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We study the competition of disorder and superconductivity for a one-dimensional p-wave super-

conductor in incommensurate potentials. With the increase in the strength of the incommensurate potential,

the system undergoes a transition from a topological superconducting phase to a topologically trivial

localized phase. The phase boundary is determined both numerically and analytically from various aspects

and the topological superconducting phase is characterized by the presence of Majorana edge fermions in

the systemwith open boundary conditions.We also calculate the topologicalZ2 invariant of the bulk system

and find it can be used to distinguish the different topological phases even for a disordered system.
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Introduction.—Topological superconductors (TSCs)

have attracted intense recent studies, as they are promising

candidates for the practical realization of Majorana fermi-

ons [1–7]. Among various proposals, the one-dimensional

(1D) TSC in nanowires with strong spin-orbit interactions

and proximity-induced superconductivity [6,7] provides

experimental feasibility on the detection of Majorana

fermions in hybrid superconductor-semiconductor wires

[8–10], which has stimulated great enthusiasm in exploring

the physical properties of topological superconductors. A

key feature of a 1D TSC is the emergence of edge

Majorana fermions (MFs) at ends of the superconducting

(SC) wire as a result of bulk-boundary correspondence. A

prototype model unveiling topological features of the 1D

TSC is given by the effective spinless p-wave SC model

studied originally by Kitaev [2].

As the TSC is protected by the particle-hole symmetry,

the topological phase is expected to be immune to pertur-

bations of weak disorder [11]. Nevertheless, a strong dis-

order may destroy the SC phase and induce a transition to

the Anderson insulator. Localization in the 1D SC system

in the presence of disorder has been an active research field

in the past decades [12–15]. The theoretical studies have

unveiled that the particle-hole symmetry in the SC system

plays an important role in the problem of the Anderson

localization [12]. Due to the existence of a finite SC gap,

the interplay of disorder and superconductivity leads to a

topological phase transition from the topological SC phase

to a topologically trivial localized phase when the strength

of disorder increases over a critical value.

So far, most theoretical work for the Anderson localiza-

tion in 1D TSCs focuses on the random disorder [13–17];

disorder produced by incommensurate potentials has been

of concern only very recently [18,19]. While Ref. [18]

explores the TSC phase by tuning the chemical potential

in a 1D quantum wire with spin-orbit interaction in prox-

imity to a superconductor under incommensurate modula-

tion, we focus our study on the transition from the TSC

phase to Anderson localization purely induced by the

incommensurate potential for a 1D p-wave superconductor
system. In the absence of superconductivity, the localiza-

tion transition driven by the incommensurate potential

occurs at a finite disorder strength which can be exactly

determined by a self-duality mapping [20], whereas an

arbitrary weak random disorder induces the Anderson

localization in one dimension. The incommensurate poten-

tial can now be engineered with ultracold atoms loaded in

1D bichromatic optical lattices [21], opening the experi-

mental way to study the localization properties of quasi-

periodic systems. In this Letter, we shall study the interplay

of the incommensurate potential and topologically pro-

tected superconductivity in the 1D p-wave SC model and

determine the phase boundary of the TSC to the localization

transition exactly. The tunability of the incommensurate

potential [21] provides a potential way to experimentally

study the controllable disorder effect in TSCs realizable in

cold atom systems [22].

Model of p-wave superconductor with incommensurate

potential.—The 1D p-wave superconductor in the

incommensurate lattices is described by the following

Hamiltonian:

H ¼
X

i

½ð�tĉyi ĉiþ1 þ �ĉiĉiþ1 þ H:c:Þ þ Vin̂i�; (1)

where n̂i ¼ ĉyi ĉi is the particle number operator and ĉyi (ĉi)
is the creation (annihilation) operator of fermions. Here the

nearest-neighbor hopping amplitude t and the p-wave
pairing amplitude � are taken as real constants, whereas

the incommensurate potential
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Vi ¼ V cosð2�i�Þ (2)

varies at each lattice site with � being an irrational number

and V the strength of the incommensurate potential. The

model reduces to the Aubry-André model when � ¼ 0
[20], while the Hamiltonian describes the Kitaev p-wave
SC model for � ¼ 0 [2]. For � ¼ 0, the system undergoes

a delocalization to localization transition at V ¼ 2t. On the
other hand, the uniform p-wave SC system with Vi ¼ V
undergoes a topological phase transition at jVj ¼ 2t with a
topological nontrivial phase in the regime of jVj< 2t
characterized by the presence of edge MFs [2]. In this

Letter, we shall study the interplay of the SC pairing �
and the incommensurate potential and then determine the

phase diagram of the system.

The Hamiltonian can be diagonalized by using the

Bogoliubov–de Gennes (BdG) transformation [23,24]:

�y
n ¼

X

L

i¼1

½un;iĉyi þ vn;iĉi�; (3)

where L is the number of lattice sites and n ¼ 1; . . . ; L.
Here un;i and vn;i are chosen real. In terms of the operators

�n and�
y
n , the diagonalized Hamiltonian is written asH ¼

P

L
n¼1 �nð�y

n�n � 1
2
Þ with �n being the spectrum of the

single quasiparticles. The spectrum as well as un;i and vn;i

can be determined by solving the BdG equations,

ĥ �̂

��̂ �ĥ

 !

un

vn

 !

¼ �n

un

vn

 !

; (4)

where ĥij¼�tð�j;iþ1þ�j;i�1ÞþVi�ji, �̂ij¼��ð�j;iþ1�
�j;i�1Þ, uTn ¼ ðun;1; . . . ; un;LÞ, and vT

n ¼ ðvn;1; . . . ; vn;LÞ.
The symmetry of the BdG equations implies �nð�nÞ ¼
�y
n ð��nÞ. The ground state of the system corresponds to

the state with all negative quasiparticle energy levels filled.

If the quasiparticle energies are arranged in ascending

order, i.e., �i � �iþ1, for �i > 0, the gap of the system

is just given by�g ¼ 2�1. In the following calculation, we

shall set t ¼ 1 as the energy unit.

Transition from SC phase to disorder phase.—

Numerically solving Eqs. (4), we can obtain the whole

spectrum of quasiparticles. In Fig. 1, we show the spectra

for the case of � ¼ ð
ffiffiffi

5
p

� 1Þ=2 and � ¼ 0:5 under peri-

odic boundary conditions (PBC). It is shown that there

exists a regime with obvious nonzero gaps when V is

smaller than a critical value Vc. When V exceeds the

critical value, there is no obvious gap separating the nega-

tive and positive parts of the spectra. To see it more clearly,

we show the variation of�g versus V in the regime close to

the transition point in Fig. 2(a). As shown in the figure, the

gap vanishes at about Vc ¼ 3 and the system opens a very

narrow gap in the regime of V > Vc. We calculate the gap

for systems with different � and find similar behavior: the

gap reaches a minimum, which approaches zero in the limit

of L ! 1, at the transition point about Vc ¼ 2þ 2� and

there exits a very narrow gap when V exceeds the transition

point. For cases with different irrational �, we find similar

phenomena and the transition point does not depend on the

specific choice of � (see the Supplemental Material [25]).

Observing that the p-wave fermion model corresponds

to the transverse XY model with a randomly (irrationally)

modulated transverse field [26,27], Ĥ ¼ �Pi½Jx�x
i�

x
iþ1 þ

Jy�
y
i�

y
iþ1� þ

P

ihi�
z
i , with the identification of Jx ¼ ðtþ

�Þ=2, Jy ¼ ðt� �Þ=2 and hi ¼ �Vi=2, we can identify

the phase transition by calculating the correlation function

Cij ¼ h�x
i�

x
ji. In the language of the quantum spin model,

the ferromagnetic phase is characterized by the long-range

order of the correlation function �x
i�

x
jiji�jj!1 ¼ A with A

being a nonzero positive number. In the original fermion

representation, �x
i ¼ ðĉyi þ ĉiÞ expð�i�

P

i�1
j¼1 ĉ

y
j ĉjÞ takes

a nonlocal form including a string product of fermion

FIG. 1. Energy spectra of 1D p-wave superconductors with

� ¼ ð
ffiffiffi

5
p

� 1Þ=2, � ¼ 0:5, and L ¼ 500 under PBC.

FIG. 2 (color online). (a) Energy gap �g versus V � 2�.
(b) Average correlation function �CL=2 versus V � 2�.

(c) MIPR versus V � 2� for the system with � ¼ ð
ffiffiffi

5
p

� 1Þ=2
and L ¼ 500.
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operators, and the correlation function Cij ¼ hðĉyi þ ĉiÞ�
expð�i�

Pj
l¼i n̂lÞðĉyj þ ĉjÞi. In the presence of the disor-

dered potential, the correlation function Cij will oscillate

and we define the average correlation function �Cr ¼
P

iCi;iþr=L. Then for a large system under PBC, the value

of �CL=2 can be used to distinguish the SC phase and the

localized phase. The correlation function Cij can be calcu-

lated by the exact numerical method described in Ref. [27].

In Fig. 2(b) we show the relation between �CL=2 and V for

systems with different �. Without the disordered potential,

the correlation function �CL=2 is a positive number and

increases as � increases for 0< �< 1, obtains its largest
value �CL=2 ¼ 1 at � ¼ 1, then decreases for �> 1. As the

strength of V increases, �CL=2 decreases monotonically

and approaches zero when V � 2� is about 2. When V >
2þ 2�, the system loses the long-range order of the

correlation function and the system is driven into the

Anderson localized phase.

To characterize the localization transition, we define the

quantity of the inverse participation ratio (IPR) as Pn ¼
P

L
i¼1ðu4n;i þ v4

n;iÞ, where un;j and vn;j are the solution to the

BdG equations and fulfil the normalization condition
P

iðu2n;i þ v2
n;iÞ ¼ 1. The above definition can be viewed

as an extension of the IPR for the case with � ¼ 0 [28,29].
For an extended state, Pn ! 1=L and the IPR tends to zero

for large L, whereas the IPR tends to a finite number for a

localized state. Therefore, the IPR can be taken as a

criterion to distinguish the extended states from the local-

ized ones. Since the ground state is composed of states with

all negative quasiparticle energy levels filled, we define the

mean inverse participation ratio (MIPR) as MIPR ¼
P

L
n¼1 Pn=L to characterize the localization of the ground

state. As shown in Fig. 2(c), the MIPR increases mono-

tonically with the increase of V. At V ¼ 2þ 2�, the MIPR

has a sudden increase which characterizes a localization

transition. As a comparison, we note that the localization

transition does not occur for the commensurate potential

system with a rational � [30], for which the wave functions

of a periodic system take the Bloch form and are extended

for arbitrary V.
We then perform a finite size analysis by calculating the

transition points for systems with different sizes. As shown

in Fig. 3, the value of the transition point VcðLÞ for systems

with � ¼ 0:5 oscillates around 3.0. Defining Vavc ¼
PLmax

L¼Lmin
VcðLÞ=ðLmax � LminÞ, we calculate the average

of VcðLÞ for different Lmax and Lmin and find that Vavc is

about 3:0040� 0:0005 being very close to 3. The change

of the gap size at V ¼ 2:5 and V ¼ 3:5 is shown in the

inset of Fig. 3, which indicates that the gap is finite in the

regime of V < Vc whereas the narrow gap in the regime of

V > Vc approaches zero in the large L limit. We also check

systems with different � and find similar behaviors, i.e.,

VcðLÞ � 2� oscillates with L and approaches 2.0 in the

large L limit.

Next we perform an analytical derivation of the critical

value Vc in the large L limit (see the Supplemental

Material [25]). Rewriting the Hamiltonian [Eq. (1)] in the

form of H ¼ P

ij½ĉyi Aijĉj þ 1
2
ðĉyi Bijĉ

y
j þ H:c:Þ�, where A

is a Hermitian matrix and B is an antisymmetric matrix, we

can obtain the excitation spectrum �n by solving the

secular equation det½ðAþ BÞðA� BÞ ��2
n� ¼ 0 [24,25].

Since the excitation gap approaches zero at the phase

transition point, Vc can be determined by the condition

of det½ðA� BÞðAþ BÞ� ¼ 0. By using the relation

detðA� BÞ ¼ detðA� BÞT ¼ detðAþ BÞ, we can deter-

mine Vc by detðA� BÞ ¼ 0, which leads to the constraint

condition

Y

L

i¼1

cosð2��iÞ ¼
�

�þ t

V

�

L
(5)

in the limit of L ! 1. Taking the logarithm of the above

equation and replacing the summation by an integral, we

can obtain Vc ¼ 2ð�þ tÞei2�n=L with n being an integer.

For the real solution of Vc, we have jVcj ¼ 2ð�þ tÞ, which
is consistent with our numerical result.

Topological features of the topological SC phase.—To

characterize the topological properties of the SC phase, we

seek the zero-mode solution of the system under open

boundary conditions (OBC). As shown in Fig. 4(a), we

plot the quasiparticle spectra of the BdG equations under

OBC. In comparison with the spectra under PBC, an

obvious feature is the presence of the zero-mode solution

in the gap regime. The enlarged �1 is shown in the inset of

Fig. 4(a), which indicates a sudden increase in�1 forV > 3.
Here the zero-mode solution corresponds to the Majorana

edge statewithMFs localized at the ends of 1Dwires. To see

it clearly, we introduce the Majorana operators �A
i ¼ ĉyi þ

ĉi and �B
i ¼ ðĉi � ĉyi Þ=i, which fulfill the relations

ð��
i Þy ¼ ��

i and anticommutation relations f��
i ; �

�
i g ¼

2�ij��� with � and � taking A or B, and rewrite the

quasiparticle operators as

FIG. 3 (color online). The finite size analysis of the transition

point, i.e., VcðLÞ versus 1=L. The inset shows �1ðLÞ ¼ �gðLÞ=2
versus 1=L in the regime of V < Vc and V > Vc.
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�y
n ¼ 1

2

X

L

i¼1

½�n;i�
A
i � ic n;i�

B
i �; (6)

where�n;i ¼ ðun;i þ vn;iÞ and c n;i ¼ ðun;i � vn;iÞ. Typical
distributions of�i and c i for the lowest excitation solution

of �1 are shown in Figs. 4(b) and 4(c). When V < Vc, �i

(c i) is located at the left (right) end and decays very quickly

away from the left (right) edge. As V deviates farther from

the transition point Vc, the edge mode decays more quickly.

Since there is no overlap for the amplitudes of �A
i and �B

i ,

the zero-mode fermion splits into two spatially separated

MFs. On the contrary, distributions of �i and c i for the

lowest excitation mode in the regime of V > Vc, for ex-

ample V ¼ 3:5, overlap together and locate inside of the

bulk as a result of Anderson localization. Consequently, the

corresponding quasiparticle is a localized fermion which

cannot be split into two independent MFs. Therefore, the

transition from TSCs to Anderson localizations can also be

judged by the presence or absence of edge MFs in different

parameter regimes of the system with OBC.

Z2 topological invariant.—The existence of Majorana

edge states is attributed to the nontrivial topological nature

of the bulk superconductor, which can be characterized by

a Z2 topological invariant [2]. In terms of Majorana opera-

tors, the Hamiltonian [Eq. (1)] can be represented as H ¼
i
4

P

2L
l;m¼1 Alm�l�m with A�

lm ¼ Alm ¼ �Aml, where L is the

number of lattice sites, A is a skew-symmetric matrix, �l is

defined as �2j�1¼�A
j , �2j¼�B

j , and f�l; �mg ¼ 2�lm. The

nonzero matrix elements are given by A2j�1;2j¼
�A2j;2j�1¼Vcosð2�j�Þ, A2j�1;2jþ2¼�A2jþ2;2j�1¼��1,

and A2j;2jþ1¼�A2jþ1;2j¼1þ� for j ¼ 1; . . . ; L with

the boundary condition of Lþ 1 ¼ 1. For a skew-

symmetric matrix A, the Pfaffian is defined as

PfðAÞ ¼ 1
2LL!

P

	2S2L
sgnð	ÞA	ð1Þ;	ð2Þ . . .A	ð2L�1Þ;	ð2LÞ, where

S2L is the set of permutations on 2L elements and sgnð	Þ is
the sign of the permutation. With the Pfaffian of a system,

the Z2 topological invariant is defined as M ¼ sgn½PfðAÞ�.
As shown in Fig. 5, the Z2 topologically nontrivial phase is

characterized M ¼ �1, whereas the Z2 topologically triv-

ial phase corresponds to M ¼ 1. For the system with V <
2þ 2�, the Z2 number M ¼ �1 and the system is in the

topologically nontrivial phase, while for the system with

V > 2þ 2�, the Z2 numberM ¼ 1 and the system is in the

topologically trivial phase. As the strength of V increases, a

topological phase transition happens.

Summary.—In summary, we study the effect of disorder

produced by the incommensurate potential in 1D p-wave
superconductors which support a topological SC phase

with Majorana edge states. Increasing the strength of dis-

order destroys the topological SC phase and drives the

system into an Anderson localized state. The phase tran-

sition driven by the disorder is identified by analyzing the

change of the gap, the long-range order of the correlation

function of nonlocal operators, and the IPR which charac-

terizes the spacial localization of wave functions. The

transition point is exactly determined both numerically

and analytically. A Z2 topological invariant is also used

to identify the transition from the topological SC phase,

which has emergent Majorana edge states for the system

with OBC, to the topologically trivial localized state.

This work has been supported by National Program for

Basic Research of MOST, the NSF of China under Grants

No. 11174360 and No. 11121063, and a 973 Grant.

Note added.—Recently, we became aware of a preprint

on similar topics [31].
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