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The question whether the mixed phase of a gapless superconductor can support a Landau level is a
celebrated problem in the context of d-wave superconductivity, with a negative answer: the scattering of
the subgap excitations (massless Dirac fermions) by the vortex lattice obscures the Landau level
quantization. Here we show that the same question has a positive answer for a Weyl superconductor:
the chirality of the Weyl fermions protects the zeroth Landau level by means of a topological index
theorem. As a result, the heat conductance parallel to the magnetic field has the universal value

G ¼ 1

2
g0Φ=Φ0, with Φ as the magnetic flux through the system, Φ0 as the superconducting flux quantum,

and g0 as the thermal conductance quantum.

DOI: 10.1103/PhysRevLett.121.037701

Introduction.—In 1998, Gor’kov and Schrieffer [1] and
Anderson [2] made the remarkable prediction that the
excitation spectrum in the mixed phase of a high-Tc

superconductor (with massless quasiparticles at nodal
points of the d-wave pair potential) has the Landau levels
of the relativistic Dirac equation. This was nearly a decade
before the quantum Hall effect of massless electrons was
measured in graphene [3,4], and it would have marked the
first appearance in the solid state of a magnetic-field
independent zeroth Landau level.
It did not turn out that way: the spatially varying

supercurrent in the Abrikosov vortex lattice strongly
scatters the quasiparticles [5], even if the vortices overlap
and produce a uniform magnetic field. Since Franz and
Tešanović [6], we know that the quasiparticles in the mixed
phase of a d-wave superconductor retain the zero-field
Dirac cone, the main effect of the magnetic field being a
renormalization of the Fermi velocity [7–16]. Recent
proposals [17–19] use strain to mimic the effect of a
magnetic field in a d-wave superconductor without break-
ing time-reversal symmetry, but the coexistence of Landau
levels and a vortex lattice has remained elusive.
Here we propose that Weyl superconductors can make it

happen. A Weyl semimetal with induced s-wave super-
conductivity has massless nodal quasiparticles in a 3D
Weyl cone [20,21], with the same linear dispersion as the
2D Dirac cone of a d-wave superconductor [22,23]. We
compare the band structures in Fig. 1 (see Supplemental
Material [24] for a detailed calculation), where the momen-
tum follows a path through the magnetic Brillouin zone
of Fig. 2. In zero magnetic field, the gapless nodal points at
the Fermi level (E ¼ 0) are qualitatively the same in both
superconductors. But the response to a vortex lattice is
fundamentally different: while in the d-wave superconduc-
tor, the dispersive Dirac cones persist, as expected [6], in

the Weyl superconductor, a zeroth Landau level appears
that is completely dispersionless in the plane perpendicular
to the magnetic field.
We will return to these numerical calculations later on, but

first we want to explain why the zeroth Landau level in a
Weyl superconductor is not broadened by the vortex lattice,
as it is in a d-wave superconductor. We have traced the origin
of the difference to the topological protection of the zero
mode enforced by an index theorem for Hamiltonians with
chiral symmetry [34]. For this explanation, we will use an
effective low-energy Hamiltonian. The numerics uses
the full Hamiltonian and serves as a test of our analytics.
We conclude with a discussion of the universal thermal
conductance supported by the zero mode.

FIG. 1. Excitation spectrum of a nodal superconductor in zero
magnetic field (black dashed curves) and in the mixed phase with
a square lattice of Abrikosov vortices (red solid curves) [33].
(a) 2D d-wave superconductor. (b) 3DWeyl superconductor (with
kz ¼ π=3 at the Weyl point). The momentum follows a path
through the magnetic Brillouin zone of Fig. 2. The location of the
zero-field Dirac and Weyl points is indicated by green arrows.
The nth Landau level is expected at En ¼

ffiffiffi

n
p

E1, with
E1 ¼ 2

ffiffiffi

π
p

vF=d0. In the d-wave superconductor, the Landau
levels are destroyed by the vortex lattice [6], while in the Weyl
superconductor, they are protected by chiral symmetry.
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Weyl superconductor in the mixed phase.—We start
quite generally from the Bogoliubov–De Gennes (BdG)
Hamiltonian in the Anderson gauge [2],

HðkÞ¼U†

�

H0ðk−eAÞ Δ

Δ
�

−σyH
�
0
ð−k−eAÞσy

�

U

¼
�

H0ðkþaþmvsÞ Δ0

Δ0 −σyH
�
0
ð−k−aþmvsÞσy

�

;

ð1Þ

with the definitions (ℏ≡ 1, electron charge þe, mass m)

U ¼
�

eiϕ 0

0 1

�

; a ¼ 1

2
∇ϕ; mvs ¼

1

2
∇ϕ − eA:

ð2Þ
The 2 × 2 matrix structure of H refers to electron and hole
quasiparticles, with single-particle Hamiltonian H0 and its
time reverse in the diagonal blocks, coupled by the super-
conducting pair potential Δ ¼ Δ0e

iϕ in the off-diagonal
blocks. The unitary transformation U removes the spatially
dependent phase ϕðx; yÞ from the pair potential into the
single-particle Hamiltonian, where it combines with the
vector potential Aðx; yÞ in the x-y plane, corresponding to
the magnetic field B ¼ ∇ × A along z.
Both the gauge field aðx; yÞ and the supercurrent velocity

vsðx; yÞ wind around the positions Rn of the vortex cores,
according to

∇ ×∇ϕ ¼ 2πẑ
X

n

δðr − RnÞ: ð3Þ

(For definiteness, we assume the field points in the positive
z direction.) A spatial average over the vortices gives a
vanishing supercurrent velocity, v̄s ¼ 0, while the average

∇ × a ¼ eB̄ gives the average magnetic field. The field is
approximately uniform, equal to B0, in the mixed phase

Hc1 ≪ B0 ≪ Hc2 of a type-II superconductor with over-
lapping vortices. In this regime, the vortex cores occupy only
a small fractionB0=Hc2 ≪ 1 of the volume, so the amplitude
Δ0 of the pair potential is also approximately uniform and
only the phase ϕ is strongly position dependent.
We now specify to a Weyl superconductor, in the hetero-

structure configuration of Meng and Balents [20,35]: a stack
in the z direction of layers ofWeyl semimetal alternatingwith
an s-wave superconductor. A magnetization β perpendicular
to the layers separates the Weyl cones in the Brillouin zone
along kz. The Weyl points are at k ¼ ð0; 0;�KÞ, v2FK2 ¼
β2 − Δ

2

0
, with vF the Fermi velocity (assumed isotropic

for simplicity). The Weyl cones remain gapless as long as
Δ0 < β [37].
In the BdG Hamiltonian (1) each Weyl cone is doubled

into an electron and hole cone, mixed by the pair potential.
We describe this mixing following Ref. [38], in the simplest
case that the Weyl cones are close to the center k ¼ 0 of the
Brillouin zone and we may linearize the momenta. (All
nonlinearities in the full Brillouin zone are included in our
numerics.) The single-particle Weyl Hamiltonian H0 is a
4 × 4 matrix,

H0ðkÞ¼ vFτzk ·σþβτ0σz−μτ0σ0; ð4Þ

with μ as the chemical potential. It is composed from Pauli
matrices σα and τα that act on the spin and orbital degree of
freedom, respectively. We also need a third set of Pauli
matrices να in the electron-hole basis. (The corresponding
2 × 2 unit matrices are σ0, τ0, ν0.)
A unitary transformation H ↦ V†HV with

V¼ exp

�

1

2
iθνyτzσz

�

; tanθ¼−
Δ0

vFkz
; θ∈ ð0;πÞ; ð5Þ

followed by a projection onto the ν ¼ τ ¼ �1 blocks,
gives for the Weyl cones an effective 2 × 2 low-energy
Hamiltonian [39]

H�ðkÞ ¼ vF
X

α¼x;y

ðkα þ aα � κmvs;αÞσα

þ ðβ −mkz
Þσz ∓ κμσ0; ð6Þ

mkz
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ
2

0
þ v2Fk

2
z

q

; κ ¼ −vFkz=mkz
: ð7Þ

The electron- and hole-like cones have the opposite

sign of the effective charge qeff ¼ �κe, with jqeff j →
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − Δ
2

0
=β2

p

for jkzj → K, smaller than the bare charge
e due to the mixing of electrons and holes by the pair
potential [40]. The velocity vz ¼ ∂mkz

=∂kz perpendicular
to the layers is also renormalized by the superconductivity:
vz → v2FK=β for jkzj → K.
At the Weyl point, for μ ¼ 0 and jkzj ¼ K, the

Hamiltonian (6) anticommutes with σz. This so-called
chiral symmetry gives a formal correspondence with a

FIG. 2. Weyl superconductor in the mixed phase. (a) A Weyl
semimetal-superconductor heterostructure (layers of a topologi-
cal insulator, with perpendicular magnetization β, separated by
s-wave superconducting spacer layers [20]). A magnetic fieldB0 is
applied perpendicular to the layers. The heterostructure has lattice
constant a0, while the square vortex array has lattice constant d0
(with two h=2e vortices per unit cell). (b),(c) Two different paths
through the magnetic Brillouin zone of the vortex array.
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problem first studied 40 years ago by Aharonov and Casher
[41], as an application of an index theorem from super-
symmetric quantum mechanics [34]. The problem of
Ref. [41], to determine the zeroth Landau level of a
two-dimensional massless electron in an inhomogeneous
magnetic field, has also been studied more recently in the
context of graphene [42–44]. We need to adapt the
calculation here to account for the fractionally charged
quasiparticles, but the basic approach carries through.
Calculation of the zero modes.—To study the effect of

chiral symmetry on the Landau level spectrum, we set
μ ¼ 0, jkzj ¼ K, and focus our attention on the chiral
Hamiltonian

Hchiral ¼ vF

�

0 D

D†
0

�

; D ¼ Πx − iΠy;

Π ¼ −i∇þ eA; eA ¼ a� κmvs: ð8Þ

(We omit the � subscript for ease of notation.) The
effective vector potentialA describes the effective magnetic
field

B ¼ ∂xAy − ∂yAx ¼ Φ0ð1� κÞ
X

n

δðr − RnÞ ∓ κB ð9Þ

felt by the Weyl fermions in the vortex lattice.
For what follows, it is convenient to choose a gauge such

that ∇ ·A ¼ 0 and to assume that the external magnetic
field B0 is imposed on a large but finite area S. Because
there are Nvortex ¼ B0S=Φ0 vortices in that area (with
Φ0 ¼ h=2e the superconducting flux quantum), the flux
Φ ¼

R

drB ¼ B0S through the system corresponding to the
effective field equals the real flux. (The κ dependence of B
drops out upon spatial integration.)
A zero mode ψ ofHchiral is either a spinor ðu0ÞwithD†u ¼

0 or it is a spinor ð0
v
Þ with Dv ¼ 0. The general solution of

these two differential equations has the form [41,43,45]

u ¼ fðζÞeW ; v ¼ fðζ�Þe−W ; ζ ¼ xþ iy;

WðrÞ ¼ 1

2Φ0

Z

dx0
Z

dy0Bðr0Þ ln jr − r0j: ð10Þ

The differenceN ¼ Nu − Nv in the number of normalizable
solutions for u and v is called the index of Hchiral. The
absolute value jN j is a lower bound on the degeneracy of the
zero mode and the sign of N determines the chirality:
whether the zero mode is an eigenstate of σz with eigenvalue
þ1 or −1.
To determine the index of Hchiral, we proceed as follows.

In the absence of vortices, the function fðζÞ is analytic in
the entire complex plane and we can use a basis of
polynomials. A polynomial fðζÞ of degree N − 1 then
produces N linearly independent zero modes—provided u

or v is normalizable,
R

rdrjψ j2 < ∞. For large r, one has
asymptotically

W →
1

2
ðΦ=Φ0Þ ln jrj ⇒ eW → jrjNvortex=2; ð11Þ

so, if only the decay at infinity would be an issue, we would
conclude that Nu ¼ 0, Nv ¼ Int½Nvortex=2�. This is the
answer in the absence of vortices [41], when the degen-
eracy of the zero mode is determined by the enclosed flux
in units of h=e ¼ 2Φ0, while the chirality is set by the sign
of the magnetic field (which we have assumed positive). As
we will now show, the presence of vortices introduces a
dependence of the chirality on the sign of the fractional
charge qeff ¼ �κe of the quasiparticles, while the degen-
eracy remains given by the bare electron charge e.
With vortices, the function fðζÞ may have poles at the

vortex cores ζn ¼ xn þ iyn. We use this freedom to reex-
press the solution (10) as

u ¼ gðζÞeW
Y

n

ðζ − ζnÞ−1; v ¼ fðζ�Þe−W : ð12Þ

If for f and g we take polynomials of degree N − 1, with
N ¼ Int½Nvortex=2�, then both the functions u and v decay
sufficiently rapidly at infinity. The boundary condition at
the vortex cores now determines which of the two solutions
is realized.
Near a vortex at position rn the asymptotics is

juj2 → jr − rnj−1þqeff=e; jvj2 → jr − rnj−1−qeff=e: ð13Þ

Since jqeff j < e both solutions ψu ¼ ðu
0
Þ and ψv ¼ ð0

v
Þ

remain square integrable at the vortex core. The boundary
condition [24]

σzψ ¼ ðsgnqeffÞψ ; for r→ rn ð14Þ

selects the most weakly divergent solution in Eq. (13):
ψ ¼ ψu with positive chirality for qeff > 0 and ψ ¼ ψv

with negative chirality for qeff < 0.
All of this was for μ ¼ 0, jkzj ¼ K, but both terms μσ0

and ðβ −mkz
Þσz from Eq. (6) can be immediately reinstated

since the zero mode is an eigenstate of σz. The resulting μ

and kz dependence of the zeroth Landau level is

E�ðkzÞ ¼∓ κμþ ðsgnqeffÞðβ −mkz
Þ: ð15Þ

We have thus seen how the chiral symmetry protects the
zeroth Landau level from being destroyed by the vortex
lattice. To complete this analytical treatment, we point out
why the d-wave superconductor lacks a similar protection.
In the Anderson gauge, the low-energy Hamiltonian near
the nodal point of a d-wave pair potential reads [2,6,11]

Hd-wave¼ vFðkxþaxÞσzþvΔðkyþayÞσxþmvs;xσ0: ð16Þ

There are inessential differences withHchiral from Eq. (8)—
the Dirac cone is anisotropic and the basis of Pauli matrices
is rotated—but the essential difference is that the superfluid
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velocity breaks the chiral symmetry: Hd-wave anticommutes
with σy only if vs;x ¼ 0. In the d-wave superconductor,
the superfluid velocity enters as a chirality-breaking scalar
potential, while in theWeyl superconductor, it is a chirality-
preserving vector potential. The former is a strong scatterer,
which effectively destroys the Landau levels, while the
latter cannot by force of the topological index theorem.
Comparison with numerics.—To test our analytical

theory, we have numerically calculated the spectrum of a
Weyl superconductor with a vortex lattice, using the KWANT

tight-binding code [46]. The 8 × 8 Hamiltonian has the
BdG form (1) with [20,21,36]

H0ðkÞ ¼ t0
X

α¼x;y;z

½τzσα sin kαa0 þ τxσ0ð1 − cos kαa0Þ�

þ βτ0σz − μτ0σ0: ð17Þ

Near the center of the Brillouin zone, this reduces to the
linearized Hamiltonian (4), but now we will not make any
linearization. Results are shown in Figs. 1(b), 3, and 4
(see Supplemental Material [24]). They are fully consistent
with the analytics.
Thermal conductance.—The chiral zeroth Landau level

governs the thermal transport properties of the Weyl
superconductor, in the direction parallel to the magnetic
field. The degeneracy eB0S=h ¼ 1

2
Φ=Φ0 of the zeroth

Landau level implies a thermal conductance

G ¼ 1

2
g0Φ=Φ0; g0 ¼ LTe2=h; ð18Þ

with L ¼ 1

3
ðπkB=eÞ2 as the Lorenz number. In other words,

each vortex contributes half a thermal conductance quan-
tum to the heat transport—the factor 1=2 being a reminder
that the quasiparticles in the Weyl superconductor are
Majorana fermions [40]. Do note that the states in the
zeroth Landau level are extended over the x-y plane, the
current flow is not confined to the vortex cores (see Fig. 4)
[49]. We expect the universal thermal conductance (18) to
be robust against nonmagnetic disorder, which in the
effective Hamiltonian would enter as a term ∝ σz that does
not couple Landau levels of opposite chirality.
Conclusion.—In this Letter, we have revisited the cel-

ebrated question [1,2] of whether quasiparticles in the
vortex lattice of a gapless superconductor can condense
into Landau levels. We have shown that Weyl super-
conductors can accomplish what d-wave superconductors
could not [6]: the chirality of Weyl fermions protects the
zeroth Landau level from broadening due to scattering by
the vortices. We have developed the analytical argument
for a simple low-energy Hamiltonian and supported it by
numerical calculations for a heterostructure model of the
Weyl superconductor [20]. We anticipate that the Landau
levels will govern the thermodynamic and transport proper-
ties of the vortex lattice, finally allowing for the observation
of quantum effects that proved elusive in the d-wave
context.

We have benefited from discussions with D. I. Pikulin
and J. Tworzydło. This research was supported by the
Netherlands Organization for Scientific Research (NWO/
OCW), an ERC Synergy Grant, and by the TÜBİTAK
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