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Topological Superstring in D=2 and Topological Supergravity
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We examined the quantization of a topological sigma model in 2D superspace with a 2D flat
target manifold. It is shown that the topological supergravity is obtained as the quantum theory by
taking the superdiffeomorphism invariance into account. We also discuss the global (twisted)
supersymmetries realized in the quantum theory. :

Various topological field theories have been studied intensively since Witten
proposed the topological Yang-Mills t_heories.” Among many topological models 2D
topological gravity theories®® and topological string theories” have been attracting
much attention since it was conjectured that those models are equivalent to some
large N matrix models.®* Now it seems to be a very interesting problem to charac-
terize the non-critical string theories from the point of view of topological field
theories.”’

Recently the Nambu-Goto type string in D=2 space-time has been studied as a 2D

topological field theory, and the 2D topological gravity turns out to be obtained
~ through a certain quantization procedure.’  When the dimension of space-time is 2,
there are no physical degree of freedom of the string. Therefore it is expected that
the Nambu-Goto action in D=2

S=-— f d*o/ — det(aﬂxaa;Xd) ) 1)

where a=0, 1 is the space-time index and ¢=0, 1 is the world-sheet index, may be
regarded as a topological field theory. Actually we may be allowed to rewrite (1) as

S= —% f 206" €20, X3, X" (2)

using the speciality of D=2. This gives a topological model, since the lagrangian is
a total derivative. If we suppose the 2D space-time manifold to be Euclidean and S?
then the corresponding action will be given by

S=—5% f 266" Jou( X) 3uX 00X | 3)

where J..(X) is the complex structure on the S%.  Actually this is a simple case of the
topological sigma model.” This action is nothing but the wrapping number of the
string world-sheet to S? which will play a role similar to the Pontryagin index in the
topological Yang-Mills theories.” However this argument may sound to be wrong to
some readers, because the Nambu-Goto action (1) is usually supposed to give the
area of the world-sheet not a topological number. It, therefore, should be noted that
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1078 H. Terao and K. Yamada

we have assumed the positive definiteness of det 0.X* in rewriting (1) into (2). This
assumption seems to be natural, if we regard det 0.X? as the zweibein e.” on the
world-sheet. Otherwise the models based on the actions (1) and (2) give us different
physical states, which means (1) and (2) are not equivalent systems. In another point
of view those models can be canonically transformed into each other, however this
transformation is found to be singular for some configurations of the string.”
Anyway we would like to start with the action (2) and consider its supersymmetric
extension,®

S:%/dzo‘dz 6€A36abDA( @aDB(Db) ’ ‘ (4)

where D=D1=09/00+i6(3— 1) and D=D»=3/00 +i8(d+ ) are the supercovariant
derivatives, @%, which are superfields decomposed as

0%, 0)=X*+ 04+ G¢° (5)

and ¢*® is an off-diagonal tensor defined by e?=¢e*'=1. Here ¢“ and ¢“ denote
components of a real (Majorana) spinor. If we write down the lagrangian in terms
of the component fields, then

L=0X X "—aX aX"

e ACETAASS VAGEETS

—%J_(80-81) 9/7++72'§Z+(30_81) </7_ . , ‘ (6)

As is easily seen, this lagrangian is also a total derivative.

Now we shall consider the quantization of this system. In Ref. 6) the bosonic
action was quantized by means of the Batalin-Fradkin-Vilkovisky (BFV)
Hamiltonian formulation.”” Here we also apply the BFV quantization to our model,
since the usual BRST quantization may be rather awkward for our purpose.

The primary constraints are immediately read off from (6) as

=Tt J7x0, (7)

where P., 7. and 7. are the canonical conjugate variables to X*, ¢* and ¢* respec-
tively. All these constraints are commuting, i.e., Ist class. However let us reduce
the degree of freedom of the fermionic phase space by the proper gauge fixing so that
we obtain the usual Poisson brackets between the fermionic variables,

*) Here we are interested in the world-sheet supersymmetry. The Green-Schwarz superstring in D=2,
which are found to be topological, has been also investigated.®
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{¢*(0), ¢‘(0’)}%— i8(o—0),
{$*(0), §(oN=—18(6—0") . ' : (8)

The gauge fixing conditions may be given by

X+:7?+_—é“/7_x0- ' ’ (9)

Now the remaining 1st class constraints (we shall call them topological constraints)
are found to be

Cp-=it=0. (10)

Hereafter we shall abbreviate bar of 7+ and write it as @+ for the simplicity.
As is well known the superstring action (Neveu-Schwarz-Ramond formulation) is
invariant under the superdiffeomorphism. In the D=2 case the corresponding con-

straints may be expressed by

b= (P BX NP ARX )+ LG 0T 4T 0T
b= (P X P~ 0K~ 0",
o= _72'[ THPr+hX )+ §(P-+aXD],

=" (Pi—aX)+¢(P—aX"], (11)
where ¢. are fermionic constraints for the supersymmetry transformation. Now we
suppose that our model is the constrained system characterized by both the topologi-
cal constraints and the superdiffeomorphism constraints. Then these ‘constraints are
reducible reflecting that the gauge transformations generated by them are dependent.
The reducibility relation between the constraints are read off as

¢+: ¢§+ 5——%81 $+ §Z++é_¢t+aﬂ/}+ ,

¢—:_ ‘Ig— $++%81§5+¢+"%§5+31¢’+ ,

o-=—tG 458, ~ | (12)
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where we introduced
5¢=—2—(P~ialx+) (13)

for convenience. Such reducibility of the constraints seems to be fairly crucial in the
topological field theories such as topological (super)gravity.

We are now in a position to perform the BFV quantization. First we enlarge the
phase space introducing ghost multiplet for each constraint as follows,

(&%, ps), (%, 1), (N*, Bs) for ¢,
(7%, Te), (7%, 72), (T, @2) for @e,
(c*, Ds), (p%, €s), (N, Be) for ¢s,
(7%, @), (%, 72), (2%, ) for os. (14)

However the constraints are reducible as explained before. Therefore we have to
impose additional constraints between the antighosts according to the general proce-
dure to handle the reducible constraints.¥ They may be given by

o =Tty DTG, - (15)
where it is noted that the ghost number of these constraints are —1. Corresponding
to the new constraints we shall introduce multiplets of so-called ghosts for ghosts as

(™, 7'4), (0™, ), (N*, B'z) for ¢,

(7’i7 ﬁ,i)) (ﬁli, 7,i)y (Xli, a),i) for gp/i - (16)

Here it should be noted that the ghost number of ¢’* and y'* are 2, p'+ and 7'+ are
—2, and also (¢’*, §’<) are bosonic and (%, 7'+) are fermionic ghost variables.

Using these constraints and the ghost variables one can construct the nilpotent
BRST charge as

Q= Qs+ Q7

QB(+):fdG{C+¢++ 5+5++C/+<ﬁ+_ﬁ ¢ +5 (9171'+¢’Jr 17T+al¢ >

+rtost 7V G+ y’*( 7T++%5+J++ 7%+q§->+c+p+al’c+——y b+

2e0z 1snbny 0z uo 1sanb Aq £62926/.2£01/5/98/01ME/d)d/W00 N0 dIWapEDE//:SdRY WOl papeojumoq




Topological Superstring in D=2 and Topological Supergravity 1081
Y P A= U SR P
+c 77r+817 +7817r+7 + D0 C +-2—7r+817 —7617r+7
4 7+ I4 7+ 3 =7 7+ 1 =7 7+
+2p o+ AD v C -I—77z' LY +7817r 7

+ y+<a1 E+7%++7Z ?+5++%alc'+ Tt 0T+ i7'+§’+>} ) 17)

Q5" is given by an expression similar to @z”. This BRST charge is determined by
the structure of the constraint algebra and totally independent of the choice of gauge.

We may also construct the symmetry generators corresponding to the constraints,
which we started with, by taking the Poisson brackets of the BRST charge and the
antighosts,

Li(0)={@5, 5:(0)},  G(0)={Qs, T(0)},

L(0)={Qs, D:(0)},  Gx(0)={Qs, 7:(0)},

L'(0)={Qs, 7':(0)}, G':(0)={Q5 7':(0)}. (18)
They are found to be as follows:

Li=¢.—a(c*p)—a(r* T,

Comfo—bac RO Rt LBor",
Li=¢it prie' +5Rd7 — 5o 7

+225+81c++81§+c++%ﬁ+817++%81 7?+')’+

+225,+a10/++3125,+C++%7—T-131’)’,++%317_l"+7"+
=L M+L.,
G+=¢++ala+ﬁ++%y+zs+
38 + = +1 5 ; + 3 I+ o= I+ = e
—y T T —C OT—1D+y +7alc Flotc 0T v +iD vy
E(;+M_|'G+Gh,
, ~ = 1.z 1=+
+—§+_ﬁ+¢*+7al7f+¢ “‘"77T+(91¢
2 aict gt — S nldy — g Aty

Eﬁ++Lq{”+L/fh )
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Gi=Tr+ Tr -+ 25+¢ +3 Tiocttomict+ipiy”

=7+ GM+ G : (19)

where the superscript M denotes the part composed of the string variables and the hat
ghosts, and the superscript Gh denotes other ghost variables. We may write down
the BRST charge neatly in terms of these generators as

QB(+): dd{ E+¢++ ?+¢++C/+25++ ')’H- T+

_I_C+<L+M+_%_L+Gh>+C/+<L+1M+%_L;_Gh)

TERTS VYo W i v I e

The (—) sector of the generators and of the BRST charge are expressed by forms
similar to (19). and (20).

One of the interesting gauge choices is the superconformal gauge which is famil-
iar in the superétring theories. The original Hamiltonian is vanishing, therefore the
gauge fixed Hamiltonian is given merely by

H=(Qs, ¥}, | (21)

where ¥ is a so-called gauge fermion.
The gauge fermion corresponding to the superconformal gauge is

U= (N*~1)+ CoN*+ CLN*+ Fax*+ 7: x5+ 7ix™*
+ PN+ PN EF BN+ Tay ™+ TuZ T+ Tax'®. (22) .
After performing Legendre transfomation and solving non-dynamical equations of
motion such as ¢++ p+=0, ¥=+ 7.=0, etc., we will obtain the following lagrangian:
L=0:X*0_-X " +idto-¢ +ig*o:¢~
G0 T — -0+ E = F40-Ct— 704 T
— C40-¢T—CT_0sCcT— 740y = 7-0s7
MO = Tl Ty FLO Y (23)

where 4. denote d+ ;. Since this is a conformally invariant free theory, it may be
convenient to reformulate this on a complex plane. The ghosts also denote (52 b2),
(74, Bo), (%, bzz), (¢, Bi), (7%, Bzs) and (7"°, B) instead of (&, —ic/2x), (¢, —ic/2m),
(¢/, —ic'|2x), (7, —i7/2nm), (y, —i7/2x) and (¥, —i7’/2x). Then the action is
rewritten as

S=o- f dHIX*TX+iF TP i 09

+btdEt+b 9 +BT AT +B T
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+br0ct+bdc +BY Oy +Ray
Y A ar Lam . A AN o s (24)

where ¢ and & mean 3/0z and 0/0z. Thus we obtain eventually the conformal field
theory which is regarded as the topological superstring coupled to the topological
supergravity.!”!V*  The generators which are relevant to characterize this confor-
mal field theory turn out to be '

L.=—2idX " +d(cb)+3(yR),
Co=2igp™++0cB+cof + by,
L=~ 0X* X"~ 4* 0 +504" ¢~ bac —5 fo7 +- aB‘
Gl=—¢ 0X*—¢*9X —3cf+7b,
M= 5aX*—3BY" 5 BavT,
= BoX"+254+,

ng=—2bac—abc—%ﬁayw%—agy—zb'ac'—ab' ’—%,8’87’—%8/3’7’
= —2by+—+ 8c,8+ca,8+2b’7’——ac B —=c'op,
Ch=9p"0c+ b’ c+—=- ,8 e 8,8 Y,

;§h=2b’7—%5’8c—63'c - | - (25)

where we have used the equations of motion.
One may also consider the following gauge conditions instead of the ordinary
superconformal gauge,

N.=1, ¢+=0, Ni=0,
x:=0, ¢*=¢ =0, x:=0. (26)

Then we will find the part of the matter and hat ghosts to disappear and the quantum
system to be purely the topological supergravity.

It is known generally that such topological field theories are ruled by so-called
twisted N=2 supersymmetry."” So we shall examine what kinds of supersymmetries
are realized in this model. Actually we may find out that a twisted N =2 superconfor-
mal algebras (SCA’s) and also an ordinary N=2 SCA’s in both of the strmg sector and
the gravity sector separately.

*) In Ref. 11) the Liouville sector is given in addition to the ghost sector. However only the ghost
sector is essential for the moduli space of the topological supergravity and we may eliminate the Liouville
sector by a proper gauge fixing. Our model does not produce the Liouville terms, because the gravity
freedom does not exist.
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1084 " H. Terao and K. Yamada

In the twisted N=2 SCA the conformal spins of the two supercurrents are
modified to be 1 and 2 due to twisting of the energy momentum 7z.. These fermionic
currents, which are denoted by G: and Gz, may be given in terms of a part of the
BRST charge and L%. Indeed the following sets of generators are found to satisfy
the twisted SCA’s:

T —2b3c — dbc —2b' 3¢’ — b’ '—%ﬁay—%aﬁy—% ’87'—%‘8,8’7’ ,

N P I T
J==—bc—2b'c 2,6‘7' 237,
G.=—2bc" 28y,

G=2b'dc+ab'c +%,8’6’7 +%aﬁ'y

(TG)

27)
and
- vt 7as L ogaa, Lo 1 a0 150
Tew=—0X"0X —bac—7¢ oy +78¢ ¢ —7,887_—1—78,87,
T :_”A_L + —_LAA
G.=280X"—27¢",
Go=— 58X+—%BE¢++%E8¢+ . (28)

The central charge of the algebra (TG) is calculated to be ¢T@=c®"¢) + c&n&r)

=—9+6=—3, for the algebra (TS) ¢™=c*#+ ##N=340=3. Here it should
be noticed that the U(1) currents differ from the ghost number currents generally.

On the other hand, we can find N=2 SCA’s by decomposing the N=1 supercur-
rents G% or G given in (25) into Gz and Gz properly. The generators will be as
follows,

Tzz: —Zbac — abc —%,887—%337-2@86'_ ab’c’_%ﬂ’a')”_%aﬁ’ ’ ,

(G| o= —2bc—3gr—20c =387,
Gzo=—2by+2b"Y,
Guo—380c+208c—3'0c' ~208'c

(29)
and
B rre 1 oen 1o e 1a 1as.
Tee=—0X*0X —5 ¢ 3~ +504"¢ —b0e—B37+5987,
(SS) z=—</ﬁ¢‘+57l
Gao=—¢~0X+— BOE ,
Goo=—2¢70X"+2%b . (30)

Both of the central charges of these algebra are vanishing as is expected; ¢®%
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=BehnN 4 O = _15415=0 and ¢®=c*+ 08D =3-3=() The (b, ¢, B,
y) part of the algebra (SG) has been already known as the hidden N=2 SCA in the N
=1 superghost system."” _

-Thus we obtain two spin 3/2 supercurrents, a spin 1 supercurrent and a spin 2
supercurrent in each sector. Therefore it may be possible for these systems to have
the enlarged symmetry, i.e., the twisted N=4 SCA’s.*»'” In order to have above
mentioned supercurrents the N =4 SCA to be twisted has to contain an SU(2) X SU(2)
current algebra. However, the commutation relations (or O.P.E.) between the super-
currents given in (27)~(30) show us that some of such SU(2) X SU(2) currents as well
as spin 1/2 fermionic currents are missing. Therefore the twisted N=4 symmetry
does not seem to realize in this system.

We are very grateful to Professor K. Fujikawa, Professor J. Kubo', Dr. H.
Kunitomo, Dr. S. Nojiri and Dr. H. Suzuki for valuable discussions.
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