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Abstract

3D Shape matching is an important problem in computer

vision. One of the major difficulties in finding dense corre-

spondences between 3D shapes is related to the topological

discrepancies that often arise due to complex kinematic mo-

tions. In this paper we propose a shape matching method

that is robust to such changes in topology. The algorithm

starts from a sparse set of seed matches and outputs dense

matching. We propose to use a shape descriptor based on

properties of the heat-kernel and which provides an intrin-

sic scale-space representation. This descriptor incorpo-

rates (i) heat-flow from already matched points and (ii) self

diffusion. At small scales the descriptor behaves locally and

hence it is robust to global changes in topology. Therefore,

it can be used to build a vertex-to-vertex matching score

conditioned by an initial correspondence set. This score

is then used to iteratively add new correspondences based

on a novel seed-growing method that iteratively propagates

the seed correspondences to nearby vertices. The match-

ing is farther densified via an EM-like method that explores

the congruency between the two shape embeddings. Our

method is compared with two recently proposed algorithms

and we show that we can deal with substantial topological

differences between the two shapes.

1. Introduction

In the era of perpetually increasing computational ca-

pabilities, multi-camera acquisition systems have become

popular to capture parameterization-free articulated 3D

shapes. These systems allow marker-less shape acquisition

and are useful for a wide range of applications in entertain-

ment, sport, surveillance, interactive, and augmented reality

systems. In the past decade, many 3D acquisition methods

have been proposed which successfully provides a frame-

wise reliable visual-hull or mesh representation for real 3D

animation sequences [8, 22, 20, 17].

Figure 1. 3D shape matching in the presence of a topological

merge. On the left shape the legs are completely merged together

while on the right shape they are well separated. The colors em-

phasize the fact that our method correctly assigns the body parts,

in particular the left/right legs are correctly matched even in the

presence of a topological merge. (Only one percent of matches are

shown for the purpose of visualization).

However, obtaining 3D animation sequences with

spatio-temporal coherence, based on these independently

reconstructed shapes, is a challenging task. It inherently

involves estimation of dense 3D correspondences. This

is particularly difficult in the case of articulated shapes

due to complex kinematic poses. These poses induce

self-occlusions and shadow effects which cause topological

changes along the sequence, such as merging and splitting.

In this work, we propose a scale-space analysis of 3D

shapes in order to achieve robustness with respect to topo-

logical changes. Starting with an initial set of sparse corre-

spondences we propose to grow them in a small neighbor-

hood defined by a scale parameter. Figure 1 shows a typical

case of topological merging and the robust matching ob-

tained with our method.

The main contribution of this paper is a dense 3D shape

matching method that is robust to topological changes in

the shape. The method starts from sparse one-to-one corre-
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spondences and produces as output dense correspondences.

We analyze a recently proposed shape-matching descriptor

that is based on the heat-kernel matrix that may well be

viewed as a shape operator. The eigenvalues and eigen-

vectors of this matrix/operator provide a scale-space intrin-

sic shape representation. The descriptor incorporates both

(i) heat flows from the already matched points and (ii) self

diffusion. At small scales this descriptor is fairly local and

hence it is robust to changes in topology. It can therefore

be used to build a matching score between a point on the

first shape and a point of the second shape conditioned by

the initial correspondences. This score is then used to it-

eratively add new point-to-point correspondences based on

a novel seed-growing method that propagates current cor-

respondences to nearby ones. The final set of dense corre-

spondences is obtained via a point registration method that

uses a variant of the EM algorithm.

There are two main classes of approaches that achieve

dense 3D shape matching. The first class consists of model-

based approaches which by-pass the problem of topological

issues by starting with a prior shape model. This model is

locally deformed at each time step of the sequence in order

to obtain a globally consistent shape representation. This is

achieved at the cost of loosing detailed geometric and tex-

ture information obtained at each independent reconstruc-

tion. Another problem is the accumulation of deformation

errors over time. Moreover, in the case of dynamic scenes,

the assumption of a prior model is not realistic.

The second class consists of model-free approaches

which do not impose any shape priors. Initially, sparse cor-

respondences are computed between two independently re-

constructed shapes using local cues based either on texture

or on geometry. These correspondences are then propagated

to obtain a dense shape matching. However, it is often the

case that these initial sparse correspondences are not uni-

formly distributed over the shapes, and hence the propaga-

tion of these correspondences is a challenging task. It is

even more difficult when the two shapes differ significantly.

Indeed, one major limitation of this class of methods is that

they use a geodesic distance onto the shape manifold, which

is not robust to changes in topology.

The rest of the paper is structured as follows. In the

next section, we discuss the related work. In section 3, we

present a detailed outline of the proposed method. In sec-

tion 4, we describe a multi-scale heat diffusion descriptor

that is used in the novel seed growing algorithm introduced

in section 5. In section 6, we outline an EM algorithm for

the computation of dense correspondences. In section 7, we

present experimental results that illustrate the robustness of

our approach. Finally, section 8 concludes the paper with

brief discussion and future directions of work.

2. Related Work

The problem of finding dense 3D shape matching has

challenged many researchers in computer vision and com-

puter animation. There exists a class of solutions based on

the iterative closest point (ICP) method adapted to 3D shape

matching [23, 24, 5]. These methods compute shape regis-

tration in the Euclidean space and hence do not provide a

pose invariant matching.

Another class of methods relies on the assumption that

articulated poses in the nonrigid shapes are isometric de-

formations. Hence, pose invariance is achieved by embed-

ding the shape into an isometric subspace [21, 12, 4, 29,

25, 15, 16]. This is a very strong assumption for multi-

camera acquisition systems, as the independently recon-

structed shapes can be non-isometric due to presence of

topological merges and splits.

Recent methods for shape tracking, that inherently

performs dense shape matching employed initial sparse

matches to achieve robustness to the topological issues [27,

10, 26]. In [26], a mesh evolution was performed by locally

deforming the 3D shape according to the sparse 3D corre-

spondences obtained by minimizing an error function eval-

uating the texture and geometric consistency. The consis-

tency check was performed using the geodesic metric which

is vulnerable to large shape deformations.

In [1], initial sparse correspondences were used to com-

pute a set of harmonic functions and each shape vertex was

represented by the coordinates of these functions. Then

a dense matching was performed based upon computation

of the level set of closest initial correspondences on two

shapes. However, these harmonic functions are the solution

of stationary heat equation and hence are globally affected

by the topological issues. In a recent work, hierarchical

assembly of independently reconstructed shapes was per-

formed in [14] for computing a globally consistent space-

time reconstruction.

The closest work to our method in terms of the shape

feature descriptors is [13]. In their work, a dense shape

matching method using a single (or multiple) initial corre-

spondence is used. They propose a detailed theoretical jus-

tification for using heat diffusion maps. However, the pro-

posed descriptor, when used in conjunction with a greedy

matching method, is vulnerable to the topological issues. In

our work, instead, we use a robust seed growing approach

for matching which locally propagate sparse matches and is

robust to outliers in the initial correspondences.

3. Approach Outline

Figure 2 sketches the pipeline of our approach. Given

two 3D shapes, e.g, Figure 2.a (notice the difference in
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Figure 2. Method outline : (a) Input shapes (notice the difference in their topology). (b) Initial sparse matches. (c) Matches obtained with

the seed-growing algorithm. (d) Probabilistic dense matches obtained with the EM algorithm. (e) Probabilistic transfer of a scalar function

(coloring of shape parts).

their topology) we compute a set of initial sparse correspon-

dences by matching features computed over any scalar func-

tion defined on the shape surface, e.g., local curvature, tex-

ture, color, etc. We call these initial sparse correspondences

the anchor correspondences, e.g., figure 2.b. Then we de-

scribe a multi-scale heat kernel descriptor based on these

anchors. Hence, a descriptor is associated with each shape

vertex. A seed growing algorithm uses these descriptors to

propagate initial correspondences over the shape, e.g., Fig-

ure 2.c. The final dense vertex-to-vertex registration result

is obtained using an EM algorithm, e.g., Figure 2.d. In or-

der to illustrate the quality of the final result, we use the

matching to transfer a scalar function, e.g. color, texture,

etc., from one shape to another, Figure 2.e.

4. Shape Description using Heat Diffusion

In this section we introduce heat diffusion over 3D

shapes and analyze the heat-kernel descriptor which ex-

ploits the interesting property of capturing the local geom-

etry of the surface. 3D shapes are described by meshes

which are discretizations of closed Riemannian manifolds

(compact and without boundaries). However, in this work

we treat these meshes as undirected weighted graphs: Each

vertex in this graph corresponds to a mesh vertex or, equiv-

alently, to a 3D point on the shape. Each edge corresponds

to a mesh edge. Graph edges are weighted by a similarity

measure. Hence, each shape is a graph M = {V, E , n},

where V = {v1, . . . , vi, . . . , vj , . . . , vn} is the set of ver-

tices and E is the set of edges. Each edge is weighted by

wij = exp(−d2
ij/σ), where dij denotes the Euclidean dis-

tance between the 3D points i and j associated with ver-

tices vi and vj , and σ is a positive scalar parameter. Given

two graphs M and M′ = {V ′, E ′, n′}, the set of initial

correspondences is denoted by A = {a1, . . . , am, . . . , aM}
where each correspondence am is a vertex pair {vpm

, v′qm
}

with vpm
∈ V, v′qm

∈ V ′.

4.1. Heat Diffusion on Graphs

Heat diffusion is a fundamental concept in physics. The

heat diffusion equation is a partial differential equation

which describes the distribution of heat (or the variation in

temperature) in a given location and over time. Heat diffu-

sion is generally studied on Euclidean spaces but it can be

generalized to non-Euclidean ones such as manifolds. Heat

diffusion on graphs is exactly the parallel of diffusion on

closed Riemannian manifolds. The graph’s heat operator or

the heat-kernel matrix is [7]:

H(t) = e−tL, (1)

where t > 0 is a time parameter and L is the combinato-

rial (or unnormalized) graph Laplacian. Each entry of this

matrix is a Mercer kernel that has a very simple physical

interpretation, as follows.

We consider real-valued functions f over V , f : V →
❘ and we note that f = (f1 . . . fn)⊤ is simply a vector

indexed by the vertices of M. The vector F (t) = H(t)f is

a solution to the heat-diffusion equation (∂/∂t+L)F (t) =
0.

Hence, f corresponds to some initial heat distribution

over the vertices of M and F (t) is the heat distribu-

tion at time t starting from F (0) = f . Notice that

starting with a point heat distribution at vertex j, gj =

(0 . . . gj . . . 0)⊤, gj = 1, the heat distribution at time t is

given by the jth column of the heat matrix which is denoted

by H(·, j; t):

G(t) = H(t)gj = H(·, j; t). (2)

From (2) we obtain a straightforward interpretation of the

entries of the heat matrix, namely each entry h(i, j; t) of

H(t) corresponds to the amount of heat available at vertex

vi at time t, starting with a point heat distribution at vertex

vj , i.e., gj :

h(i, j; t) = H(i, j; t). (3)
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The symmetric function h : V × V → ❘ is the heat kernel

of a graph M. Each diagonal term h(i, i; t) of the heat-

kernel matrix has an interesting interpretation as well: it

corresponds to the amount of heat remaining at i at time t.
To conclude, the heat-kernel matrix encapsulates important

intrinsic information about how heat “travels” from one part

of the graph (or of the shape) to another part.

Let L = UΛU⊤ be the spectral decomposition of

L with UU⊤ = I. Each column of U, uk =
(u1k . . . uik . . . unk)⊤ is an eigenvector and by omitting

the zero eigenvalue and the associated eigenvector, we

have the spectral decomposition of the Laplacian L =
∑n

k=2 λkuku⊤
k , from which we easily obtain the spectral

decomposition of the heat-kernel matrix:

H(t) =
n
∑

k=2

e−tλkuku⊤
k . (4)

Each entry h(i, j; t) of this matrix is a heat kernel:

h(i, j; t) =

n
∑

k=2

e−tλkuikujk =< xi,xj >, (5)

where

xi = [ e−tλ2/2ui2, . . . , e−tλn/2uin ]⊤. (6)

Hence, xi is an element of a feature space, or an embedding

of the graph in ❘n−1. In practice one can use a reduced

dimension d ≪ n − 1. The heat-kernel can be used to

define distances and norms in the feature space, namely:

‖xi − xj‖
2 = h(i, i; t) + h(j, j; t) − 2h(i, j; t) (7)

‖xi‖
2 = h(i, i; t). (8)

4.2. Heat Kernel Descriptor

Figure 3 depicts the heat diffusion phenomenon on 3D

shapes. For small values of the time parameter t (which

may well be viewed as scale parameter), the heat diffusion

is limited to a local neighborhood (Figure 3.a), whereas for

large values of t, the heat diffusion is global (Figure 3.b).

This scale-dependent behavior of heat diffusion allows us

to envisage a scale-space representations of 3D shapes. At

small scales, diffusion behaves similarly across two topo-

logically different shapes, while at larger scales, the be-

havior is affected by topological discrepancies between the

shapes. This motivates the choice of a local descriptor based

on heat diffusion at small scales.

We adapt the descriptor recently proposed in [13] to cap-

ture the local geometry by considering heat diffusion at

small values of t. Each vertex on the shape is character-

ized by the amount of heat transferred from each of the

(a) (b)

Figure 3. Visualization of heat diffusion on 3D shapes. The color

at each vertex vi encodes the value of the kernel h(i, j; t), where

vj is the blue dot on the torso. (a): For small values of t, the heat

diffusion map is very similar on both shapes and it is not affected

by their topological differences (hand merging with body). (b):

For large values of t, the behavior of the diffusion process drasti-

cally depends on the shape’s topology.

point heat sources placed at every anchor correspondence

vertex in t time steps. We consider heat diffusion at the

K times t1, . . . , tK . We suppose that M anchor corre-

spondences are provided. For each anchor correspondence

am = (vpm
, v′qm

), we compute two K-dimensional vectors:

dvi

m = [h(i, pm; t1), . . . , h(i, pm; tK)]T ∀vi ∈ V,

d
v′

j
m = [h′(j, qm; t1), . . . , h

′(j, qm; tK)]T ∀v′j ∈ V ′.

Each coordinate of these vectors stores the amount of heat

diffusion at times t1, . . . , tK . In addition to the heat diffu-

sion from these M anchor correspondences, we also con-

sider self diffusion at multiple times to capture the local ge-

ometry. This is encapsulated in a an additional vector:

dvi

M+1 = [h(i, i; t1), . . . , h(i, i; tK)]T ∀vi ∈ V,

d
v′

j

M+1 = [h′(j, j; t1), . . . , h
′(j, j; tK)]T ∀v′j ∈ V ′.

Finally, considering the heat diffusion from all the an-

chor correspondences and self diffusion, we define a K ×
(M + 1) descriptor matrix for each vertex vi ∈ V on the

shape M as:

Dvi = [dvi

1 . . .dvi

m . . .dvi

M dvi

M+1]. (9)

Similarly, we can define a descriptor Dv′

j for each vertex

v′j ∈ V ′ from M′. In practice we use K = 5 and set

{t1, . . . , t5} = {0, 20, 40, 80, 100}. In some cases where

the cardinality of two graphs are very different, we com-

pute compatible time scales using the formulation presented

in section 2.7 of [18].

Computation of Matching Score: The matching score be-

tween two descriptors is obtained as:

score(vi, v
′
j) = ||dvi

M+1 − d
v′

j

M+1||2 +

M
∑

m=1

||dvi

m − d
v′

j
m ||∞.

(10)
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Thus, the descriptors from two different shapes will have a

low matching error score if the corresponding vertices are

consistent with input anchor correspondences.

5. Correspondence Propagation

Once we have defined a multi-scale descriptor for every

vertex on two shapes and a matching score, we can em-

ploy existing feature matching techniques that work either

locally or globally and which exploit the neighborhood in-

formation. Therefore, a natural way to formulate the feature

matching problem is to cast it as a graph matching problem.

Finding a global optimum to the graph matching problem

is an NP-hard problem. Nevertheless, several suboptimal

solutions are available.

Energy minimization solutions based on Markov random

fields (MRF) have been previously employed for 3D sur-

face matching [21] but have a high computational cost. One

can also cast the matching problem into an integer quadratic

problem (IQP) that is equivalent to find a set of mutu-

ally compatible nodes in an association graph [2]. Other

sub-optimal solutions use various possible relaxations, e.g.,

spectral relaxation [11]. These methods are tractable when

the correspondence set is small, namely of the order of

102 and hence they are not suitable when one seeks dense

matching.

Another interesting class of methods is seed-growing

that starts with a set of initial matches and grows them in

a local neighborhood. In our case, it is highly desirable

to grow the seed matches locally, due to presence of topo-

logical issues and we already have a set of anchor corre-

spondences which can be easily used as the seed matches.

Hence, we propose a seed-growing algorithm similar in

spirit to the one proposed in [6], for propagating anchor cor-

respondences over 3D shapes.

Let’s define a set of binary variables Γ =
{γ1, . . . , γi, . . . , γn} for shape M where γi is set to

1 if a vertex vi from the first shape is assigned to a vertex

v′j from the second shape and 0 otherwise. Similarly, we

can define Γ′ for M′. Let S = {s1, . . . , sm, . . . , sM} be

the set of initial seed matches, with sm = (vi, v
′
j), e.g.,

γi = γ′
j = 1. S in stored in a priority queue data structure

where each seed correspondence sm is associated with a

matching score. The matching score score(sm) is the heat

descriptor matching error computed between the descrip-

tors of vi and v′j (10). Each time an element is drawn from

S, it returns the seed with the minimum matching error

score. Initially, the scores of all the seed correspondence

are set to zero. This will ensure that all the seed matches are

part of the output binary matching. We define a matching

threshold α and consider only the correspondences with a

matching score less than this threshold. We designate by

Nei(vi) the set of 2-ring neighbors of vertex vi on the shape

graph. The output of our algorithm is the set of accepted

binary matches represented as ∆ = {δij}.

The proposed seed-growing algorithm proceeds as fol-

lows. We iteratively draw a seed match with the minimum

matching error from S and accept it as a correct binary

match (add to set ∆) if the constituting vertices are not yet

assigned to an existing match in ∆. Otherwise, we drop this

seed correspondence from S. Once a seed correspondence

is accepted, the algorithm searches for all the neighboring

vertices of this seed correspondence on each shape that are

not yet assigned to any existing binary matches in ∆. It then

computes the matching score between every pair of corre-

sponding vertex descriptors and adds the current pair to pri-

ority queue structure S if the matching score is less than

α. Pseudo code of the seed-growing method is outlined in

Algorithm 1.

Algorithm 1 Seed-Growing for Match Propagation

input : Two sets of vertex descriptors D, D′; seed matches

S; a set of binary variables Γ, Γ′; the matching score

threshold α.

output : Dense matches ∆ = {δij} where δij = (vi, v
′
j).

1: while S is not empty do

2: Draw the seed s ∈ S with the minimum

matching error, s = (vi, v
′
j).

3: if γi = γ′
j = 0 and score(s) < α then

4: ∆ = ∆ ∪ {(vi, v
′
j)} and set γi = γ′

j = 1.

5: for each va ∈ Nei(vi) and γa = 0 do

6: v′
∗

= argmin
v′

k
∈Nei(v′

j
) γ′

v′

k

=0

score(va, v′k).

7: if v′∗ exists and score(va, v′∗) < α then

8: S = S ∪ {(va, v′∗)}.

9: end if

10: end for

11: end if

12: end while

The proposed algorithm is robust to the initial outlier

seeds as those seeds have a low score and will not be prop-

agated due to the priority queue structure and provision of

threshold. However, these outlier matches will still exist as

part of output matches as we assign them a zero matching

error score. Another problem is that the local heat diffusion

properties will not be the same in the areas of topological

merging/splitting. This will lead to unmatched set of ver-

tices on two shapes. In the next section, we propose a dense

probabilistic matching method to overcome these problems.
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6. Dense Matching with EM

In this section we briefly describe a method that takes

as input a sparse set of correspondences between the two

shapes and provides as output a dense set of correspon-

dences. The method is based on a parametric probabilis-

tic model, namely maximum likelihood with missing data.

Let us consider the Laplacian embedding of two shapes,

i.e., (6) with t = 0: X = {xi}
n
i=1,X

′ = {x′
j}

n′

j=1, with

X,X′ ⊂ ❘
k, where k ≪ min{n, n′} is the common di-

mension of the two embeddings, 3 ≤ k ≤ 10 in our experi-

ments. Without loss of generality, we assume that the points

in the first set, X are cluster centers of a Gaussian mixture

model (GMM) with n clusters and an additional uniform

component that accounts for outliers and unmatched data.

The matching X ↔ X′ will consist in fitting the Gaussian

mixture to the set X′.

Let this Gaussian mixture undergo a k × k transforma-

tion Q with Q⊤Q = Ik,det(Q) = ±1, more precisely

Q ∈ O(k), the group of orthogonal matrices acting on ❘k.

Hence, each cluster in the mixture is parametrized by a prior

pi, a cluster mean µi = Qxi, and a covariance matrix Σi.

It will be assumed that all the clusters in the mixture have

the same priors, {pi = πin}
n
i=1, and the same isotropic

covariance matrix, {Σi = σIk}
n
i=1. This parametrization

leads to the following observed-data log-likelihood (with

πout = 1 − nπin and U is the uniform distribution):

P (X′) =
n′

∑

j=1

log

(

n
∑

i=1

(

πinN (x′
j |µi, σ)

)

+ πoutU

)

(11)

It is well known that the direct maximization of (11) is

not tractable and it is more practical to maximize the ex-

pected complete-data log-likelihood using the EM algo-

rithm, where “complete-data” refers to both the observed

data (the points X′) and the missing data (the point-to-point

assignments). In our case, this expectation writes (see [9]

for details):

E(Q, σ) = −
1

2

n′

∑

j=1

n
∑

i=1

αji(‖x
′
j −Qxi‖

2+k log σ), (12)

where αji denotes the posterior probability of an assign-

ment: x′
j ↔ xi:

αji =
exp(−‖x′

j − Qxi‖
2/2σ)

∑n
q=1 exp(−‖x′

j − Qxq‖2/2σ) + ∅σk/2
, (13)

where ∅ is a constant term associated with the uniform dis-

tribution U . Notice that one easily obtains the posterior

probability of a data point to remain unmatched, αjn+1 =
1 −

∑n
i=1 αij . This leads to the dense matching procedure

outlined in Algorithm 2.

Algorithm 2 Dense matching with EM

input : Two embedded shapes X and X′;

output : Dense correspondences X ↔ X′ between the two

shapes;

1: Initialization: Set Q(0) and σ(0);

2: E-step: Compute the posteriors α
(q)
ij using (13);

3: M-step: Estimate the transformation Q(q) =

arg minQ

∑

i,j α
(q)
ij ‖x′

j − Qxi‖
2 and the variance

σ(q) =
∑

i,j α
(q)
ij ‖x′

j − Q(q)xi‖
2/k

∑

i,j α
(q)
ij

4: Assignment: Match x′
j ↔ xi if maxi α

(q)
ij > 0.5.

However, the proposed EM algorithm can be easily

trapped in a local minimum and the final result crucially

depends on initialization. Hence, we use the dense binary

matching obtained with seed propagation algorithm to ini-

tialize our probabilistic dense matching algorithm.

7. Results

The matching results are obtained with publicly avail-

able 3D shapes (meshes) captured using multi-camera sys-

tems, such as the flashkick sequence from University of Sur-

rey [22] and the samba dance sequence from MIT [27]. In

the latter case, we use a simple voxel carving algorithm to

compute a visual hull represented as a mesh.

Matching results are presented in Figures 4 and 5. In

Figure 4, we show wide-time-frame matching obtained in

the presence of topological merging. For the purpose of

visualization, we color code the body parts of one shape

and we transfer the corresponding vertex-to-part labels to

the other shape, as proposed in [19]. This makes use of the

fact that EM outputs a posterior probability for each vertex

of one shape to be matched with each vertex of the second

shape.

|V| |V ′| |A| |∆|

flashkick 016-017 12006 12005 379 10191

flashkick 019-020 11864 12035 303 9836

flashkick 024-025 12231 12282 410 10214

flashkick 113-117 12582 12041 58 7197

flashkick 230-236 12240 11943 153 9596

flashkick 117-130 12041 12656 91 7118

samba 042-048 3881 4760 171 911

samba 118-123 4284 4226 167 2641

samba 118-121 4284 4254 200 2432

samba 121-123 4254 4226 200 2955

Table 1. Dataset details: Number of vertices of the input meshes

(|V| and |V ′|), the initial number of anchor correspondences (|A|),
and the number of correspondences found with the seed-growing

algorithm (|∆|).
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Figure 6 shows the results of matching obtained with our

method and with two other methods: with [12] (which is

the best performing method in the recent shape matching

benchmark [3]), and with [13]. The matching based on his-

tograms of Laplacian eigenvectors is not reliable when the

two shapes have different topologies and hence the dense

matching method presented in [12] fails to provide good re-

sults, e.g., Figure 6.b. As mentioned earlier, greedy match-

ing [13] does not consider the neighborhood consistency of

matches and leads to wrongly matched patches on shapes,

e.g., Figure 6.c.

Table 1, summarizes the mesh size (n = |V | and n′ =
|V ′|), the initial number of anchor correspondences |A| and

the number of matches obtained with our seed-growing al-

gorithm before applying EM.

Finding anchor correspondences. There are differ-

ent methods proposed in the past that use local geome-

try/texture cues to find a set of sparse anchor correspon-

dences [28, 1, 18], and any one of these methods can be

used. In practice, we computed the sparse anchor corre-

spondences using the method proposed in [1].

8. Conclusion

We proposed a dense shape matching method using a de-

scriptor based on heat-diffusion on 2D manifolds, a seed-

growing algorithm that locally propagates only the good

matches and a variant of the EM algorithm that eventually

registers the two shapes. The key feature of our method

is that it considers an intrinsic scale-space representation

based on the heat-kernel. This provides a principled frame-

work for defining features at small scales and for robustly

propagating correspondences locally in spite of topologi-

cal changes. We have shown very good matching results

on shapes in the presence of topological merging. Our

method can be used to perform dense shape registration

which stands at the basis of transferring any scalar func-

tion defined one shape, to the other one. In the future it

will be interesting to employ local heat-kernel descriptors

in a dynamic 3D environment where any prior assumption

about shape topology is not valid . Additionally, automatic

detection and correction of topological issues will be an im-

portant direction to explore.
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