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Topologically protected Dirac plasmons in a
graphene superlattice
Deng Pan1,2, Rui Yu1, Hongxing Xu 1 & F. Javier García de Abajo2,3

Topological optical states exhibit unique immunity to defects, rendering them ideal for

photonic applications. A powerful class of such states is based on time-reversal symmetry

breaking of the optical response. However, existing proposals either involve sophisticated and

bulky structural designs or can only operate in the microwave regime. Here we show a

theoretical demonstration for highly confined topologically protected optical states to be

realized at infrared frequencies in a simple two-dimensional (2D) material structure—a

periodically patterned graphene monolayer—subject to a magnetic field of only 2 tesla. In our

graphene honeycomb superlattice structures, plasmons exhibit substantial nonreciprocal

behavior at the superlattice junctions under moderate static magnetic fields, leading to the

emergence of topologically protected edge states and localized bulk modes. This approach is

simple and robust for realizing topologically nontrivial optical states in 2D atomic layers, and

could pave the way for building fast, nanoscale, defect-immune photonic devices.
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T
opologically protected photonic states1,2 exhibit
remarkable robustness against disorder and backscattering,
which make them extremely useful for the realization of

defect-immune photonic devices. So far, such states have been
explored based on reciprocal metamaterials3,4 and photonic
crystals5,6. But their realization has relied on sophisticated
structural designs, which greatly complicate their fabrication and
limit their miniaturization for nanoscale optical integration.
Additionally, those topologically protected edge modes could
couple to backscattering channels along opposite directions
compatible with time-reversal symmetry (T-symmetry).

A more robust method to realize topologically protected
photonic states consists in introducing T-symmetry breaking in
periodic structures7–11, which leads to the opening of topologi-
cally nontrivial bandgaps at degeneracy points (e.g., Dirac points).
T-symmetry breaking can be introduced via dynamical modula-
tion of the refractive index10, although this approach is extremely
challenging from the experimental viewpoint. A simpler alter-
native consists in using the magnetization of the material by
exposing it to a static magnetic field. While this approach has
been demonstrated in the microwave regime9, the weak magneto-
optical (MO) response of most materials at visible and infrared
frequencies renders it difficult to achieve substantial T-symmetry
breaking in these technologically important spectral ranges.

Recent studies have shown that Dirac fermion (DF) systems
possess a giant MO response in the infrared regime, such as the
conducting surface of topological insulators12 and a monolayer
graphene13–15. Moreover, the plasmons supported by
DF systems16–23 exhibit deep-subwavelength confinement. This
confinement makes the Dirac plamons extremely sensitive to
external modulations24, and possibly more susceptible to the MO
response than using light plane waves incident on structureless
graphene, therefore providing substantial T-symmetry breaking
in the infrared regime. Although edge magnetoplasmons
already show obvious nonreciprocal behavior13–15 and even form
topologically protected states25 at low frequencies, versatile

applications are enabled by constructing topologically nontrivial
bandgaps in the high-frequency regime and additionally steering
plasmon propagation by using periodically patterned graphene.

Here we theoretically demonstrate that topologically protected
plasmonic states can be robustly realized in DF superlattices
constructed from single-layer graphene, thanks to the giant MO
response of this material under exposure to static magnetic fields
of only a few tesla. The superlattice is a honeycomb network
constructed by graphene nanoribbons. The applied magnetic field
induces asymmetry in the guided ribbon plasmon modes, thus
resulting in directional coupling at the junctions of the structure.
We show that, as a direct consequence of this directional cou-
pling, localized modes are formed inside the superlattice, as well
as topologically protected edge states at the boundary.

Results
Structure and working principle. We focus on graphene26

because it sustains ultra-confined infrared plasmons that have
been already observed in experiments21,22. Topological protection
of plasmons in our proposed graphene superlattice can be
intuitively understood as schematically illustrated in Fig. 1a. In
contrast to previous designs based on photonic crystals, our
structure consists of a network of waveguides (ribbons) in which
topological protection emerges by analogy to the classical
phenomenological picture of the quantum Hall effect. In this
picture, free electrons in a Fermi gas follow circular cyclotron
orbits under the influence of a magnetic field, and consequently
they form a bulk insulating state and a topologically protected
conducting state at the edge boundary. Although photons are
charge-free, and consequently, a magnetic field cannot change
their direction of motion, the splitting ratio of the plasmons at the
junctions of the superlattice can be controlled by the MO effect
due to the breaking of T-symmetry, leading to nonreciprocal
directional coupling (Fig. 1b–f).

In the limit of total directional coupling (e.g., nearly 100% of
the power exiting through the right side at each junction, as
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Fig. 1 Topologically protected plasmons in a graphene superlattice. a Illustration of a honeycomb graphene superlattice with 100% right-coupling efficiency

at each junction. Plasmons form localized vortex modes (1 and 2) and a unidirectional topologically protected edge state (3). b Dispersion relations of

the two lowest-order modes sustained by a graphene nanoribbon (width W= 200 nm, Fermi energy EF= 0.2 eV) with and without a normal static

magnetic field B (inset: schematic and electric-field distributions of guided modes for plasmon energy Ep= 0.1 eV). c Schematic of a graphene nanoribbon

junction with plasmons incident from branch 1 (unit incident amplitude), and scattered toward the three branches 1–3 with coefficients S1,2−3. d–f Electric-

field distributions (50 nm above graphene for Ep= 0.06 eV) produced by plasmon scattering at the nanoribbon junction with and without magnetic field,

assuming the same ribbon parameters as in b and neglecting inelastic losses. Dashed lines delineate the graphene edges
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shown in Fig. 1f), the guided waves circulate around single lattice
hexagons and become localized vortex states in the interior of the
superlattice, mimicking the cyclotron motion of free electrons
(routes 1 and 2 in Fig. 1a). Additionally, a unidirectional and
topologically protected guided mode is produced at the edge
boundary (route 3 in Fig. 1a). In a general situation characterized
by nonzero backward and leftward scattering at each junction
(e.g., Fig. 1e), localized bulk modes and a topologically protected
edge wave are formed at a frequency within the bandgap opened
by the T-symmetry breaking under magnetic field exposure7 at
the Dirac point of the honeycomb superlattice—these localized
bulk modes and the topologically protected edge state exhibit
analogous behaviors to the phenomenological picture in Fig. 1a,
and further elaborated in our calculations below. We note that
other periodic patterns different from the honeycomb structure,
such as triangular or square lattices with degenerate band points,
are equally applicable.

The above design for realizing topologically protected
plasmonic states is universal for waveguide networks incorporat-
ing a MO material, but the graphene nanoribbons are ideally
suited because radiative losses can be neglected due to the
large mismatch between plasmon and photon wavelengths.
Additionally, experiments have demonstrated rather low propa-
gation losses in this material27,28. More importantly, graphene
exhibits a giant MO response in the infrared regime, so the
supported plasmons are highly susceptible to the external
magnetic field and allow us to realize the required directional
coupling (Fig. 1b–f).

We use a finite-element method (FEM) to numerically solve
Maxwell’s equations and calculate the plasmon dispersion

relations and associated field distributions (see “Methods”
section). The response of graphene under a static magnetic field
B is described by the Drude conductivity13 as

σxx ω;Bð Þ ¼ e2EF

π�h2
γ � iω

ω2
c � ðωþ iγÞ2

; σxy ω;Bð Þ ¼ � e2EF

π�h2
ωc

ω2
c � ðωþ iγÞ2

;

ð1Þ

where EF is the Fermi energy, γ is the plasmon damping
rate, ωc ¼ e B � zð Þv2F=EF is the cyclotron frequency29 and
vF≈ 106ms−1 is the graphene Fermi velocity. For simplicity, we
ignore losses (γ = 0), which is reasonable in view of the long
plasmon lifetimes (>500 fs) observed in graphene27,28. The local
dielectric formalism is a reasonable approximation because
the nanoribbons are hundreds of nanometers wide, and
consequently, the Fermi energy exceeds the plasmon energy in
all of our calculations, thus eliminating any dependence on the
crystallographic orientation of atomic edges30.

The two lowest-order plasmonic modes of the nanoribbon are
bonding and antibonding combinations of induced charge pileup
at the ribbon edges (inset to Fig. 1b)31, with the second order
mode showing a wavelength cutoff. Under an externally applied
static magnetic field (Fig. 1b, dashed curves), the optical field
distributions of the two modes become asymmetric, with field
piling up toward different sides of the ribbon (inset to Fig. 1b).
This nonreciprocal behavior is caused by the MO response, which
is captured by the off-diagonal elements of the conductivity
(Eq. (1)), similar to what happens for edge magnetoplasmons in a
two-dimensional electron gas32,33 and graphene34 (Supplemen-
tary Note 1 and Supplementary Fig. 1).
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Fig. 2 Plasmon band diagrams of the graphene superlattice. a Squared amplitude of the junction scattering coefficients (see Fig. 1c) as a function of

plasmon energy and magnetic-field strength B for the same ribbon parameters as in Fig. 1d. b Plasmon band diagram along an excursion within the first

Brillion zone of the superlattice for B= 0 (solid curves) and B= 4 T (dashed curves). c–f Projected band diagram calculated for a superlattice of finite period

(N= 20) along the zig-zag (y direction in Fig. 1a) (c, d) and armchair (x direction in Fig. 1a) (e, f) boundaries with B= 0 (c, e) and B= 4 T (d, f). The

red curves indicate the edge modes on the upper and bottom boundaries. We numerically calculate a Chern number C= 1 for the band below the gap with

B= 4 T. The superlattice hexagon side length is L= 600 nm (see Fig. 1a), while other ribbon parameters are the same as in Fig. 1b (width W= 200 nm,

Fermi energy EF= 0.2 eV)
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Below the cutoff frequency of the second mode, the ribbon only
holds a single mode, so symmetry breaking can lead to directional
coupling at the ribbon junctions, which is required for the
realization of topological protection in the superlattice (Fig. 1c–f).
The unit cell of the superlattice is formed by two nanoribbon
junctions with lengths of the branches equal to L/2. For each
junction, we calculate the scattering coefficients S1,1–3, starting
from a plasmon wave of unit amplitude launched on the terminal
of branch 1 and going to ports at the branches 1–3 (Fig. 1c). The
results confirm that without magnetic field the powers at the
outputs 2 and 3 are equal due to geometrical symmetry, while an
applied magnetic field of 5 T leads to clear directional coupling
(Fig. 1e, for a photon energy of 0.06 eV) and the right-coupling
efficiency exceeds 96% for a magnetic field of 15 T.

Band diagrams of the graphene supperlattice. The magnetic-
field-induced directional coupling at the junctions leads to the
opening of a Dirac point (Fig. 2). Separate bands at this point
have nonzero Chern numbers7, which yield topologically
protected edge modes within the bandgap, with the number of
edge modes equal to the Chern numbers of the bands below the
gap. To obtain the band diagram of the superlattice, we first
calculate the scattering coefficients of the junction structure
illustrated in Fig. 1c for different frequencies and magnetic field
strengths via FEM simulations (Fig. 2a). Energy conservation
leads to the relation S11j j2 þ S12j j2 þ S13j j2 ¼ 1 between the
scattering coefficients, which is satisfied by our numerical
simulations.

Using Bloch’s theorem, we calculate the band diagram of the
superlattice (see “Methods” section)—Fig. 2b shows the results for
an excursion along symmetry points within the first Brillouin
zone. The nanoribbons in the unit cell are not identical because
they have different orientations, so the band diagram is exactly
the same as in a Kagome lattice, which contains a flat band and
two Dirac points35, 36. Our results confirm that, when a magnetic
field of 4 T is applied, a large bandgap opens at the Dirac points K
and K′ (Fig. 2b, d, f), which results in the formation of localized
bulk modes within the bandgap region—in contrast, no bandgap
is present in the absence of magnetic field (Fig. 2b, c, e). The
bandgap opened by the magnetic field is topologically nontrivial,
as demonstrated by the nonzero Chern number (C= 1) of the
first band below the gap. This band has a nonzero Chern number
by exchanging topological charge with upper bands separated by
the Dirac point (see Supplementary Note 2 and Supplementary

Fig. 2 for a proof of this). The lower bandgap (in between orange
and blue bands in Fig. 2b) is topologically trivial, corresponding
to a zero sum of Chern numbers over all bands below 44 meV; the
trivial character of this bandgap is evidenced by the fact that it
does not close even when increasing the magnetic field up to 4 T.
According to the bulk-edge correspondence principle37, the
Chern number C= 1 of the first band below E0 implies a
unidirectional anticlockwise edge mode on the external boundary
of the superlattice in the opened bandgap. The dispersion
relations of the edge modes are revealed by the projected band
diagrams, which are calculated along the zig-zag (Fig. 2c, d)
and armchair (Fig. 2e, f) directions for a superlattice of finite
period (N= 20) (see “Methods” section). The dispersion curves
(red curve in Fig. 2d) in the bandgap correspond to edge modes
propagating on the upper and lower boundaries of the super-
lattice—these have unidirectional group velocities, which imply
that these edge modes are topologically protected. The directions
of the group velocities also indicate that the edge mode on the
external boundary of a finite surperlattice is anticlockwise, in
agreement with that predicted from the Chern number.

Topologically protected localized and edge modes. To reveal the
localized mode and prove the topological protection of the edge
modes in the proposed graphene superlattice, we construct a
numerical network with honeycomb topology and simulate the
field evolution using the scattering coefficients represented in
Fig. 2a (see “Methods” section). The field distributions for a
directional point excitation (indicated by the red arrows) at the
center of the network with magnetic field of 4 T is shown in
Fig. 3a. For a photon energy of E0= 56.37 meV, which lies in the
bandgap opened by the magnetic field, the directional coupling at
the junctions causes the excitation power to circulate around a
single lattice hexagon with enhanced intensity—this confirms the
localization of the mode and corroborates the phenomenological
picture we introduced in Fig. 1a. As this picture suggested, the
localized vortex mode is the foundation for the topologically
protected states, which can be clearly demonstrated by Fig. 3b.
We now introduce a vacant defect by removing several nanor-
ibbons from the center of the superlattice. Then, a directional
point excitation adjacent to the defect generates a localized
wave circulating around the defect unidirectionally without
backscattering, which reveals the topological protection of the
edge mode on the interior boundary of the superlattice.

To demonstrate that the edge mode on exterior boundary of
the superlattice is topologically protected, we further cut the
honeycomb network into a complex shape (Fig. 4a) and simulate
the field evolution in successive time steps. In the presence of a
B= 4 T field, a point source of energy E0 placed at the boundary
of the network can generate the sought-after one-way boundary
mode, which efficiently propagate energy over sharp corners
without back reflection (Fig. 4b). When the magnetic field is
reversed in sign, the direction of the one-way edge state is also
reversed (Fig. 4c). Finally, when the magnetic field decreases to
2 T, the edge mode is still preserved, although it is less localized at
the boundary (Fig. 4d).

The effect of inelastic optical losses. We further show that
inelastic losses do not deteriorate topological protection of the
plasmons in the structure of Fig. 4, and just induce an attenuation
of propagation, as shown in Fig. 5a. More precisely, we introduce
losses into the Drude model through a damping rate γ= μEF/evF

2,
where μ is mobility of graphene, for which we adopt
the experimentally measured value in high-quality suspended
graphene38. Although this value is measured at a temperature of
5 K, it can be maintained at room temperature by encapsulating

a b

–4 0 2

0

4

–2

4–2–4 0 2 4–2

2

–4

0 0.3

|E | |E |

0 3

x (µm) x (µm)

y
 (

µ
m

)

Fig. 3 Localization of bulk plasmon states. We show the simulated electric-

field distributions induced on the graphene superlattice without (a) and

with a defect (b) upon excitation by a directional point source (red arrow at

the center) with a magnetic field of 4 T. The photon energy is at the Dirac

point (Ep= 56.37 meV). The parameters of the superlattice are the same as

in Fig. 2 (L= 600 nm, width W= 200 nm and Fermi energy EF= 0.2 eV)

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-01205-z

4 NATURE COMMUNICATIONS |8:  1243 |DOI: 10.1038/s41467-017-01205-z |www.nature.com/naturecommunications

www.nature.com/naturecommunications


the graphene in hexagonal boron nitride27. Figure 5a clearly
shows that the excitation point source still generates unidirec-
tional edge modes with good contrast between the two opposite
directions, and that the edge modes retain a good capacity of
topological protection. Inelastic losses only result in the
attenuation of the modes along their propagation. In Fig. 5a, we
show that edge plasmons can propagate over ~ 30 periods. Since
the individual branch structures under consideration can serve as
classical and quantum interferometers39–41 or as logic gates42,43,
the proposed graphene superlattice provides a versatile platform
to explore various complex nonreciprocal optical computing
functions.

Importantly, similar graphene superlattices of different sizes
are equivalent according to basic electrostatic scaling laws of
plasmons in two-dimensional (2D) materials44,45 (Supplementary
Note 3 and Supplementary Fig. 3), which reveal the possibility to
further miniaturize the graphene superlattice in order to increase
the propagation distance in units of plasmon wavelengths. In
particular, when the geometry of the graphene superlattice in

Fig. 4d shrinks by a factor of 2 and the magnetic field increases by
a factor of

ffiffiffi

2
p

, for a photon energy of
ffiffiffi

2
p

E0, the response of the
superlattice and the field distribution is equivalent to that Fig. 4d.
However, when considering inelastic losses (Fig. 5b), the
propagating distance increases considerably in units of the
plasmon wavelength31 compared with Fig. 5a, which means that
the plasmon wave can propagate over many more periods in the
network. Therefore, the noted scaling leads to a dramatic
reduction in the effect of inelastic losses that should facilitate
the design of practical devices.

Discussion
The realization of the topologically protected plasmonic states in
the proposed graphene superlattice is experimentally feasible
using state-of-the-art fabrication and measurement techniques,
similar to those recently used to observe edge plasmon modes on
graphene nanoribbons46 (i.e., the elementary unit based on which
we obtain topologically protected plasmons). To reduce inelastic
losses, the sample can be fabricated by dielectric structuring
rather than direct lithographic patterning of the graphene, thus
relying on extended graphene encapsulated in hexagonal boron
nitride, for which the measured mobility exceeds the values
assumed here27. Additionally, our results can be readily extra-
polated to include the effect of the substrate, the size of the
structure and the level of graphene doping via an electrostatic
scaling law formulated for 2D structures44,45 (Supplementary
Note 3 and Supplementary Fig. 3). An extension of this law to
include the MO response reveals that the magnetic field strength
required to achieve topological protection is below 1 T—such
field strengths can be achieved using commercially available
permanent magnets.

In conclusion, we have proposed and theoretically demon-
strated how topologically protected plasmon modes can be
realized robustly in single-layer graphene honeycomb surperlat-
tice structures using experimentally attainable static magnetic
fields. The key ingredients for this realization are the strong MO
response of graphene, which induces T-symmetry breaking, and
the ensuing directional coupling at geometrically symmetric
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junctions between nanoribbons in the lattice. This nonreciprocal
propagation leads to the formation of localized bulk modes and a
topologically protected edge mode. Although we have focused
on graphene, we expect other kinds of 2D materials such as
topological insulators, semiconductor junctions, and conducting
2D materials, to exhibit similar phenomena, for example,
by exploiting their long-lived phonon-polaritons. Our design
provides an a simple, yet robust platform for fast speed, ultra-
compact, nonreciprocal optical computing networks, thus paving
the way toward realistic applications of topological photonics.

Methods
Numerical simulations. We adopt FEM (COMSOL) to numerically calculate the
electromagnetic field distribution and plasmon dispersion relations of uniform
graphene nanoribbons, as well as the reflection and left/right-transmission
coefficients of plasmons at the nanoribbon junction structures. We model graphene
as a thin layer of thickness d and permittivity ε ωð Þ ¼ 1þ iσ ωð Þ= ε0dωð Þ, where
σ(ω) is the frequency-dependent 2D conductivity in the Drude model (Eq. (1)).
In the simulation, we take d= 0.5 nm as a reasonable value close to the d ! 0 limit.
The scattering coefficients are calculated as the ratios between the complex
amplitudes of the absorbed and input fields at ports on each of the three branches
of the junction, as shown in Fig. 1c.

Calculation of band diagrams. In general, when plasmon waves are simulta-
neously launched at all three branches of a junction, the amplitude of input and
output fields at the three branch terminals are linearly connected through a scat-
tering equation ½Aout

1 Aout
2 Aout

3 �T ¼ S½Ain
1 Ain

2 Ain
3 �

T , where S is a scattering matrix,
which contains three independent coefficients: S11= S22= S33, S12= S23= S31 and
S13= S21= S32, considering the symmetry of the structure. Due to T-symmetry
breaking, S is asymmetric for B≠ 0. Incidentally, out-coupling at the junction to
free space is rather inefficient due to impedance mismatch (e.g., out-coupling losses
are found to be below 0.01%). Neglecting out-coupling, the scattering matrix
should be unitary, and therefore, energy conservation leads to the condition
S11j j2 þ S12j j2 þ S13j j2 ¼ 1.

Using the simulation results for S11, S22, and S13 shown in Fig. 2a, we can
calculate the band diagrams of the graphene superlattice. We label the five pieces of
nanoribbons within the unit cell as i= 1, …, 5. Each of them supports two
counter-propagating waves, with field amplitudes A

j
i , where j= 1,2 denotes the

directions of the waves corresponding to the red and black arrows in Fig. 6a,
respectively. The amplitudes of these waves are connected by the scattering
matrix of the single junction discussed above as ½A2

1 A
2
2 A

2
3�
T ¼ S½A1

1 A
1
2 A

1
3�
T and

½A1
3 A

1
4 A

1
5�
T ¼ S½A2

3 A
2
4 A

2
5�
T. Now, Bloch’s theorem on the boundaries leads

to ½A1
4 A

2
4�
T ¼ expðiK � a2Þ½A1

1 A
2
1�
Tand ½A1

5 A
2
5�
T ¼ expðiK � a1Þ½A1

2 A
2
2�
T , where

K= kxx + kyy is the Bloch wave vector. The band diagram of the superlattice in
Fig. 2b is obtained from the condition of vanishing determinant of the above linear
equations, while the wave functions of the nth band n Kð Þj i are given by the
corresponding eigenvectors.

Using a similar method, we also calculate the projected band diagram for a
superlattice of finite width, as shown in Fig. 6b, c. Here, the unit cell is indicated by
the two parallel dashed lines, which contain a larger number of nanoribbons.
Again, each nanoribbon supports two counter-propagating waves. The scattering
between these waves is determined by similar relations as above. Here, apart from
the coefficients S11, S12, and S13 of Fig. 2a, we also need to obtain the scattering
coefficients for V-shape junctions appearing at the boundary of the superlattice.
We use the same simulation method as for the three-lobbed junction. The resulting

linear set of equations, combined with Bloch’s theorem along the direction of
periodicity, allows us to generate the projected band diagram shown in Fig. 2c–f.

Calculation of Chern numbers. With the whole set of wave eigenfunctions n Kð Þj i
obtained for all wave vectors K in the first Brillouin zone for any given nth band,
the Chern numbers of this band can be easily calculated from the integral of the
Berry connections along the close path around the boundary of the first Brillouin
zone8: Cn ¼ 2πð Þ�1 H dK � n Kð Þh ji∇K n Kð Þj i. According to the Stokes theorem, the
Chern numbers can be equivalently calculated as a surface integral of the Berry
curvature Ωn ¼ ∇K ´ n Kð Þh ji∇K n Kð Þj i over the first Brillouin zone8:
Cn ¼ 2πð Þ�1R SdS � Ωn . The Chern numbers of the bands in our study as calculated
with these two well-established methods are in excellent mutual numerical
agreement.

Calculation of field distributions in a superlattice. We focus on a superlattice of
specific shape constructed out of N nanoribbons. We thus use a 2N element vector
A(t) to describe the distribution of field amplitude on the superlattice at time t,
with A2i(t) and A2i−1(t) (i = 1,…, N) representing the amplitude of two counter-
propagating waves at the ith nanoribbon. Therefore, A2i tð Þ þ A2i�1 tð Þj j gives the
modulus of the field amplitude at the ribbons.

For the simulations, we introduce a point source at the initial time and calculate
the field distribution in sequential time steps upon iteration. The point source
is introduced at the ith nanoribbon through a prescribed pair of values A2i(0) and
A2i−1(0), by setting one of them to 1 (unidirectional point source for Fig. 3) or both
of them to 1 (omnidirectional point source for Figs. 4 and 5), with all other
elements of A(0) set to 0. Then, the field distribution of the waves scattered by the
junctions of the superlattice after a time step (arbitrarily denoted 1) necessary for
propagation along a ribbon length are approximated by A(1)= TA(0), where T is a
2 × 2N matrix constructed from the S11, S12 and S13 coefficients (for the bulk), as
well as the scattering coefficients for V-shape junctions, which describe scattering
and interference between waves in the superlattice and are determined by the linear
connecting relations of the nanoribbons (see above). Subsequent field distributions
are obtained by iteration A(t + 1)= T[A(t) +A(0)], where the initial distribution
A(0) is added at every step, so that the point source produces a persistent
excitation.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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