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ABSTRACT.   Let R be an integral domain.  Our purpose is to study
GD (going-down) domains which arise topologically; that is, we investigate
how certain going-down assumptions on R and its overrings relate to the
topological space Spec(/?).   Many classes of GD domains are introduced
topologically, and a systematic study of their behavior under homomorphic
images, localization and globalization, integral change of rings, and the
"D + M construction" is undertaken.   Also studied, is the algebraic and
topological relationships between these newly defined classes of GD domains.

1. Introduction. The main purpose of this paper is to build upon the
studies of Dobbs [5] on going-down extensions and going-down domains, by
attacking the problems with a different motivating force. Whereas much of [5]
was motivated by flatness, the present work has a topological stimulus. In each
of the following sections, we introduce and study new topologically defined*
classes of going-down domains by considering how various going-down conditions
on a domain R and its overrings relate to conditions on the topological space
Spec(F). In each section, we present relevant definitions and notation, although
we assume to some extent that the reader is familiar with [3], [4], [5], [6]
and [7].

2. Going-down domains and /-domains. This section introduces and devel-
ops notation and results, some of which we believe to be intrinsically interesting,
which will be used continually in the following sections.  Many of the lemmas
and propositions are straightforward and are stated without proof.

Recall from [5] and [6] that a (commutative integral) domain R is called
a going-down domain (written R is GD) in case R C T satisfies going-down for
each domain T containing R; and R is said to be treed if Spec(F), as a partially

Presented to the Society, January 23, 1975; received by the editors March 4, 1975.
AMS (MOS) subject classifications (1970).   Primary 13A15, 13F05; Secondary S4C10.
Key words and phrases.   Going-down, treed, mated, open, propen, branch, G-domain,

fiber, trunk, vertex.
(')  This work is a portion of the author's Ph.D. thesis written under the direction of

Professor David E. Dobbs at Rutgers University.  The author wishes to thank Professor Dobbs
for his continual assistance and patient guidance in the preparation of this manuscript.

1 Copyright © 1976, American Mathematical Society

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



2 I. J. PAPICK

ordered set under inclusion, is a tree. In [5, Theorem 2.2], it is shown that a
GD domain must be treed; an example of Lewis, described in [28] shows that
the converse need not be true.

As in [25], an extension R C T of domains is said to be open if Spec(7)
—► Spec(/?) is an open map. (Unless otherwise specified, the map Spec(T)—►
Spec(/?) is the contraction map.)  It is well known (cf. [16, Proposition 1.10.13
(a) and (b')]) that any open extension satisfies GD; throughout this paper, we
exploit this sufficient condition continually.

As in [3], we say that R C 7 is mated if each prime ideal P of R such that
PT ¥= T is unibranched in 7; a domain R is said to be mated if R C T is a mated
extension for each domain 7 containing R and contained in the quotient field
of R.  In [5, Proposition 3.6], Dobbs shows that an integrally closed domain is
Prüfer if and only if it is mated.  Call an extension R C T an injective extension
(and write: ¡-extension) if Spec(7) —► Spec(i?) is injective, and say that a domain
R is an i-domain if R C T is an /-extension for each domain T containing R and
contained in the quotient field of R.  It is clear that any mated extension is an
/-extension; Example 2.3 shows that the converse is not generally true.  Corol-
lary 2.11 will show that the notions of mated domain and /-domain coincide.

A related class of domains consists of the so-called inc-domains (defined
below).  To some extent our work on them has been anticipated by Gilmer
([11, Theorem 16.10 and Theorem 22.2], [13, seventh page, LL. 11-Î3]), whose
comments are extended and clarified below.

Throughout this paper, R denotes a domain and R C T denotes an exten-
sion of domains. We say that 7 is finitely generated over R if it is so as a ring
over R.  R denotes the integral closure of R, and qf(F) is the quotient field of
R. The notations for inclusion and proper inclusion are C andÇ, respectively.
By an overring (respectively, proper overring) of R, we mean any domain 7 sat-
isfying RCTC qf(F) (respectively, R Ç 7 C qf(F)). As in [18, p. 28], the
properties of going-up, lying over, and incomparability are denoted by GU, LO,
and INC, respectively.  A domain is herein called local (respectively, semilocat)
in case it possesses only one (respectively, finitely many) maximal ideal(s). Fin-
ally, dim(7?) denotes the Krull dimension of R. Any unexplained terminology
is standard, as in [18] or [11].

Proposition 2.1. If R is GD and each overring of R is treed, then R/P
is GD for each P E Spec(F).

Proof.  In order to prove that R/P is GD, [6, Theorem 1] shows that it
suffices to establish that R/P C 7 satisfies GD for each valuation overring T of
R/P.  Since qf(R/P) is canonically isomorphic to RP/PRP, any element P + r
of R/P may be identified with its image PRP + r\\ in Rp/PRp. By means of this
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CLASSES OF GOING-DOWN DOMAINS 3

identification, we obtain an overring 5 of F which is contained in Rp and satis-
fies 7 = S/PRp.

Let PJP C P2/P be prime ideals of R/P and Q2/PRP a prime ideal of 7
lying over P2/P.  Without loss of generality, P =£ Px.  Now, Px C P2 are primes
of R, and Q2 is a prime of 5 lying over P2. Since R is GD, there exists a prime
f21 of 5 such that gi c Ö2 anc* Ôi nes over ̂ 1 ■  Let M/PRP be the maximal
ideal of 7and observe that Qx CM. As 5 is treed, Qx compares withPRP. We
claim that PRP C ß,.  If not, then

Pl=QxnRCPRpnR=p,

a contradiction. Then QJPRp n F/P = Pi/P, whence F/P C 7 satisfies GD,
as required.

We now begin to investigate the relationships between GD domains, /'-do-
mains and mated domains.

Let us first note that if F is an /-domain, then each overring enjoys the
same property, as well as R/P for each P E Spec(F). Also, an easy calculation
shows that the "/-domain" property is a local property.

Lemma 2.2.   Assume that RCT satisfies GD.  Then RCTis an ¡-exten-
sion if and only if R C T is mated.

Example 2.3.  The following is an example of an /-extension that neither
is mated nor satisfies GD. Let F be a 2-dimensional Noetherian domain and let
P be a height 2 prime of R. Then by a result of Chevalley (cf. [19, Theorem 261] ),
there exists a discrete (rank 1) valuation ring V containing R with maximal ideal
M, such that M n R=P. Then R C F is an /'-extension but is neither mated
nor GD.

Remark 2.4. It is easy to construct an extension of domains RCT sat-
isfying GD and failing to be mated. (Cf. Example 2.17, for such an example in
which 7 is an overring of F.) By Lemma 2.2, no such extension F C 7 can be
an /-extension; nor can such 7 be a flat overring of R.

Indeed, if 7 is a flat overring of F, then F C T is mated. To show this,
take P G Spec(F) such that PT î T. Then [30, Theorem 2] implies that 7 C Rp,
thereby producing a prime of T lying over P. As for uniqueness, if ß G Spec(7)
with Q(1R=P, then [30, Theorem 2] gives TQ = Rp, forcing ß = PRP n 7.

Lemma 2.5. Let RCT be an i-ex tension, with T finitely generated over
R and R integrally closed in T.  Then R C Tis open.

Proof. This follows directly from a corollary of Zariski's main theorem
[29, Corollaire 2, p. 42].

Corollary 2.6.   Same hypotheses as above.  Then RCT is mated.
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Proof.  Apply Lemma 2.2.

Proposition 2.7. Let T be finitely generated over R. IfRCS is an
i-extension for each S satisfying R C 5 C T, then R CTis open.

Proof.  Let R' be the integral closure of F in T. Then by Lemma 2.5,
R' C T is open.  Moreover, [2, Remark (2), p. 329] shows that the continuous
bijection SpeciF') —► Spec(F) is a closed map, hence a homeomorphism. Thus,
as a composite of open extensions, R C 7" is open.

Corollary 2.8.   Let R be an i-domain and T a finitely generated over-
ring ofR.  Then R CTis open.

Corollary 2.9.  IfRCS is an i-extension for each S satisfying RCS
C T, then R C T satisfies GD.

Proof.  By [25, Lemma 3], we may assume T is finitely generated over
R, in which case we are done by an appeal to Proposition 2.7.

Proposition 2.10. IfR C R[u] is an i-extension for each uET, then
RCTis mated.

Proof. We claim that R C 5 is an i-extension for each 5 satisfying R C
SCT. If not, there exist distinct primes P.Q of S such that P n R = Q n R.
Without loss of generality, choose « G P\Q. Then P O R [u] and Q n R [u] are
distinct primes of R[u], each contracting to P n R, and hence contradicting the
assumption that R C R [u] is an /-extension. Thus, by Corollary 2.9, R CT
satisfies GD, and so by Lemma 2.2, R C T is mated.

Corollary 2.11. R is an i-domain if and only ifR is mated.

Proposition 2.12. Let R be GD. IfRC Tis an i-extension, then T
isGD.

Proof. By [6, Theorem 1], it suffices to show that TCV satisfies GD
for each valuation overring V of T. Let P Q M be primes of T and N a prime
of V contracting to M. By the hypotheses, there exists a prime QÇN such that
QHR=PnR. Thus Q n T and P have the same contraction in R, and so are
equal.

Corollary 2.13. IfR is an i-domain, then every overring ofR is GD.

Proof. R is GD by Corollary 2.9. Now apply Proposition 2.12.

Proposition 2.14. R is an i-domain if and only ifRCR is an i-extension
and R is Prüfer.

Proof. In case R = R, the result is immediate from [11, Theorem 16.10].
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CLASSES OF GOING-DOWN DOMAINS 5

So suppose F CJ F. The "only if" direction is clear. For the "if direction, we
suppose that F is not an /'-domain. Thus, there exists an overring 7 of F and
distinct primes F and ß of T such that P n F = ß n F. Consider the following
diagram

FC FT
U      U
FC T.

Since T C RT is an integral extension, there exist distinct primes P and Q' in
RT such that F n T = P and Q' n T = Q. Now F C F7, as the composite of
the /-extensions R C R and F C F7, is an /-extension, contradicting F* C\R =
Q' H F, to complete the proof.

Corollary 2.15. F is a local i-domain if and only if R is a valuation ring.

Proof.  Assume F is a local /-domain. Then F is an integrally closed
/-domain, local by integrality; i.e., F is a valuation ring.

Conversely, assume F is a valuation ring. Then F is local, again by inte-
grality. By Proposition 2.14, it now suffices to show that F C F is an /-exten-
sion. This follows since F is local treed and F C F, being integral, satisfies INC.

We pause to remark that Corollaries 2.13 and 2.15 combine to recover [7,
Corollary 2.5].

Corollary 2.16. Let R be a Noetherian domain.  Then R is an i-domain
if and only ifRCR is an i-extension and dim(F) < 1.

Proof. Assume F is an /-domain. Then, by Corollary 2.9, F is GD, so
that [4, Proposition 7] gives dim(F) < 1.

The converse is attained from Proposition 2.14 by showing that F is Dede-
kind.  For this, we make a direct appeal to [18, Exercise 13, p. 73].

Example 2.17. This example will show that the requirement of F C F
being an /-extension is needed in Corollary 2.16 and hence in Proposition 2.14.
Let C be the complex numbers, and x and y indeterminates over C. Let F be
the localization of C[x, y] l(y2 - x3 - x2) at the image of (x, y). Then F is
a local Noetherian domain, dim(F) = 1, and F possesses exactly two maximal
ideals. (In particular, this example shows that an extension satisfying GD need
not be an /-extension.)

In [6, Theorem 1 ], it was shown that valuation overrings of F serve as
test extension rings in determining whether F is GD. Example 2.17 shows that
valuation overrings of F are, in general, not enough to test whether F is an
/-domain. However, we do have the following proposition.

Proposition 2.18. F is an i-domain if and only if R C V is an i-extension
for each valuation overring VofR and RCRis an i-extension.
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Proof.  The "only If* half is trivial. To complete the proof it suffices,
by Proposition 2.14, to show that R is Prüfer. The valuation overrings of F
coincide with those of R ; so R C V is an /-extension (since F C V is) for each
valuation overring V of R. Then [11, Theorem 16.10] implies that R is Prüfer.

In [7], Dobbs studies ascent and descent of GD domains for integral ex-
tensions. We next consider some similar questions for /-domains.

Proposition 2.19 (Ascent).   Let R be an i-domain with qf(F) = K, and
let L be an algebraic extension field ofK.   Then R*, the integral closure ofR
in L, is a Prüfer domain.

Proof. Since F is an /-domain, Proposition 2.14 implies that F is Prüfer.
But R* is the integral closure of F in L, so that Priifer's ascent result [11, The-
orem 18.3] completes the proof.

An example of Heinzer-Ohm, summarized in [7, Example 2.1], shows
that, without further assumptions, descent of /-domains fails for integral exten-
sions.

Proposition 2.20 (Descent).  Let T be an i-domain which is integral
over R. If T is local or R is integrally closed, then R is an i-domain.

Proof.  First, assume that T is a local /-domain, and let 5 be any over-
ring of F. Then, as in Proposition 2.14, we focus our attention on the follow-
ing diagram:

TCTS
U      U
RC 5.

R C T is an /-extension since it satisfies INC (by integrality) and T is local treed,
while 7 C 75 is an /-extension since T is an /-domain and 75 C qf(7). Thus,
R C 75 is an /-extension. However, 5 C 75 satisfies LO, which implies that
F C 5 is an /-extension, and completes this part of the proof.

Now, suppose that F is integrally closed. From Proposition 2.14, we have
that 7 is Prüfer, and [11, Theorem 18.4] implies that F is Prüfer, thus finishing
the proof.

Until this point, we have given no explicit examples of /-domains other
than Prüfer domains. We now develop the device which will give rise (in Propo-
sition 2.23) to nonintegrally closed /-domains.  We list the following results
without proof, as their proofs are straightforward applications of [11, Theorem A
(c), (d), (e), p. 560] and [1, Theorem 3.1].

Lemma 2.21. Let V be a valuation ring of the form F + M, where F is a
field and M is the maximal ideal of V.  Let RCTbe subrings of F.   Then
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F CTis an i-extension if and only ifR+MCT + Misan i-extension.

Proposition 2.22. Let V be a valuation ring of the form F + M, and let
R be a subring of F.   Then R + M is an i-domain if and only ifRCT is an
i-extension for each ring T satisfying F C 7 C F.

Proposition 2.23. Let V be a valuation ring of the form F + M, and let
K be a sub field of F.  Then K + M is an i-domain if and only if F is algebraic
over K.

In the pursuit of GD domains from a topological point of view, /-domains
were a natural point of departure. In view of Proposition 2.14 it is next of in-
terest to study domains whose integral closures are Prüfer.

A domain F is called an inc-domain if R C T satisfies INC for each over-
ring 7 of F.  Many of the lemmas and propositions for /-extensions and /'-domains
have immediate inc analogues, and for reasons of space we do not include them
here.

Lemma 2.24. Let R be local and integrally closed. If u E qf(R)\R and
R CR[u] satisfies INC, then u~l ER.

Proof.  Assume u~x ^F.  If M is the maximal ideal of F, then Seiden-
berg's (u, u_1)-lemma [18, Theorem 67] shows that MR[u] is a nonmaximal
prime of R[u] which lies over M'. Since any maximal ideal of R[u] containing
M?[h] contracts to M, our INC assumption is contradicted.

Corollary 2.25. Let R be integrally closed.  Then R is an inc-domain
if and only ifR is Prüfer.

Proof.  Assume F is an inc-domain. For each P G Spec(F), Rp is then
a local integrally closed inc-domain, hence a valuation ring (by Lemma 2.24), so
that F is Prüfer.

The other direction is clear since any /-domain (in particular, a Prüfer
domain) is an inc-domain.

Proposition 2.26. F is an inc-domain if and only ifR is Prüfer.

Proof. The "only if" part follows from Corollary 2.25. The converse
follows readily from the "rectangle argument", as given in the proofs of Propo-
sition 2.14 and Proposition 2.20, keeping in mind that integral extensions satis-
fy GU.

Corollary 2.27. Let R be a Noetherian domain.  Then R is an inc-domain
if and only ifdim(R) < 1.

Proof.  Suppose F is an inc-domain. Then F is a Krull domain [27, The-
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8 I. J. PAPICK

orem 33.10] which is, by Proposition 2.26, also Prüfer.   Hence, [11, The-
orem 35.16] gives that dim(F) < 1, and thus dim(F) < 1.

If dim(F) = 1 then, by the Krull-Akizuki theorem [18, Theorem 93], each
overring of F has dimension at most 1, whence F is an inc-domain.

We next give an example of an inc-domain which is not treed (and which,
therefore, is not GD). This pathology will not lead us to abandon interest in
inc-domains for questions about GD. Indeed, inc-domains will play an important
role in §4.

Example 2.28.   We next present an example of a domain F such that F
is not treed, F is Prüfer, and each proper overring of F contains F. In [10],
Gilmer and Heinzer say that F has a unique minimal overring F, if F C¡ Rx
and if any overring of F, other than F itself, contains F,. In our example, F
will be the unique minimal overring of F. The example is a slight modification
of [10, Example 4.3], with whose details the reader is assumed to be familiar.

Let k be a field, x and y indeterminates over k, and A' = k(x, y). Define
a rank 2 valuation ring W of K over k with value group Z © Z ordered lexico-
graphically by sending x and y to (0, 1) and (1, 0), respectively, and then taking
the value of a polynomial in k[x, y] to be the infimum of the values of the
monomials occurring in that polynomial.  Similarly define a rank 2 valuation ring
V by sending x and y to (1, 0) and (0, 1) respectively, etc.  Observe that W =
k + xW and V = k + yV.  It is easy to see that Spec(H0 n Spec(F) = {0}, so
that the prime spectrum of 5 = V f) W looks like

\ /

as a poset. Now by [20, Theorem 2.5], R = k + 7(5) is a local domain with
spectrum looking like

^>
\./

as a poset. By reasoning as in [10], one may verify that this F has the proper-
ties promised above.

The remainder of this section continues the study of inc- and /-domains,
and builds machinery needed for the remaining sections.

Proposition 2.29. F is an inc-domain if and only ifRCV is an inc-exten-
sion for each valuation overring VofR.
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Proof.  Let F C V satisfy INC for all valuation overrings V of F. Then
clearly FC K satisfies INC for all valuation overrings KofF; [11,Theorem 16.10],
in conjunction with Proposition 2.26, completes this direction. The other dir-
ection is obvious.

Remark 2.30.  Throughout this paper, we shall be alert to the theme sug-
gested by [5, Proposition 3.2], [6, Theorem 1] and Proposition 2.29; that is,
we shall attempt to establish sufficiency of valuation overrings as test extensions
for each class of domains considered.

The relationship between inc- and /-domains is easy to determine and is
given below.

Proposition 231. F is an i-domain if and only ifR is an inc-domain and
R CR is an i-extension.

Proof.  Since one half is obvious, we assume that F is an inc-domain and
F C F an /-extension. First, apply Proposition 2.26 to get F Prüfer; then use
Proposition 2.14 to complete the proof.

We next present a variant of Proposition 2.12.

Proposition 2.32. Let R be GD. If T is treed and RCT satisfies INC,
then T is GD.

Proof.  It suffices to establish that TC Vsatisfies GD for each valuation
overring V of T.  Let F Cj ß be primes in T, and M a prime of V lying over ß.
Since F is GD, there exists a prime N of V with A/CM and NC\R = PC\R. As
T is treed, N C\T and F are comparable, hence equal (by INC), to complete the
proof.

The final aims of this section are to prove a lemma which will figure largely
in §4 and to infer a companion for Corollary 2.15.

Lemma 233. If each overring ofR is semilocal, then R is an inc-domain.

Proof.  Deny. Then there exists an overring T of F with primes Qx Ç Q2
of T such that Qx n F = ß2 n F (= F). By passing to Rp C TR sj,, we may
assume F is local with maximal ideal F. Let m G ß2\ß,. Observe that F C R[u]
fails to satisfy INC.  Let 4>: R[x] —> R[u] be the F-algebra homomorphism send-
ing x to a; let Nx = <t>~l(Qx r\R[u]) and N2 =0-1(fi2 OF[«]). ThenPFfx]
CNXÇN2 since PR [u] C Qx n F [u] ; moreover, NxC\R = P = N2nR. By
[23, Theorem 1 ], Nx = PR [x], so that ker(tf>) C PR [x]. Using the locality of F
and applying [23, Theorem 1] again, we conclude that, if N G Spec(F [x] ) and
N^PR [x], then <t>(N) is a maximal ideal of F [u] which lies over P.  However,
R[x] has infinitely many primes AQ PR[x], thus giving rise to infinitely many
maximal ideals of R[u] and contradicting the semilocality of F [a].
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Proposition 2.34. R is a local i-domain if and only if every overring of
R is local.

Proof.  Let F be a local/-domain. If an overring T of F has maximal
ideals M and N then, since F is local treed, we may assume without loss of gen-
erality that MC\R C N C\R. However,F being (GD and) an /-domain gives
MCN, whence M = N.

For the converse, combine Lemma 2.33 with Proposition 2.26 and Corol-
lary 2.15.

3.  Open domains. A domain F will be called open if F C T is an open
extension for each overring 7 of F ; call F propen (standing for properly open)
if F C 7 is an open extension for each overring 7 of F satisfying F C 7 ÇJ qf(F).
Since open extensions satisfy GD, any propen domain is GD. Although open
domains are necessarily propen, Example 5.11 shows that the converse fails in
general.   §5 is devoted to studying those domains F that are propen but not
open. In this section, we investigate many facets of open domains, as well as
giving several necessary and sufficient conditions for a domain to be open.

For P, P' E Spec(F), let [P, P'} ={QE Spec(F): PCQCP'}. If M is
a maximal ideal of R, we call [0, M] a branch of R. A typical basic open set of
X = Spec(F) is given, as usual, by Xr = {QE Spec(F): r ^ Q} where r G F; a
nonempty closed set in X is then of the form F = V(I) = {QE Spec(F): ICQ]
where 7 is an ideal of R.

R is called a G-domain [18, pp. 12-13], if the nonzero prime ideals of F
have nonzero intersection, equivalently if qf(F) is finitely generated over F. It
follows easily that F is a G-domain if and only if {0} is open in SpecfF), a
characterization that will serve our purposes below.

Lemma 3.1.   Let PE Spec(F).  7Ae«, R CRp is open if and only if [0, P]
is an open set in Spec(F).

Proposition 3.2. 77ie following are equivalent on R:
(a) F is open.
(b) R is a propen G-domain.
(c) F is GD and [0, P] is open for each P E Spec(F).

Proof.  The characterization of (7-domains stated above shows that (a) o
(b). By Lemma 3.1, (a) =*• (c). To prove that (c) => (a), let T be an overring of
F and f an element of 7; set X = Spec(7) and consider f.X—* Spec(F).  Ob-
serve that Xt = Uaei2 [0, Qa] for some set £2. The GD assumption in (c)
implies that f(Xt) = Uaen [0, Qa n F] which is, by the second condition in (c),
open in Spec(F). Hence (c) => (a), completing the proof.
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Proposition 3.3.  IfRC RM is open for each maximal ideal M ofR, then
R is semilocal.

Proof.  Let $i¡: i EI} be the set of maximal ideals of F. By Lemma 3.1,
each [0, M¡] is open in Spec(F), so that {[0, M(] : i El} gives an open cover of
Spec(F). As Spec(F) is (quasi-) compact [2, Proposition 12, p. 101], there is a
finite subcover, indexed by a (finite) subset J of /. For each / G I, there exists
j EJ with M i E [0, Mj], so that M¡ = M¡, to complete the proof.

Corollary 3.4.   7/F is propen, then R is semilocal.

Corollary 3.5.   7/F is propen not open, then dim(F) is infinite.

Proof.  Deny. Since F is treed, Corollary 3.4 implies that Spec(F) is a
finite set. Then [18, Exercise 3, p. 19] shows that F is a G-domain, contra-
dicting Proposition 3.2.

For a proof of Corollary 3.5 which does not rely on Corollary 3.4, again
we deny, and let « = dim(F). Since F is not open, F i= qf(F); finiteness of n
therefore permits us to select a height 1 prime P of F. Note that {0RP} is open
in Spec(Fp), although {0} is not open in Spec(F), thus contradicting the assump-
tion that F C Rp is open.

Corollary 3.6.   Let dim(F) < °°.   Then R is open if and only ifR is
propen.

Proof.  If F is propen, an appeal to Corollary 3.5 gives that F is open.
The converse is trivial.

Remark 3.7.  Numerous examples of propen not open domains, as well
as related theory, will appear in §5.

In view of Proposition 3.2, it is of some interest to investigate G-domains
further. In [18, §1.3], many basic facts about G-domains are established; we
now present other pertinent information.

Lemma 3.8.   Let R C T be an open extension. If T is a G-domain, then
R is a G-domain.

Proof. {0} is open in Spec(7) since 7 is a G-domain. The contraction
map/: Spec(7) —► Spec(F) sends {0} to {0}. Thus {0} is open in Spec(F),
since / is an open map, whence F is a G-domain.

Lemma 3.9.   Let T be integral over R. If T is a G-domain, then R is a
G-domain.

Proof.  Assume that 7 is a G-domain. As integrality implies that /:
Spec(7) —+• Spec(F) is a closed map, f(Spec(T)\{0}) is closed in Spec(F).  How-
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ever, integrality also implies that /is surjective and that /    (0) = {0}, so that
Spec(F)\{0} =/(Spec(7)\{0}). Hence {0} is open in Spec(F), and this completes
the proof.

We now return to open domains. The next result is in the spirit of Re-
mark 2.30.

Proposition 3.10. The following three conditions on R are equivalent:
(a) F is open.
(b) RCV is open for each valuation overring V ofR.
(c) R C T is open for each integral domain T containing R.

Proof, (a) => (b) and (c) => (a) are trivial.
Assume (b). By [6, Theorem 1], F is GD. In order to establish (a),

Propositions 3.1 and 3.2 show that it suffices to prove R C Rp is open for each
P G Spec(F). If V is chosen as a dominating valuation overring of Rp, consider
/: Spec(F) —* Spec(Fp) and g: Spec(Fp) —*■ Spec(F). As Rp C V satisfies GD,
/is surjective. Since gf is open by assumption, it is clear (cf. [8, Exercise 7(b),
p. 96] ) that g is open. Hence, (b) "* (a).

Finally, assume (a), and let T be a domain containing F. Since RCT
satisfies GD (cf. [6, Theorem 1]), the argument which was used to establish the
last part of Proposition 3.2 now shows that F C 7" is open. Thus, (a) * (c), to
complete the proof.

Corollary 3.11. Let RCT be an i-extension. IfR is open, then Tis
open.

Proof.  Let 5 be an overring of T, and consider /: Spec(5) —* Spec(7)
and g: Spec(7) —* Spec(F). Asgfis open and g is injective, it is clear (cf. [8,
Exercise 7(c), p. 96] ) that / is open, which completes the proof.

Remark 3.12.  In [6, Theorem 1], the GD analogue of Proposition 3.10
was established. Moreover, it was shown there that F being GD is equivalent to
F C F [u] satisfying GD for each u in qf(F). A combination of Corollary 2.8
and Proposition 3.3 shows that the open analogue of this last equivalence is
false: for a specific counterexample, choose any nonsemilocal Prüfer domain.
It will be shown later that this analogue fails even in the semilocal case.

Before proving the next important lemma, we introduce some terminology.
We say that a prime F of F is proper minimal over a prime Q of F if Q Ç\ P and
[Q,P] ={Q,P}.

Lemma 3.13. Let R be semilocal treed, with maximal ideals Mx.Mt.
Let PE Spec(F).  TAe« [0, P] is open if and only if one of the following two
conditions holds:

(a) F is not maximal and: for each 1 < / < t, there exists a unique prime
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ß. C Mj such that Q¡ is proper minimal over U{ß G Spec F: ß C P n Mj}.
(b) P is maximal, say M¡ and: for each j =£ i, there exists a unique prime

Q¡ C Mj such that Q¡ is proper minimal over U{ß G Spec(F): ß C A/, n Mß.

Proof.  Assume (a). We claim that

[0,P]' = {jV(Q.),
i=i

where [0, F] ' denotes Spec(F)\[0, P].
Indeed, let N G [0, F] '; select / such that N C Mj.  If Q¡ <JN then, since

F is treed, NÇ: Qs, since A' £P, minimality of Q¡ gives U{ß: ß C P n M¡} £ N,
whence A/CJ \J{Q: ß C P n M¡} and NCP,& contradiction.  Henee Q¡ C N
and this puts N in U J=, V(Q¡).

To prove the reverse inclusion, let N G (J * t V(Q¡); that is, for some /,
Qj CN.  If N <£ [0, P] ', then N C P, so that ß; C F, contradicting the fact that
Q¡ properly contains U©: QCPr\M¡}. Therefore N E [0, P] ' and the claim
is established. Then [0, P], as the complement of a finite union of closed sets,
is certainly open.

Next, assume (b); without loss of generality, take P = Mx. We claim that
[0, P] ' = U'=2 V(Q¡).  Indeed, if N G [0, P] ', then W <7- P and N C M¡ for some
/ ^ 1 ; by arguing as above, we get Q¡ C N, whence N G \J¡=2 V(Q¡). The reverse
inclusion is also obtained by aping the earlier argument.

Conversely, assume [0, P] is open and P is not maximal. Now, there exists
a nonzero ideal 7 of F such that [0, P] ' = V(I). Fix /, 1 < / < /. Since P is not
maximal, I C M¡; let Q¡ be the intersection of the primes which contain / and
are contained in M¡. Note that Q¡ is prime since F is treed. We now show that
Q¡ is the unique prime contained inM¡ and proper minimal over U{ß: QCP n
M¡}. Observe that U{ß: ß C P n M¡} Çj Q.; for if not, then since F is treed,
ô, C Uiß: Q C F n M,.} and ßf C P, contradicting 7 C Q.. Next, to establish
minimality, let N be a prime such that \J{Q: QCPHMJ&NC Q.. Since N
properly contains the union,N<J.P. ThusNE[0,P]'= V(I); that is, IC N, and
so Q¡ = N by the construction of ßf. The uniqueness asserted of Q¡ in (a) is
immediate since F is treed.

Now assume [0, P] is open and P is maximal. Without loss of generality,
P = M, and t > 2. The openness of [0, P] implies that there exists a nonzero
ideal 7 of F such that [0, P] ' = V(I). Thus I C M¡ for each / # 1.  As before,
for each / # 1, let ß;- be the intersection of the primes containing / and contained
in Mj. By arguing as above, we see that Q¡ has the properties asserted in (b), to
complete the proof.

Proposition 3.14. F is treed and [0, P] is open for each P G Spec(F) if
and only if R is semilocal and each branch of R is well-ordered under inclusion.
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Proof.   Suppose that F is treed and each [0, P] is open. That F is semi-
local we have shown before (Proposition 3.3); let Mx.Mt be the maximal
ideals of F. If, for some 1 < / < f, [0, M¡] is not well-ordered by inclusion,
then there exists a nonempty subset {Qa: a E Í2} of [0, M¡] with no first ele-
ment.  Let P - (iaenQa> an^ note tnat PQM¡. Now, by Lemma 3.13, there
exists a unique prime Q¡ C M¡ such that Q¡ is proper minimal over U{ß: Q C
P n M¡) = P.  Hence Q¡ (/. P, so that there exists ß E Í2 with Q¡ £ Qß.  Since F
is treed, Qo Ç Q¡, whence P C Q„ CJ Qv The proper minimality of Q¡ over F
gives that P= Qe, contradicting the condition that {Qa: a G Í2} have no first
element.

For the converse, assume F is semilocal with well-ordered branches. It is
clear that F is treed. Let F G Spec(F). To show that [0, P] is open, we con-
sider two cases.  As above, let Mx, . . . , Mt be the maximal ideals of F,

Case 1.  Pa maximal ideal of F. Without loss of generality, P = MX and
F is not local.  Fix / * 1.  Let N¡ = \J{Q: QCMfn P] and F¡ = {Q: N¡QQC
Ai}. Note that F- =£ 0 since N¡ £ M-. Thus, by hypothesis, F- has a least ele-
ment, say Qj.  It is clear that Q- plays the role of the (necessary unique) object
described in condition (b) of Lemma 3.13. Thus, by Lemma 3.13, [0, P] is open.

Case 2. P not maximal.  For each 1 < / < f, define N¡ and F¡ as before,
use the well-ordering hypothesis to produce Q¡, satisfying condition (a) of Lem-
ma 3.13, to complete the proof.

Corollary 3.15. Let R be a semilocal domain each of whose branches is
well-ordered under inclusion. If R C T satisfies GD, then R C T is an open ex-
tension.

Proof.  Let X = Spec(7), let r E R, and consider f:X—* Spec(F).
Arguing as in Proposition 3.2 gives f(Xr) - Uaen [0, Pa] for some collection
of primes Pa of F. A direct appeal to Proposition 3.14 shows that [0, Pa] is
open for each a G £2, so that f(Xr) is open in Spec(F). Thus, / is open.

Theorem 3.16.  F is open if and only ifR is GD and semilocal and each
branch ofR is well-ordered under inclusion.

Proof.  Assume F is open. Then F is clearly GD, and Proposition 3.3
shows F is semilocal. That the branches of F are each well-ordered under inclu-
sion, follows from Propositions 3.2 and 3.14.

The converse is an immediate consequence of Corollary 3.15.

Corollary 3.17.  7>ie* following are equivalent on R:
(a) . F is open.
(b) Rp is open for each P G Spec(F) and R is semilocal.
(c) RM is open for each maximal ideal M of R and R is semilocal.
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Proof.   Corollary 3.11 and Proposition 3.3 combine to yield (a) => (b),
while (b) => (c) trivially. To show (c) => (a), assume (c). It is evident (cf. [5,
Lemma 2.1]) that F is GD. By Theorem 3.16, it is enough to prove that [0, M]
is well-ordered under inclusion for each maximal ideal M of F.  Now, the open-
ness of RM gives that [0, AfF^] is well-ordered, so that [0, M] is indeed well-
ordered, to complete the proof.

If we remove the semilocality condition, the preceding corollary fails, as
the ring of integers so aptly shows. However, we do have the following corol-
lary in that case.

Corollary 3.18.  77ie following are equivalent on R:
(a) F is GD and each branch of R is well-ordered under inclusion.
(b) Rp is open for each P G Spec(F).
(c) RM is open for each maximal ideal M of R.

Proof,  (b) ■» (c) is trivial, while part of the proof of Corollary 3.17 gives
(c) =» (a).  Finally, assume (a), and let P G Spec(F).  Then Rp is GD; since [0, P]
is well-ordered under inclusion, so is Spec(Fp).  Applying Theorem 3.16 yields
(b), and completes the task.

Corollary 3.19. Let P E Spec(F). 7/F is open and R/P is GD, then
R/P is open.

Proof.  R/P inherits from F the properties of being semilocal and having
each branch well-ordered under inclusion. Apply Theorem 3.16.

Proposition 3.20.   77/e following are equivalent for any Noetherian do-
main R:

(a) F is semilocal and dim(F) < 1.
(b) F is open.
(c) F is propen.
(d) R is a G-domain.
(e) Every overring ofR is open.
(f) Every overring of R is propen.

Proof, (a) => (b) is immediate from Theorem 3.16, and (b) •* (a) follows
from Proposition 3.2 and [18, Theorem 146]. (b) =* (c) is trivial, and (c) => (b)
is a consequence of [4, Proposition 7] and Corollary 3.6 [18, Theorem 146],
combined with Theorem 3.16, shows (d) => (b); Proposition 3.2 gives (b) => (d).
Note that (e) => (b) is obvious. To show (b) =* (e), let 5 be an overring of F.
Since dim(F) < 1 by (b), the Krull-Akizuki theorem [18, Theorem 93] implies
5 is Noetherian and dim(5) < 1; from [18, Exercise 21, p. 64], and the semi-
locality of R, S is semilocal, hence open. Hence (b) «* (e). Next (f) =* (e), since
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(c) => (b) and all the rings involved are Noetherian.  Finally, (e) ■> (f) trivially,
to complete the proof.

Motivated by Proposition 3.2 and Theorem 3.16, we present the following
proposition.

Proposition 3.21. Let R be semilocal.   Then each branch ofR is well-
ordered under inclusion if and only if R is treed and R/P is a G-domain for each
P E SpeciF).

Proof.  Assume that each branch of F is well-ordered under inclusion.
Clearly, R is treed. If F G Spec(F), then R/P is semilocal and each branch of
R/P is well-ordered under inclusion; thus, we may reduce to the case F = 0.  Sup-
pose F is not a G-domain, and let A/,.Mt be the maximal ideals of F.
Thus, there exists /, 1 < / < f, such that

D{QE SpeciF): Q * 0 and Q C M.} = 0,

contradicting the well-ordering of [0, Mj\.
For the converse, suppose that [0, M] fails to be well-ordered under in-

clusion for some maximal ideal M of F. Then some nonempty subset {¡2a:
a E £2} of [0, M] has no first element. As the prime F = naenßa is not a
member of {Qa: a E £2}, one checks readily that R/P is not a G-domain, which
completes the proof.

In §2, we considered questions related to the ascent and descent of/-do-
mains for integral extensions. We now provide a similar analysis for open domains.
Descent for open domains will be seen to be as well-behaved as for /-domains and
GD domains. Ascent becomes more complicated, in part because an integral ex-
tension of a semilocal domain need not be semilocal.

Example 2.28 illustrates that, without further assumptions, descent of open
domains fails for integral extensions; the Heinzer-Ohm example, reprised in [7,
Example 2.1], shows the failure of ascent.

Proposition 3.22. Let R C T be an integral extension, where R is GD
and T is semilocal treed.  Then R is open if and only if T is open.

Proof.  By Proposition 2.32, 7 is GD. If F is open, INC readily implies
that each branch of 7 is well-ordered under inclusion, whence T is open by The-
orem 3.16.

Conversely, assume T is open.  Integrality, together with the semilocality
of T, gives that F is semilocal. To complete the proof, we need, according to
Theorem 3.16, only to show that each branch of F is well-ordered under inclu-
sion. Suppose, for some maximal ideal M of F, that [0, M] is not well-ordered
under inclusion; that is, some nonempty subset {Qa: a G £2} of [0, M] has no
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first element. By LO, select m E Spec(7) such that m n F = Ai. Let

F={qE Spec(7): q Cm and qC\RE {Qa: a G Í2} };

note that F # 0 since F is GD. As T is open, F has a first element, say q'.
Since q' C\R E {Qa: a E SI}, the supposed failure of well-ordering yields ß E Í2
such that QaÇlq'CtR. However, RCT satisfies GD, thus producing a prime
q" of 7such that <?"Çj g' and ï"niî = ß^. This contradicts the minimality of
q in F, and completes the proof.

Corollary 3.23. Let T be finitely generated as a module over R, let R
be GD and let T be treed.  Then R is open if and only if T is open.

Proof. This proof is identical to that of Proposition 3.22, once we have
shown that F being semilocal implies T is semilocal. Since T is module-finite
over F, this follows from [2, Proposition 3, p. 329].

Corollary 3.24. Let R be an i-domain.  Then R is open if and only if
R is open.

Proof.  Apply Corollary 2.13 and Proposition 3.22.
We now prove the open analogue of Proposition 2.20.

Proposition 3.25. Let T be an open domain which is integral over R.
If either T is local or R is integrally closed, then R is open.

Proof.  If 7 is local, then [7, Theorem 2.4] implies that F is GD, so that
Proposition 3.22 applies to show that F is open.

Now assume that F is integrally closed, and let 5 be any overring of F. To
show F is open, we use the now-familiar "rectangle argument". By [9, Proposi-
tion 1.2], F C T is open; moreover, T C TS is open since T is open. Hence
F C 75 is open, as openness is transitive. Now 5 C 75, being integral, satisfies
LO, from which it is clear (cf. [8, Exercise 7(b), p. 96]) that F C 5 is open.
This completes the proof.

We now provide (Corollary 3.28) means for constructing local nonvaluation
open domains.

Lemma 3.26. Let V be a valuation ring of the form F + M, where F is a
field and M is a maximal ideal of V. Let R CT be subrings of F.  Then RCT
is open if and only ifR +M C T + M is open.

Proof.  Throughout this proof, we freely use the structure theory of
Spec(F + Ai) [11, Theorem A (c), (d), (e), p. 560].   Denote the contractions by

/: X = Spec(P) —► SpecfF) = Y
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and
F: X = Spec(7 + M) —> Spec(F + M) = Y.

We consider several cases.
Assume that F C T is open. We consider F(X^).
Case 1. a = tET.   If f = 0, then Zf = 0 and FÍX,) = 0 is open; thus,

without loss of generality, f ¥= 0.  Let U = {P E X: P + M E Xt}. Since Í/ = A,
and / is open, there is a nonempty subset A of F\{0} such that f(Xt) = U-eA Y .
We claim that FLXt) = UgBA Yg.

By considering several subcases, the above equality is easily verified.
Case 2. a = mEM.  Then FQCJ =Ymis open in Y.
Case 3. a = t + m, with 0 ¥= f G 7 and 0 ¥= m G A/. Let t/ = {P G X:

P + M G 2ff+m }. Again, Í/ = Xt, producing nonempty A C F\{0} such that
f(Xt) = {Jge^Y . Using an analysis by subcases as in Case 1, we may conclude
thatFCrf+m) = U^Ai;+m.

Hence R+MCT + M is open.
Conversely, assume that R+MCT + M is open, and consider f(Xt),

where f G 7. Without loss of generality, Xt -=h 0, so that f =£ 0. As F is open,
there exists nonempty A C (F + M)\{0} such that F(Xt) = Ug^AYg. Since
Xt i= 0, we have A</.M.  Let A' = {r E R: r + m E A for some m EM); then
0 # A' =5* {0}.  To complete the proof, it suffices to show f(Xt) = U^^Y,?
which is a straightforward calculation.

The following "F + M" results follow by using the theory thus developed
combined with [11, Theorem A (c), (d), (e), p. 560]   and [1, Theorem 3.1].

Corollary 3.27. Let V be a valuation ring of the form F + M. Let R
be a subring of F.   Then R + M is open if and only if both R and V are open.

Corollary 3.28. Let V be a valuation ring of the form F + M, and let
K be a sub field of F.   Then K + Mis open if and only if V is open.

Corollary 3.29. Let V be a valuation ring of the form F + M, and let
R be a subring of F. Then every overring ofR+M is open if and only if V is
open and every ring T satisfying R C T C F is open.

In the remainder of this section, we pursue some topologically defined
classes of domains. While these domains need not be open (indeed, they need
not even be semilocal), we shall see that they form, in the semilocal case, nothing
more than the class of GD domains.

A domain F is said to be simple open (write: F is SO) in case F CÄ[u]
is open for each u E qf(F); say that F is finite type open (write: F is FTO) in
case F C Fis open for each finitely generated overring 7of F.
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The GD analogues of the above notions have received attention.  It follows
from [25, Lemma 3] that FTGD «• GD; this was strengthened in [6, Theorem 1],
where it was proved that SGD •» GD.  Since open extensions satisfy GD, we con-
clude that

FTO =» SO => GD.

As explained in Remark 3.12, it follows from Corollary 2.8 that /'-domains
are FTO, thus destroying any hope of proving that an arbitrary FTO domain is
open. For the special case of (semi) local domains, Theorem 3.16 and Corollary 2.8
combine to show that FTO and open are still not equivalent. For a concrete ex-
ample, take a valuation domain V whose spectrum is not well-ordered under in-
clusion.

The following lemma may be deduced by using the techniques in [9].

Lemma 3.30. Let T be integral over R.   The following are equivalent:
(a) F C 7 is open.
(b) F C 5 is open for each finitely generated R-subalgebra S of 7.
(c) F C F [a] is open for each a ET.

Corollary 3.31. Let T be an integral overring of a coherent domain R.
IfRC T satisfies GD, then R C T is open.

Proof.  By Lemma 3.30 and [24, Lemma 1], we may assume that there
exists t ET with 7 = F [t ]. Since F is coherent and 7 is a finitely generated
F-submodule of qf(F), Pis finitely presented as an F-module. Then [16, Prop-
osition 1.4.7] shows that 7 is finitely presented as an F-algebra, and, since F C
7 satisfies GD, [16, Corollaire 1.10.4] applies to complete the proof.

Remark 3.32.  In the spirit of Corollary 3.31, it would be interesting to
know, given commutative rings RCT with F coherent and 7 finitely generated
as an F-algebra such that RCT satisfies GD, whether Spec(7) —♦ Spec(F) must
be open. An affirmative answer would generalize a well-known corollary of
Chevalley's constructability theorem for Noetherian rings [22, Theorem 8, p. 48].
The special case, in which F is an integrally closed domain and 7 = R[t] for
some t G qf(F), follows from McAdam's observation that [31, (11:13)] forces
T to be finitely presented as an F-algebra. Of course, [4, Corollary 4] implies
that, if F is a coherent integrally closed domain such that F C F [u] satisfies GD
for each u G qf(F), then F is Prüfer and, hence, FTO.

Proposition 3.33. F C F is open if and only if RCT is open for each
domain T which is integral over R.

Proof. The "if direction is immediate. Conversely, assume that F C F
is open, and let 7" be integral over F. Use the "rectangle argument". As F7 is
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integral over F, [9, Proposition 1.2] implies that F C FF is open; thus, F C RT
is open. Consider /: Spec(F7) —* Spec(7) and g : Spec(7) —> Spec(F).  Since
gf is open and /is surjective, [8, Exercise 7(b), p. 96] shows g is open, as re-
quired.

Proposition 3.34. 7/F is an i-domain and RCTCR, then RCT is
open.

Proof.  Since F is FTO, an application of Lemma 3.30 completes the
proof.

Corollary 335. If T is a domain which is integral over an i-domain R,
then R C T is open.

Proof.  Apply Propositions 3.33 and 3.34.
We end §3 by giving a characterization of semilocal FTO domains.

Proposition 3.36. Let T be finitely generated over a semilocal domain R.
IfR is GD, then RCTis open.

Proof.   Since F is semilocal treed, each ideal of F has only finitely many
primes of F minimal over it. As F C F satisfies GD, [25, Theorem 1] applies
to complete the proof.

Corollary 3.37. Let R be semilocal.  The following are equivalent on R:
(a) Ris FTO.
(b) F is SO.
(c) F is G7J>.

Proof,  (a) ■* (b) trivially, (b) => (c) by applying [6, Theorem 1], and
(c) => (a) by Propsoition 3.36.

Corollary 3.38. The following are equivalent on R:
(a) F is GD.
(b) RP is FTO for each P E Spec(F).
(c) Rp is SO for each P G Spec(F).

Proof, (a) => (b) by [5, Lemma 2.1] and Corollary 3.37; (b) ■* (c) is
trivial; (c) =» (b) by [6, Theorem 1] and [5, Lemma 2.1].

Remark 3.39.   Since SO => GD, Corollary 3.38 shows that SO and FTO
each localize. If one could prove, for instance, that SO globalizes, then Corol-
lary 3.38 would imply the equivalence of GD and SO. At present, we have no
counterexamples to the possible implications GD => SO and SO ■» FTO. Notice
that, for a Noetherian domain, one can use [4, Proposition 7] and [22, Theorem 8,
p. 48] to show the equivalence of FTO, SO, and GD.
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Remark 3.40.  The major interest of this section has been in studying open
domains, while §5 will deal mainly with propen not open domains. We take this
opportunity to point out that the "closed" analogues of these classes turn out
to be less interesting. To be more specific, say that a domain F is closed (respect-
ively, properly closed) if Spec(7) —+ Spec(F) is a closed map for each overring
T of F (respectively, for each overring 7 of F which is distinct from qf(F)).

Observation 1. F is closed if and only if F is a field.
Proof. The IP' half is trivial. Conversely, if Spec(qf(F)) -* Spec(F) is

closed, then {0} is a closed set of Spec(F), whence 0 is maximal ideal of F and
F is a field.

Observation 2. R is properly closed if and only if F is local and dim(F) < 1.
Proof. The "if" half is immediate. Conversely, let F be properly closed.

Without loss of generality, F is not a field; select a nonzero prime ideal P of F.
As Spec(Fp) —* Spec(F) is closed, [0, P] is a closed subset of Spec(F), whence
Spec(F) = {0, P}, to complete the proof.

4.   Local homeomorphism domains. The aim of the present section is to
study, and to give a topological characterization (in Theorem 4.16) of, those
domains all of whose overrings are open.   In view of the varied nature of the ex-
amples given by Dobbs in [5, Corollary 4.4], one expects that a similar study of
domains all of whose overrings are GD would not be as fruitful.

We shall continue to use the definitions and notation established in previous
sections. Besides those, we introduce the following:  Let /: X —» y be a contin-
uous map of topological spaces. We call / a local injection if each point x EX
has an open neighborhood i/such that /: U—+f(U) is an injection. As usual
(cf. [21, p. 149] ), call /a local homeomorphism if each point x G X has an open
neighborhood U such that f(U) is open and / maps U homeomorphically onto
f(U). Since any local homeomorphism must be an open map, it follows that /
is a local homeomorphism if and only if / is open and / is a local injection.

We call an extension F C T of domains an LH-extension (respectively, an
U-extension) if Spec(7) —► Spec(F) is a local homeomorphism (respectively, a
local injection). A domain F is said to be an LH-domain (respectively, an
U-domain) if F C T is an LH-extension (respectively, an LI-extension) for each
overring 7" of F. Thus, F is an LH-domain if and only if F is an LI-domain and
F is open.

Given a contraction map /: Spec(7) —> Spec(F) and P G Spec(F), denote
the set /" ' (P), the fiber of P, by fibr(P). We say that F C 7 has finite fibers
if fibr(P) is finite for each P G Spec(F); F is said to have finite fibers if F C 7
has finite fibers for each overring T of F.

As in the previous sections, some of the results are straightforward, and
are stated without proof.
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Lemma 4.1.   Let X and Y be topological spaces.  If X is compact and /:
X —-* Y is a local injection, then, for any point y E Y, f~l(y) is a finite set.

Corollary 4.2.   Any Li-extension has finite fibers.

Proof.  Lemma 4.1 applies directly since prime spectra are compact.
Remark 4.3.  Lemma 4.1 generalizes [21, Example 2.3, p. 151].

Proposition 4.4. IfRCT is an Li-extension, then R CT is an inc-
extension.

Proof.  Deny. Hence there exist distinct primes PC Qof T such that
P C\R = QC\R. As/: Spec(7) —+ Spec(F) is a local injection, there exists an
open set Uin Spec(7) such that QEUand/: U —* f(U) is injective. However,
QEU implies PEU, contradicting the injectivity of / on U.

Thus any LI-domain is an inc-domain.  However, with the aid of Corol-
lary 4.2 and [7, Example 2.1], it follows that the converse is not generally true.
Moreover, Example 2.28 illustrates that an LI-domain need not be treed.

Proposition 4.5. 7/F is an LI-domain and T is an overring ofR, then
T is an LI-domain.

Proof.   Let 5 be an overring of T and F G Spec(5); consider /: Spec(5)
—► Spec(7) and g: Spec(F) —► Spec(F).  Since F is an LI-domain, there exists
an open set U in Spec(5) such that PEU and gf is injective on U.  Thus, / is
injective on U, so that Fis an LI-domain.

Proposition 4.6. Let RCT be an Li-extension. IfR is GD, then T is GD.

Proof.  By [6, Theorem 1], it suffices to show that 7 C V satisfies GD
for each valuation overring V of T. Let F C\ Q be primes of T, and let N be a
prime of V lying over Q. By Proposition 4.4, F O R Ç: Q n F. Since RCV
satisfies GD, there exists a prime A7* of F such that N1 Ç: N and N4 HR= P (~) R.
Thus N' n TÇQ. Furthermore, there exists an open subset U of Spec(70 such that
QEU and /: U —► Spec(F) is injective. As A7* n 7 and F are members of U with
the same contraction in F, we have N1 O T = P, so that 7 is GD.

Before establishing the promised characterization of domains all of whose
overrings are open, we continue to develop needed machinery.

Lemma 4.7.   7/F has finite fibers, then each overring ofR has finite
fibers.

Proposition 4.8. F has finite fibers if and only ifRp has finite fibers for
each P E Spec(F).

Proof.   If F does not have finite fibers, then for some overring 7 of F
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and some P G Spec(F), we have that fibr(P) is infinite. Passing to Rp C TR\p,
we get that ñbT xp(PRP) is infinite.

The converse is immediate from Corollary 4.7.

Proposition 4.9. 7/F has finite fibers, then R is an inc-domain.

Proof.  Deny. Then there exists an overring 7 of F with primes Qx Ç: Q2
such that ßj n F = ß2 n F  (=P).  By passing to Rp C TR\P, we may assume
F is local with maximal ideal P.  Let a G Q2\Ql, and observe that F C F [a]
does not satisfy INC. The proof of Lemma 2.33 shows that fibÄrui(P) is in-
finite, the required contradiction.

[7, Example 2.1] shows that the converse of Proposition 4.9 fails in gen-
eral. We show next that, with the additional hypothesis that F C F has finite
fibers, the converse becomes valid.

Proposition 4.10. F has finite fibers if and only ifR is an inc-domain
and R C R has finite fibers.

Proof.  The "only if part is clear. Conversely, suppose that F is an
inc-domain which does not have finite fibers. Then there exist an overring 7 of
F and a prime P of F such that fibr(P) is infinite. Using the "rectangle argu-
ment", we see that fib^r(P) is infinite since T CRT satisfies LO.  As F C RT
is an /-extension (since F is Prüfer), fib^(P) is infinite. Thus, R C R does not
have finite fibers, completing the proof.

Proposition 4.11. F is semilocal with finite fibers if and only if each
overring of R is semilocal.

Proof.  Let F be semilocal with finite fibers. By Proposition 4.9, F is
Prüfer; integrality shows that F is semilocal. If 7 is an overring of F, one readily
uses the fact that F is an /'-domain (hence GD, hence treed) to show that F 7 is
semilocal.  By integrality, 7 is then semilocal.

Conversely, assume that each overring of F is semilocal. Suppose that F
does not have finite fibers; then there exist an overring T of R and a prime P of
F such that fibr(P) is infinite. We may assume that F is local with maximal
ideal P. By Lemma 2.33, each element of fibr(P) is then a maximal ideal of 7,
contradicting the semilocality of 7.

Corollary 4.12. Let n be a positive integer. If R is a semilocal i-domain
with exactly n maximal ideals, then each overring of R has at most n maximal
ideals.

Proof.  Reexamine the first paragraph of the proof of Proposition 4.11.
We now begin our main assault on the desired characterization.
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Lemma 4.13. F is an integrally closed LH-domain if and only ifR is an
open Prüfer domain.

Proof.  Since LH-extensions are open, the "only if" half follows from
Proposition 4.4. The converse is immediate, since any Prüfer domain is an
LI-domain.

Lemma 4.14. If R is an LH-domain, then each overring ofR is an LH-do-
main.

Proof.  Our strategy will be to show first that F is an LH-domain and
then, using the "rectangle argument", to show that each overring of F is an
LH-domain.

Since F is an LH-domain, Proposition 4.4 shows that F is a Prüfer domain.
Now R is open, hence semilocal, so that Corollary 4.2 gives that F is semilocal.
To show that F is an LH-domain, it suffices by Lemma 4.13 and Theorem 3.16,
to show that each branch of F is well-ordered under inclusion.   Let {Qa: a E £2}
be a nonempty subset of a branch [0, M] of R. As {Qa n R: a E £2} is a non-
empty subset of some branch of F, we see that {Qa n F: a E £2} has a first
element, say Qß O F, with ß G £2. Since F is an inc-domain and F is treed, Qß
is the first element of {Qa: a E £2}. Therefore F is an LH-domain.

Let 7be any overring of F. Then Fis an LI-domain by Proposition 4.5,
and 7 is GD by Proposition 4.6.   Using the same argument as above, we see that
each branch of 7 is well-ordered under inclusion. To complete the proof, it
remains only to show that T is semilocal. With the aid of the "rectangle argu-
ment", we first note that F7 is semilocal by Corollary 4.12, since F is a semi-
local /-domain. Then, since 7C F7is an integral extension, Fis semilocal, which
completes the proof.

Lemma 4.15. 7/F is open with finite fibers and if each proper overring of
R is treed, then each overring ofR is open.

Proof.  By Proposition 4.9, F is an inc-domain. Let 7 be an overring of
F. By Proposition 4.11, Fis semilocal, by Proposition 2.32, 7is GD. One may
argue as in Lemma 4.14 in order to verify that F inherits from F the property
of having each of its branches well-ordered under inclusion. Hence F is open.

Theorem 4.16.   The following are equivalent on R:
(a) F is an LH-domain.
(b) (i) F has finite fibers.

(ii) R is open.
(iii) Each proper overring ofR is treed.

(c) (i) F is open.
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(ii) Each proper overring of R is semilocal and has well-ordered branches
under inclusion.

(d) Each overring ofR is open.

Proof, (a) •» (b) by Corollary 4.2 and Lemma 4.14, while (a) ■* (c) by
Lemma 4.14.  Lemma 4.15 gives (b) =>(d).

To prove (d) => (a), assume (d). Observe that Propositions 4.11 and 4.9
imply that F is an inc-domain. Since F is open, it suffices to show that F is an
LI-domain. Let 7 be an arbitrary overring of F, and ß G Spec(T). Let í/ =
[0, ß], and consider the contraction /: Spec(7) —♦ Spec(F). Then U is open
in Spec(7) since T is open, and /is injective on U since RCT satisfies INC;
thus /is a local homeomorphism. Hence, (d) => (a).

To complete the proof, use Proposition 4.11 to deduce that (c) •* (b).

Corollary 4.17. F is an LH-domain if and only ifR is semilocal and Rp
is an LH-domain for each P G Spec(F).

Proof.  In view of Lemma 4.14, the "only if part is immediate. Con-
versely, assume that F is semilocal and that Rp is an LH-domain for each P G
Spec(F). By Corollary 3.17, F is open, while Proposition 4.8 demonstrates that
F has finite fibers. By virtue of criterion (b) in Theorem 4.16, it is enough to
show that each proper overring of F is treed.

Let 7 be a proper overring of F, and suppose that 7 is not treed. Then
there exists a maximal ideal Af of P and primes P and ß of 7 contained in Af,
such that P and ß are not comparable. Pass to RMnR C TM, and observe that
TM is not treed. This contradicts the assumption that FMn/? is an LH-domain,
and completes the proof.

Corollary 4.18. IfR is an LH-domain, then R/P is an LH-domain for
each PE Spec(F).

Proof.  Apply Theorem 4.16(d) combined with Corollary 3.19 and Prop-
osition 2.1.

Remark 4.19.  It follows immediately from Theorem 4.16 and Proposi-
tion 3.20 that a Noetherian domain F is an LH-domain if and only if F is semi-
local and dim(F) < 1.

Although we have just seen that Noetherian LH-domains are well under-
stood, (4.20)-(4.22) will show that the situation for Noetherian LI-domains is
more complicated.

Proposition 4.20. Letux,...,unE (qf(R)\R). IfR is a Noetherian
domain and dim(F) = 1, then R C R[ux,. . . , un] is an LH-extension.
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Proof.  Let 7 = R[ux, . . . , un], and consider /: X = Spec(7) —* Spec(F).
Since F is GD, it follows from [22, Theorem 8, p. 48] that /is an open map,
so that it now suffices to show that / is a local injection. Let 7- be the conductor
of Uj in F; set 7 = 0"= ,7y. Note that 0 ^ I # F. As F is 1-dimensional Noe-
therian, 7 is contained in only finitely many primes of F, say Px, . . . , Pt.  By
slightly modifying the proof of [24, Lemma 2], one shows that, if Q G Spec(F)
and I 'f-Q, then the cardinality of fibr(ô) is one. To show that / is a local in-
jection, we consider two cases.

Case 1.  Suppose Q E fibr(F¿) for some 1 < / < f.  By the Krull-Akizuki
theorem [18, Theorem 93], 7 is 1-dimensional Noetherian. Since F C F has
finite fibers [18, Exercise 21, p. 64], there exists s G T\Q which belongs to every
member of fibr(P,), . . . , fibj-fF,) except Q. Therefore, Q is the only member
of fibj-fF,), . . . , fibT(P¡) which is in Xs.  Hence, /is injective on Xs.

Case 2. Suppose Q G Spec(7), such that Q £ U'=1fibr(Ff). By the 1-di-
mensionality of 7, we may choose w E T\Q which belongs to every member of
fibrfP,), . . . , fib^P,). Then/is injective on Xw, which completes the proof.

Proposition 4.21. Let R be a semilocal Noetherian domain.  Then R is
an LI-domain if and only //dim(F) < 1.

Proof.  If R is an LI-domain, Proposition 4.4 shows that F is an inc-do-
main; since R is Noetherian, [11, Theorem 35.16] shows that dim(F) < 1. The
converse follows immediately from Remark 4.19.

We next present an example to show that an arbitrary 1-dimensional Noe-
therian domain need not be an LI-domain.

Example 4.22.   Let F be the 1-dimensional local Noetherian domain in
Example 2.17.  Recall that R has exactly two maximal ideals, both of which
necessarily lie over the unique maximal ideal of R.  Let F= {R,, R2, R3, . . . }
where each R. = R. Applying [17, Proposition 1] to F, we construct a 1-dimen-
sional Noetherian domain 7 with infinitely many primes, such that, for each non-
zero P E Spec(7), the cardinality of ñb-JP) is greater than one. We claim that
7 C 7 fails to be an LI-extension.  If not, let 0 ¥= Q E Spec(T); then there exists
an open set U in Spec(7) such that QEU and Spec(7) —*■ Spec(7) is injective
on U. But, [2, Proposition 10, p. 98] combined with [22, Lemma 6.D, p. 41]
implies that Spec(T)\U is a finite set. This contradicts the fact that the cardin-
ality of each nonzero fiber is greater than one, to complete the proof.

Remark 4.23.  The preceding example shows that many of the basic prop-
erties which hold for the other classes of domains studied above, do not hold
for the class of LI-domains.  For example, Proposition 4.5 shows that LI-domains
localize, while Proposition 4.21 and Example 4.22 combine to show that LI-do-
mains need not globalize. Moreover, the LI analogue of Lemma 3.30 fails, as
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one sees by combining Proposition 4.20 with Example 4.22. Finally, using Ex-
ample 4.22 and the Krull-Akizuki theorem, one has a domain F such that F C V
is an LI-extension for each valuation overring V of R, although F is not an
LI-domain. We have not as yet been able to determine whether valuation over-
ring serve as test overrings for the LH property. (That overrings of the form
F[a,.aj, with u¡ G qf(F), do not suffice, follows from (4.20) and (4.22).)

Remark 4.24.  Using Theorem 4.16 and Corollary 3.29 one deduces the
following. Let V be a valuation ring of the form F + M and F a subring of F.
Then F + M is an LH-domain if and only if V is open and each ring 7 satisfying
RCTCFis open.

We end this section by considering a special class of LH-extensions.  For
the sake of completeness, we first recall the following definition [21, p. 145].
Let X be a topological space which is pathwise connected and locally pathwise
connected. A covering space of X is a pair consisting of a pathwise connected,
locally pathwise connected space X and a continuous map p: X —► X such that
the following condition holds. Each point of X has a pathwise connected open
neighborhood U such that each path component of p~l(U) is mapped homeo-
morphically onto Uby p.  [In particular, it is assumed that p~l(U) is nonempty.]
It is readily proved that, if (X, p) is a covering space of X, then p is a local
homeomorphism.  Hence, it is natural to ask about covering spaces in our setting.

Lemma 4.25. 7/F is a domain, then Spec(F) is contractible.

Proof.  Define H: Spec(F) x [0, 1] —> Spec(F) by H(P, f) - /» if f = 0
and H(P, t) = 0 otherwise. We claim that H is continuous. Indeed, if U is a
nonempty open subset of Spec(F), then

H~l(U) = U x [0, 1] U SpecfF) x (0, 1]

which is open in Spec(F) x [0, 1]. Thus, H shows that Spec(F) is contractible
to 0.

Remark 4.26.  It is clear from Lemma 4.25 that, if F is a domain, then
Spec(F) is pathwise connected. Indeed, Spec(F) is then locally pathwise con-
nected; for if P and ß are primes of F, one obtains a path from P to Q, within
any open set containing both P and Q, via the continuous function 0: [0,1] —♦
Spec(F) given by 0(0) = P, 0(1) = ß and 0(f) = (0) whenever 0 < f < 1.

Proposition 4.27. Let R and T be domains, and let p: Spec(7) -* Spec(F)
be a continuous map.  Then (Spec(7), p) is a covering space of Spec(F) if and
only ifp is a homeomorphism.

Proof.  The "if half is trivial. For the converse, apply Lemma 4.25 and
[21, Exercise 6.1, p. 160].
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Before proving the final corollary of this section, we pause to make the
following definition. An extension F C T of domains is called a CS-extension
(covering space extension) if (Spec(7), f) is a covering space of Spec(F), where
/is the contraction map.  It is obvious from Observation 1 in Remark 3.40 that
R CTis a CS-extension for each overring F of F if and only if F is a field.

Corollary 4.28. The following are equivalent on R:
(a) Risa local i-domain and dim(F) < 1.
(b) RCT is a CS-extension for each u E qf(R) satisfying T=R [u] Ç qf(F).
(c) RCT is a CS-extension for each overring TofR satisfying T Ç: qf(F).

Proof, (a) =* (c) is immediate, since (a) implies that any overring of R,
other than qf(F), is 1-dimensional local, (c) => (b) trivially, we shall show (b) =>
(a) in order to complete the proof. Assume (b). In view of Proposition 4.27,
we may apply Proposition 2.10 to show that F is an /-domain. It now suffices
to prove that F has at most one nonzero prime. If F, Q are distinct nonzero
primes of F, one may, without loss of generality, select r G P\Q. Thus F[l/r]
Ç qf(F), since Q survives in F[l/r].  However, F does not survive in F[l/r],
contradicting the fact that Spec(F[l/r] ) —► Spec(F) is surjective. This completes
the proof.

Remarks 4.29. (a) Example 2.17 illustrates that the (equivalent) condi-
tions in Corollary 4.28 are not implied by the requirement that F C V be a
CS-extension for each valuation overring F of F other than qf(F).

(b) Example 2.17 shows, i.a., that an LH-domain need not satisfy the
equivalent conditions of Corollary 4.28, although any domain satisfying those
conditions is an LH-domain. Similarly, LH-domains form a proper subclass of
the class of open domains, by virtue of Corollary 3.28.

5. Propen not open domains. Recall from §3, that a domain F is called
propen not open if F is propen but not open. We shall presently find (in Ex-
ample 5.11) many such domains. As in the previous sections, we shall develop
basic machinery, which will then be applied to yield characterizations of propen
not open domains in terms of previously studied classes of rings. For example,
Corollaries 5.20 and 5.22 show how an arbitrary propen not open domain is
built topologically by gluing the spectrum of an open domain to the spectrum
of a local propen not open domain; moreover, Corollary 5.10 (together with
Lemma 3.13) provides a ring theoretic characterization of local propen not open
domains.

The terminology and notation of the previous sections will be used freely
in this section, along with the following new definitions and notation. Let F be
a treed domain. Call the set {Q E Spec(F): Q C J(R)} the trunk of F and denote
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it by tr(F). Note that tr(F) is totally ordered, since F is treed. Call the prime
U {Q: ß G tr(F)} the vertex of F and let v(R) denote that prime.

Unless otherwise mentioned, R will always be a domain which is not a field.

Proposition 5.1. F is propen not open if and only if
(a) F is GD.
(b) [0, P] is open for each nonzero P E Spec(F).
(c) No overring of R other than qf(F) is a G-domain.

Proof.  Assume that F is propen not open. Then, (a) and (b) follow triv-
ially. As for (c), let 7 be an overring of F such that T + qf(F). Since F is not
a G-domain, Lemma 3.8 shows that T is not a G-domain.

Conversely, assume (a), (b) and (c). By the convention mentioned in the
introduction to this section, F # qf(F); hence F is not a G-domain, so that F
is not open. To complete the proof, we show that F is propen. Let 7 be an
overring of F with T # qf(F), and consider the image under the contraction
/: X = Spec(7) —+ Spec(F) of Xt, where t ET. We may assume Xt i1 0; more-
over, Xt # {0} since 7 is not a G-domain. As in the proof of Proposition 3.2,
conditions (a) and (b) imply that f(Xt) = Uaen[0, Pa], where each Pa G
Spec(F) and Í2 is a nonempty indexing set. Without loss of generality, each
Pa ¥= 0 since Xt ¥* {0}; then condition (b) implies/(A,) is open, to complete
the proof.

Conditions (a) and (b) of Proposition 5.1 have been encountered in earlier
sections. In order to make Proposition 5.1 more applicable, we next focus at-
tention on tools which will lead to a more thorough understanding of condition
(c).

Lemma 5.2.   Let T be an overring of R with T ¥= qf(F), such that RCT
is an i-extension. IfR is propen not open, then T is propen not open.

Proof. Argue as in Corollary 3.11.

Lemma 53.   If no valuation overring of R other than qf(F) is a G-domain,
then no overring ofR other than qf(F) is a G-domain.

Proof. If not, let T be a G-domain such that F C T CJ qf(F). Select any
valuation overring Vof Pother than qf(F). By [18, Theorem 20], Fis a G-do-
main, the desired contradiction.

Lemma 5.4.   IfRis propen not open, then R has no nonzero primes of
finite height.

Proof.  It suffices to show that there are no primes of height one in F.
This was done in the alternate proof of Corollary 3.5.
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Proposition 5.5. Let R be GD.  Then no overring ofR other than qf(F)
is a G-domain if and only if R has no nonzero primes of finite height.

Proof.  Suppose that no overring of F other than qf(F) is a G-domain.
If F has a nonzero prime F of finite height then, since F is treed, Rp is also
treed, whence Spec(Fp) is a finite set. Then [18, Exercise 3, p. 19] implies that
Rp is a G-domain, the desired contradiction.

For the converse, assume that F has no nonzero primes of finite height.
Let {Ma}aSn be the set of maximal ideals of F. If, for some a E £2,
D{QE Spec(F): Q =/= 0 and Q C Ma} were nonzero, it would be a height one
prime, contrary to hypothesis.  Therefore F is a G-domain. To complete the
proof, Lemma 5.3 shows that it suffices to establish that no valuation overring
F of F other than qf(F) is a G-domain.  Since V is local treed, it is enough to
show that V has no nonzero primes of finite height.

Deny. Then V has a prime F of some positive finite height. Since P n F
is a nonzero prime of F, we conclude that PC\ R does not have finite height. As
RCV satisfies GD, it follows that the height of F is also infinite, a contradic-
tion, completing the proof.

Remark 5.6.  If a nonzero prime F of a domain F has infinite height, P
need not contain an infinite chain of primes. However, if no nonzero prime of
F has finite height, then each nonzero prime of F contains an infinite chain of
primes.

Using the characterization in Proposition 5.1 along with Proposition 5.5,
we give (in Corollary 5.10) a characterization for local propen not open domains.

Lemma 5.7.   Let R be local treed.  Then R is not a G-domain if and only
if R has no nonzero primes of finite height.

Proof.  The "if half is follows from the proof of Proposition 5.5. Con-
versely, assume F is not a G-domain, but possesses a prime F of positive finite
height, «. Then there exists a chain of nonzero distinct primes Px C\ • • • Ç Fn-1
ÇPn = P.   So C\{Q E SpeciF): Q i= 0} = F, ¥= 0, contradicting the fact that
F is not a G-domain.

Corollary 5.8.   Let R be local and GD.  Then R is not a G-domain if
and only if no overring ofR other than qf(F) is a G-domain.

Proof.  The "only if' half follows by combining Lemma 5.7 and Propo-
sition 5.5. The converse is trivial.

Example 5.9. We next construct a semilocal GD domain which is not a
G-domain, and which possesses nonzero primes of finite height. (Hence, one
cannot delete the assumption that F is local in Lemma 5.7.)  Let X = {(0, 0),
(1/2, 0), (1, 0)} U {(0, 1/«): « > 1}. A partial order on X may be given as
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follows:  (a, b) < (c, d) is and only if a < c and b < d. By [20, Theorem 3.1 ],
there exists a Bezout domain F such that Spec(F) and X are isomorphic as po-
sets; that is, there is a bijection /: Spec(F) —* X such that both / and /" ' are
order preserving.  If M is the maximal ideal of F corresponding to (0, 1) in X,
then

f|{ß G SpecíF): ß=E0andßCA/}=0

since lim^^^l ¡n) - 0. Thus F is not a G-domain,  However, R does have (two)
nonzero primes of finite height, corresponding to (1/2, 0) and (1, 0) in X.

Corollary 5.10. Let R be local.   Then R is propen not open if and
only if

(a) F is GD.
(b) [0, P] is open for each nonzero P E Spec(F).
(c) F is not a G-domain.

Proof.   Combine Proposition 5.1 and Corollary 5.8.
Before proceeding further with the structure of propen not open domains,

we give an example which helps motivate some of our later work.
Example 5.11.   For each positive integer t, we shall construct a propen

not open domain F with exactly t maximal ideals.  Let

Y= {(0, 0)} U {(l/n, 0): n > 1} U {(1 + l/n, 2 - l/n): K n < t};

partially order y as in Example 5.9. Then [20, Theorem 3.1] provides a Bezout
domain R such that Spec(P) and yare isomorphic as posets. Note that F has pre-
cisely t maximal ideals, corresponding to {(1 + l/n,2- l/n): 1 < n < t}. By Propo-
sition 5.5, no overring of F other than qf(F) is a G-domain.  In order to prove
that F is propen not open, Proposition 5.1 now reduces us to showing that
[0, P] is open in Spec(F) for each nonzero P G Spec(F). If P is nonmaximal,
we may appeal to Lemma 3.13.  If P is maximal, denote the remaining maximal
ideals of F by M2.Mt, and observe that [0, P] ' = {M2, .... Aff} is closed
in Spec(F), to complete the proof.

Before leaving this train of thought, we give a result which is motivated by
Proposition 3.10.

Proposition 5.12. F is propen not open if and only ifRCV is open
for each valuation overring V of R with V =£ qf(F) and R C qftF) is not open.

Proof.  We need only prove the "if" half. By [6, Theorem 1], F is GD;
by the proof of (b) => (a) in Proposition 3.10, F C Rp is open for each nonzero
PG Spec(F). By Proposition 5.1, we are reduced to showing that no overring
of F other than qf(F) is a G-domain. Note that F is not a G-domain since
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F C qf(F) is not open.  Thus, Lemma 3.8 shows that no valuation overring of
F other than qf(F) is a G-domain, and Lemma 5.3 applies to complete the proof.

Our next aim is to show how propen not open domains are built topolog-
ically.

Proposition 5.13. If R is propen not open, then there exists a nonzero
prime contained in the Jacobson radical of R, that is, tr(F) =£ {0}.

Proof.  Since F is propen not open, F is semilocal and has no nonzero
primes of finite height. We may assume that F is not local; let Mx,. . . , Mt
be the maximal ideals of F.

Suppose that, whenever 2 < / < f, there exists a nonzero prime P¡ con-
tained in Mx n M¡.  If P is the least of P2.Pt (which are comparable since
F is treed), then PjcÇ\tk=xMk =J(R).

Hence, without loss of generality, we may suppose that 0 is the only prime
of F which is contained in Mx n M2. As R is propen not open, [0, AÍ,] is open
in Spec(F), so that Lemma 3.13 supplies a unique prime Q C M2 such that Q
is proper minimal over U{F F C M, n M2}.  Hence, Q is a height one prime,
a contradiction, which completes the proof.

Corollary 5.14. IfR is propen not open, then ti(R) is an infinite set.

Proof.  Apply Proposition 5.13 and Remark 5.6.
Remark 5.15.   Unlike the situation for propen not open domains, the

trunk of an open domain may consist merely of 0.  For example, if X = {(0, 0),
(1/2, 0), (1,0), (0, 1/2), (0, 1)} is partially ordered as in Example 5.9, [20, The-
orem 3.1] supplies a Be'zout domain R such that Spec(F) and X are isomorphic
posets.  By Theorem 3.16, F is open, although tr(F) = {0}.

Lemma 5.16. Let Mx.Mt be the maximal ideals of a propen not
open domain R.   Then, for each 1 < i < f, [v(R), M¡] is well-ordered under in-
clusion.

Proof.  Deny. Then (f > 1 and) for some 1 </ < f, [i>(F), Mj\ is not
well-ordered under inclusion. Thus there exists a nonempty subset {Qa: a E £2}
C [v(R), Mj] without a first element. Then P = Cl{Qa: a E £2} is a prime of
F such that v(R) C PC\M¡. As [0, P] is open, Lemma 3.13 supplies a unique
prime Q. C M¡ such that Q¡ is proper minimal over U{ß: Q C P n M¡) = F.  In
particular, Q¡ E [v(R), M¡\.  Since F C¡ Q   there exists ß G £2 such that Q¡ (f. Qß,
whence Qß Ç Q by comparability. Minimality of Q- forces F = Qß, which con-
tradicts the assumption that {Qa: a G £2} has no first element.

Lemma 5.17. IfR is propen not open and R/v(R) is GD, then R/v(R) is
open.
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Proof. R/v(R) inherits from F the property of being semilocal. More-
over, Lemma 5.16 implies that each branch of R/v(R) is well-ordered under in-
clusion. Now apply Theorem 3.16.

Theorem 5.18. F is propen not open and R/v(R) is GD if and only ifR
is GD, Fu(£) is propen not open, and R/v(R) is open.

Proof. Assume that F is propen not open. Then F is clearly GD, v(R)
¥= 0 by Proposition 5.13, Fu(R) is propen not open by Lemma 5.2 and R/v(R)
is open by Lemma 5.17.

Conversely, assume F is GD, Fu(Wj is propen not open, and R/v(R) is
open. Thus R/v(R) is semilocal, so that F is also semilocal; also, v(R) ¥= 0 since
RU,R\ is propen not open. Since F is GD, Propositions 5.1 and 5.5 reduce us to
proving that [0, P] is open for each nonzero P G Spec(F) and that F has no
nonzero primes of finite height.

Suppose P is a nonzero prime of F with finite height. Since P compares
with v(R) and since Fu(R) is propen not open, Lemma 5.4 shows that u(F)Çj p
As F is treed, v(R) is a nonzero prime with finite height, which contradicts
Corollary 3.5 (as applied to Ru/R\)- Therefore, F has no nonzero primes of
finite height.

We now consider three cases to prove that [0, P] is open for each nonzero
P G Spec(F).  Let M,.Mt be the maximal ideals of F. We may assume
í > 1, so that v(R) is not maximal.

Case 1. 0^PCju(F). Notice that [0,PRv(R)] is open in Spec(Rv,R)),
since Fu(Ä) is propen not open. Then Lemma 3.13 gives a unique prime
ßFu(Ä) C u(F)Fu(R) such that QRviR) is proper minimal over PRviRy Hence
Q C v(R) and ß is proper minimal over P. Condition (a) of Lemma 3.13 shows
that [0, P] is open in Spec(F).

use 2. u(R) CP and P not maximal.  Since R/v(R) is open, we have that
[v(R)/v(R), P/v(R)] is open in Spec(F/t;(F)); by Lemma 3.13, for each 1 < i < t,
there exists a unique prime Q¡/v(R) C M¡/v(R) such that Q¡lv(R) is proper mini-
mal over UiôMF): Q/v(R) C P/v(R) n M¡/v(R)}. For each /, Q¡ C M¡; more-
over, we claim that Q¡ is proper minimal over \J{Q': Q' C P n M¡}. (Note that
Q¡ will then be the unique such, as F is treed.)

First, we show that U{ß': ß' C P Pi M¡}C\ Q(. If not, comparability gives
Qi c U{ß': Q'CPnM¡}, so that Q¡/v(R) CP/v(R) OM¡/v(R), contradicting
the fact that Q¡/v(R) is proper minimal over U{ßMF): Q/v(R) C P/v(R) n
A^MF)}.  Hence U{ß': ß' C P n A/.}Ç Q,.

As for minimality, suppose that Uiô': Q' CPCt A/f}ÇJQ\ C Q¡. Observe
that v(R) C U{ß': ß' C P n M¡}, since v(R) CPf\Mv We claim that
U{ß/u(F): Q/v(R) C P/v(R) n A/f/u(F)} Ç Q¡lv(R) C Q¡lv(R).  If not, then
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Q¡lv(R) C U{Q/v(R): Q/v(R) C P/v(R) n M¡lv(R)}, since R/v(R) is treed; then
Q\ C P, a contradiction. Thus, by the minimality of Q¡/v(R), we have ßj/u(F) =
Q¡/v(R), so that Q\ = Qr By condition (a) of Lemma 3.13, [0, F] is open.

Case 3. P maximal. Argue as in Case 2, with the aid of condition (b) of
Lemma 3.13.

This completes the proof.
Using the above theorem, we shall now show (in Corollary 5.20 and

Corollary 5.22) that the spectrum of a propen not open domain may be con-
structed by gluing the spectrum of an open domain to the top of the spectrum
of a local propen not open domain.

Lemma 5.19. 7/F is treed, then Spec(F) is homeomorphic to Spec(Fu(fl))
U Spec(R/v(R))l(v(R)Rv(R) = v(R)¡v(R)).

Proof.  Apply [15, Lemma 3.13].

Corollary 5.20. 7/F is propen not open and R/v(R) is GD, then
Spec(F) is homeomorphic to

(Spec(Rv(R)) U Spec(FMF)))/(t;(F)Fu(A) = v(R)/v(R)),

where RV(R) is local propen not open and R/v(R) is open.

Proof.   Combine Theorem 5.18 and Lemma 5.19.
Corollary 5.22 will present a decomposition of Spec(F), similar to the pre-

ceding, for an arbitrary propen not open F.  First, a lemma:

Lemma 5.21. Let R and S be semilocal treed domains. Iff: SpeciF) —♦
Spec(5) is an isomorphism as posets, then f is a homeomorphism.

Proof.  Let Mx., Mt be the maximal ideals of F, and let Y = Spec(5).
We first show that /is continuous.  Let 0 ¥= s E 5; without loss of generality,
Ys ± Y.  Moreover, (Ys)' = V(J) for some ideal J of 5. Relabel so that / C
UUfWt) and J t VkKjKtfWj)- If Qi = C\{QEY:JCQC f(M¡)}, one
verifies that V(J) = (J?=1 V(Q¡), so that (f-l{Yjf = U?=, V(f~l(Q¡)).

Similarly,/-1 is continuous and the proof is complete.

Corollary 5.22. Let R be propen not open.  Then there exists a propen
not open Bézout domain S and an inclusion-preserving homeomorphism of
SpeciF) onto Spec(5). Any such homeomorphism induces homeomorphisms of
Spec(Fü(Ä)) w/fA Spec(5u(S)) and of Spec(F/u(F)) with. Spec(5/u(5)). Hence
SpeciF) is homeomorphic to a quotient space of the disjoint union of the spectra
of a local propen not open domain and of an open domain.

Proof.  By [20, Theorem 3.1], there exist a Be'zout domain 5 and a poset
isomorphism /: SpeciF) —► Spec(5). Since 5 is GD and has no nonzero primes
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of finite height, the task of showing that 5 is propen not open is reduced, by
Propositions 5.1 and 5.5, to showing that [0, P] is open in Spec(5) for each
nonzero P G Spec(5).

If P is a nonzero prime of 5, then /""! (P) =£ 0, so that [0, /" ' (P)] is open
in Spec(F).  However,/is a homeomorphism by Lemma 5.21, so that [0,P] =
/([0,/-1(^)]) is indeed open in Spec(5). Therefore, 5 is propen not open. As
5 is Bézout, Proposition 2.1 implies that S/v(S) is GD; moreover, Sv^ and
S/v(S) are propen not open and open respectively, by Theorem 5.18.

As mentioned in Lemma 5.19, we may identify (up to inclusion-preserving
homeomorphisms) Spec(Fu(ß0 with tr(F) and Spec(F/u(F)) with V(v(R)).  Sim-
ilar comments hold for Spec^^) and Spec(5/u(5)). Since f(v(R)) ■ v(S), the
assertions about induced homeomorphisms are easily verified. The final con-
clusion follows by applying Corollary 5.20 to 5.

Example 5.23. The following example shows that one cannot delete the
"semilocal" hypothesis in Lemma 5.21. In [12, Example 1, p. 279], a domain
F is constructed with the following properties: dim(F) = 1, the cardinality of
Spec(F) is c (i.e., that of the real numbers), and F is a G-domain. Let x be an
indeterminate over C, the complex numbers. By Hubert's Nullstellensatz, there
is a poset isomorphism / of Spec(F) onto Spec(C[x]). Now, [18, Theorem 21]
shows that C[x] is not a G-domain. Thus/is not a homeomorphism, since {0}
is open in Spec(F) and /({0}) ■ {0} is not open in Spec(C[x] ).

The next example shows that an additional hypothesis is needed to obtain
the propen not open analogue of Corollary 3.17. The appropriate analogue is
given in Proposition 5.25.

Example 5.24.   Let X = {(0, 0)} U {(0, l/n): n > 1} U {(l/n, 0): n > 1},
partially ordered as in Example 5.9. Again by [20, Theorem 3.1], there is a
Bezout domain F such that Spec(F) and X are isomorphic as posets. As tr(F) =
{0}, F fails to be propen not open. Moreover, F is not a G-domain; therefore
F is not propen. We claim that Rp is propen not open for each nonzero prime
P of F. Indeed, Rp is a valuation domain since F is Bézout, and the claim fol-
lows readily from Corollary 5.10 and Lemma 3.13.

Proposition 5.25. 77ze following are equivalent on R:
(a) F is propen not open.
(b) Rp is propen not open for each nonzero P G Spec(F), F is semilocal

and v(R) ¥= 0.
(c) RM is propen not open for each maximal ideal MofR.R is semilocal

and v(R) ¥= 0.

Proof.   Lemma 5.2, Corollary 3.4 and Proposition 5.13 unite to show
that (a) => (b), while (b) => (c) trivially. To show (c) => (a), assume (c). It is
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clear (cf. [5, Lemma 2.1] ) that F is GD.  As in the proof of Theorem 5.18, it
is enough to show that [0, P] is open in Spec(F) for each nonzero P G Spec(F),
and that no nonzero prime of F has finite height.

Let A/,,.. . , Aff be the maximal ideals of F. Let P be a nonzero (possibly
maximal) prime of F. We shall after considering two possibilities, show that
[0, P] is open in Spec(F), by an appeal to Lemma 3.13.

Case 1. P C\Mj. Then \J{Q: Q C P n M¡} = P. As RMj is propen not
open, [0, PRm] is open in Spec(FM.), and so Lemma 3.13 yields a unique prime
QjRmj c MjRm. such that Q¡RM. is proper minimal over \J{NRM¡: NRM. C
PRm¡ n MjRM.} = PRm¡- Hence, ß, is the unique prime of F which is contained
in Mj and which is proper minimal over P.

Case 2. P <£ M¡. Then v(R) Ç P.  Now N¡ = \J{Q: QCP C\ M¡} is a prime
ideal containing v(R). Moreover, A/- ÇJ M-; otherwise, N, = Mj, so that M, = P,
a contradiction. Hence v(R)R^. C NjRm.Ç\MjRm.. As u(F) ¥= 0, we have
[0, NjRM] ¥= {0}, and so the propenness of RMj implies that [0, NjRMj] is
open. By Lemma 3.13, there exists a unique prime Q¡Rm¡ °f Fm. which is
proper minimal over \J{NRM¡: NRMj C NjRM. n MjRM¡} = N¡RMj. Thus Qf
is the unique prime of F which is contained in M¡ and is proper minimal over N¡.

By Lemma 3.13, the preceding two cases combine to prove that [0, P] is
open in Spec(F) for each nonzero P G Spec(F).

To complete the proof, we show that F has no nonzero primes of finite
height. If, on the contrary, F possesses a nonzero prime P of finite height, then
PCMj for some 1 </ < t, so that PRMj is a nonzero prime of finite height in
RM.. In view of Propositions 5.1 and 5.5, this is a contradiction, which com-
pletes the proof.

As with the classes of rings studied in the earlier sections, propen not
open domains may be obtained by the "D + M construction". We close with
some results along these lines. As in the previous sections, the proofs are deleted.

Proposition 5.26. Let V be a valuation ring (not a field) of the form
F + M, where F is a field and M is the maximal ideal of V. Let S be a subring
of F.  Then S + M is propen not open if and only if S is open and V is propen
not open.

Corollary 5.27. Let V be a valuation ring (not a field) of the form
F + M, and let S be a subring of F.  Then every overring ofS + M other than
qf(5 + M) is propen not open if and only if V is propen not open and every
ring T satisfying SCTCFis open.
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