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Abstract Recent realization of nontrivial topological phases
in photonic systems has provided unprecedented opportuni-
ties in steering light flow in novel manners. Based on the Su–
Schriffer–Heeger (SSH) model, a topologically protected optical
mode was successfully demonstrated in a plasmonic waveg-
uide array with a kinked interface that exhibits a robust non-
spreading feature. However, under the same excitation condi-
tions, another antikinked structure seemingly cannot support
such a topological interface mode, which appears to be in-
consistent with the SSH model. Theoretical calculations are
carried out based on the coupled-mode theory, in which the
mode properties, excitation conditions, and the robustness are
studied in detail. It is revealed that under the exact eigenstate
excitations, both kinked and antikinked structures do support
such robust topological interface modes; however, for a re-
alistic single-waveguide input only the kinked structure does
so. It is concluded that the symmetry of interface eigenmodes
plays a crucial role, and the odd eigenmode in a kinked struc-
ture offers the capacity to excite the nonspreading interface
mode in the realistic excitation of a one-waveguide input. Our
finding deepens the understanding of mode excitation and
propagation in coupled waveguide systems, and could open
a new avenue in optical simulations and photonic designs.
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1. Introduction

Topological phases have opened up a fascinating avenue
in modern physics with manifestations of striking phenom-
ena, such as the quantum Hall effect [1], and topological
insulators [1–3]. As a successful extension to the optical
system, the photonic edge state, a nontrivial topological
phase [4, 5], gives rise to novel one-way optical prop-
agations and robustness against scattering from defects,
which have been well demonstrated in two-dimensional
(2D) photonic crystals [6–8]. Besides the attractive 2D
band structures, another intriguing exploration is in the
1D topological systems, such as solitons [9] and Majo-
rana fermions [10]. Fortunately, the Su–Schriffer–Heeger
(SSH) model revealed in polyacetylene [9] is one of the
most interesting 1D topological structures, which has two
topologically inequivalent phases according to its different
dimerization patterns [11]. Induced by the presence of the
kinked defects [11], correspondingly, a topologically pro-
tected zero-dimensional edge state appears at the interface,
which acts as a moving domain wall with nontrivial Berry
phase (or Zak phase) [3, 12, 13]. Indeed, the soliton and
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Majorana fermion are two fundamental topological zero
modes in condensed-matter physics. The optical mimics of
the SSH model were investigated in optical lattices [11,15],
quantum walks [14] and the coupled microwave resonators
[16]. Recently, a simulation of Majorana fermions was re-
alized on a 1D zigzag array of plasmonic nanoparticles that
mimics the Kitaev model by mapping the particle–hole ex-
citation into polarization-degeneration of plasmonic modes
[17]. However, the light diffraction in a waveguide array,
as an important simulator for condensed-matter physics
[18,19], has not yet been demonstrated in a 1D topological
system.

In the optical regime, metallic waveguide arrays [20,21]
and layered metamaterials [22], based on the coupling of
surface plasmonic polaritons (SPPs), have drawn much
attention owing to not only the strong field confinement
[20] but also their controllability in diffraction management
[22, 23]. Compared with the dielectric ones [19], the plas-
monic waveguide array (PWA) offers a much wider cou-
pling range and even to the anomalous region (i.e., negative
coupling coefficient) for its particular field configurations
[20,22], which have already shown many interesting optical
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Figure 1 (a) SEM image of experimental sample including
grating, funnel-shaped coupled-in, and ridge waveguides array
(N = 79), where the mode distribution of a single-ridge waveguide
is presented. (b) Simulated electric-field intensity distributions of
symmetric and antisymmetric modes on the two coupled ridge
waveguides. (c) Contour map of coupling coefficient as a func-
tion of the PWAs height and gap at a fixed PWA width of 300 nm
(λ = 633 nm).

properties (e.g., negative refraction [21, 23]) and quantum-
optical analogies (e.g., Bloch oscillations [24] and surface
modes [25, 26]). Since the robustness of the interface state
in SSH have been revealed in several systems [12, 14, 16],
a topologically protected SPP propagation would be highly
expected.

In this paper, we proposed and demonstrated, for the
first time, a topologically protected plasmonic interface
mode in a metallic ridge waveguide array. Though the SSH
model predicted that there are two kinds of interface states
with topological protection, our experimental results seem-
ingly show that only one (the kinked) does so. To obtain an
insightful understanding into this unusual phenomenon, we
investigate the SPP propagations in PWAs with two kinds
of defects in detail by the coupled-mode theory (CMT),
where the influence of excitation conditions, loss and ro-
bustness are discussed. Finally, we find that in an ideal
lossless system the eigeninterface states would be topolog-
ically protected in both structures, but in a real system only
the kinked structure is achievable in an available condition
of optical excitation. Our finding deepens the understanding
of confinement and diffraction of SPPs in a coupled waveg-
uide array, and could illuminate informative simulations for
the topological systems in condensed-matter physics.

2. Modeling of plasmonic waveguide array

Metallic ridge waveguides are introduced to model the
PWAs, which would be conveniently achieved experimen-
tally by current nanofabrication (see Fig. 1). According to

the notation of Su, Schriffer, and Heeger (SSH), a perfect
dimer chain of polyacetylene has two degenerated ground
states – phases A and B, which correspond to the sublat-
tice symmetry (i.e., chiral symmetry [9,11]) with alternating
double bonds and single bonds. When chains with these two
phases are connected together, there will be two kinds of
topological excitations with respect to two different connec-
tions (kinked and antikinked), which are also described as
the domain walls between phases A and B. The SSH model
has already revealed a unique feature of solitary waves,
termed a “topological soliton or antisoliton” [11]. Follow-
ing the coupled-mode theory (CMT), the field propagation
of SPP within the PWA can be described by

− i
∂

∂z
a j = β j a j + κ j, j+1a j+1 + κ j, j−1a j−1 (1)

analogous to the tight-binding approximation (TBA) model
[24], where a j is the amplitude of the plasmonic field in the
jth ridge waveguide (here j = −39, −38, . . . ,38, 39 accord-
ing to our experimental sample of N = 79), κ is the coupling
coefficient between the neighboring waveguides. Based on
a commercial FEM solution (Comsol Multiphysics 4.3a,
see the Supporting Information), the mode property and ef-
fective propagation constant is simulated for a single silver
ridge waveguide with a width of 300 nm and a height of
150 nm at the wavelength λ = 633 nm. From the simulation,
it is obvious that the ridge plasmonic mode has an electric
field tightly confined on the surface and corners of the ridge
(see Fig. 1a). When two waveguides are close enough, plas-
monic modes will be coupled with a coefficient of κn,n+1
between the nth waveguide and the (n+1)th waveguide in
the array, which gives rise to the symmetric (βs) and anti-
symmetric (βa) modes, as shown in Fig. 1b. The coupling
coefficient can be defined by κn,n+1 = (βs–βa)/2 [21, 22],
which was systematically investigated according to a series
of structural parameters. Figure 1c shows a contour diagram
of the coupling coefficient κ (from 0.034 to 0.32) with re-
spect to a certain range of structure parameters (height from
120 nm to 180 nm, gap from 20 nm to 80 nm, and a fixed
ridge width of 300 nm). This wide range of κ offers us a
free selection in PWA designs with two different coupling
strengths to simulate the SSH model.

3. Sample fabrication and experimental
results

The experimental sample was designed on a silver film
(thickness about 300 nm), which includes the grating,
funnel-shaped coupled-in, and the array of 79 plasmonic
waveguides (see Fig. 1a). In nanofabrication, a silver film
was sputtered on a quartz substrate and followed with fo-
cused ion beam (Dual Beam Helios 600i) milling to fabri-
cate gratings, PWAs and funnel-shaped structures. Accord-
ing to simulation results, the ridge waveguide is designed
with a width of 300 nm and a height of 150 nm (correspond-
ing to a mode index of βn = 1.047k0 with an imaginary part
of �0.0017k0), and the alternating gaps are 30 nm and
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Figure 2 (a–c) CCD recorded field intensities for the PWA-S0,
S1 and S2, respectively. (d–f) Normalized intensity profiles at
the ends of PWAs corresponding to the three samples, which
clearly reflect different diffractions and of SPPs in different PWAs:
normal diffraction of the binary periodic waveguide array (PWA-
S0), strongly localized at the domain wall in the kinked sample
(S1), and a mixed feature of localization and spreading in the
antikinked one (S2).

70 nm, corresponding to κ1 = 0.188 (Im(κ1)�0.0048) and
κ2 = 0.034 (Im(κ2)�0.0021), respectively, with the units
of k0 (the imaginary parts of β and κ being obtained by the
mode analyses via COMSOL simulations). In the center of
the array, two kinds of defects are formed by two strong
couplings (gap of 30 nm) and two weak couplings (gap of
70 nm) termed kink and antikink, respectively. For conve-
nience, we define the kinked sample as PWA-S1 and the
antikinked one as PWA-S2 (see the top insets in Fig. 4).
A defectless SSH sample PWA-S0 was also investigated
for comparisons. In optical analyses, a transverse magnet-
ically (TM) polarized He-Ne laser (633 nm) was coupled
to a planar SPP mode by the grating, and then converted to
ridge SPP to excite the central defect mode of the PWA via
the funnel structure. The propagation information will be
detected by the scattering field from the end of the array,
which can be directly imaged by a microscope.

Figures 2a–c clearly show different SPP propagations in
three samples (PWA-S0, S1 and S2), and the corresponding
scattered field profiles are depicted in Figs. 2d–f, respec-
tively. It is evident that the PWA-S0, as a reference, exhibits
two well-separated peaks at about the ±10th waveguide in
the intensity profile, corresponding to a normal dispersive
diffraction in a binary periodic waveguide array [21, 23].
However, PWA-S1 with the kinked defect (strong coupled)
demonstrates a strong localized intensity peak at the cen-
ter of the waveguide array, indicating a confined interface
mode. This is consistent with the topological SSH model, as
expected [14]. Being checked in other samples with waveg-
uide length different from 20 μm (e.g., 15 μm), this lo-
calized mode is repeated, which strongly manifests a well-
achieved plasmonic interface mode (see Fig. S1 and Fig. S2

Figure 3 (a–c) CMT calculated SPP intensities in propagations
for PWA-S0, S1, and S2, respectively. (d–f) Field intensity sub-
tracted from the output with a distance of 20 μm. It is clearly
shown that PWA-S0 has a normal diffraction, S1 exhibits a strong
localized mode within the center interface, while S2 displays a
mixed feature.

in the Supporting Information). Surprisingly, another sam-
ple (PWA-S2) shows an obvious field spreading, though a
weak-intensity peak still remains at the center. This phe-
nomenon apparently contradicts with what the SSH model
predicts.

4. Theoretical calculations and analyses

In order to confirm the experiments and reveal the under-
lying physics of the distinct behaviors of SPP propagations
in these two PWAs, we performed theoretical calculations
based on the CMT (see Eq. (1)). Although the input of SPP
is from a single waveguide in experiments, the evanescent
field would possibly spread to a certain spatial area and two
neighboring waveguides would be partially excited. Since
the CMT calculation only allows the definition of the field
within every lattice (waveguide), it is reasonable to de-
fine the single-waveguide input as a wavepacket excitation
that covers three waveguides with a certain intensity ratio
(0.5/1/0.5, approximately). Figure 3 shows the calculation
results of three samples (PWA-S0, S1, and S2), where the
alternating coupling coefficients are set as κ = 0.188 and
0.034 with their imaginary parts included, corresponding
to the gaps of 30 nm and 70 nm, respectively. The output
intensities extracted from the distance of 20 μm show good
agreement with the experimental result. It is evident that the
S1 exhibits a strong localized peak, while a mixed feature
of localization and strong dispersive is revealed in S2.

Unfortunately, the theoretical results did not yet answer
the question as to why the PWA-S2 sample is inconsistent
with the SSH model. To produce an indepth understanding
of this interesting phenomenon, we are going to analyze
the eigenmodes of two kinked structures in detail. Here, we
rewrite the coupled-mode equations into the Schrödinger
type with only the real values of β and κ , and solve the
eigenvalues problem of the corresponding Hamiltonians
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Figure 4 (a–c) Mode diagrams with
zero modes circled for PWA-S0, S1, and
S2, respectively; (d–f) Field distributions
of the zero-energy modes, showing quite
different properties. The zero mode is
strongly localized at the right boundary
with a suspended single bond for S0
(while the suspended double bond at
the left boundary does not support this
edge mode). The zero mode in S1 cor-
responds to a localization at the center
interface with an odd symmetry of the
field distribution. However, for S2, there
are three degenerated zero modes dis-
tribute at the interface and edges, where
two edge modes correspond to two sus-
pended single bonds at the two bound-
aries, and the center even-symmetric
mode belongs to the interface.

H1 and H2 of three 79 single-waveguide arrays for S1 and
S2 [27] (see the Supporting Information). The calculated
mode diagrams are shown in Figs. 4a–c for three sam-
ples of PWA-S0, S1 and S2, respectively, above which the
waveguide configurations are schematically plotted. It is
found that there are discrete modes (circled ones) with a
zero-mode index (n–neff = 0) in the midgap termed “zero
modes”. Let us first look at the defectless PWA-S0. The
zero-mode profile is displayed in Fig. 4d, which apparently
corresponds to an edge state from a suspended single bond
at the right boundary of the array (the suspended double
bond at the left boundary does not support such a local
mode) [27]. As for the zero mode in PWA-S1, the field dis-
tribution indicates an interface mode at the kinked domain
wall (see Fig. 4e). However, for PWA-S2, three zero modes
are found, whose field profiles are displayed in Fig. 4f. It
is well recognized that two side modes actually belong to
the edge states at two boundaries (due to suspended sin-
gle bonds in this antikinked 79-waveguide array), and the
center mode (the red one) should be an interface mode sim-
ilar to the zero mode in PWA-S1. According to the basic
property of eigenmodes, the mode profiles will not change
along the propagations. This means that the zero mode, as a
particular eigenmode inside the bandgap, would be robust
due to protection of the bandgap that prevents its transfer
into the bulk modes. However, in our theoretical calcula-
tion (see Fig. 3), we did not define the exact eigenmode as
the initial conditions, which would be the clue to under-
stand the different behaviors of S1 and S2. Therefore, the
influence of the excitation conditions will be particularly
investigated in the following section.

5. Influence of the excitation conditions and
losses

Given the field distributions of the eigenzero modes of
PWA-S1 and S2 as the initial conditions, we recalcu-
lated the SPP propagations based on the CMT within the
79-waveguide array. First, we neglect the loss of SPPs (i.e.,

the imaginary parts both of β and κ) according to the Her-
mitian SSH model. Figures 5a and e show the calculation
results of PWA-S1 and S2, respectively, which demonstrate
two well-confined modes within the kinked (antikinked)
domain walls without spreading. This is really consistent
with the definition of the eigenstates. However, in real
circumstances, it is difficult to excite the PWAs with the
exact eigenmode profile due to the particular phase require-
ment in the input process. Usually, the initial condition is set
as an intensity peak at the defect region, which only covers a
single or several waveguides with the same phases. So, these
inphase wavepackets would be approximately considered
as the amplitude profiles of the eigenzero modes. In this re-
gard, initial conditions with only amplitude are set (see the
top-inset figures) in the calculations, as shown in Figs. 5b
and f, respectively. It is amazing to find that the PWA-S1
keeps a good nonspreading character with a field beating,
while the PWA-S2 has a certain amount of energy spread-
ing, revealing a mixed feature of dispersive and localization.
This really indicates that the excitation condition does play
an important role in the field evolution. To further uncover
the secret of the different behaviors in amplitude excita-
tions for S1 and S2, we decompose the mode profiles with
respect to their eigenzero modes. Figures 5c and g show the
SPP propagations excited with the resultant mode profiles
by subtracting the eigenmodes from the amplitude profiles,
as displayed in the top of field evolution maps. According
to the odd symmetry of the eigenstate in S1, the resultant
mode profile exhibits a half of the eigenmode that leads to
an oscillating beaming within the kinked structure without
spreading. By contrast, the resultant profile of excitation in
S2 has two separated peaks that greatly deviate from the
eigenmode due to the even symmetry, which reasonably
spreads into the bulk modes with well-separated ballistic
patterns. Thus, the distinct behaviors in the kinked and an-
tikinked SSH PWAs arise from the phaseless excitations,
which have quite different decomposition with respect to
their eigenmodes. In short, the symmetry of the zero mode
plays the crucial role in determining the dispersion of the
defect modes.
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Figure 5 (a–d) CMT calculated SPP field
evolution maps for PWA-S1 with excitations
of (a) an exact eigenmode, (b) an ampli-
tude profile of eigenmode, (c) a decom-
posed profile by subtracting the eigenmode
from the amplitude one, (d) an amplitude
profile with loss. (e–h) the corresponding
calculation results for PWA-S2. The excita-
tion conditions are plotted on the top of the
field evolution map correspondingly.

In order to link the results of eigen- (amplitude) modes
more closely to the real plasmonic system, the metallic
absorption loss should be considered. It has been recently
reported in a lossy coupled waveguide system that even
the homogeneous absorption always influences the light
dynamics [28]. Because the imaginary off-diagonal ele-
ments in the Hamiltonian cannot be removed by normal-
ization, the presence of loss will cause deviations in light
propagations. Moreover, the diffractions within the waveg-
uide array tend to change from ballistic to diffusive (see
Ref. [28] for details). Here, we added the imaginary parts
of β and κ as obtained from the COMSOL simulation in the
CMT calculation with respect to the amplitude input exci-
tations, as the results shown in Figs. 5d and h. It can be seen
that there is no apparent difference between the lossy and
lossless ones, where S1 still keeps nonspreading and S2 has
the dispersive components. More careful observations show
that the beating patterns in both cases tend to be smoothed
out in the lossy systems, indicating a conversion from bal-
listic to diffusive, which is well consistent with Ref. [28].
Also, a characteristic distance can be estimated according
to Eq. (10) in Ref. [28] to be 8–9 μm, which also agrees well
with the results of Figs. 5d and h. Strictly, the presence of
loss changes the Hermitian SSH system to non-Hermitian,
and the dispersion property would be modified due to the
complex coupling. However, the propagation region that
we investigated is only 20 μm, which is not much larger
than the characteristic distance. Therefore, the major prop-
erties holding for the SSH model can be demonstrated via

the SPP propagations in such a lossy system. Additionally,
these results are in good coincidence with the simulative
calculations for the experiments (Fig. 3), where the exci-
tations are not designed as the amplitudes of eigenmodes
but a single-waveguide input. This means the experimental
result of S1 can be reasonably considered as the interface
state excited within the kinked SSH structure.

6. Robustness against disorders

Thus, it is recognized that the symmetry of zero modes is the
very cause that determines whether an discrete excitation
of the PWA can lead to a nonspreading interface mode, so
as to mimic the solitary wave predicted by the SSH model.
It has been experimentally demonstrated that the SPP in S1
appears to be a topologically protect interface mode, but its
robustness against the disorders still needs to be verified.
In the following CMT calculations, we introduced struc-
tural disorder [16] by defining the coupling coefficients as
κ = κ + W

2 ξ , where W is the disorder strength in the units
of k0, and ξ is a random number uniformly distributed in
the interval [−1,1]. Figures 6a–c display the calculation re-
sults for the disordered S1 sample with the exact eigenmode
excitation, lossless, and lossy single-waveguide input, re-
spectively. It is evident that the nonspreading property of
the SPP propagation is almost maintained, implying the
topologically protected interface state in the experiment.
As for the S2, the exact eigenexcitation results in an almost
unchanged localized mode (see Fig. 6d), indicating this
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Figure 6 (a–c) CMT calulated SPP field evolution maps for the
disordered PWA-S1 (disorder strength of W = 0.188 for strong κ1

and 0.033 for weak κ2) with excitations of (a) an exact eigenmode,
(b) a single-waveguide input without loss, (c) a single-waveguide
input with loss. (d–f) the corresponding calculation results for
PWA-S2.

mode is intrinsically a topological SSH interface state that
should be protected in the same way as that in S1, whereas
the dispersive propagation excited by a single-waveguide
input demonstrates strong disturbed propagation behaviors
both for the lossless and lossy ones, as shown in Figs. 6e
and f, respectively. Here, the disorder strength W is set as
0.188 and 0.033 for the strong coupling and weak coupling,
respectively, corresponding to the coupling strengths.

In fact, the machining accuracy in FIB fabrication is
about 10 nm in our experiments. According to the dia-
gram of the coupling coefficient in Fig. 1c, the disorder
strength deviation �W with the fabrication error of 10 nm
is about 0.204 at the central gap of 30 nm (κ1 = 0.188) and
is about 0.029 at the central gap of 70 nm (κ2 = 0.033),
which are both comparable to the corresponding coupling
coefficient and thus the manufacturing error cannot be ig-
nored. By carefully comparing a number of samples with
the same designed parameters (gap = 30 nm/70 nm), al-
most unchanged interface modes are observed with clear
topological localized peaks in PWA-S1 (see Fig. 7a) that
agrees well with the calculations (Fig. 6c), clearly showing
the immunity against the manufacturing errors. However, in
the same circumstances, the PWA-S2 sample exhibits ran-
domly various output distributions (see Fig. 7b) that well
confirm the loss of the topological protection.

6. Conclusion

In conclusion, we presented the first systematic study on
the SSH model in SPP waveguide arrays with respect to
two types of kinked structures. It was revealed in exper-

Figure 7 (a) Output intensities of three PWA-S1 samples with
fabrication errors, which show almost unchanged localized field
spots indicating robust SPP interface modes. (b) Output intensi-
ties of three PWA-S2 samples showing varied spreading features.
Scale bar = 5 μm.

iments that the kinked structure supports a topologically
protected interface mode with immunity to structure dis-
orders, while the antikinked one does not. Our detailed
and indepth study provided a sound explanation on this in-
teresting phenomenon that the excitation condition plays a
major role in demonstrating the topological interface mode.
In short, the exact zero modes in both the kinked and an-
tikinked structures are topologically protected, while in a
realistic single-waveguide input only the kinked structure
can support such a robust interface mode due to the odd
symmetry of its eigenmode. Our finding provides an in-
depth understanding of the dynamics of SPP defect modes
within a well-defined waveguide array, and could cast new
light on the optical simulations in condensed-matter physics
and other photonic designs.
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