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Given a complete noncompact surfaceS embedded inR3, we consider the Dirich-
let Laplacian in the layerV that is defined as a tubular neighborhood of constant
width aboutS. Using an intrinsic approach to the geometry ofV, we generalize the
spectral results of the original paper by Ducloset al. @Commun. Math. Phys.223,
13 ~2001!# to the situation whenS does not possess poles. This enables us to
consider topologically more complicated layers and state new spectral results. In
particular, we are interested in layers built over surfaces with handles or several
cylindrically symmetric ends. We also discuss more general regions obtained by
compact deformations of certainV. © 2004 American Institute of Physics.
@DOI: 10.1063/1.1635998#

I. INTRODUCTION

The spectral properties of the Dirichlet Laplacian in infinitely stretched regions have attracted
a lot of attention since the existence of geometrically induced discrete spectrum for certain strips
in the plane was proved in Ref. 1. The study was motivated by mesoscopic physics where a
reasonable model for the dynamics of a particle in quantum waveguides is given by the Laplacian
in hard-wall tubular neighborhoods of infinite curves inRd, d52,3 ~quantum strips, tubes!, or
surfaces inR3 ~quantum layers!; see Refs. 2 and 3 for the physical background and references.
Nowadays, it is well known that any nontrivial curvature of the reference curve, that is asymp-
totically straight, produces bound states below the essential spectrum in the strips and tubes.2,4,5

The analogous problem in curved layers is much more complicated and it was investigated
quite recently in Refs. 6–8. LetS be a complete noncompact surface embedded inR3, V be a tube
of radiusa.0 aboutS, i.e. ~see Fig. 1!,

Vª$zPR3 u distance~z,S!,a%, ~1!

and2DD
V denote the Dirichlet Laplacian inL2(V). If the surface is a locally deformed plane, the

existence of bound states below the essential spectrum of the Laplacian was demonstrated in Ref.
7. A more general situation was treated in Ref. 6; assuming thatS is nontrivially curved, it has
asymptotically vanishing curvatures and possesses a pole, several sufficient conditions are found
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which guarantee the existence of discrete spectrum. Finally, let us mention that an asymptotic
expansion of the ground-state eigenvalue in layers built over mildly curved planes was found in
Ref. 8.

While Ref. 6 covers a wide class of layers, the technical requirement about the existence of a
pole onS ~i.e., the exponential map is a diffeomorphism! restricted substantially the topological
structure of the reference surface. In particular,S was necessarily diffeomorphic toR2 and as such
it was simply connected. The main goal of this paper is to extend the sufficient conditions
established in Ref. 6 without assuming the existence of poles onS and without making any other
~unnatural! topological and geometrical assumptions. In addition to this substantial generalization,
we will derive particularly interesting spectral results for quantum layers built over surfaces with
handles or several cylindrically symmetric ends~see Figs. 2–4!.

Let us recall the reason why the existence of a pole onS was required in Ref. 6. According to
the usual strategy used in the spectral theory of quantum waveguides, one expresses the Laplacian
2DD

V in the pair of coordinates (x,u), wherex parametrizes the reference surfaceS and uP
(2a,a) its normal bundle. Assuming the existence of a pole,S could be parametrized globally by
means of geodesic polar coordinates, which were well suited for the construction of explicit
mollifiers onS needed to regularize generalized trial functions establishing the existence of bound
states below the essential spectrum.

There are several possibilities how to treat surfaces without poles. Since the above-mentioned
regularization is needed out of a compact part ofS only, one way is to replace the polar coordi-
nates by geodesic coordinates based on a curve enclosing the interior part. This approach is well
suited for surfaces of one end~see the definition below!, however, it has to be modified in more
general situations. In this paper, we introduce a different strategy which does not require any
special choice of coordinates onS. We employ substantially a consequence of Ref. 9 that if the
Gauss curvature is integrable then there always exists a sequence of functions onS having the
properties of the mollifiers mentioned earlier.

FIG. 1. The configuration spaceV defined by~1! as the space delimited by two parallel surfaces at the distancea from S.

FIG. 2. Surface with a handleS8 is constructed fromS by attaching smoothly to it a curved cylindrical surfaceH. By
virtue of Corollary 1, one handle is sufficient to achieve the condition~a! of Theorem 1.
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II. STATEMENT OF RESULTS

To state here the main results we need to introduce some notation and basic assumptions. Let
k1

2 denote the spectral threshold of the planar layer of width 2a, i.e., k1ªp/(2a). The induced
metric onS and the corresponding covariant derivative will be denoted byg and¹g , respectively.
Let K, M , andk6 denote, respectively, the Gauss curvature, the mean curvature, and the principal
curvatures ofS. Denoting by dS the surface area-element, we may define the total Gauss curva-
ture K and the total mean curvatureM, respectively, by the integrals

KªE
S
K dS, M2

ªE
S

M2 dS. ~2!

The latter always exists~it may be1`), while the former is well defined provided

^H1& KPL1~S!,

which will be a characteristic assumption of this work. Henceforth, we shall also assume thatk6

are bounded and

^H2& a,rmª~max$ik1i` ,ik2i`%!21 and V does not overlap,

which we need in order to ensure that the layerV is a submanifold ofR3. An open setE#S is
called anendof S if it is connected, unbounded and if its boundary]E is compact~see Fig. 4!; its
total curvatures are defined by means of~2! with the domain of integration being the subsetE
only. We say that a manifold embedded inR3 is cylindrically symmetric if it is invariant under
rotations about a fixed axis inR3. Our main result reads as follows.

FIG. 3. Elliptic paraboloid~without or with one handle attached, respectively! of Example 1.

FIG. 4. Surface with four ends (E1 , . . . ,E4). By virtue of Theorem 2, each cylindrically symmetric end (E3 ,E4) with a
positive total Gauss curvature and curvatures vanishing at infinity produces at least one discrete eigenvalue.
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Theorem 1: Let S be a complete noncompact connected surface of class C2 embedded inR3

and satisfyinĝH1&. Let the layerV defined by (1) as the tube of radius a.0 aboutS satisfy^H2&.
(i) If the curvatures K and M vanish at infinity ofS, then

inf sess~2DD
V!5k1

2 .

(ii) If the surfaceS is not a plane, then any of the conditions

(a) K<0,
(b) a is small enough and¹gMPL loc

2 (S),
(c) M51` and ¹gMPL2(S),
(d) S contains a cylindrically symmetric end with a positive total Gauss curvature

is sufficient to guarantee that

inf s~2DD
V!,k1

2 .

Consequently, if the surfaceS is not a plane but its curvatures vanish at infinity, then any of the
conditions (a)–(d) is sufficient to guarantee that2DD

V has at least one eigenvalue of finite
multiplicity below the threshold of its essential spectrum, i.e., sdisc(2DD

V)ÞB.
Let us compare this theorem with the results obtained in Ref. 6. An improvement concerns the

essential spectrum. While only a lower bound on the threshold was found in Ref. 6, here we shall
use known results about the spectral threshold of complete surfaces in order to show that the
essential spectrum starts just atk1

2. Conditions~a!–~d! are adopted from Ref. 6, however, we do
not assume thatS is of classC3 in ~b! and~c! of Theorem 1, which was required in Ref. 6 in order
to give a meaning to¹gM . Indeed, only the integrability conditions on the gradient are needed.

The most significant generalization concerning all the results is that we have gotten rid of the
strong assumption about the existence of a pole onS. Actually, Theorem 1 involves quantum
layers built over general surfaces without any additional hypotheses about the existence of a
special global parametrization, the number of ends, and other topological and geometrical restric-
tions.

An interesting new spectral result then follows from the observation that making the topology
of S more complicated than that of the plane, one always achieves that the basic condition~a! is
satisfied.

Corollary 1: Under the assumptions of Theorem 1, one hasinf s(2DD
V),k1

2 wheneverS is
not conformally equivalent to the plane.
Indeed, the Cohn–Vossen inequality10 yields

K<2p ~222h2e!, ~3!

whereh is the genus ofS, i.e., the number of handles, ande is the number of ends. In particular,
the condition~a! of Theorem 1 is always fulfilled whenever the surface is not simply connected.

Example 1:Let S be the elliptic paraboloid. It is easy to check that it has curvatures vanishing
at infinity and that the condition~c! of Theorem 1 is always fulfilled. On the other hand, it violates
the condition~d! whenever it is not a paraboloid of revolution, and the condition~a! does not hold
because the total Gauss curvature is always equal to 2p. Attaching a handle toS, the total
curvature becomes equal to22p ~see Fig. 3!.

It was proven in Ref. 6 that any layer built over a cylindrically symmetric surface diffeomor-
phic to R2 has a spectrum below the energyk1

2. Since this class of reference surfaces may only
have a non-negative total Gauss curvature, it gave an important alternative condition to~a! in the
caseK.0. In Theorem 1, an interesting generalization to Ref. 6 is introduced by virtue of the
condition ~d!, where it is supposed now that only an unbounded subset ofS admits a cylindrical
symmetry at infinity~see Fig. 4!. This extension is possible due to the fact that the sequence of
trial functions establishing the existence of spectrum belowk1

2 for surfaces of revolution with
K.0 is ‘‘localized at infinity’’ ~i.e., for any compact set ofV, there is an element from the
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sequence supported out of the compact!. Consequently, it may be localized just at the end satis-
fying condition ~d! of Theorem 1. Since any deformation of a bounded part ofV does not affect
this spectral result, we may consider more general regions than tubes~1!. What is important is that
such local deformations do not include only bends and protrusions which are traditionally a source
of binding, but constrictions as well. Moreover, since such trial functions localized at different
ends will be orthogonal as elements ofL2(V), we may produce an arbitrary number of bound
states by attaching toV a sufficient number of suitable outlets. Finally, since the essential spec-
trum is stable under compact deformation ofV, we arrive at the following result.

Theorem 2: Let V be a layer (1) satisfyinĝH1&, ^H2& and the condition (i) of Theorem 1.
Assume that the reference surfaceS contains N>1 cylindrically symmetric ends, each of them
having a positive total Gauss curvature. LetV8 be an unbounded region without boundary inR3

obtained by any compact deformation ofV. Then

(i) inf sess(2DD
V8)5k1

2,
(ii) there will be at least N eigenvalues in(0,k1

2), with the multiplicity taken into account.

Example 2:Fix uP(0,p/2) and consider the conical regionV8 in R3 given by rotating the
planar region~see Fig. 5!:

$~x,y!PR2 u ~x,y!P~~0,2a cotu!3~0,x tanu#!ø~@2a cotu,`!3~0,2a!!%

along the axisy5x tanu in R3. Note thatV8 is not a layer~1! because of the singularity of the
conical surface. Nevertheless, it may be considered as a compact deformation of the layer built
over a smoothed cone whose total Gauss curvature is equal to 2p(12sinu)P(0,2p). Conse-

quently, we know that2DD
V8 possesses at least one discrete eigenvalue belowk1

2 due to Theorem
2. This is a nontrivial result for flat enough conical layers only, since using a trick analogous to

that of Ref. 11 one can check that the cardinality ofsdisc(2DD
V8) can exceed any fixed integer for

u small enough.

III. PRELIMINARIES

Let S be a connected orientable surface of classC2 embedded inR3. The orientation can be
specified by the choice of a globally defined unit normal vector field,n:S→S2, which is a
function of classC1. For anyxPS, the Weingarten map

Lx : TxS→TxS: $j°2dnx~j!% ~4!

FIG. 5. The planar region of Example 2.
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defines the principal curvaturesk6 of S as its eigenvalues with respect to the induced metricg.
The Gauss curvature and the mean curvature are defined byKªk1k2 and Mª

1
2(k11k2),

respectively, and are continuous functions onS.
Put a.0. We define a layerV of width 2a as the image of the mapping

L: S3~2a,a!→R3: $~x,u!°x1u n~x!%. ~5!

Henceforth, we shall always assume^H2&. ThenL induces a diffeomorphism andV is a submani-
fold of R3 corresponding to the set of points squeezed between two parallel surfaces at the
distancea from S ~see Fig. 1!, i.e., if S does not have a boundary then the definition ofV via ~5!
and ~1! are equivalent. We shall identify it with the Riemannian manifoldS3(2a,a) endowed
with the metricG induced by the immersion~5!. One has

G5g+~ I x2u Lx!
21du2, dV5~122Mu1Ku2!dS du, ~6!

whereI x denotes the identity map onTxS and dV stands for the volume element ofV. It is worth
noticing that~6! together with^H2& yields thatG can be estimated by the surface metric,

C2g1du2<G<C1g1du2, where C6ª~16arm
21!2. ~7!

Remark 1:Formally, it is possible to consider (S3(2a,a),G) as an abstract Riemannian
manifold where only the surfaceS is embedded inR3. Then we do not need to assume the second
part of ^H2&, i.e., ‘‘V does not overlap.’’

We denote by2DD
V , or simply2D, the Dirichlet Laplacian onL2(V). We shall consider it

in a generalized sense as the operator associated with the Dirichlet form

Q~c,f!ªE
V

^¹c,¹f& dV with DomQªW0
1,2~V!. ~8!

Here¹ is the gradient corresponding to the metricG and ^•,•& denotes the inner product in the
manifoldV induced byG; the associated norm will be denoted byu•u. Similarly, the inner product
and the norm in the Hilbert spaceL2(V) will be denoted by~•,•! and i•i, respectively. We shall
sometimes abuse the notation slightly by writing (•,•)[*V^•,•&dV andi•i[*Vu•udV for vector
fields. The subscript ‘‘g’’ will be used in order to distinguish similar objects associated to the
surfaceS.

Since the quadratic formQ is densely defined, symmetric, positive, and closed on its domain,
the corresponding Laplacian2D is a positive self-adjoint operator. Denoting by (xm)[(x1,x2)
local coordinates forS and byGi j the coefficients of the inverse ofG in the coordinates (xi)
[(xm,u) for V, we can write

2D 5 2uGu2 1/2] i uGu1/2Gi j ] j 5 2uGu2 1/2]muGu1/2Gmn]n2]u
212Mu ]u ~9!

in the form sense, whereuGuªdetG and

Muª
M2Ku

122Mu1Ku2 , ~10!

which is the mean curvature of the parallel surfaceL(S3$u%).
The above definitions ofV and the corresponding Dirichlet Laplacian are valid for any

orientable surfaceS of classC2 provided^H2& ~or its first part only in view of Remark 1! holds
true. Nevertheless, since we are interested in the existence of discrete spectrum of2DD

V , and it
always exists wheneverV is bounded, in the sequel we shall assume thatS is completeand
noncompact.
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It is easy to see that the spectrum of the planar layerV0ªR23(2a,a) is purely continuous
and coincides with the interval@k1

2 ,`), where the threshold is the first eigenvalue of the Dirichlet
Laplacian on the transverse section, i.e.,k1ªp/(2a). In what follows we shall use the corre-
sponding normalized eigenfunction given explicitly by

x1~u!ªA1

a
cosk1u. ~11!

Using the identitiesu¹uu51 and2Du52Mu , we get

2Dx1~u! 5 2Mu x18~u!1k1
2 x1~u! . ~12!

IV. ESSENTIAL SPECTRUM

We shall localize the essential spectrum of2DD
V for asymptotically planarlayers, i.e., the

curvatures ofS vanish at infinity which we abbreviate by

K,M→` 0. ~13!

Recall that a functionf , defined on a noncompact manifoldS, is said to vanish at infinity if

;e.0 'Re.0,xePS ;xPS\B~xe ,Re! : u f ~x!u,e ,

whereB(xe ,Re) denotes the open ball of centerxe and radiusRe . The property~13! is equivalent

to the vanishing of the principal curvatures, i.e.,k6→` 0.
The proof of statement~i! of Theorem 1 is achieved in two steps. If the layer is asymptotically

planar, then it was shown in Ref. 6 that the essential spectrum of2DD
V is bounded from below by

k1
2 provided the surface possesses a pole. Here we adapt this proof~based on a Neumann brack-

eting argument! to the case of any complete surface with asymptotically vanishing curvatures. In
the second part of this section, we establish the opposite bound on the threshold by means of a
different method.

A. Lower bound, inf sess„ÀDD
V
…Ðk1

2

Fix ane.0 and consider an open precompact regionB$B(xe ,Re) with C1-smooth boundary
such that

;~x,u!PVext :~12ae!2<122M ~x! u1K~x! u2<~11ae!2, ~14!

whereVextªV\V̄ int with V intªB3(2a,a). Denote by2DN the Laplacian2DD
V with a supple-

mentary Neumann boundary condition on]B3(2a,a), that is, the operator associated with the
form QNªQN

int
% QN

ext, where

QN
v~c,f!ªE

Vv

^¹c,¹f& dV, DomQN
v
ª$cPW1,2~Vv! uc~•,6a!50%

for vP$ int,ext%. Since2DD
V>2DN and the spectrum of the operator associated toQN

int is purely
discrete, cf. Ref. 12, Chap. 7, the minimax principle gives the estimate

inf sess~2DD
V!> inf sess~2DN

ext!> inf s~2DN
ext!,

where2DN
ext denotes the operator associated toQN

ext. Neglecting the non-negative ‘‘longitudinal’’
part of the Laplacian@i.e., the first term at the right-hand side of~9!# and using the estimates~14!,
we arrive easily at the following lower bound:
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2DN
ext>S 12ae

11ae D 2

k1
2 in L2~Vext!,

which holds in the form sense~see also proof of Theorem 4.1 in Ref. 6!. The claim then follows
by the fact thate can be chosen arbitrarily small.

B. Upper bound, inf sess„ÀDD
V
…Ïk1

2

It follows from Ref. 13 that ifK→` 0 then the threshold of the~essential! spectrum of the
Laplacian onS, 2Dg , equals 0. This is equivalent to the statement that for any«.0 there exists
an infinite-dimensional subspaceDg#C0

`(S) such that

;wPDg : i¹gwig<«iwig . ~15!

It is easy to see that the following identity holds true:

;wPC0
`~S!: i¹wx1i25iu¹wu x1i22~wx1 ,wDx1!. ~16!

Using the estimates~7! and ~15!, we have

iu¹wu x1i2<~C1 /C2
2 ! «2 iw x1i2,

while the second term at the right-hand side of~16! can be rewritten by means of~12! as follows:

2~wDx1 ,wx1!5k1
2 iw x1i21~wx18,2Muwx1!.

Integrating by parts with respect tou in the second term at the right-hand side of the last equality,
we conclude from~16! that for any«.0 there existsDªDg^ $x1%,C0

`(V) such that

;cPD: i¹ci22~c,Kuc!<~k1
21~C1 /C2

2 ! «2!ici2,

where

Kuª
K

122Mu1Ku2

is the Gauss curvature of the parallel surfaceL(S3$u%). This proves that infsess(2D2Ku)
<k1

2. SinceKu vanishes at infinity by the assumption~13!, i.e., the operatorKu(2D11)21 is
compact inL2(V), the same spectral result holds for the operator2D.

Remark 2:Notice that onlyK→` 0 is needed in order to establish the upper bound.

V. GEOMETRICALLY INDUCED SPECTRUM

It was shown in Sec. IV that the threshold of the essential spectrum is stable under any
deformation of the planar layer such that the deformed layer is still planar asymptotically in the
sense of~13!. The aim of this section is to prove the sufficient conditions~a!–~d! of the second
part of Theorem 1, which guarantee the existence of spectrum below the energyk1

2. Since the
spectral threshold of the planar layer is justk1

2, the spectrum below this value is induced by the
curved geometry and it consists of discrete eigenvalues if the layer is asymptotically planar.

All the proofs here are based on the variational idea of finding a trial functionC from the
form domain of2DD

V such that

Q1@C#ªQ@C#2k1
2 iCi2 , 0. ~17!

The important technical tool needed to establish conditions~a!–~c! is the existence of appropriate
mollifiers onS which is ensured by the following lemma.
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Lemma 1: AssumêH1&. Then there exists a sequence$wn%nPN of smooth functions with
compact supports inS such that

(1) ;nPN: 0<wn<1,
(2) i¹gwnig →

n→`
0,

(3) wn →
n→`

1 uniformly on compacts ofS.

Proof: If ^H1& holds true then it follows from Ref. 9 that (S,g) is conformally equivalent to
a closed surface from which a finite number of points have been removed. However, the integral
i¹gwnig is a conformal invariant and it is easy to find a sequence having the required properties on
the ‘‘pierced’’ closed surface. h

This sequence enables us to regularize a generalized trial function which would give formally
a negative value of the functional~17!, however, it is not integrable inL2(S). Since the trial
functions used below are adopted from Ref. 6 and the proofs using different mollifiers of Lemma
1 require just slight modifications, we will not go into great details in the proofs of conditions
~a!–~c!. The sufficient condition~d! does not use the mollifiers of Lemma 1. This condition is
established by means of the fact that the sequence of trial functions employed in Ref. 6 for
cylindrically symmetric layers was localized only at infinity of the layer.

A. Condition „a…

Using the first transverse mode~11! as the generalized trial function, one gets

Q1@wnx1#5iu¹wnu x1i21~wn ,Kwn!g .

Since u¹wnu can be estimated byu¹gwnug by means of~7!, the first term at the right-hand side
tends to zero asn→` due to Lemma 1. The second one tends to the total Gauss curvatureK
because of Lemma 1 and the dominated convergence theorem. Hence, ifK,0, we can find a finite
n0 such thatQ1@wn0

x1#,0.
In the critical case, i.e.,K50, one adds townx1 a small deformation term. Let« be a real

number, which will be specified later, and letj be an infinitely smooth positive function onS with
a compact support in a region where the mean curvatureM is nonzero and does not change sign.
Defining u(x,u)ª j (x)ux1(u), one can write

Q1@wnx11«u#5Q1@wnx1#12« Q1~u,wnx1!1«2Q1@u#.

SinceK50, the first term at the right-hand side of this identity tends to zero asn→`. The shifted
quadratic form in the second term can be written as a sum of three terms:

Q1~u,wnx1!5~u,2Mu wnx18!1~¹ux1 ,¹wn!22~u¹x1 ,¹wn!,

where the last two terms tend to zero asn→` by means of the Schwarz inequality, the estimates
~7! and Lemma 1, while an explicit calculation gives that the first integral is equal to2( j ,Mwn)g

which tends to anonzeronumber2( j ,M )g . Sinceu does not depend onn, one gets

Q1@wnx11«u# →
n→`

22« ~ j ,M !g1«2Q1@u#,

which may be made negative by choosing« sufficiently small and of an appropriate sign. h

B. Conditions „b… and „c…

Here we use the trial functioncn(x,u)ª(11M (x)u) wn(x)x1(u). Since
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¹cn~•,u!5~11Mu!~¹wn!x1~u!1~¹M !u wnx1~u!

1 ~~11Mu!k1 wnx18~u!1Mwnx1~u!!¹u, ~18!

it is easy to see thatcnPDomQ provided¹gMPL loc
2 (S). In this context and for further consid-

erations, we recall that the curvaturesK andM are uniformly bounded, cf.̂H2&. One has

Q1@cn#<2~~11aiM i`!2iu¹wnu x1i21a2iu¹M u wnx1i2!

1~wn ,~K2M2!wn!g1
p226

12k1
2 ~wn ,KM2wn!g . ~19!

The inequality giving the factor 2 comes from the first line at the right-hand side of~18! and is
established by means of Minkovski’s inequality and evident estimates. The second line of~19! is
the result of a direct calculation and concerns the terms of the second line of~18!.

We start by checking the sufficient condition~c! of Theorem 1. If¹gM is L2-integrable and
^H1& holds true, then all the terms at the right-hand side of~19! tend to finite values asn→`,
except for the first integral at the second line which tends to2` due to the assumptionM5
1`. Hence we can find a finiten0 such thatQ1@cn0

#,0.
There are two observations which lead to the condition~b!. First, the integral containingK

2M2 in ~19! is always negative for any nonplanar and noncompact surface, which can be seen by
rewriting the difference of curvatures by means of the principal curvatures, i.e.,K2M25
2 1

4(k12k2)2. Second, the first term at the right-hand side of~19! tends to zero asn→` because
of ~7! and Lemma 1, and the remaining ones vanish forn fixed asa→0. ~For the latter we recall
thatk1

22 is proportional toa2.) Hence we can find a sufficiently largen0 such that the sum of the
first term at the right-hand side of~19! and the first integral at the second line of~19! is negative,
and then choose the layer half-widtha so small thatQ1@cn0

#,0. h

C. Condition „d…

Let S contain a cylindrically symmetric endE with a positive total Gauss curvature,KE

.0.
Let us recall first the strategy employed in Ref. 6 to prove the existence of bound states in

layers built over surfaces of revolution diffeomorphic toR2 with a positive total Gauss curvature,
i.e., E5S. The essential ingredient is supplied by an information about the behavior of the mean
curvatureM at infinity. In particular, ifK.0, thenuM u(detg)1/2 is bounded but does not vanish at
infinity of S and neitherM nor M2 are integrable inL1(S). On the other hand, the Gauss
curvature is supposed to be integrable, cf.^H1&. Constructing an appropriate family of trial func-
tions $Cn%nPN that is localized at infinity~i.e., ; compact Vc,V'nPN: supp CnùVc5B)
one succeeds to eliminate the contribution of the Gauss curvature and, at the same time, to ensure
thatQ1@Cn# remains negative asn→`. We refer to the proof of Theorem 6.1 in Ref. 6 for more
details and an explicit form of$Cn%nPN .

FIG. 6. Construction of a simply connected surface of revolutionE8 from a cylindrically symmetric endE,S.
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The fact that the family of trial functions was localized at infinity makes it possible to extend
the proof to our more general situation. IfEÞS, we construct fromE a new cylindrically
symmetric surfaceE8 diffeomorphic toR2 by attaching smoothly to it a cylindrically symmetric
cap, i.e., a simply connected surface with a compact boundary~see Fig. 6!. Since the attached
surface is cylindrically symmetric and simply connected, its total Gauss curvature cannot be
negative, which can be seen by the Gauss–Bonnet theorem and a natural parametrization, cf. Ref.
6, Sec. 6. Consequently, the total Gauss curvature ofE8 will not be less than the valueKE . Since
the latter is positive by assumption, the mean curvature ofE8 behaves at infinity like required for
the use of$Cn%nPN , which proves the existence of spectrum belowk1

2 for the layer aboutE8.
However, the identical asymptotic behavior holds for the mean curvature ofE as well. Hence, in
order to establish the desired spectral result for the initialV, it is sufficient to construct the
sequence$Cn%nPN only at the infinity of the cylindrically symmetric layer built over the endE.

VI. CONCLUDING REMARKS

The main interest of this paper was the Dirichlet Laplacian,2DD
V , in the layer regionV

defined as a tubular neighborhood of a complete noncompact surface embedded inR3. Using an
intrinsic approach to the geometry ofV, the conditions of the original paper,6 sufficient to guar-
antee the existence of bound states below the essential spectrum of2DD

V , were significantly
extended to layers built over general surfaces without any strong topological restrictions; see
Theorem 1 for the summary of the main results.

An important open problem is to decide whether the discrete spectrum exists also for layers
over surfaces withK.0 such that none of the conditions~b!–~d! of Theorem 1 is satisfied.~We
remind that, due to Corollary 1, it concerns surfaces diffeomorphic toR2 only.! In view of the
condition ~c!, it would be very desirable to prove the following conjecture:

K.0 ⇒ M51`. ~20!

Taking into account the definition ofK andM by means of the principal curvatures, it may seem
that there is no reason to expect this property. However, the principal curvatures cannot be re-
garded as arbitrary functions because the first and second fundamental forms ofS have to satisfy
some integrability conditions~the Gauss and Codazzi–Mainardi equations!. Note that we have
proved the conjecture~20! for cylindrically symmetric surfaces in Ref. 6.

Finally, interesting spectral results are expected if the ambient spaceR3 is replaced by an
Euclidean space of higher dimension~more complicated normal bundle ofS! or even by a general
Riemannian manifold~nontrivial structure of the ambient curvature tensor!.
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