) is

shown by using false colour mapping in arbitrary units along Γ−M and Γ−K directions. For ∆1 and ∆2, the excitation
spectra have a gap in the bulk [Figs. S5(a) and S6(a)]. At the surface, there is no surface Andreev bound state (ABS)
for ∆1 [Fig. S5(b)], but the ABS appears as a helical edge mode for ∆2 [Fig. S6(b)]. For ∆3 and ∆4, the bulk gap
closes at certain points on the Fermi surface; namely, those gaps have point nodes [Figs. S7(a) and S8(a)]. Closer
examinations of those gap functions find that each has two point nodes at opposing points on the Fermi surface. At
the surface for ∆4, one finds an ABS with a partially flat dispersion [Fig. S8(b)]; such a dispersion relation in the
ABS can induce a large density of zero-energy states after integrating over k‖ [59]. In contrast, no clear ABS is visible
at the surface for ∆3 in this calculation [Fig. S7(b)]; however, this does not necessarily mean that the ABS is absent
for ∆3. In fact, this is probably because the ABS overlaps with the bulk spectral function (whose contribution is also
present at the surface, z = z1), which could make the ABS invisible. (As we discuss in the next section, both the ∆3

and ∆4 states are topological, so the bulk-edge correspondence dictates that the ABS be present on any surface for
∆3 and ∆4.)
In Fig. S9, the resulting LDOS, ρ(ω), is plotted for the two unconventional cases, ∆2 [fully-gapped, Fig. S9(a)] and

∆4 [point node, Fig. S9(b)]. The ∆2 case is similar to the BW-phase in superfluid 3He [60] and ρ(ω) at the surface
has a minimum at zero energy. On the other hand, in the ∆4 case with point nodes, ρ(ω) has a clear ZBCP, due to
the partially-flat dispersion of the ABS.
It should be noted that the results for the ∆2 state can change qualitatively when the parameters for the calculations

are changed, and for some range of the parameters, a ZBCP was obtained; this is consistent with the very recent
proposal by Hsieh and Fu [54]. As an example, we show in Fig. S10 the band dispersions and the LDOS for the bulk
and surface states obtained within our model for a different set of parameters. One can see that the surface ABS
has a twisted dispersion [Fig. S10(a)] and the surface LDOS shows a three-peak structure with the central peak at
zero energy. Therefore, it is probably premature to dismisses the fully-gapped ∆2 state as being inconsistent with the
experimental data showing a pronounced ZBCP.
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S6. Bulk topological number of the ∆3 and ∆4 states with point nodes

Generally, topological phases are characterized by nontrivial topological numbers associated with the global struc-
ture of the Hilbert space. Hence, one usually presumes the existence of a non-zero energy gap which separates
the topological ground state from its excited states. However, this is not so simple if we consider superconducting
states. Indeed, in two dimensions, the existence of a well-defined topological number has been shown even for gapless
superconductors [61].
Here, we generalize the arguments in Ref. [61] and show that the superconducting states ∆3 and ∆4, both of which

have point nodes in the gap, support a well-defined topological number. Our finding indicates that the gapless surface
states of these superconductors are topologically protected. In other words, they are topological superconductors.
Before examining the nodal superconductors, we briefly review the topological number for fully-gapped 3D time-

reversal-invariant superconductors. The topological number is defined on the basis of the symmetry of the Bogoliubov-
de Gennes (BdG) Hamiltonian. A fundamental character of the BdG Hamiltonian is the particle-hole symmetry

CH(k)C† = −H∗(−k), (13)

where C is the charge conjugation matrix. In addition, in time-reversal-invariant superconductors, the BdG Hamilto-
nian has the time-reversal symmetry

ΘH(k)Θ† = H∗(k), (14)

with ΘΘT = −1. Combining these symmetries, one obtains the so-called chiral symmetry,

{H(k),Γ} = 0, Γ = ΘC. (15)

This chiral symmetry plays the central role in the definition of the topological number. Let us consider the BdG
equation,

H(k)|un(k)〉 = En(k)|un(k)〉. (16)

When the chiral symmetry is present, one obtains

H(k)Γ|un(k)〉 = −En(k)Γ|un(k)〉, (17)

which means that if |un(k)〉 is a quasiparticle state with positive energy En > 0, then Γ|un(k)〉 is a quasiparticle
state with negative energy. We use a positive n (negative n) for |un(k)〉 to represent a positive (negative) energy
quasiparticle state, and set

|u−n(k)〉 = Γ|un(k)〉. (18)

The topological number is defined by using the following Q matrix,

Q(k) =
∑

n>0

|un(k)〉〈un(k)| −
∑

n<0

|un(k)〉〈un(k)|. (19)

From Eq. (18), we have {Q(k),Γ} = 0. Hence, if we take the basis in which Γ is diagonalized as

Γ =

(

1 0
0 −1

)

, (20)

then Q(k) becomes off-diagonal

Q(k) =

(

0 q(k)
q†(k) 0

)

, (21)

where q(k) is a unitary matrix because Q(k) satisfies Q2(k) = 1. The topological number is defined as the winding
number of the unitary matrix q(k) [26],

w3d =
1

24π2

∫

d3kǫijktr[q∂iq
†q∂jq

†q∂kq
†]. (22)
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Here, note that the above definition of the topological number is possible only when the system is fully gapped.
Otherwise, the positive energy states can not be separated from the negative ones, and the Q(k) matrix is not well
defined.
Now let us try to define the same topological number for nodal superconductors such as ∆3 and ∆4. The simplest

way to do this is to introduce a small perturbation to eliminate all nodes in the spectrum. For time-reversal-invariant
superconductors, point nodes are not topologically protected, so we can always open a gap by a small deformation of
the gap functions.1 After removing the nodal points, the winding number w3d can be evaluated in the manner shown
above. This simple procedure, however, does not work after all. The problem is that the value of the winding number
depends on the perturbation we choose. As a result, one cannot have a unique definition of the winding number for
gapless systems.
On the other hand, we find that this procedure does define the mod-2 winding number (i.e., parity of the winding

number) uniquely. The point is that we always have point nodes in pairs: From the time-reversal invariance (or
particle-hole symmetry), if we have a point node K at k = k0, then we have another node K ′ at k = −k0. Thus,
even if the point node K may cause the ambiguity of integer N in the winding number, the total ambiguity is always
2N . Therefore, the mod-2 winding number is not affected by the ambiguity of this procedure.
Actually, the above statement can be shown rigorously. For this purpose, we introduce the “gauge field” Ai(k),

Ai(k)mn = i〈um(k)|∂iun(k)〉, (23)

and consider the “Chern-Simons term”,

SCS =
1

16π2

∫

d3kǫijktr[(Fij +
2

3
iAiAj)Ak], (24)

with Fij = ∂iAj−∂jAi− i[Ai, Aj ]. Here the matrix multiplication and the trace are done for negative n (i.e., negative
energy states). To see how the Chern-Simons term is related to the winding number, consider the following eigenstate
of Q(k) with the eigenvalue −1:

|ψn(k)〉 =
1√
2

(

φn
−q†(k)φn

)

, (25)

where φn is a k-independent orthogonal basis vector, i.e., φ†nφm = δmn. Because a negative energy state |un(k)〉
(n < 0) is also an eigenstate of Q(k) with the eigenvalue −1, we can expand it with |ψn(k)〉 as

|un(k)〉 =
∑

m

|ψm(k)〉Umn(k), (26)

with a unitary matrix U(k). From the definition of the gauge field, we have

Ai(k) = iU †∂iU + U †ai(k)U, ai(k) =
i

2
q∂iq

†. (27)

Substituting Eq. (27) into Eq. (24) yields

SCS =
1

16π2

∫

d3kǫijktr[(Fij +
2

3
iAiAj)Ak]

=
1

16π2

∫

d3kǫijktr[(fij +
2

3
iaiaj)ak] +

1

24π2

∫

d3ktr[U †∂iUU
†∂jUU

†∂kU ]

=
1

48π2

∫

d3kǫijktr[q∂iq
†q∂jq

†q∂kq
†] +

1

24π2

∫

d3ktr[U †∂iUU
†∂jUU

†∂kU ]. (28)

Here we have used the fact that in a time-reversal-invariant system the global basis of wave functions exists on a torus
T 3 [62], and hence the total derivative term does not contribute to the integration. Remembering that the second
term in the third line of the right hand side of Eq. (28) is the winding number of U , we obtain

SCS =
1

2
w3d +N, (29)

1 Note that this is not possible when the time-reversal-symmetry is broken. For instance, the point nodes in the 3He A-phase cannot be

removed by small perturbations, since they have their own topological number. The time-reversal invariance is crucial in the argument

in this section.
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where N is an integer denoting the winding number of U . The above relation (29) means that the mod-2 winding
number is simply given by the parity of twice the Chern Simons term,

(−1)w3d = (−1)2SSC . (30)

Now we employ a useful relation derived for topological insulators by Wang, Qi and Zhang, who showed [62] that
the parity of twice the Chern-Simons term coincides with the Z2 invariant given by Fu, Kane and Mele [? ] and by
Moore and Balents [? ]. The Z2 invariant is expressed by the Pfaffians of the following unitary matrix between the
occupied states,

wmn(k) = 〈um(−k)|Θ|u∗n(k)〉. (31)

Because of the identity ΘΘT = −1, wnm(k) becomes antisymmetric at the time-reversal-invariant momentum (TRIM)
Γi, which makes it possible to define the Pfaffians at these points. The Z2 invariant ν0 is given by

(−1)ν0 =
8
∏

i=1

δi, δi =

√

det[w(Γi)]

Pf[w(Γi)]
, (32)

where the product is taken for all the TRIMs in the Brillouin zone. The relation given by Wang, Qi and Zhang [62] is

(−1)2SSC = (−1)ν0 . (33)

Combining Eqs. (30) and (33), one obtains

(−1)w3d =

8
∏

i

√

det[w(Γi)]

Pf[w(Γi)]
. (34)

This expression, Eq. (34), indicates that (−1)w3d depends only on the wave function at the special points Γi in
the Brillouin zone, i.e., the TRIMs. On the other hand, a perturbation to remove a node may only affect the local
structure of the wave function near the gap node. Therefore, Eq. (34) suggests that (−1)w3d could be independent of
the perturbation since the node is not located at Γi in general.
To make the argument rigorous, we explicitly consider an odd-parity superconductor. For odd-parity supercon-

ducting states such as ∆3 and ∆4, we have the following additional symmetry in the BdG Hamiltonian

ΠH(k)Π† = H(−k), (35)

where Π is given by the parity operator P as

Π =

(

P 0
0 −P ∗

)

. (36)

Here we have used the fact that odd-parity superconductors satisfy P∆(k)P∗ = −∆(−k). In our BdG Hamiltonian
[51], P = s0 ⊗ σ3. At the TRIM Γi, Eq. (35) reduces to [H(Γi),Π] = 0, which means that the quasiparticle state
|un(Γi)〉 is simultaneously an eigenstate of Π, i.e., Π|un(Γi)〉 = πn(Γi)|un(Γi)〉. Now let us consider the following
matrix

Pmn = 〈um(k)|Π†Θ|u∗n(k)〉, (37)

which is connected to wmn at the TRIM Γi via

Pmn(Γi) = πm(Γi)wmn(Γi). (38)

Taking the Pfaffians on both sides yields

Pf[P (Γi)] = Pf[w(Γi)]
∏

m

π2m(Γi), (39)

which leads to

∏

i

√

det[w(Γi)]

Pf[w(Γi)]
=
∏

i

Pf[P (Γi)]
√

det[P (Γi)]

∏

m

π2m(Γi). (40)
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We find here that the term Pf[P (Γi)]/
√

det[P (Γi)] gives rise to only a trivial factor. Indeed, by direct calculations,
one obtains

trAi(k) = −i∂i ln Pf[P (k)]. (41)

Thus, by taking the trAi(k) = 0 gauge [which is consistent with the relation trFij(k) = 0 obtained by the symmetries

(14) and (35)], one can see that Pf[P (k)] is independent of k. Consequently, Pf[P (Γi)]/
√

det[P (Γi)] is factorized in
Eq. (40), which results in a trivial factor 1. Therefore, one obtains the final expression

(−1)w3d =
∏

i,m

π2m(Γi). (42)

Now we can confirm explicitly that the mod-2 winding number is independent of any weak perturbation δ we choose:
The parity of the wave function at the TRIM Γi is determined locally by the BdG equation at Γi, and hence it should
not be affected by any small perturbation away from the Γi point. This means that we have a unique value of the
mod-2 winding number in the limit of δ → 0, i.e., the mod-2 winding number is well-defined even in the presence of
point nodes, although the winding number w3d itself is not. Therefore, a time-reversal-invariant superconductor with
a pair (or pairs) of point nodes can be robustly topological if the parity of the gap function is odd.
In a weak paring state, we can evaluate (−1)w3d rather easily. In this case,

∏

i,m π2m(Γi) can be expressed in terms
of the energy dispersion of the system in the normal state [27, 63], which leads to

(−1)w3d =
∏

i,m

sgn[E2m(Γi)]. (43)

Here E2m(k) is the normal-state energy dispersion obtained as an eigenvalue of ξ̂(k) [defined in Eq. (2)], and
the Kramers degeneracy is taken into account as E2m(Γi) = E2m+1(Γi). In our model Hamiltonian, we obtain
∏

i,m sgn[E2m(Γi)] = −1. Thus, all the odd-parity superconducting states ∆2, ∆3 and ∆4 given in Table 1 have a
non-trivial topological number (−1)w3d = −1, indicating that all of them are topological superconductors irrespective
of the presence of the point nodes.
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FIG. S1: Cleaved surface of CuxBi2Se3. Scanning-electron microscope finds that the cleaved surface of CuxBi2Se3 is essentially
flat (a). However, atomic-force microscope finds a lot of nanometer-scale terraces in the “flat” region (b). 3D presentation of
the data in panel b is shown in panel (c), where the vertical variation is very much exaggerated.

FIG. S2: Additional ZBCP data of CuxBi2Se3. (a, b) Spectra showing the ZBCP in 0 T measured on a sample different from
that reported in the main text. (a) is for a wide energy window, and (b) magnifies the low energy range. The dashed lines in
b indicate the energy position of the dips.

FIG. S3: An example of the point-contact spectrum at 0.35 K showing no feature associated with superconductivity (a),
measured on a sample with the bulk onset Tc of 3.2 K (b). The temperature dependence of the conductance of this point
contact at zero bias showed no sign of superconductivity (c), suggesting that the portion of the sample beneath this point
contact was non-superconducting.
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FIG. S4: Spectra of a point contact made on the as-intercalated surface of CuxBi2Se3. (a, b) dI/dV vs bias voltage for 0.35
- 5 K measured in 0 T for a wide energy window is shown in (a), and (b) magnifies the data near zero energy; the vertical
dashed lines indicate the sharp central part of the spectra in (b). The as-intercalated surfaces are rough even under the optical
microscope; (c) is a scanning-electron-microscope picture of a typical as-intercalated surface, and (d) is a magnified picture of
a spot in (c).

FIG. S5: Spectral functions A(k‖, ω) for the pair potential ∆1 (∆11

↑↓ = −∆11

↓↑ = ∆22

↑↓ = −∆22

↓↑). (a) bulk, (b) surface.

FIG. S6: Spectral functions A(k‖, ω) for the pair potential ∆2. (a) bulk, (b) surface.
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FIG. S7: Spectral functions A(k‖, ω) for the pair potential ∆3. (a) bulk, (b) surface.

FIG. S8: Spectral functions A(k‖, ω) for the pair potential ∆4 (∆12

↑↑ = ∆12

↓↓ = −∆21

↑↑ = −∆21

↓↓). (a) bulk, (b) surface.

FIG. S9: Calculated local density of states. (a, b) LDOS at the bulk (dashed line) and the surface (solid line) for the pair
potentials ∆2 [panel (a)] and ∆4 [panel (b)].

FIG. S10: Calculation results for the pair potential ∆2 with D̄1 = D̄2 = 0, Ā1 = 1.0, Ā2 = 1.5, M0 = −0.7, B̄1 = 0.5,
B̄2 = 0.75, µ = 0.9, and ∆(0) = 0.1 (all in eV). (a) Band dispersions for the bulk (blue) and the surface (red). (b) LDOS at
the bulk (dashed line) and the surface (solid line).


