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TOPOLOGICAL TYPE OF LIMIT LAMINATIONS

OF EMBEDDED MINIMAL DISKS

Jacob Bernstein & Giuseppe Tinaglia

Abstract

We consider two natural classes of minimal laminations in three-
manifolds. Both classes may be thought of as limits—in different
senses—of embedded minimal disks. In both cases, we prove that,
under a natural geometric assumption on the three-manifold, the
leaves of these laminations have genus zero. This answers a ques-
tion posed by Hoffman and White.

1. Introduction

Let Ω be a fixed Riemannian three-manifold. Suppose that Ωi ⊂ Ω
is an increasing sequence of open sets with Ω =

⋃
Ωi and that Σi are

minimal surfaces properly embedded in Ωi. We say that the curvatures
of the Σi blow up at a point p ∈ Ω if there exists a sequence of points pi ∈
Σi converging to p such that |AΣi

|(pi) becomes arbitrarily large, where
|AΣ| denotes the norm of the second fundamental form of Σ. We call
such p a blow-up point and observe that the set, K, of blow-up points is
closed in Ω. The points ofK are precisely the obstruction to the sequence
smoothly subconverging. Indeed, up to passing to a subsequence, the
Σi\K converge on compact subsets of Ω\K to a smooth proper minimal
lamination L in Ω\K—see [7, Appendix B]. Recall, a lamination is a
foliation that need not fill space. We call the quadruple (Ω,K,L,S) a
minimal surface sequence. A natural question is:

In a minimal surface sequence, what singular sets, K, and
limit laminations, L, can arise?

Work of Anderson [1] and White [23] answers this question when
the total extrinsic curvatures of the surfaces Σi—i.e.,

∫
Σi

|AΣi
|2—are

uniformly bounded. In this case, K is finite and L extends smoothly
across K. In general, without such a strong assumption on the geometry
of the surfaces in the sequence one does not expect such a complete
answer.

Remarkably, when the Σi are assumed only to be disks, an elegant
story also emerges—we call such minimal surface sequences minimal
disk sequences. In a series of papers [5, 6, 7, 8], Colding and Minicozzi
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extensively studied these sequences and proved deep structural results
about both their singular sets, K, and limit laminations, L. Specifically,
they showed that K must be contained in a Lipschitz curve and that
for any point p ∈ K there exists a leaf of L that extends smoothly
across p. When Ω = R

3, Colding and Minicozzi further showed that
either K = ∅ or L is a foliation of R3\K by parallel planes and that
K consists of a connected Lipschitz curve which meets the leaves of L
transversely. Using this result, Meeks and Rosenberg showed in [16] that
the helicoid is the unique non-flat properly embedded minimal disk in
R
3—see also [2]. This uniqueness was then used by Meeks [15] to prove

that if Ω = R
3 and K �= ∅, then K is a line orthogonal to the leaves of

L. This is precisely the limit of a sequence of rescalings of a helicoid.
An example constructed by Colding and Minicozzi in [4] illustrates

how for general regions such a simple and complete description of the
limit lamination does not hold. Specifically, they constructed a sequence
of properly embedded minimal disks in the unit ball B1 of R

3 which has
K = {0} and whose limit lamination consists of three leaves—two are
non-proper and spiralling into the third, which is the punctured unit
disk in the x3-plane. Inspired by this, a plethora of examples have now
been constructed which show that the singular set K can consist of any
closed subset of a line; see [9, 12, 13, 11]. Likewise, Meeks and Weber
[17] have given examples where K is curved. Strikingly, Hoffman and
White [10] have also constructed minimal disk sequences in whichK = ∅
and the limit lamination L has a leaf which is a proper annulus in Ω.
In all examples the leaves are either topologically disks or annuli. This
motivated Hoffman and White to ask in [10]:

Can a surface of positive genus occur as a leaf of the lami-
nation L of a minimal disk sequence? A planar domain with
more than two holes?

In this paper we show that, under natural geometric assumptions on
Ω, the answer to both questions is no. That is, the leaves of L must be
either disks or annuli.

Theorem 1.1. Let Ω be the interior of a compact oriented three-
manifold N = Ω with mean-convex boundary. If Ω contains no closed
minimal surfaces and (Ω,K,L,S) is a minimal disk sequence, then the
leaves of L are either disks or annuli. Furthermore, if L is a leaf of L
with the property that L—the closure in Ω of L—is a properly embedded
minimal surface, then L is either a disk or it is an annulus which is
disjoint from K.

The theorem is proved by realizing the disks in the sequence S as
effective universal covers of the leaves of L. Geometric considerations—
specifically the fact that the disks are embedded—strongly restrict these
covers and this restricts the topology of the leaves as claimed. Most of
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our proof uses relatively elementary topological and geometric proper-
ties of embedded minimal disks.

Simple examples show that it is possible for the leaves of L to be
planar domains with more than two holes when the boundary is not
assumed to be mean-convex. Nevertheless, the methods of the present
paper continue to show that the leaves are genus zero. However, as
treating this more general case introduces several technical points, we
do not pursue it.

We further remark that it is unclear whether the condition that Ω
admits no closed minimal surface is necessary. To better understand this
question we consider also the topological type of leaves of a different—
though related—class of minimal laminations. Specifically, we say that
a quadruple (Ω,K,L,L0) is a minimal disk closure if L0 is a minimal
lamination in Ω all of whose leaves are disks; K is a relatively closed
subset of Ω; and L = L0, the closure of L0 in Ω\K, is a proper minimal
lamination in Ω\K.

Theorem 1.2. Let Ω be the interior of a compact oriented three-
manifold with boundary N = Ω which has mean-convex boundary. If Ω
contains no closed minimal surfaces and (Ω,K,L,L0) is a minimal disk
closure, then the leaves of L are either topologically open subsets of S2

or open subsets of RP2.

Notice that the conclusions of Theorem 1.2 are weaker than those
of Theorem 1.1. For instance, we can no longer rule out the existence
of one-sided leaves of L. In Appendix A, we give an example to show
that this is unavoidable—that is, we construct a minimal disk closure
(Ω, ∅,L,L0) where Ω is a solid torus and L contains a Möbius band as a
leaf. We also give an example in Appendix A that shows that Theorem
1.2 is sharp—i.e., we construct a minimal disk closure (Ω, ∅,L,L0) for
which one leaf of L is a torus.

Acknowledgments. The first author was partially supported by the
EPSRC Programme Grant titled “Singularities of Geometric Partial Dif-
ferential Equations,” grant number EP/K00865X/1 and by NSF Grant
DMS-1307953. The second author was partially supported by EPSRC
grant number EP/L003163/1.

2. Notation

Fix a smooth oriented Riemannian three-manifold (Ω, g). We denote
by distΩ the distance function on Ω and by expΩ the exponential map.
Hence,

expΩp : Br → Br(p)

where Br is the usual euclidean ball in R
3 centered at the origin and

Br(p) is the geodesic ball in Ω. A subset Σ ⊂ Ω is an embedded smooth
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surface if for each point p ∈ Σ there is a radius rp > 0 and dif-
feomorphism φp : Brp(p) → B1 so that D1 = φp(Σ ∩ Brp(p)). Here,
D1 = B1 ∩ {x3 = 0} ⊂ B1 is the unit disk. Such Σ is said to be proper
in Ω if it is a closed subset of Ω, that is, Σ = Σ.

For an embedded smooth surface, Σ, we write

exp⊥ : NΣ → Ω

for the normal exponential map where here NΣ is the normal bundle. If
NΣ is trivial then we say that Σ is two-sided ; otherwise we say that Σ is
one-sided. As Ω is oriented, Σ is two-sided if and only if Σ is orientable.
For a subset U ⊂ NΣ set

NU(Σ) := exp⊥(U).

The set NU(Σ) is regular if there is an open set V with U ⊂ V so that
exp⊥ : V → NV (Σ) is a diffeomorphism. If NU (Σ) is regular, then the
map ΠΣ : NU(Σ) → Σ given by nearest point projection is smooth and
for any (q,v) ∈ TNU(Σ), there is a natural splitting v = v⊥+v⊤, where
v⊥ is orthogonal to v⊤ and v⊥ is tangent to the fibers of ΠΣ. We say
such v is δ-parallel to Σ if

|v⊥| ≤ δ|v| and
1

1 + δ
|v⊤| ≤ |d(ΠΣ)q(v)| ≤ (1 + δ)|v⊤|.

Given ǫ > 0, we set Uǫ = {(p,v) ∈ NΣ : |v| < ǫ} and define Nǫ(Σ), the
ǫ-neighborhood of Σ, to be NUǫ

(Σ). If Σ is an embedded smooth surface
and Σ0 is a pre-compact subset, then there is an ǫ > 0 so that Nǫ(Σ0)
is regular.

Given a fixed embedded surface Σ and δ ≥ 0, we say that another
embedded smooth surface Γ is a smooth δ-graph over Σ if there is an
ǫ > 0 so that the following holds:

1) Nǫ(Σ) is a regular ǫ-neighborhood of Σ;
2) either Γ is a proper subset of Nǫ(Σ) or Γ is a proper subset of

Nǫ(Σ)\Σ;
3) each (q,v) ∈ TΓ is δ-parallel to Σ.

We say that a smooth δ-graph over Σ, Γ, is a smooth δ-cover of Σ if it
is connected and

ΠΣ(Γ) = Σ.

Let γ : [0, 1] → Σ be a C1 curve in Σ. We will also denote the image
of such γ by γ. We say that a curve γ̃ : [0, 1] → Nδ(γ) is a δ-lift of γ
if Nδ(γ) is regular, ΠΣ ◦ γ̃ = γ, and for each t ∈ [0, 1], (γ̃(t), γ̃′(t)) is
δ-parallel to Σ. This definition extends to piece-wise C1 curves in an
obvious manner.
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3. Minimal Laminations

We recall some facts about laminations.

Definition 3.1. A subset L ⊂ Ω is a smooth lamination if for each
p ∈ L, there is a radius rp > 0, maps φp, ψp : Brp(p) → B1 ⊂ R

3, and a
closed set 0 ∈ Tp ⊂ (−1, 1) so that:

1) φp(p) = ψp(p) = 0;
2) φp is a smooth diffeomorphism and D1 ⊂ φp(L ∩ Brp(p));
3) ψp is a Lipschitz diffeomorphism and B1 ∩ {x3 = t}t∈Tp

= ψp(L ∩

Brp(p));

4) ψ−1
p (D1) = φ−1

p (D1).

We refer to maps φp satisfying (1) and (2) as smoothing maps of L and
to maps ψp satisfying (1) and (3) as straightening maps of L.

A smooth lamination L ⊂ Ω is proper in Ω if it is closed—i.e. L = L.
Any embedded smooth surface is a smooth lamination, which is proper
if and only if the surface is.

Definition 3.2. Let L ⊂ Ω be a non-empty smooth lamination. A
subset L ⊂ L is a leaf of L if it is a connected, embedded surface and
for any p ∈ L, there is an rp > 0 and a smoothing map φp so that
D1 = φp(L ∩ Brp(p)). For each p ∈ L, let Lp be the unique leaf of L
containing p.

Definition 3.3. A smooth lamination L is a minimal lamination if
each leaf is minimal.

A sequence {Ωi} of open subsets of Ω exhausts Ω if Ωi ⊂ Ωi+1 and
Ω =

⋃∞
i=1Ωi.

Definition 3.4. Suppose the sequence {Ωi} exhausts Ω and that Li

are smooth proper laminations in Ωi. For any 0 < α < 1, the Li converge
in C∞,α

loc (Ω) to L, a proper smooth lamination in Ω, provided:

1) The sets Li converge to L in pointed Gromov-Hausdorff distance.
2) Smoothing maps of the Li converge in C∞ to smoothing maps of

L. That is, for each p ∈ L there is an rp > 0 and an ip > 0 so that:
for i > ip, Brp(p) ⊂ Ωi and for all pi ∈ B 1

4
rp
(p) ∩ Li converging

to p, there are rpi ≥ rp and smoothing maps φi : B 1

2
rp
(pi) → B1

of the Li converging in C∞
loc(B 1

4
rp
(p)) to a smoothing map φp :

B 1

4
rp
(p) → B1 of L.

3) Straightening maps of the Li converge in Cα to straightening maps
of L. That is, for each p ∈ L there is an rp > 0 and an ip > 0 so
that: for i > ip, Brp(p) ⊂ Ωi and for all pi ∈ B 1

4
rp
(p)∩Li converging

to p, there are rpi ≥ rp and straightening maps ψi : B 1

2
rp
(pi) →
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B1 of the Li converging in Cα
loc(B 1

4
rp
(p)) to a straightening map

ψp : B 1

4
rp
(p) → B1 of L.

The following is the natural compactness result for sequences of prop-
erly embedded minimal surfaces with uniformly bounded second funda-
mental form— see [7, Appendix B] for a proof.

Theorem 3.5. Suppose that {Ωi} exhausts Ω and that Σi are properly
embedded smooth minimal surfaces in Ωi. If for each compact subset U
of Ω there is a constant C(U) < ∞ so that when U ⊂ Ωi

sup
U∩Σi

|AΣi
| ≤ C(U),

then, for any 0 < α < 1, up to passing to a subsequence, the Σi converge
in C∞,α

loc (Ω) to a smooth proper minimal lamination L in Ω.

Remark 3.6. While the straightening maps converge in Cα, their
Lipschitz norms are uniformly bounded on compact subsets of Ω. This
follows from the Harnack inequality and is used in the proof of Theorem
3.5—see (B.3) and (B.5) of [7] and also [21, Theorem 1.1].

Suppose that {Ωi} exhausts Ω and that Σi are properly embedded
smooth minimal surfaces in Ωi. In light of Theorem 3.5, we define the
regular points of the sequence S = {Σi} to be the set of points

reg(S) :=

{
p ∈ Ω : ∃ρ > 0 s.t. lim sup

i→∞
sup

Bρ(p)∩Σi

|AΣi
| < ∞

}

and the singular points of S to be the set

sing(S) :=

{
p ∈ Ω : ∀ρ > 0, lim inf

i→∞
sup

Bρ(p)∩Σi

|AΣi
| = ∞

}
.

Clearly, reg(S) is an open subset of Ω while sing(S) is closed in Ω. In
general, sing(S) is a strict subset of Ω\ reg(S). However, an elementary
argument—see [7, Lemma I.1.4]—implies that there is a subsequence
S ′ of S so that Ω = reg(S ′) ∪ sing(S ′). From now on we consider only
sequences for which this decomposition holds.

We say that L is the limit lamination of S if for some α > 0, Σi → L in
C∞,α
loc (reg(S)). Theorem 3.5 implies that, up to passing to a subsequence,

any sequence S possesses a limit lamination L. Inspired by [22], we make
the following definition:

Definition 3.7. We say a quadruple (Ω,K,L,S) consisting of

1) a Riemannian three-manifold Ω exhausted by {Ωi};
2) a closed set K ⊂ Ω;
3) a proper smooth minimal lamination L in Ω\K; and
4) a sequence S = {Σi} of properly embedded minimal surfaces Σi

in Ωi
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is a minimal surface sequence if

1) sing(S) = K; and
2) Σi\K converge in C∞,α

loc (Ω\K) to L for some 0 < α < 1.

If all the surfaces in S are disks, then we say this is a minimal disk
sequence.

The work of Colding and Minicozzi [5, 6, 8, 7] implies that if (Ω,K,L,S)
is a minimal disk sequence, then K and L have a great deal of structure.
We say a leaf L of L is regular at p ∈ K if p ∈ L, the closure of L in Ω,
and there is an r > 0 so that Br(p) ∩ L is an embedded smooth surface
proper in Br(p). Then the following holds.

Proposition 3.8. If (Ω,K,L,S) is a minimal disk sequence, then
there is an embedded one-dimensional Lipschitz curve K ′ ⊂ Ω such that
K ⊂ K ′ and

1) if p ∈ K, then there is a leaf L ∈ L which is regular at p;
2) if L is regular at p ∈ K, then L meets K transversely—in the

strong sense that L meets K ′ transversely at p.

White [22] has shown that the regularity of K ′ can be taken to be
C1. Furthermore, Meeks [14] has shown that if K = K ′, then K ′ can
be taken to be C1,1.

We will consider also the following related objects.

Definition 3.9. We say a quadruple (Ω,K,L,L0) consisting of

1) a connected open subset Ω ⊂ N ;
2) a closed set K ⊂ Ω;
3) a smooth minimal lamination L0 in Ω\K; and
4) a smooth proper minimal lamination L in Ω\K

is a minimal surface closure, provided

1) for all p ∈ K and ρ > 0, supL∈{L0} supBρ(p)∩L |AL| = ∞; and

2) L0 = L, where here L0 is the closure of L0 in Ω\K.

If all the leaves of L0 are disks, then we say this is aminimal disk closure.

The limit laminations L of minimal disk sequences and of minimal
disk closures share many properties. Therefore, it is convenient to in-
troduce the following definition.

Definition 3.10. A smooth minimal lamination L in a Riemann-
ian three-manifold Ω is a simple minimal lamination in Ω if there is a
relatively closed set K ⊂ Ω and either

1) (Ω,K,L,S) is a minimal disk sequence for some S; or
2) (Ω,K,L,L0) is a minimal disk closure for some L0.
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4. Simple Lifts

In order to proceed we will need a technical definition.

Definition 4.1. Let Σ be an embedded surface in a fixed Riemannian
three-manifold Ω. The surface Σ has the simple lift property if, for any
δ > 0, γ : [0, 1] → Σ a piece-wise C1 curve, and open pre-compact subset
U ⊂ Σ with γ ⊂ U , there exist:

1) a constant ǫ = ǫ(U, δ) > 0;
2) an embedded minimal disk Δ in Ω; and
3) a δ-lift of γ, γ̂ : [0, 1] → Nδ(U),

such that

1) γ̂ ⊂ Δ ∩ Nǫ(U);
2) Δ ∩ Nǫ(U) is a δ-graph over U ;
3) the connected component of Δ ∩ Nǫ(U) containing γ̂ is a δ-cover

of U .

Such γ̂ is called a simple δ-lift of γ into Ω.

If Σ has the simple lift property in Ω and γ is a curve in Σ, then γ has
the embedded lift property if there is a δ0 > 0 so that for all δ0 > δ > 0,
all simple δ-lifts of γ are embedded. Clearly, if γ is an embedded curve,
then it has the embedded lift property.

Throughout this paper we study the topology of minimal surfaces
with the simple lift property. This is relevant to the study of the topol-
ogy of a leaf of a simple minimal lamination thanks to the following
proposition.

Proposition 4.2. Leaves of a simple minimal lamination in Ω have
the simple lift property.

Proof. We first consider the case of a minimal disk closure. If L is a
leaf of L which is a disk, then any curve in L is its own simple δ-lift
in any pre-compact open set of L containing such curve and there is
nothing to prove. If L is not a disk, then L ⊂ L\L0. Hence, for any
point p ∈ L there exists a sequence of points pi ∈ L0 so that pi → p.

Note first that the definition of smooth lamination—specifically the
existence of Lipschitz straightening maps—implies that for each pre-
compact open subset U of L there is a constant C = C(U) so that if
1 > Cλ > 0, then, for each leaf L′ of L0, Nλ(U) ∩ L′ is a—possibly
empty—Cλ-graph over U . Given a curve γ : [0, 1] → L, and U some
pre-compact open subset of L so that γ ⊂ U , let l denote the length
of γ and let d denote the diameter of U . For any δ > 0, choose ǫ > 0
such that Cǫ < min{1, δ}. Let μ = 3

4e
−2C(l+d) and pick Lμ to be a leaf

of L0 which satisfies Nμǫ(p) ∩ Lμ �= ∅ where here p = γ(0). Let Γ be a
component of Lμ ∩ Nǫ(U) which contains a point q ∈ Nμǫ(p) ∩ Γ.

The leaf Lμ is, by definition, a disk and we have chosen ǫ > 0 so
that Lμ ∩ Nǫ(U) is a δ-graph over U . We claim that Γ is a δ-cover of
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U containing a δ-lift of γ. This follows by showing that any curve in U
of length at most 2(l + d) starting at p has a lift in Γ starting at q. By
construction, this lift is necessarily a δ-lift. Indeed, if σ : [0, T ] → U is
parameterized by arclength and σ̂ : [0, T ′] → Γ satisfies ΠΣ(σ̂(t)) = σ(t)
for some 0 < T ′ ≤ T , then

∣∣∣∣
d

dt
distΩ(σ(t), σ̂(t))

∣∣∣∣ ≤ CdistΩ(σ(t), σ̂(t))

and so

distΩ(σ(t), σ̂(t)) ≤ eCtdistΩ(p, q) < ǫμeCt < ǫ,

where we used that t ≤ T ≤ l + d to obtain the final inequality. Fur-
thermore, if t < T , then the lift σ̂(t) may be extended past t provided

distΩ(σ(t), σ̂(t)) < ǫ. This proves that the leaf of a minimal disk closure
has the simple lift property as claimed.

In the case of a minimal disk sequence, the argument is identical
to the one above except that it uses the Harnack inequality to obtain
the bound on the Lipschitz norms of straightening maps. We refer to
Remark 3.6 and to [7, Appendix B] for the details on how to obtain this
bound. q.e.d.

A surface with the simple lift property is one for which, in an effective
sense, the universal cover of the surface can be properly embedded as
a minimal disk near the surface. For this reason, to understand the
topology of the surface, it is important to understand the lifting behavior
of closed curves. With this in mind, we give the following definition.

Definition 4.3. Let Σ ⊂ Ω be an embedded minimal surface with
the simple lift property. If γ : [0, 1] → Σ is a piece-wise C1 closed curve,
then γ has the open lift property if there exists a δ0 > 0 so that, for all
δ0 > δ > 0, γ does not have a closed simple δ-lift γ̂ : [0, 1] → Nδ(Σ).
Otherwise, γ has the closed lift property.

If a closed curve γ has the closed lift property, then there is a sequence
δi → 0 so that there are closed simple δi-lifts γ̂i of γ. If it is possible to
choose these lifts to be embedded, we say γ has the embedded closed lift
property.

The next lemma says that if two loops satisfying certain geometric
conditions have the open lift property, then their commutator has the
closed lift property. Very roughly speaking, it does this by constructing
an “effective” homomorphism from the space of loops in the leaf to Z.
Indeed, a curve γ̂ is a lift of γ if and only if γ̂−1 is a lift of γ−1. Thus,
γ has the closed lift property if and only if γ−1 does.

Proposition 4.4. Let L ⊂ Ω be an embedded minimal surface with
the simple lift property and let

α : [0, 1] → L and β : [0, 1] → L
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be closed piece-wise C1 curves satisfying the following properties:

1) both α and β have the open lift property;
2) α ∩ β = {p0} where p0 = α(0) = β(0);
3) there exists a two-sided pre-compact open set U ⊂ L with

α ∪ β ⊂ U .

Then the curve μ = α ◦ β ◦ α−1 ◦ β−1 has the closed lift property. If,
in addition, both α and β have the embedded lift property, then either μ
has the embedded closed lift property, or one of the following two curves
has the embedded closed lift property:

α ◦ β or β ◦ α−1.

Proof. Consider a sequence δi → 0. As Σ has the simple lift property,
there exist constants ǫi, embedded minimal disks Δi, and simple δi-lifts
of μ, μ̂i, so that Δi ∩ Nǫi(U) is a δi-graph over U , μ̂i ⊂ Δi and the
connected component Γi of Δi ∩ Nǫi(U) containing μi is a δi-cover of
U . By reparameterizing appropriate restrictions of μ̂i, we obtain lifts

of α, α−1, β, and β−1. We write μ̂i = α̂i ◦ β̂i ◦ α̂−1
i ◦ β̂−1

i where the

α̂i, β̂i, α̂
−1
i , β̂−1

i : [0, 1] → Γi are lifts of the α, β, α−1, β−1.
Setting p = μ(0), we pick a small simply-connected neighborhood

V of p that satisfies V ⊂ U . Because the Δi are embedded, there is
a natural way to order by height the components of Π−1

L (V ) ∩Δi. We

denote these ordered components by V̂i(1), . . . , V̂i(ni). Let p̂i(0) = α̂i(0),

p̂i(1) = α̂i(1) = β̂i(0), p̂i(2) = β̂i(1) = α̂−1
i (0), p̂i(3) = α̂−1

i (1) = β̂−1
i (0),

p̂i(4) = β̂−1
i (1) and notice that p̂i(j) ∈ V̂i(l(i, j)) for some function l.

Let

mi[α] = l(i, 1) − l(i, 0),

mi[β] = l(i, 2) − l(i, 1),

mi[α
−1] = l(i, 3) − l(i, 2), and

mi[β
−1] = l(i, 4) − l(i, 3)

represent the (signed) number of sheets between the endpoints of α̂i, β̂i,

α̂−1
i , and β̂−1

i . As both α̂i and β̂i are open lifts these numbers are never
zero. We now prove that mi[α] = −mi[α

−1] and mi[β] = −mi[β
−1]

and, hence, μ̂i is closed. We consider two cases: mi[α]mi[β] > 0 and
mi[α]mi[β] < 0.

In the first case we assume, without loss of generality, thatmi[α],mi[β] >
0. Using the fact that the Δi are embedded and that U is two-sided,
we see that there is a disjoint family of “parallel” lifts of α which we
denote by α̂i[j]. The first member of the family is α̂i[0] = α̂i and the
subsequent members of the family are the lifts α̂i[k] of α which sat-
isfy α̂i[k](0) = l(i, 0) + k. Namely, the lift α̂i[k] starts k sheets above
α̂i(0). By the embeddedness of Δi and the two-sidedness of U , the
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signed number of graphs between α̂i[0](t) and α̂i[k](t) is constant in t.
Hence, α̂i[k](1) = l(i, 1)+k—that is, the lifts have an endpoint k sheets
above the endpoint of α̂i. Clearly, the α̂i[k] are well-defined as long as
k ≤ mi[β]. Furthermore, α̂i[mi[β]] has an endpoint which is the same

as the endpoint of β̂i. Hence, since α̂i[mi[β]]
−1 is a lift of α−1 starting

at β̂i(1), the lift α̂i[mi[β]]
−1 must be α̂−1

i . That is, mi[α] = −mi[α
−1].

An identical argument shows that mi[β] = −mi[β
−1].

In the second case, we may suppose without loss of generality that
mi[α] > 0 andmi[β] < 0. We first assume that mi[α]+mi[β]+mi[α

−1] ≥
0 and obtain a contradiction. Under this hypothesis the endpoint of α̂−1

i
is not below that of the initial point of α̂i. As in the preceding argument,
we can construct a family of “parallel” lifts of α−1. The first member of
this family is α̂−1

i , the second lift in the family starts just below α̂−1
i , and

the last lift in such family, α̂′
i has endpoint that is the initial point of α̂i.

As before, the number of graphs between the start and endpoints of a
lift in this family is constant equal to mi[α

−1]. Since α̂′
i, has an endpoint

that is the initial point of α̂i, the lift (α̂′
i)
−1 must be α̂i. This implies

that mi[α] = −mi[α
−1]. Since mi[β] < 0, this leads to a contradiction.

Hence, mi[α] +mi[β] +mi[α
−1] < 0. Again one constructs a family of

parallel lifts starting from α̂i and ending with a curve with initial point
the endpoint of α̂−1

i , which again implies that mi[α] = −mi[α
−1]. The

same argument shows that in this case mi[β] = −mi[β
−1].

Finally, we note that if α and β have the embedded lift property,

then, because they meet at only one point, the curves α̂i ◦ β̂i, β̂i ◦ α̂
−1
i ,

and α̂−1
i ◦ β̂−1

i are all embedded. Hence, the only way that μ̂i can fail
to be embedded is if one of the first two is closed. q.e.d.

5. Main Proof

Rather than prove Theorems 1.1 and 1.2 directly, we prove slightly
more general results. To do so, we will restrict the geometry of the
three-manifolds Ω we consider.

Assumption 5.1. Let Ω be the interior of a complete, oriented,
three-manifold with (possibly empty) boundary N = Ω satisfying the
following properties:

1) The boundary of N is mean-convex.
2) There is an exhaustion {Ωt}t∈[0,1) of Ω so that each Ωt is pre-

compact in N , ∂Ωt is mean-convex, and {∂Ωt}t∈(0,1) foliates Ω\Ω0.

3) Ω contains no closed minimal surfaces.

Note that N does not have to be compact. For instance, H3 satisfies
Assumption 5.1. Minimal surfaces in such an Ω automatically satisfy a
certain type of uniform isoperimetric inequality. This follows immedi-
ately from work of B. White [24].
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Lemma 5.2. If Ω satisfies the conditions of Assumption 5.1, U ⊂ Ω
is a precompact subset of Ω and Σ is a compact minimal surface with
boundary ∂Σ ⊂ U , then:

1) There is a pre-compact open set U ′ depending only on U so that
Σ ⊂ U ′.

2) There is an increasing function, ΨU : R≥0 → R
≥0, depending only

on U and satisfying ΨU (0) = 0 and

|Σ| ≤ ΨU (|∂Σ|).

Proof. By Assumption 5.1, there is a pre-compact open subset U ′ =
Ωt0 with U ⊂ Ωt0 . As Ω\Ωt0 is foliated by mean-convex subsets, the
strong maximum principle and the fact that ∂Σ ⊂ Ωt0 implies that
Σ ⊂ Ωt0 . Finally, the existence of the function ΨU follows immediately
from [24, Theorem 2.1] applied to U ′. q.e.d.

Under Assumption 5.1 we have the following gluing property that
allows us to “fill in” curves with the embedded closed-lift property.

Lemma 5.3. Suppose that Ω satisfies Assumption 5.1. If L ⊂ Ω is an
embedded minimal surface with the simple lift property and γ : [0, 1] → L
has the embedded closed lift property, then there exists a smooth minimal
surface Δ properly embedded in Ω\γ so that:

1) Δ has finite area and is contained in a compact subset of Ω;
2) γ = Δ\Δ and Δ ∪ γ is connected;
3) Δ ∩ L is a non-empty open and closed subset of L\γ; and
4) if γ is embedded, then Δ is a disk.

Proof. By hypothesis, there exists a sequence of closed embedded
simple 1

n -lifts γn of γ. Hence, each γn bounds a minimal disk Δ′
n inside of

the minimal disks Δn. Clearly, there is a fixed pre-compact subset U of Ω
containing γ together with all of the γn. Furthermore, the length of each
γn is bounded by twice the length of γ and so there is a uniform bound on
|∂Δ′

n|. As a consequence, Lemma 5.2 implies that there is a precompact
subset U ′ of Ω so that the sequence of disks Δ′

n are contained in U ′

and, moreover, have uniformly bounded area. A result of Schoen and
Simon [19]—see Theorem B.1 for the statement—then gives uniform
curvature bounds for the Δ′

n on compact subsets of Ω\γn. Hence, up to
passing to a subsequence, Theorem 3.5 and the area bounds imply that
the Δ′

n converge in C∞
loc(Ω\γ) to a properly embedded minimal surface

Δ ⊂ Ω\γ of finite area and bounded curvature on compact sets of Ω\γ.

As each Δ′
n is contained in U ′, it follows that Δ ⊂ U

′
. This proves Item

(1). Item (2) follows from the set theoretic convergence of Δ̄′
n.

As the Δn are contained in 1
n graphs over a fixed neighborhood V of

γ, Δ\γ contains a component of V \γ and so Δ\γ is non-empty and is
contained in L. Indeed, the nature of the convergence implies that Δ\γ
is an open and closed subset of L\γ.
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If γ is embedded, then the γ̂n converge to γ with multiplicity one.
Clearly, to prove Item (4) it suffices to show that the Δ′

n also converge
to Δ with multiplicity one. This is most conveniently done using the
language of varifolds—we refer to [20] for details.

Let Vn be the integer multiplicity rectifiable varifold associated to Δ
′
n.

As γ is piecewise smooth, the nature of the convergence of γn toward

γ implies that Δ
′
n has uniformly bounded first variation. Indeed, since

Δn is minimal, the first variation measure of Vn is supported along
γn. As the Vn also have uniformly bounded mass, we may apply the
compactness theory for integer multiplicity rectifiable varifolds to see
that (up to passing to a further subsequence) Vn converges in the sense of
varifolds (in Ω) to an integer multiplicity rectifiable varifold V . It follows
from the nature of the convergence that sptV = Δ and, moreover, at
any point of Δ the multiplicity of V is a positive integer. Moreover, the
first variation measure of V is supported along γ. Notice that as L is a
smooth minimal surface and sptV ⊂ L, the constancy theorem implies
that the multiplicity of each component of sptV \γ is constant.

Fix a point p ∈ γ and a small open neighborhood W ⊂ L about p
chosen small enough so that γ divides W into exactly two components
W− and W+. If both W− and W+ meet sptV , then it follows from the
strong unique continuation principle for smooth minimal surfaces that
sptV is a closed minimal surface in Ω. This violates Assumption 5.1
and so—up to relabelling—we may assume that W− ∩ sptV = ∅. As γn
converge to γ with multiplicity one, the nature of the convergence of Δ′

n

to Δ then immediately implies that the multiplicity of V is one which
proves the claim. q.e.d.

Corollary 5.4. Suppose Ω satisfies Assumption 5.1. If L ⊂ Ω is an
embedded minimal surface with the simple lift property and γ is a closed
embedded curve in L with the closed lift property, then γ is separating.

Proof. Let Δ be the surface given by Lemma 5.3. If γ is non-separating,
then L\γ is connected and so, by the previous lemma, L\γ ⊂ Δ.
Therefore, by strong unique continuation for smooth minimal surfaces,
Δ = Δ∪γ = Δ∪L is a closed minimal surface of finite area in Ω, which
contradicts Assumption 5.1. q.e.d.

We are now in a position to prove that surfaces with the simple lift
property in regions satisfying Assumption 5.1 must have genus zero.

Proposition 5.5. Suppose Ω satisfies Assumption 5.1. If L ⊂ Ω is
an embedded minimal surface with the simple lift property in Ω, then L
has genus zero.
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Proof. Arguing by contradiction, suppose that L has genus greater
than zero. Then, by the classification of surfaces, there exist two piece-
wise smooth, non-separating Jordan curves α, β : [0, 1] → L and a two-
sided pre-compact set U ⊂ L such that the following holds:

• α ∩ β = p = α(0) = β(0) = α(1) = β(1);
• L\(α ∪ β) is connected;
• α ∪ β ⊂ U .

By Corollary 5.4 both curves have the open lift property and so α
and β satisfy the hypothesis of Proposition 4.4. Hence, there exists a
sequence of closed curves νn that are closed simple 1

n -lifts of ν = α ◦
β ◦ α−1 ◦ β−1. Proposition 4.4 further tells us that either the curve
μ = ν, the curve μ = α ◦ β, or the curve μ = β ◦ α−1 has the embedded
closed lift property. In all cases, Lemma 5.3 gives a minimal surface Δ
properly embedded in Ω\μ and that [Δ\μ]∩L is a non-empty open and
closed subset of L\μ. As L\μ is connected, Δ ∩ L = L\μ. Hence, by
the strong unique continuation property of smooth minimal surfaces,
Δ = Δ ∪ L is a properly embedded minimal surface in Ω of finite area
and we contradict Assumption 5.1. q.e.d.

Clearly, Theorem 1.2 follows from Propositions 4.2 and 5.5. Indeed,
the region Ω of Theorem 1.2 can be seen to satisfy Assumption 5.1 by
taking the exhaustion to be Ω itself.

6. Minimal Disk Sequences

In this section we conclude the proof of Theorem 1.1. In particular,
we show that in the case of minimal disk sequences, the leaves of the
limit lamination are two-sided.

Proposition 6.1. Suppose Ω satisfies Assumption 5.1. If (Ω,K,L,S)
is a minimal disk sequence and L is a leaf of L, then

1) If L is two-sided, then L is either a disk or an annulus.
2) If L is one-sided, then L is a Möbius band.

Proof. We will argue by contradiction. For any three separating Jor-
dan curves γ1, γ2, and γ3 in L with the property that no one of the
curves separates the other two, it is the case that L\ (γ1 ∪ γ2 ∪ γ3) has
four components L1, L2, L3, L4. Label the Li so that L1 ∩ (γ2 ∪ γ3) = ∅,
L2 ∩ (γ1 ∪ γ3) = ∅, L3 ∩ (γ1 ∪ γ2) = ∅, and γ1 ∪ γ2 ∪ γ3 ⊂ L4. By Propo-
sition 5.5, L has genus zero. Hence, if L is neither a disk, an annulus,
nor a Möbius band, then the classification of surfaces implies that the
γi may be chosen so that

• L1, L2 and L3 are not disks;
• L4 is two-sided.

We claim that for such a choice, γ1, γ2, and γ3 have the open lift and
embedded lift property. Indeed, being embedded curves, they clearly
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have the embedded lift property. Suppose γi had the closed lift property;
then applying Lemma 5.3 would give that γi is the boundary of a disk Δ
and Δ∩L is equal to one of the two components of L\γi. By the Colding–
Minicozzi one-sided curvature estimate of [8], and the construction of Δ
in Lemma 5.3, Δ∩ S = ∅ and therefore one of the components of L \ γi
is a disk, contradicting our choice of γi.

Let σ be an embedded arc in L4 which connects γ1(0) to γ2(0). Notice
that the classification of surfaces tells us that such σ exists and does
not separate L4. Consider the new closed curve γ4 = σ−1 ◦γ2 ◦σ. By an
argument analogous to the one described before, this curve must also
have the open lift property. In fact, the embeddedness of σ and of γ2
and the fact that γ2 has the open-lift property imply that γ4 has the
embedded-lift property.

We now consider the closed curve ν = γ1 ◦γ4 ◦γ
−1
1 ◦γ−1

4 . Proposition
4.4 implies that either the curve μ = ν, the curve μ = γ1 ◦ γ4, or the
curve μ = γ4 ◦ γ

−1
1 has the embedded closed lift property. In all cases,

let Δ be the embedded minimal surface given by Lemma 5.3. The fact
that Δ is connected and that γ1 ∪ γ2 ⊂ Δ together imply that L4 ⊂ Δ.
However, as γ3 is a Jordan curve disjoint from ν, γ3 must be the limit
of embedded closed curves in Δn—that is, it has the embedded closed
lift property. This is a contradiction and proves the proposition. q.e.d.

Proposition 6.2. Let Ω satisfy Assumption 5.1. If (Ω,K,L,S) is a
minimal disk sequence and L is a leaf of L, then L is two-sided.

Proof. Suppose that L is a one-sided leaf of L. By Proposition 6.1,
L is a Möbius band. As a consequence, there is a closed Jordan curve
γ : [0, 1] → L that is non-separating and so, by Corollary 5.4, has the
open lift property. Let U be an open pre-compact neighborhood of γ
and pick ǫ > 0 so that N ǫ(U) is a regular neighborhood. As γ is non-
separating, U is one-sided and, indeed, the surface M = Π−1

L (γ)∩N ǫ(U)
is a closed Möbius band.

Let Σi be the surfaces in S. There are curves, γ̂i, which are compo-
nents of Σi ∩ M containing δ-lifts of γ for any δ sufficiently small. In
particular, the γ̂i are proper, but not closed, in M . Furthermore, after
possibly shrinking ǫ, they are monotone in the sense that (γ̂′i)

⊤ �= 0
and γ̂i meets ∂M transversely. Finally, for i large enough, the map
ΠL : γ̂i → γ contains a three-fold cover. We claim this yields a contra-
diction.

To see this, consider π : M̃ → M the oriented double cover of M . As

M̃ is an annulus and γ̂i is monotone:

• M̃ = S
1 × [−1, 1] with coordinates (θ, z);

• M = M̃/∼ with (θ, z) ∼ (θ + π,−z);
• S

1 × {0} = π−1(γ);
• γ̃i = π−1(γ̂i) is a graph over S1.
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As γ̃i is a graph, we may parametrize γ̃i(θ) as (θ, vi(θ)) for θ ∈ [0, Ti] and
some continuous function vi with |vi(0)| = |vi(Ti)| = 1 and |vi(θ)| < 1
for θ ∈ (0, Ti). Since γ̂i contains a three-fold cover of γ, Ti > 3π. The
embeddedness of γ̂i implies that for any θ ∈ [0, Ti−π], vi(θ+π) �= −vi(θ)
and for any θ ∈ [0, Ti−2π], vi(θ+2π) �= vi(θ). Without loss of generality,
we assume that vi(0) = −1. Consider the continuous function gi defined
for θ ∈ [0, Ti−2π] by gi(θ) = vi(θ+2π)−vi(θ). Notice that gi(Ti−2π) <
0 if and only if vi(Ti) = −1. Hence, as gi(0) > 0, the intermediate
value theorem implies that vi(Ti) = 1. Finally, consider the continuous
function fi defined for θ ∈ [0, Ti − π] by fi(θ) = vi(θ + π) + vi(θ).
Clearly, fi(0) < 0 and fi(Ti − π) > 0. Hence the intermediate value
theorem contradicts the fact that fi(θ) �= 0, completing the proof. q.e.d.

We now finish the proof of Theorem 1.1. For completeness, we recall
its statement.

Theorem 1.1. Let Ω be the interior of a compact oriented three-manifold
N = Ω with mean-convex boundary. If Ω contains no closed minimal
surfaces and (Ω,K,L,S) is a minimal disk sequence, then the leaves of
L are either disks or annuli. Furthermore, if L is a leaf of L with the
property that L—the closure in Ω of L—is a properly embedded mini-
mal surface, then L is either a disk or it is an annulus which is disjoint
from K.

Proof. We first note that Ω satisfies the conditions of Assumption 5.1
by taking the exhaustion to be Ω itself. Moreover, each leaf of L has the
simple lift property by Proposition 4.2. Hence, Propositions 6.1 and 6.2
together imply L is either a disk or an annulus. The remainder of the
theorem follows from the deeper result of Colding and Minicozzi that
we summarized in Proposition 3.8. Indeed, if L is a leaf of L with L̄ a
properly embedded minimal surface, then it is regular at each p ∈ L∩K.
Hence, by Proposition 3.8, L ∩K is a discrete set of points in L. As L
is either a disk or an annulus, if L is an annulus it must be disjoint
from K. q.e.d.

Appendix A. Examples

A.1. One-sided limit leaf. In this section, we construct a simply-
connected minimal surface M embedded in a solid torus that is not
properly embedded. Moreover, its closure is a lamination in the solid
torus consisting of three leaves; the leaf M and two limit leaves. One
limit leaf is an annulus while the other is a Möbius band.

Let T be a solid torus obtained by revolving a disk D in the (x1, x3)-
plane around the x3-axis. We take D small enough so that T is mean-
convex and there exists a stable minimal Möbius band M embedded in
T whose double cover is also stable and with boundary a simple closed
curve in ∂T . For the existence of such a surface, we refer to [17]. Since
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the double cover of M is stable, a normal neighborhood of M can be
foliated by minimal surfaces and, except for M itself, the leaves of this
foliation are two-sided annuli. Let Σ denote the outermost leaf of this
foliation and let W denote the open region between M and Σ. Let Σt,
t ∈ [0.1], be an indexing of the leaves of the foliation with Σ0 = M and

Σ1 = Σ. Let T̃ be the universal cover of T with the induced metric. We
realize T̃ as

T̃ = {(x, y, z) : x2 + y2 ≤ 1} ⊂ R
3

in a manner so that for any α ∈ R the map

Gα : T̃ → T̃ , G(x, y, z) = (x, y, z + α)

is an isometry and for any t ∈ R the set

Bt : = {(x, y, z) ∈ T̃ | z = t}

is a minimal surface that is a lift of a disk obtained by intersecting T
with a vertical plane containing the z-axis. The maps G2πn, n ∈ Z are

the deck transforms of T̃ . Let Π: T̃ → T denote the natural projection.

Given an embedded surface S ∈ T̃ , if for any n ∈ Z\{0} it holds that
G2πn(S) ∩ S = ∅, then Π(S) is embedded in T .

The Möbius band M lifts to a strip M̃ with boundary consisting of

two curves in ∂T̃ and, being a lift, is invariant by the deck transforms

G2πn, n ∈ Z. The strip M̃ is two-sided and separates T̃ into two com-

ponents. Each leaf Σt of the foliation, t ∈ (0, 1], lifts to two strips Σ̃+
t

and Σ̃−
t on opposite sides of M̃ and this gives a foliation of a two-sided

normal neighborhood of M̃ . We shall denote by W̃ the region foliated

by the leaves Σ̃+
t and denote such leaves by Σ̃t. Given a point p ∈ W̃ ,

then p ∈ Σ̃t for a certain t ∈ (0, 1) and we denote that t by t(p). Note

that ∂W̃ ∩∂T̃ consists of two disconnected components, Δ1 and Δ2, and
let αi ⊂ Δi, i = 1, 2 be analytic curves such that the following holds:

• αi intersects ∂Σ̃t, t ∈ (0, 1), in exactly one point;

• αi converges to ∂Σ̃1 ∩Δi as z goes to infinity and to ∂M̃ ∩Δi as
z goes to minus infinity.

Let W̃n be the region in W̃ in between the minimal disks B±2πn. Then,

W̃ =
⋃

n W̃n and ∂W̃n consists of six surfaces: four minimal surfaces,

Σ̃n
0 = M̃ ∩W̃n, Σ̃

n
1 = Σ̃1∩W̃n, B

n
+ = B2πn∩W̃n, and Bn

− = B−2πn∩W̃n,

and two mean convex surfaces Δn
1 = Δ1∩W̃n and Δn

2 = Δ2∩W̃n. Since
the contact angle between such surfaces is less than π, the boundary of

W̃n is mean-convex and a good barrier to solve the Plateau problem.
Let γn ∈ ∂Wn be a piece-wise smooth simple closed curve constructed

in the following way. The curve γn is given by the union αn
1∪β

n
+∪α

n
2∪β

n
−

where αn
i = αi ∩ W̃n. The curve βn

+ is an arc connecting the endpoints,
pni of αn

i in Bn
+. If tn = t(pn1 ) = t(pn2 ), then we take βn

+ to lie in Σtn .
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Otherwise, we take βn
+ to intersect each Σt in at most one point. We

choose the curve βn
− in an analogous manner in Bn

−. Clearly, by our
choices of αi, for n sufficiently large,

max
p∈βn

+

{t(p)} < min
p∈βn

−

{t(p)}.

This implies that for any n sufficiently large and any m ∈ Z\{0}, then

G2πm(γn) ∩ γn = ∅.

By a result in Meeks and Yau [18], γn is the boundary of an embed-

ded, area minimizing disk Dn ⊂ W̃n. Since it is area minimizing and,
for n large, ∂G2πm(Dn) ∩ γn = ∅ for any m ∈ Z\{0}, it follows that

G2πm(Dn) ∩Dn = ∅,

given that Π(Dn) is also embedded. Moreover, since Dn is area minimiz-
ing and αn

i , i = 1, 2, are analytic curves, it satisfies curvature estimates
up to αi, i = 1, 2 and a standard compactness argument gives that it
converges to a complete simply-connected minimal surface D∞ embed-

ded in T̃ with boundary αi, i = 1, 2. By construction,

G2πm(D) ∩D = ∅

for anym ∈ Z\{0}; therefore, if we letD = Π(D∞), thenD is a complete
embedded disk. Clearly it is not properly embedded T . By curvature
estimates for stable minimal surfaces, D, the closure of D in T , is a
minimal lamination. We claim that D consists of three leaves, D itself
and two limit leaves D1 and D2. By construction, D contains a compact
leaf D1 with boundary ∂Σ and a compact leaf D2 with boundary ∂M .
Using the foliation Σt and the strong maximum principle, one concludes
that D1 = Σ and D2 = M .

A.2. Torus limit leaf. In this section we construct a three-manifold,
Ω, and a complete, embedded disk Δ ⊂ Ω whose closure, Δ, is a minimal
lamination in Ω, one of whose leaves is a minimal torus. More specif-
ically, we take Ω = T

2 × R together with a certain metric for which
Assumption 5.1 does not hold. In Ω we construct an embedded minimal
disk Δ that is not properly embedded and so the closure of Δ is a proper
minimal lamination in Ω consisting of five leaves; the leaf L1 = Δ and
four limit leaves. Two of the limit leaves are the tori L2 = T

2 × {−1}
and L3 = T2 × {1}; the other two; L4 and L5, are non-proper annuli
with L4 = L5 = L2 ∪ L3. The original idea for this construction is due
to D. Hoffman; we refer also to [3] for a related construction.

We begin by constructing a metric g on the cylinders

C = S
1
θ × Rt.

Consider the metric

g0 = (2 + cosπt)dθ2 + dt2
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and the foliation of C by circles, S1[t] = S
1 × {t} ⊂ C. It is an elemen-

tary computation to see that these circles all have constant curvature.
Moreover, the leaves which are geodesics are S

1[i] for i ∈ Z. When
i ∈ 2Z these geodesics are unstable, while for i ∈ 2Z + 1 they are sta-
ble. Let U be the connected component of C\

(
S
1[−1] ∪ S

1[1]
)
which

contains (0, 0). Similarly, we consider the foliation αθ = ({θ} × R) ∩ U
of U . It is clear that all the leaves of this foliation are geodesics. Fi-
nally, let us denote by Tv the “translation” map Tv((θ, t)) = (θ + v, t),
which is clearly an isometry, and by R the isometric involution given by
R((θ, t)) = (−θ,−t).

Standard methods—e.g., a shooting method or a minimization pro-
cedure in the universal cover of C—produce an embedded geodesic
γ+ : [0,∞)s → γ+ ⊂ U with γ+(0) = (0, 0) and so that the t coordinate
of γ+(s) is monotonically increasing in s. Here s is the arclength param-
eter. It is clear that γ+ must accumulate at S1[1]. Let γ = γ+ ∪R(γ+).
This is a non-proper geodesic in C which accumulates at S1[−1]∪S

1[1].
It follows also from the construction that if γv := Tv(γ), then {γv}v∈R
is a foliation of U . With that in mind, let γ− = γ−π/2 and γ+ = γπ/2
and let V be the component of U\ (γ− ∪ γ+) which contains (0, 0).

We now modify the metric g0, so that geodesics which pass through
(0, 0) are unstable. To that end, pick a compactly supported function
φ ∈ C∞

0 (V ) so that

• 0 ≤ φ ≤ 1;
• spt(φ) ⊂ B2ǫ ⊂ V ∩ (−π

2 ,
π
2 )× (−1, 1);

• φ ◦R = φ;
• φ = 1 on Bǫ.

Here Br is the geodesic ball (with respect to g0) about (0, 0) of radius
r and we choose φ so that 2ǫ is smaller than the injectivity radius of
g0 at (0, 0). Now fix a point p ∈ S

2 and let gS2 be the round metric of
curvature one on S

2. We denote by Br the geodesic ball of radius r in S
2

about p. As B2ǫ and B 7

8
π are disks, there is a smooth diffeomorphism

Ψ : B2ǫ → B 7

8
π.

Moreover, we may choose this smooth diffeomorphism so that

• Ψ((0, 0)) = p;
• Ψ(Bǫ) = B 3

4
π;

• Ψ ◦ R = R̃ ◦ Ψ—here R̃ is the isometry of S2 given by rotating
180◦ around the line through p and −p.

We now set
g1 = (1− φ)g0 + φΨ∗gS2 .

Geodesics of g1 that pass through (0, 0) are, by construction, unstable.

Lemma A.1. If γ is a geodesic in V for g1 such that (0, 0) ∈ γ and
Bǫ ∩ γ is proper in Bǫ, then γ is unstable.
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Proof. If γ is such a geodesic, then Ψ(γ ∩Bǫ) is a proper geodesic in
B 3

4
π that contains p. Hence Ψ(γ ∩ Bǫ) has length at least 3

2π > π and

so is unstable. q.e.d.

Note that the curves S
1
±1, γ±, and απ all remain geodesics for g1 as

g1 = g0 in a neighborhood of these curves. Furthermore, as φ ◦ R = φ
and Ψ ◦R = R̃ ◦Ψ, R is also an isometry of g1.

Our goal now is to construct the desired disk Δ. To that end, let
Ω = S

1
ψ × C = T

2 × R have the product metric

gΩ = dψ2 + g1.

Set U ′ = S
1 × U and V ′ = S

1 × V and note that Γ± = S
1 × γ± are

totally geodesic cylinders which accumulate at the totally geodesic tori
T
2[±1] = S

1×S
1[±1]. Likewise, let A = S

1×απ ⊂ U ′, which is a totally
geodesic annulus. The following “translation” map is an isometry of gΩ
for v ∈ R

Tv((ψ, θ, t)) = (ψ + v, θ, t)

and the following “reflection” map

R′((ψ, θ, t)) = (−ψ,R(θ, t)) = (−ψ,−θ,−t)

is an isometric involution.
We denote the universal cover of Ω by Ω̂. That is,

Ω̂ = R× R× R

with coordinates (ψ̂, θ̂, t̂). Let Π̂ : Ω̂ → Ω be the natural covering map.

For subsets S ⊂ Ω we will denote lifts of these sets to Ω̂ by Ŝ. In

particular, the tori T2[±1] lift to stable minimal disks T̂
2[±1] and the

cylinders Γ± lift to minimal disks Γ̂± which together bound a region

V̂ := V̂ ′ which contains (0, 0, 0). Likewise, we let Âi = R× {π + 2πi} ×

(−1, 1) for i ∈ Z be lifts of A. We denote by T̂v the isometry of Ω̂

given by T̂ 1
v (ψ̂, θ̂, t̂) = (ψ̂ + v, θ̂, t̂) for v ∈ R and let R̂ be the reflection

R̂(ψ̂, θ̂, t̂) = (−ψ̂,−θ̂,−t̂). Note that T̂2πi for i ∈ Z are deck transforms

of the cover. Furthermore, R̂(Γ̂+) = Γ̂− and R̂(Âi) = Â−i−1. Finally, let

us denote by Ĝi, i ∈ Z, the deck transforms

Ĝi((ψ, θ, t)) = (ψ, θ + 2πi, t)

and note that Ĝi(V̂ ) ∩ V̂ = ∅ for i ∈ Z\{0}.

We now construct an embedded minimal disk Δ̂ in Ω̂ so that Δ =
Π̂(Δ̂). To that end, let σ̂+

j be the curves Γ̂+∩
{
ψ̂ = j

}
and σ̂−

j the curves

Γ̂− ∩
{
ψ̂ = −j

}
. We denote by σ̂+

j,i the segment of σ̂j between Âi and

Â−i−1 and likewise for σ̂−
j,i. Let τ̂

−
j,i be a real-analytic curve connecting

the endpoint of σ̂+
j,i in Â−i−1 to the endpoint of σ̂−

j,i which is chosen to
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be contained in Â−i−1 and to have the property that both coordinates

t̂ and ψ̂ are strictly monotonic. Set τ̂+j,i = R̂(τ̂−j,i). One verifies that τ̂+j,i
connects the other endpoints of σ̂+

j,i and σ̂−
j,i. Hence,

δ̂j,i := σ̂+
j,i ∪ σ̂−

j,i ∪ τ+j,i ∪ τ−j,i

is a closed curve and δ̂j,i = R̂(δ̂j,i). We note that our choice of curves

implies further that T̂v(δ̂j,i) ∩ δ̂j,i = ∅ for v �= 0. Now let Δ̂j,i be mini-

mal disks which solve the Plateau problem with boundary δ̂j,i. By the

strong maximum principle T̂ 1
v (Δ̂j,i) ∩ Δ̂j,i = ∅ for v �= 0. In particular,{

T̂ 1
v (Δ̂j,i)

}
v∈R

is a minimal foliation Dj,i of an open subset, V̂j,i, of V̂

and T̂v leaves Dj,i invariant. This together with the strong maximum

principle applied to the Jacobi function generated by T̂v implies that
the leaves of Dj,i are graphs over

Vi := {(ψ̂, θ̂, t̂) ∈ V̂ : ψ̂ = 0, θ ∈ (−π − 2πi, π + 2πi)}.

As R̂ leaves both δ̂j,i and V̂j,i unchanged, it follows from the strong

maximum principle that Δ̂j,i = R̂(Δ̂j,i). In particular, (0, 0, 0) ∈ Δ̂j,i.
By Theorem 3.5, up to passing to a subsequence, the minimal foliations

Dj,i converge smoothly on compact subsets of V̂ to a minimal foliation

of V̂ . This foliation is also invariant under T̂v. A consequence of this is
that if L is a leaf of D, then either L splits as the product R× η where
η is a geodesic in V∞ or L is a graph over some open subset of V∞. If
the former occurs, then the stability of L implies that η is also a stable
geodesic.

Let Δ̂ be the leaf of D which contains (0, 0, 0). As Δ̂ is the limit of

Δ̂j,i, Δ̂ is complete. By Lemma A.1, the geodesic in V∞ through (0, 0, 0)

is unstable and hence Δ̂ cannot split. In particular, Δ̂ is a graph over

some open subset of V∞ and T̂v(Δ̂) ∩ Δ̂ = ∅. Set Δ = Π̂(Δ̂) and note

that, as Δ̂ ⊂ V̂ , Ĝi(Δ̂) ∩ Δ̂ = ∅ for i ∈ Z\{0}. Hence, Δ is a complete
embedded minimal disk in V ⊂ Ω. Clearly Δ cannot be properly em-
bedded in Ω. Nevertheless, the curvature estimates for stable minimal
surfaces imply that Δ is a smooth minimal lamination in Ω. To deter-

mine the other leaves, we note first that limv→∞ T̂v(Δ) converges in Ω̂

to some T̂v invariant minimal surface L̂+—possibly, but not necessar-

ily, Γ̂+. Similarly, limv→−∞ T̂v(Δ̂) converges to a T̂v invariant surface

L̂− = R̂(L̂+). As a consequence, L± = Π̂(L̂±) are non-proper embed-
ded minimal annuli that are leaves of Δ. Finally, by construction L±

are contained in V
′
, that is, are trapped between Γ+ and Γ−. Since the

ends of Γ+ and Γ− converge to the same side of T2
1 and T

2
−1, one verifies

that L± = T
2[±1] and these are the remaining leaves of Δ. That is,

Δ = Π̂(Δ̂) is the desired minimal disk.
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Appendix B. Curvature Estimate of Schoen and Simon

For the convenience of the reader we state the curvature estimate for
embedded minimal disks with a uniform area bound proved by Schoen
and Simon in [19].

Theorem B.1. Fix (Ω, g) a Riemannian three-manifold and let
B2r(p) ⊂ N satisfy:

• expΩp : B2r(0) → B2r(p) is a smooth diffeomorphism.

• With gijdx
idxj = (expΩp )

∗g, there is a 0 < α ≤ 1 so

1

2
δij < gij < 2δij , sup

B2r

(
r

∣∣∣∣
∂gjk
∂xi

∣∣∣∣+ r2
∣∣∣∣
∂2gkl
∂xi∂xj

∣∣∣∣
)

< 1,

and

sup
(x,y)∈B2r×B2r

r2+α|x− y|−α

∣∣∣∣
∂2gkl
∂xi∂xj

(x)−
∂2gkl
∂xi∂xj

(y)

∣∣∣∣ < 1.

Given μ > 0, there is a C = C(μ) > 0 so that if Σ ⊂ B2r(p) is a properly
embedded minimal disk in B2r(p) and |Σ| ≤ μr2, then

sup
Br(p)∩Σ

|A|2 < Cr−2.
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