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Given a complete noncompact surfatembedded i3, we consider the Dirich-

let Laplacian in the layef) that is defined as a tubular neighborhood of constant
width about®. Using an intrinsic approach to the geometry(fwe generalize the
spectral results of the original paper by Ducktsal. [Commun. Math. Phy223

13 (2001)] to the situation wher®, does not possess poles. This enables us to
consider topologically more complicated layers and state new spectral results. In
particular, we are interested in layers built over surfaces with handles or several
cylindrically symmetric ends. We also discuss more general regions obtained by
compact deformations of certaid. © 2004 American Institute of Physics.

[DOI: 10.1063/1.1635998

I. INTRODUCTION

The spectral properties of the Dirichlet Laplacian in infinitely stretched regions have attracted
a lot of attention since the existence of geometrically induced discrete spectrum for certain strips
in the plane was proved in Ref. 1. The study was motivated by mesoscopic physics where a
reasonable model for the dynamics of a particle in quantum waveguides is given by the Laplacian
in hard-wall tubular neighborhoods of infinite curvesifi, d=2,3 (quantum strips, tub&sor
surfaces ink® (quantum layers see Refs. 2 and 3 for the physical background and references.
Nowadays, it is well known that any nontrivial curvature of the reference curve, that is asymp-
totically straight, produces bound states below the essential spectrum in the strips arfcfubes.

The analogous problem in curved layers is much more complicated and it was investigated
quite recently in Refs. 6—8. L& be a complete noncompact surface embeddétfjrf) be a tube
of radiusa>0 aboutZ, i.e. (see Fig. 1,

Q:={zeR3?| distancdz,3)<a}, (1)

and—Ag denote the Dirichlet Laplacian in?(Q). If the surface is a locally deformed plane, the
existence of bound states below the essential spectrum of the Laplacian was demonstrated in Ref.
7. A more general situation was treated in Ref. 6; assumingXhatnontrivially curved, it has
asymptotically vanishing curvatures and possesses a pole, several sufficient conditions are found
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FIG. 1. The configuration spa¢e defined by(1) as the space delimited by two parallel surfaces at the distaficen 3.

which guarantee the existence of discrete spectrum. Finally, let us mention that an asymptotic
expansion of the ground-state eigenvalue in layers built over mildly curved planes was found in
Ref. 8.

While Ref. 6 covers a wide class of layers, the technical requirement about the existence of a
pole onX (i.e., the exponential map is a diffeomorphjsrestricted substantially the topological
structure of the reference surface. In particul¥awas necessarily diffeomorphic &7 and as such
it was simply connected. The main goal of this paper is to extend the sufficient conditions
established in Ref. 6 without assuming the existence of pol€s and without making any other
(unnatural topological and geometrical assumptions. In addition to this substantial generalization,
we will derive particularly interesting spectral results for quantum layers built over surfaces with
handles or several cylindrically symmetric erldee Figs. 2-4

Let us recall the reason why the existence of a pol& avas required in Ref. 6. According to
the usual strategy used in the spectral theory of quantum waveguides, one expresses the Laplacian
—AY in the pair of coordinatesx(u), wherex parametrizes the reference surfateand ue
(—a,a) its normal bundle. Assuming the existence of a palepuld be parametrized globally by
means of geodesic polar coordinates, which were well suited for the construction of explicit
mollifiers on3 needed to regularize generalized trial functions establishing the existence of bound
states below the essential spectrum.

There are several possibilities how to treat surfaces without poles. Since the above-mentioned
regularization is needed out of a compact parkadnly, one way is to replace the polar coordi-
nates by geodesic coordinates based on a curve enclosing the interior part. This approach is well
suited for surfaces of one erfdee the definition beloyhowever, it has to be modified in more
general situations. In this paper, we introduce a different strategy which does not require any
special choice of coordinates @ We employ substantially a consequence of Ref. 9 that if the
Gauss curvature is integrable then there always exists a sequence of functidnisaeimg the
properties of the mollifiers mentioned earlier.

@

z

FIG. 2. Surface with a hand®’ is constructed fron®, by attaching smoothly to it a curved cylindrical surfade By
virtue of Corollary 1, one handle is sufficient to achieve the condit@rof Theorem 1.
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FIG. 3. Elliptic paraboloidwithout or with one handle attached, respectiyaly Example 1.

IIl. STATEMENT OF RESULTS

To state here the main results we need to introduce some notation and basic assumptions. Let
K% denote the spectral threshold of the planar layer of widih iz., k,:=#/(2a). The induced
metric on3, and the corresponding covariant derivative will be denoted bypdV,,, respectively.
LetK, M, andk.. denote, respectively, the Gauss curvature, the mean curvature, and the principal
curvatures of2. Denoting by & the surface area-element, we may define the total Gauss curva-
ture £ and the total mean curvaturet, respectively, by the integrals

K;:f Kds, AA%=J-M2dE. 2)
3 3

The latter always exist6t may be +«), while the former is well defined provided
(H1) Kell(®),

which will be a characteristic assumption of this work. Henceforth, we shall also assunie that
are bounded and

(H2) a<pp:=(maX|k.ll...|k_[l.})"* and Q does not overlap,

which we need in order to ensure that the lageis a submanifold ofR3. An open seECY is
called anendof ¥ if it is connected, unbounded and if its boundagy is compacisee Fig. 4 its
total curvatures are defined by means(®f with the domain of integration being the sub&et
only. We say that a manifold embedded[iA is cylindrically symmetric if it is invariant under
rotations about a fixed axis iR3. Our main result reads as follows.

FIG. 4. Surface with four end<(, . . ., E,). By virtue of Theorem 2, each cylindrically symmetric erig;(E,) with a
positive total Gauss curvature and curvatures vanishing at infinity produces at least one discrete eigenvalue.
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Theorem 1:Let be a complete noncompact connected surface of cldssntbedded i3
and satisfyingH1). Let the layer) defined by (1) as the tube of radius-® aboutZ, satisfy(H2).
(i) If the curvatures K and M vanish at infinity &, then

inf oreed —AL)=k7.
(i) If the surfaceX is not a plane, then any of the conditions

(@ K=0,

(b) a is small enough an¥iyM L2(3),

() M=+xandVMelL?(3),

(d) X contains a cylindrically symmetric end with a positive total Gauss curvature

is sufficient to guarantee that
info(—A2)< k2.

Consequently, if the surface is not a plane but its curvatures vanish at infinity, then any of the
conditions (a}(d) is sufficient to guarantee that Ag has at least one eigenvalue of finite
multiplicity below the threshold of its essential spectrum, b@isc(—A(D’)vé@.

Let us compare this theorem with the results obtained in Ref. 6. An improvement concerns the
essential spectrum. While only a lower bound on the threshold was found in Ref. 6, here we shall
use known results about the spectral threshold of complete surfaces in order to show that the
essential spectrum starts just:ét Conditions(a)—(d) are adopted from Ref. 6, however, we do
not assume th& is of classC? in (b) and(c) of Theorem 1, which was required in Ref. 6 in order
to give a meaning t&/;M. Indeed, only the integrability conditions on the gradient are needed.

The most significant generalization concerning all the results is that we have gotten rid of the
strong assumption about the existence of a pole2orctually, Theorem 1 involves quantum
layers built over general surfaces without any additional hypotheses about the existence of a
special global parametrization, the number of ends, and other topological and geometrical restric-
tions.

An interesting new spectral result then follows from the observation that making the topology
of 3 more complicated than that of the plane, one always achieves that the basic co@litson
satisfied.

Corollary 1: Under the assumptions of Theorem 1, one ihaSr(—Ag)<Kf whenever, is
not conformally equivalent to the plane
Indeed, the Cohn—Vossen inequdiityields

K<2m(2—2h—e), ©)

whereh is the genus oE, i.e., the number of handles, ards the number of ends. In particular,
the condition(a) of Theorem 1 is always fulfilled whenever the surface is not simply connected.

Example 11 et be the elliptic paraboloid. It is easy to check that it has curvatures vanishing
at infinity and that the conditioft) of Theorem 1 is always fulfilled. On the other hand, it violates
the condition(d) whenever it is not a paraboloid of revolution, and the condit@rdoes not hold
because the total Gauss curvature is always equalmtoAZtaching a handle t&, the total
curvature becomes equal to27 (see Fig. 3.

It was proven in Ref. 6 that any layer built over a cylindrically symmetric surface diffeomor-
phic to R? has a spectrum below the energi/. Since this class of reference surfaces may only
have a non-negative total Gauss curvature, it gave an important alternative condi@imtthe
caseKX>0. In Theorem 1, an interesting generalization to Ref. 6 is introduced by virtue of the
condition (d), where it is supposed now that only an unbounded subsEtasfmits a cylindrical
symmetry at infinity(see Fig. 4 This extension is possible due to the fact that the sequence of
trial functions establishing the existence of spectrum bekiv\tor surfaces of revolution with
K>0 is “localized at infinity” (i.e., for any compact set df), there is an element from the
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FIG. 5. The planar region of Example 2.

sequence supported out of the compaCobnsequently, it may be localized just at the end satis-
fying condition (d) of Theorem 1. Since any deformation of a bounded paf® afoes not affect

this spectral result, we may consider more general regions than(lb&ghat is important is that

such local deformations do not include only bends and protrusions which are traditionally a source
of binding, but constrictions as well. Moreover, since such trial functions localized at different
ends will be orthogonal as elements lof(Q)), we may produce an arbitrary number of bound
states by attaching t@ a sufficient number of suitable outlets. Finally, since the essential spec-
trum is stable under compact deformation(df we arrive at the following result.

Theorem 2: Let Q) be a layer (1) satisfyingH1), (H2) and the condition (i) of Theorem 1.
Assume that the reference surfaEecontains N=1 cylindrically symmetric ends, each of them
having a positive total Gauss curvature. L@t be an unbounded region without boundaryH#
obtained by any compact deformation(@f Then

() infoed—AD")=x%,
(ii) there will be at least N eigenvalues (rﬁ),xf), with the multiplicity taken into account

Example 2:Fix §e (0,77/2) and consider the conical regidd’ in R® given by rotating the
planar regionsee Fig. &

{(x,y) e R?| (x,y)e((0,2acotf)x(0xtand])U([2acotd,=)x(0,2a))}

along the axisy=xtan@ in R®. Note thatQ)’ is not a layer(1) because of the singularity of the
conical surface. Nevertheless, it may be considered as a compact deformation of the layer built
over a smoothed cone whose total Gauss curvature is equatr{t-2sin 6) € (0,277). Conse-

quently, we know that- A‘DV possesses at least one discrete eigenvalue bd(nhae to Theorem
2. This is a nontrivial result for flat enough conical layers only, since using a trick analogous to

that of Ref. 11 one can check that the cardinalitwgigc(—Ag') can exceed any fixed integer for
6 small enough.

lll. PRELIMINARIES

Let 3 be a connected orientable surface of cl@désembedded iiR®. The orientation can be
specified by the choice of a globally defined unit normal vector fiat® —S?, which is a
function of classCt. For anyxe 3, the Weingarten map

Ly: T,2—=T,2: {&—~—dn (&)} (4)
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defines the principal curvaturés. of X as its eigenvalues with respect to the induced mejric
The Gauss curvature and the mean curvature are defined:blg, k_ and M:=3(k,+k_),
respectively, and are continuous functionsXn

Puta>0. We define a layef) of width 2a as the image of the mapping

L: IX(—a,a)—R3%:{(x,u)—>x+un(x)}. (5)

Henceforth, we shall always assuiit?). Then£ induces a diffeomorphism arfd is a submani-

fold of R® corresponding to the set of points squeezed between two parallel surfaces at the
distancea from 3, (see Fig. }, i.e., if 2 does not have a boundary then the definitiof)ofia (5)

and (1) are equivalent. We shall identify it with the Riemannian manifale (—a,a) endowed

with the metricG induced by the immersiofb). One has

G=ge(ly—uLy)?+du?, dQ=(1-2Mu+Ku?)ds du, (6)

wherel, denotes the identity map oh%, and d) stands for the volume element 9f It is worth
noticing that(6) together with(H2) yields thatG can be estimated by the surface metric,

C_g+du’<G=C,g+du?, where C.:=(1*+ap )2 7

Remark 1:Formally, it is possible to conside2(x (—a,a),G) as an abstract Riemannian
manifold where only the surfacgis embedded ifk®. Then we do not need to assume the second
part of (H2), i.e., “Q) does not overlap.”

We denote by— AL or simply — A, the Dirichlet Laplacian om.?(€)). We shall consider it
in a generalized sense as the operator associated with the Dirichlet form

Q)= L)(V¢,V¢) dQ with DomQ:=W>4Q). (8)

HereV is the gradient corresponding to the metBcand(-,-) denotes the inner product in the
manifold Q induced byG; the associated norm will be denoted |bly Similarly, the inner product
and the norm in the Hilbert spa¢e?(Q) will be denoted by(-,-) and|-||, respectively. We shall

sometimes abuse the notation slightly by writing-0=[(-,-)dQ and||-||=[ o|-|dQ for vector
fields. The subscript §” will be used in order to distinguish similar objects associated to the
surface..

Since the quadratic forr@ is densely defined, symmetric, positive, and closed on its domain,
the corresponding Laplacian A is a positive self-adjoint operator. Denoting by“j=(x*,x?)
local coordinates foB and byG" the coefficients of the inverse @ in the coordinatesx)
=(x*,u) for ), we can write

—A = —|G|” Y|c|YG1 g, = — |G| Y, |G|YGH e, — a5+ 2M, 4, 9
in the form sense, whell&|:=detG and

M —Ku

Mu= T MUK

(10

which is the mean curvature of the parallel surf&ge. X {u}).

The above definitions of) and the corresponding Dirichlet Laplacian are valid for any
orientable surfac& of classC? provided(H2) (or its first part only in view of Remark)lholds
true. Nevertheless, since we are interested in the existence of discrete spectrukf ofand it
always exists whenevef? is bounded, in the sequel we shall assume thas completeand
noncompact
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It is easy to see that the spectrum of the planar l&yge=R?X (—a,a) is purely continuous
and coincides with the intervik?,«), where the threshold is the first eigenvalue of the Dirichlet
Laplacian on the transverse section, i#;;=7/(2a). In what follows we shall use the corre-
sponding normalized eigenfunction given explicitly by

x1(u):= \/gcos;clu. (11

Using the identitiegVu|=1 and—Au=2M,, we get
—Axa(u) = 2M x5 (W) + &3 x1(W) . (12
IV. ESSENTIAL SPECTRUM

We shall localize the essential spectrumﬂﬁ‘DZ for asymptotically planadayers, i.e., the
curvatures of®, vanish at infinity which we abbreviate by

K,M 0. (13)
Recall that a functiorf, defined on a noncompact manifald is said to vanish at infinity if
Ve>0 3IR>0,x.e3 Vxe3I\B(X.,R): [f(X)|<e,

whereB(x,,R,) denotes the open ball of centerand radiusR,. The property(13) is equivalent

to the vanishing of the principal curvatures, i.Iei,i 0.

The proof of statement) of Theorem 1 is achieved in two steps. If the layer is asymptotically
planar, then it was shown in Ref. 6 that the essential spectrumécﬁ is bounded from below by
Kf provided the surface possesses a pole. Here we adapt this(pesad on a Neumann brack-
eting argumentto the case of any complete surface with asymptotically vanishing curvatures. In
the second part of this section, we establish the opposite bound on the threshold by means of a
different method.

A. Lower bound, inf oree(—AD)=k?

Fix ane>0 and consider an open precompact regianB(x. ,R,) with C1-smooth boundary
such that

V(x,U) € Qoy:(1—ae)?<1-2M(x) u+K(x) u?<(1+ae)?, (14
WhereQext::Q\ﬁim with Q:=BX(—a,a). Denote by— Ay the Laplacian— A‘D’ with a supple-

mentary Neumann boundary condition 86X (—a,a), that is, the operator associated with the
form Qn:=QU'® Q5", where

Qﬁ(l//,¢)==f0 (V. V) dQ, DomQy={yeW-1Q,) |¥(-,+a)=0}

for w e {int,ext. Since— A= — Ay and the spectrum of the operator associate@}{i‘,bis purely
discrete, cf. Ref. 12, Chap. 7, the minimax principle gives the estimate

inf oresd — Ag) =inf oesd — Aﬁl’“ =inf o(— Aﬁlxt),

where— Ay denotes the operator associatedfy'. Neglecting the non-negative “longitudinal”
part of the Laplaciafi.e., the first term at the right-hand side(8§] and using the estimaté$4),
we arrive easily at the following lower bound:
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2

1—ae
k3 in LA(Qgy),

_Ae)(t2
N 1+ae

which holds in the form sendsee also proof of Theorem 4.1 in Ref. &he claim then follows
by the fact thate can be chosen arbitrarily small.

B. Upper bound, inf e (—AD)<k?

It follows from Ref. 13 that ifK—0 then the threshold of théessentigl spectrum of the
Laplacian onX, —A4, equals 0. This is equivalent to the statement that forsany there exists
an infinite-dimensional subspa@C C,(X) such that

VoeDy: [Vyolg=elolly- (15
It is easy to see that the following identity holds true:
VeeCo(2): [Vexal>=[IVel xill’— (ex1,¢Ax1). (16)
Using the estimate&7) and (15), we have
IV el xal?<(C,1C2) *[le x4ll%,
while the second term at the right-hand sid€18) can be rewritten by means @f2) as follows:

—(@Ax1,0x1)= K5 @ xal>+ (ex1,2M @ x1).

Integrating by parts with respect toin the second term at the right-hand side of the last equality,
we conclude fron(16) that for anye>0 there existD:=Dy®{ 1} CCy () such that

YyeD: ||[Vyll>— (4, Kuh)<(ki+(C, IC%) )| y]?,

where

K

K= T oMU+ K2

is the Gauss curvature of the parallel surfa®g. x{u}). This proves that infres{d —A—K,)
$K§_. SinceK, vanishes at infinity by the assumptioh3), i.e., the operatoK (—A+1)"1is
compact inL?(Q), the same spectral result holds for the operata.

Remark 2:Notice that onIyKiO is needed in order to establish the upper bound.

V. GEOMETRICALLY INDUCED SPECTRUM

It was shown in Sec. IV that the threshold of the essential spectrum is stable under any
deformation of the planar layer such that the deformed layer is still planar asymptotically in the
sense 0f(13). The aim of this section is to prove the sufficient conditiéas-(d) of the second
part of Theorem 1, which guarantee the existence of spectrum below the etfer@ince the
spectral threshold of the planar layer is juét the spectrum below this value is induced by the
curved geometry and it consists of discrete eigenvalues if the layer is asymptotically planar.

All the proofs here are based on the variational idea of finding a trial funckidnom the
form domain of— A2 such that

Qi V]=Q[¥]-«%|¥|2< 0. (17)

The important technical tool needed to establish conditi@ns(c) is the existence of appropriate
mollifiers onX, which is ensured by the following lemma.
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Lemma 1: AssuméH1). Then there exists a sequenfe,},.~ Of smooth functions with
compact supports i, such that

(1) VneN: O=s¢,=<1,
2 “Vg‘Pn”g — 0,
n—oo

(3) ¢, — 1 uniformly on compacts df.

n—o

Proof: If (H1) holds true then it follows from Ref. 9 thaB(g) is conformally equivalent to
a closed surface from which a finite number of points have been removed. However, the integral
||Vg<pn||g is a conformal invariant and it is easy to find a sequence having the required properties on
the “pierced” closed surface. O

This sequence enables us to regularize a generalized trial function which would give formally
a negative value of the functionél?), however, it is not integrable ih?(2). Since the trial
functions used below are adopted from Ref. 6 and the proofs using different mollifiers of Lemma
1 require just slight modifications, we will not go into great details in the proofs of conditions
(a)—(c). The sufficient conditior(d) does not use the mollifiers of Lemma 1. This condition is
established by means of the fact that the sequence of trial functions employed in Ref. 6 for
cylindrically symmetric layers was localized only at infinity of the layer.

A. Condition (a)

Using the first transverse mod#l) as the generalized trial function, one gets

Qil enx11=lVenl xall*+ (@n . Ken)g-

Since|Ve,| can be estimated byV,¢,|, by means of(7), the first term at the right-hand side
tends to zero as—o due to Lemma 1. The second one tends to the total Gauss curvature
because of Lemma 1 and the dominated convergence theorem. HefGed) jfwe can find a finite
No such thatQy[ ¢n x1]<0.

In the critical case, i.e/=0, one adds tap,x; a small deformation term. Let be a real
number, which will be specified later, and jebe an infinitely smooth positive function @Gwith
a compact support in a region where the mean curvatliie nonzero and does not change sign.
Defining 8(x,u) :=j(X)uy4(u), one can write

Qilenx1+e0]=Qul @nx1]+2e Q1( 8, 0nx1) +£2Q4[ 6].

Since/C=0, the first term at the right-hand side of this identity tends to zerv-as. The shifted
quadratic form in the second term can be written as a sum of three terms:

Q1(0,0nx1)=(0.2M ©nx1) +(VOx1,Ven) —2(6Vx1,Ven),

where the last two terms tend to zeroras « by means of the Schwarz inequality, the estimates
(7) and Lemma 1, while an explicit calculation gives that the first integral is equal(ioM ¢,)
which tends to aonzeronumber—(j,M)4. Sinced does not depend om, one gets

Qilenx1teb0] — —2z(j,M)g+22Q4[ 6],

n—o

which may be made negative by choosingufficiently small and of an appropriate sign. [

B. Conditions (b) and (c)

Here we use the trial functiogy,(x,u):=(1+ M (x)u) ¢,(X) x1(u). Since
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{
™ cylindrically symmetric cap

FIG. 6. Construction of a simply connected surface of revoluEérfrom a cylindrically symmetric enéEC ..

Vipa(-,u)=(1+Mu)(Ve,) x1(u) +(VM)u @px1(U)
+ ((1+Mu)kq @px1(U) + Menx1(u))Vu, (18

it is easy to see that, e DomQ providedVyM e Lﬁ)C(E). In this context and for further consid-
erations, we recall that the curvatudésandM are uniformly bounded, cfH2). One has

Qil¥nl=<2((1+aM[l) 21V @nl x4l + a2 VM| @nxal*)
2

+(‘Pna(K_M2)(Pn)g+7T (‘PnaKMZ(Pn)g- (19

12«7
The inequality giving the factor 2 comes from the first line at the right-hand sidé8&fand is
established by means of Minkovski's inequality and evident estimates. The second (i isf
the result of a direct calculation and concerns the terms of the second l{i&)of

We start by checking the sufficient conditi¢e) of Theorem 1. IfVyM is L2-integrable and
(H1) holds true, then all the terms at the right-hand sidé1®j tend to finite values as— o,
except for the first integral at the second line which tends-to due to the assumptioMm =
+o. Hence we can find a finitey such thatQ[ z,//no]<0.

There are two observations which lead to the condition First, the integral containing
—M?2in (19) is always negative for any nonplanar and noncompact surface, which can be seen by
rewriting the difference of curvatures by means of the principal curvatures,Ki.eM?=
—3(k, —k_)?. Second, the first term at the right-hand sidéx$) tends to zero as— o because
of (7) and Lemma 1, and the remaining ones vanishnfdixed asa— 0. (For the latter we recall
that «; ? is proportional taa?.) Hence we can find a sufficiently largg such that the sum of the
first term at the right-hand side ¢£9) and the first integral at the second line(&B) is negative,
and then choose the layer half-widhso small tha€Q,[ ¢/, ]<0. O

C. Condition (d)

Let 3 contain a cylindrically symmetric en with a positive total Gauss curvatur&g
>0.

Let us recall first the strategy employed in Ref. 6 to prove the existence of bound states in
layers built over surfaces of revolution diffeomorphiclté with a positive total Gauss curvature,
i.e., E=2. The essential ingredient is supplied by an information about the behavior of the mean
curvatureM at infinity. In particular, ifC>0, then|M|(detg)*? is bounded but does not vanish at
infinity of 3 and neitherM nor M? are integrable inL'(2). On the other hand, the Gauss
curvature is supposed to be integrable (Ef1). Constructing an appropriate family of trial func-
tions{W},c~ that is localized at infinityi.e., ¥V compact Q.CQ3neN: supp ¥,,NQ =)
one succeeds to eliminate the contribution of the Gauss curvature and, at the same time, to ensure
thatQ4[ ¥, ] remains negative as—. We refer to the proof of Theorem 6.1 in Ref. 6 for more
details and an explicit form of¥ .}, -
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The fact that the family of trial functions was localized at infinity makes it possible to extend
the proof to our more general situation. B+ 3,, we construct fromE a new cylindrically
symmetric surfac&’ diffeomorphic toR? by attaching smoothly to it a cylindrically symmetric
cap i.e., a simply connected surface with a compact boundseg Fig. 6. Since the attached
surface is cylindrically symmetric and simply connected, its total Gauss curvature cannot be
negative, which can be seen by the Gauss—Bonnet theorem and a natural parametrization, cf. Ref.
6, Sec. 6. Consequently, the total Gauss curvatuie’ ofill not be less than the valu€g . Since
the latter is positive by assumption, the mean curvatufé’dbehaves at infinity like required for
the use off ¥ },.n, Which proves the existence of spectrum belxa§vfor the layer about’.
However, the identical asymptotic behavior holds for the mean curvatugeasfwell. Hence, in
order to establish the desired spectral result for the inifialit is sufficient to construct the
sequencdW¥ .}, .~ only at the infinity of the cylindrically symmetric layer built over the efd

VI. CONCLUDING REMARKS

The main interest of this paper was the Dirichlet Laplaciamg, in the layer region()
defined as a tubular neighborhood of a complete noncompact surface embedtfedUsing an
intrinsic approach to the geometry 6 the conditions of the original pap®sufficient to guar-
antee the existence of bound states below the essential spectrum of were significantly
extended to layers built over general surfaces without any strong topological restrictions; see
Theorem 1 for the summary of the main results.

An important open problem is to decide whether the discrete spectrum exists also for layers
over surfaces withkC>>0 such that none of the conditiofis)—(d) of Theorem 1 is satisfied\We
remind that, due to Corollary 1, it concerns surfaces diffeomorphig?only.) In view of the
condition(c), it would be very desirable to prove the following conjecture:

K>0 = M=+x, (20

Taking into account the definition & andM by means of the principal curvatures, it may seem
that there is no reason to expect this property. However, the principal curvatures cannot be re-
garded as arbitrary functions because the first and second fundamental fQ¥nmaeé to satisfy
some integrability conditionsthe Gauss and Codazzi—Mainardi equatjomdote that we have
proved the conjectur&0) for cylindrically symmetric surfaces in Ref. 6.

Finally, interesting spectral results are expected if the ambient spide replaced by an
Euclidean space of higher dimensigmore complicated normal bundle B or even by a general
Riemannian manifoldnontrivial structure of the ambient curvature tensor
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