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Topologically robust sound propagation in an
angular-momentum-biased graphene-like
resonator lattice
Alexander B. Khanikaev1,2,*, Romain Fleury3,*, S. Hossein Mousavi3 & Andrea Alù3

Topological insulators do not allow conduction in the bulk, yet they support edge modes that

travel along the boundary only in one direction, determined by the carried electron spin,

with inherent robustness to defects and disorder. Topological insulators have inspired

analogues in photonics and optics, in which one-way edge propagation in topologically

protected two-dimensional materials is achieved breaking time-reversal symmetry with a

magnetic bias. Here, we introduce the concept of topological order in classical acoustics,

realizing robust topological protection and one-way edge propagation of sound in a suitably

designed resonator lattice biased with angular momentum, forming the acoustic analogue of

a magnetically biased graphene layer. Extending the concept of an acoustic nonreciprocal

circulator based on angular-momentum bias, time-reversal symmetry is broken here using

moderate rotational motion of air within each element of the lattice, which takes the role of

the electron spin in determining the direction of modal edge propagation.
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T
he concept of topological order, originally discovered in
condensed matter physics1–10, has recently inspired
scientists working in many branches of physics and

engineering to look for topologically nontrivial states in several
fields of interest. Topological states have been discovered in two-
dimensional and three-dimensional materials, at the basis of the
quantum Hall effect (QHE), quantum spin Hall effect and
topological insulators. These concepts have also inspired photonic
analogues, such as photonic crystals11–16, arrays of silicon-ring
resonators17,18, bianisotropic metamaterials19 and chiral
waveguides20,21, opening exciting new directions in optics. The
inherent robustness against local defects15 and disorder22,
provided by the topological nature of these phenomena, has
allowed overcoming common rules of wave scattering and
interference in topological insulators and their analogues. As an
example, the edge states supported by these structures can
seamlessly flow around sharp bends and defects, avoiding
backscattering15,17–20 and inspiring interesting functionalities
for topologically protected optical components.

In condensed matter, topological states of matter are inherently
related to time-reversal symmetry. In the particular case of
QHE1,10, as well as for its photonic analogue realized in
magnetically biased photonic crystals8–11,16, time-reversal
symmetry is suitably broken to realize one-way nonreciprocal
edge modal dispersion19. In this case, propagation is allowed only
in one particular propagation direction, making backscattering
impossible. In fermionic systems with time-reversal symmetry, a
form of topological protection can still arise. This is due to
Kramer’s theorem, which ensures the existence of time-reversal
partner edge states with their electron spin being locked to the
propagation direction, and therefore no backscattering can occur
in absence of spin-flip processes23,24. In bosonic and classical
systems, the latter class of protection is not available, but some
restricted protection can be still achieved based on spatial or
internal symmetries (for example, duality in electromagnetics),
provided that a conserved pseudo-spin, odd under time-reversal
symmetry, may be judiciously engineered19. Genuine topological
protection for bosons and classical waves, however, is only
possible in nonreciprocal systems with broken time-reversal
symmetry. Since acoustic waves do not significantly interact with
an external magnetic bias, topological order for sound has not
been explored to date. In this paper, on the contrary, we show
that these recent advances in quantum physics may be extended
to acoustic systems using angular-momentum bias, dramatically
expanding our ability to tailor acoustic waves.

While throughout the past centuries we have mastered the
manipulation of sound propagation and scattering, perfecting
musical instruments, music halls and whispering galleries,
it is still challenging to break the inherent symmetry with
which sound travels in space. Nonreciprocal acoustic response
in magneto-elastic materials has been explored in ref. 25,
but no experimental confirmation of large magnetic-based
nonreciprocity or isolation has been demonstrated to date, due
to the inherently weak coupling between magnetic and acoustic
effects. An alternative approach to break time-reversal symmetry
and achieve nonreciprocity has been recently suggested26. It has
been shown that the effects of a magnetostatic bias may be
replaced by the application of angular momentum, or rotational
motion, in suitably designed acoustic resonators, leading to
nonreciprocal response and giant isolation, and providing the
foundations for a new class of nonreciprocal acoustic devices—
acoustic circulators. On the basis of this discovery, here we
introduce a new approach to topological order in periodic
acoustic systems biased with angular momentum, where time-
reversal symmetry is broken by rotational motion. We apply these
concepts to demonstrate that topologically nontrivial states with
strong robustness can be obtained in acoustic lattices with broken
time-reversal symmetry.

More specifically, here we study an acoustic system mimicking
a magnetically biased graphene lattice, as schematically shown in
Fig. 1a. A graphene layer constitutes a well-established platform
to realize topological order in condensed matter systems27. Its
hexagonal lattice supports a Dirac point whose inherent time-
reversal symmetry may be broken, for example, by an applied
magnetic bias, to reveal Landau levels separated by bandgaps that
support topologically protected edge states28,29. In our acoustic
analogue geometry, the graphene-like lattice is formed by a
planar periodic array of subwavelength acoustic resonators
interconnected by hollow tubes to form a hexagonal lattice30.
The resonators are formed by two hard-walled coaxial cylinders,
with the inner space filled by air. As the air starts flowing, with
moderate velocity as discussed in the following, the imparted
angular momentum can break time-reversal symmetry, and
realize the analogue of a magnetically biased graphene layer for
sound.

Results
Infinite diatomic lattice. When disconnected from the lattice,
each acoustic resonator in Fig. 1a supports two, clockwise and
counterclockwise, lowest order modes, with no modulation in the
vertical z-direction, and with eigenfrequencies oþ /� corre-
sponding to l¼±1 angular momentum26. If the medium inside
the resonators is stationary, these modes are degenerate, that is,
oþ ¼o� ; however, as soon as an angular momentum bias in the
form of air rotation is applied to the resonators, the degeneracy is
lifted by the amount Do¼oþ �o� ¼ vair/D, where vair is the
fluid velocity and D is a parameter associated with the resonator
geometry26.

When the resonators are connected in the hexagonal lattice
of Fig. 1a, the clockwise and counterclockwise modes couple,
forming a complex acoustic band structure. We apply a first-
principle approach based on the direct solution of the equations
of sound propagation in moving media to find modes and band
structure for this system, as detailed in Methods. In parallel, we
also developed an analytical model based on coupled-mode
theory and the scattering matrix formalism31, outlined in the
Methods section, which agrees well with the full-wave modelling
performed with COMSOL Multiphysics. While all calculations
presented in this section are obtained under the assumption of a
constant air velocity inside the resonators, we have also
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Figure 1 | Diatomic lattice forming an acoustic analogue of graphene.

(a) Lattice with two rotated Y-junctions (A and B, respectively) per unit cell

(shaded region). (b) One unit cell of the lattice modelled in COMSOL

Multiphysics, with acoustic pressure distribution shown in colour for one of

the Dirac modes of interest. The grey arrows indicate the direction of

airflow in the resonators. Structure dimensions are: inner and outer radius

of the cavity are Rin¼ 5.08 cm and Rout¼9.21 cm, respectively, height of the

cavity H¼4.45 cm.
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performed studies in which airflow exchange between coupled
resonators is fully considered. As described in the Methods
section, for this case we performed full-wave multiphysics
simulations with acoustic equations solved in conjunction with
stationary Navier–Stokes equations for fluid flow, assuming that
the air is brought to motion by a fan inserted inside every
resonator, producing a pressure difference across its boundaries.
The velocity fields calculated using this first-principle approach
has an effect identical to the simplified uniform filed profile
assumed in this section (see Methods for details), serving also as a
confirmation for the inherent robustness of the topological effects
described in the following.

Figure 2a–c shows the band structure, calculated based on finite-
element simulations (and validated with coupled-mode theory in
Supplementary Figs 1–4), for the unit cell shown in Fig. 1b, with air
velocity gradually increasing in each resonator, as indicated in each
panel. The band diagram is calculated around the frequency of
800Hz, for which four dipolar l¼±1 acoustic bands may be
observed. Due to the hexagonal symmetry of the lattice, in the
stationary case (panel a, blue solid lines, time-reversal symmetry is
preserved) the band diagram has a Dirac-like linear dispersion,
with double degeneracy located at the K-point (ky¼ 0, kx¼ 4p/
3a0), analogous to wave propagation along a graphene layer. As an
example, the pressure field profile corresponding to the lower Dirac
band near the K-point in a unit cell is shown in Fig. 1b. In addition
to the two fast Dirac bands, we also observe two slow modes that
do not propagate in the lattice. Note that, since the same changes in
the band structure due to the air motion take place near the K0

point of the Brillouin zone (ky¼ 0, kx¼ � 4p/3a0), the band
structure at K0 is identical to the one at the K-point and, therefore,
it is omitted from the figures.

After applying a nonzero angular momentum in the resonators
(red dashed lines in panel a), as shown by the grey arrows
in Fig. 1b, time-reversal symmetry is broken and the Dirac
degeneracy is lifted. Being induced by time-reversal symmetry
breaking, the produced gap has topological nature and a

topological index—the Chern number—can be assigned to the
bulk acoustic bands12,14,32. To confirm the topologically
nontrivial nature of the crystal, we calculated the Berry
curvatures for all four bands of interest, using field profiles
obtained from first-principle finite-element simulations, as shown
in Fig. 2d–g. The Berry curvature was subsequently integrated
over the entire Brillouin zone to obtain the Chern numbers of the
bands. For the case of clockwise fluid rotation, the Chern number
assumed values C¼ {� 1,0,0,1} for the four bands shown in
Fig.2a–c, confirming their topologically nontrivial nature. When
the sense of rotation in the resonators is reversed to
counterclockwise, the sign of the topological indexes also
reverses, and the Chern number assumes values C¼ {1,0,0,� 1}.
Fig. 2d,g confirm that the nonvanishing Chern number for the
first and fourth bands emerges entirely from the removal of their
degeneracies with the second and third bands at the G-point. For
the second and third bands, in contrast, Fig. 2e,f shows that both
degeneracies (first and fourth bands at the G point, and second
and third bands at K and K0 points) contribute opposite values
(þ 1 and � 1) and (� 1 and þ 1), respectively, leading to a
vanishing net value of the Chern number.

Of particular interest are the cases with air rotation velocities
vair¼ 7.5m s� 1 and vair¼ 10m s� 1 (Fig. 2b,c), for which the
band dispersion has interesting analogies with QHE. In these
cases, the group velocity vanishes in the two Dirac bands, second
and third, respectively. This is analogous to the case of a two-
dimensional electron gas in the presence of a magnetic field bias,
when Landau levels with vanishing group velocity emerge. Thus,
in addition to opening a topological gap, the rotational bias may
inhibit propagation of acoustic waves as bulk modes. It is
interesting that the values of critical velocities required here to
realize such frozen sound states do not coincide with those for
which ideal isolation is achieved in the single acoustic resonator
case, as considered in ref. 26. This may be understood as the effect
of constructive wave interference within the lattice, required to
form closed Landau-like orbits.
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Figure 2 | Bulk band structure with different levels of airflow. (a–c) Band diagrams for bulk acoustic modes obtained using first-principle numerical
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Topological edge states. The appearance of topologically robust
edge modes is the most fascinating manifestation of topologically
nontrivial states. In the acoustic system under study we consider
two different types of edge states: (i) acoustic modes that appear
on the external edges of the system, and (ii) modes confined to
domain walls formed by a reversal of the applied angular
momentum inside the structure. According to the bulk-boundary
correspondence principle31, the number of edge states found at a
particular interface is determined by the change in the sum of the
Chern numbers of all the bulk bands of lower frequency across
the interface15. Thus, for the first class of edge modes we expect
only one mode for any crystal termination.

Figure 3a shows a representative example of the band structure in
such a case, for a 1� 20 supercell with vair¼ 7.5ms� 1. The figure
reveals two edge bands within the acoustic band gap. Inspection of
the pressure profiles, shown in Fig. 3b,c, confirms that these bands
correspond to modes localized on the top and bottom edges of the
system, respectively. These modes have one-way character and
transfer energy only in the forward (backward) direction for the
bottom (top) edge mode, having respectively positive and negative
group velocity vg. It is interesting that the direction of energy flow is
dictated by the direction of airflow at the edges of the crystal,
peculiarly similar to the way electron spin controls the direction of
edge propagation in conventional topological insulators.

Fig. 4 considers the case of a domain wall, that is, a sudden reversal
of rotation velocity taking place within the lattice. According to the
bulk-boundary correspondence principle, the difference in the band
Chern numbers between the two domains equals two in this scenario,
and therefore two edge modes should be supported by the domain
wall. Due to the way our simulation model is set up, with periodic
boundary conditions on the top and bottom boundaries of the
supercell, a second domain wall appears, leading to a total of four
edge modes within the bang gap region (shown by red and green
circles in Fig. 4a), with two modes localized at every wall. Fig. 4b
shows the acoustic pressure profiles of the two modes localized at the
central domain wall, which correspond to red bands in Fig. 4a, and
are formed by symmetric and anti-symmetric bonding of the
evanescent waves supported at the edge in the two domains. As seen
in the band diagram, these two modes have again one-way character,
and can transfer energy only in the forward, but not backward
direction. The direction of energy transfer reverses with a change of
air rotation in the resonators, which is observed for modes shown by
green lines in Fig. 4a confined to the domain wall at the external
edges (pressure field profiles not shown).

Discussion
To confirm the topological robustness of the acoustic edge modes
described in the previous figures, we have performed large-scale
simulations of acoustic graphene lattices in which we deliberately

introduced defects of different kinds. For any nontopological-
guided edge mode, we would expect strong reflection at sharp
corners or defects, and the formation of standing-wave patterns
along the walls due to interference effects. However, for the case
of one-way topological edge modes, as described in this paper, we
clearly observe strong robustness against such structural defects,
as seen in Fig. 5a. Here we consider a plethora of possible defects
and boundary variations: the edge mode seamlessly detours
between zigzag, armchair and bearded edges of the finite crystal.
In the same figure, we have also confirmed the robustness of the
edge modes against local defects introduced by removing several
resonators from the edge of the lattice.

In addition to robustness, the edge states of the considered
domain wall allow ideal reflection-less routing along arbitrarily
defined pathways, reconfigurable in real time by simply creating
line boundaries within the lattice with opposite applied angular
momenta on the two sides. Indeed, the path of the edge mode can
be dynamically reconfigured by reshaping the domain wall
through the change in rotation direction of the fluid inside the
resonators. To confirm the possibility of such topologically robust
routing, we have generated an irregularly shaped domain wall
with velocity bias map shown in the lower subplot of Fig. 5b. As
seen in the upper panel of Fig. 5b, the edge mode excited at the
top edge of the crystal, after travelling along the edge, enters the
bulk at the domain wall. Inside the crystal, the edge mode travels
along the path defined by the domain wall and leaves the bulk of
the crystal at the opposite edge without any back-reflection,
confirming the possibility of dynamically controllable reflection-
less routing of sound in a topologically protected lattice.

To conclude, we have introduced here the concept of
topological order in acoustic metamaterials, obtained by properly
controlling the applied angular momentum in suitably engineered
resonator lattices. Extending advanced quantum physics concepts
to the realms of classical acoustics, we have envisioned
unprecedented possibilities to route and manipulate sound,
achieving unusual propagation effects. We believe that topological
acoustic concepts can dramatically expand the engineering toolkit
of modern acoustic devices, and bring forward a new versatile
way to control sound waves. Topological robustness and the
ability to guide sound waves around arbitrarily shaped pathways,
as demonstrated here, represents just the start of a plethora of
fascinating phenomena stemming from the topological nature of
angular-momentum-biased acoustic systems. During the review
process, a somewhat related proposal for topological acoustics
has been presented in ref. 33. Due to the open geometry and
nonresonant nature of the proposed lattice elements, we argue
that such alternative realization of a topological acoustic lattice
would require significantly faster fluid rotation to achieve
noticeable topological gap opening.
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Methods
Coupled-mode theory for an acoustic cavity under angular-momentum bias.
The temporal coupled-mode equations for the amplitudes aþ and a� of the
right-handed and left-handed modes of an azimuthally symmetric acoustic cavity
under angular-momentum bias read26:

d

dt
aþ ¼ � ioþ � gþ

� �

aþ þ

ffiffiffiffiffiffiffiffiffi

2gþ
3

r

Sþ
1 þ e� i2p3

ffiffiffiffiffiffiffiffiffi

2gþ
3

r

Sþ
2 þ e� i4p3

ffiffiffiffiffiffiffiffiffi

2gþ
3

r

Sþ
3 ; ð1Þ

d

dt
a� ¼ � io� � g�ð Þa� þ

ffiffiffiffiffiffiffiffiffi

2g�
3

r

Sþ
1 þ ei

2p
3

ffiffiffiffiffiffiffiffiffi

2g�
3

r

Sþ
2 þ ei

4p
3

ffiffiffiffiffiffiffiffiffi

2g�
3

r

Sþ
3 ð2Þ

where o± are the eigenfrequencies of the right and left-handed modes, and g± is
the inverse of their decay times to the output channels 1, 2 and 3, placed at the
azimuthal positions j¼ 0, 2p/3 and 4p/3, respectively. In equation (1), we have
also included the excitation signals at ports i, Sþ

i . The output signals S�
i at the

three ports are due to the interference between the direct reflection and the fields
leaking from each mode,

S�
1 ¼ � Sþ

1 þ

ffiffiffiffiffiffiffiffiffi

2gþ
3

r

aþ þ

ffiffiffiffiffiffiffiffiffi

2g�
3

r

a� ; ð3Þ

S�
2 ¼ � Sþ
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2p
3

ffiffiffiffiffiffiffiffiffi

2gþ
3

r

aþ þ e� i2p3
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3

r

a� ; ð4Þ

S�
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3 þ ei
4p
3

ffiffiffiffiffiffiffiffiffi

2gþ
3

r

aþ þ e� i4p3

ffiffiffiffiffiffiffiffiffi

2g�
3

r

a� ; ð5Þ

Next we assume harmonic excitation, at port 1 only Sþ
1 ¼ e� iot , Sþ

2 ¼ Sþ
3 ¼ 0.

After the variable change a±¼ a±e� 1ot, we obtain the following system of equations:

� ioaþ ¼ � ioþ � gþ

� �

aþ þ

ffiffiffiffiffiffiffiffiffi

2gþ
3

r

; ð6Þ

� ioa� ¼ � io� � g�ð Þaþ þ

ffiffiffiffiffiffiffiffiffi

2g�
3

r

; ð7Þ

whose solution is

a� ¼
i

ffiffiffiffiffiffiffi

2g�
3

q

o�o� þ ig�
: ð8Þ

The scattering parameters Si1 ¼ S�
i =e� iot are then directly obtained from

equations (3–4), yielding

S11 ¼ � 1þ

ffiffiffiffiffiffiffiffiffi

2gþ
3

r

aþ þ

ffiffiffiffiffiffiffiffiffi

2g�
3

r

a� ; ð9Þ

S21 ¼ ei
2p
3

ffiffiffiffiffiffiffiffiffi

2gþ
3

r

aþ þ e� i2p3

ffiffiffiffiffiffiffiffiffi

2g�
3

r
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S31 ¼ ei
4p
3
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2gþ
3

r

aþ þ e� i4p3

ffiffiffiffiffiffiffiffiffi

2g�
3

r

a� : ð11Þ

By symmetry, we deduce the full scattering matrix using the following
equations:

S22 ¼ S33 ¼ S11; ð12Þ

S32 ¼ S13 ¼ S21; ð13Þ

S12 ¼ S23 ¼ S31 ð14Þ

For our case of angular-momentum bias, the resonance frequencies are given by
o±¼o0±v/Rav, where Rav is the average radius of the cavity26. The decay
constants are obtained by fitting the full-wave simulations. Supplementary Fig. 1
shows the evolution of the scattering spectrum of a single ring cavity as the
angular-momentum bias is gradually increased.
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Scattering matrix of one unit cell. The scattering matrix of the unit cell of the
acoustic graphene layer (Supplementary Fig. 2), consisting of two ring cavities, may
be calculated from the scattering matrix of the single cavity from equations (9–14).
As shown in the figure, we call 1, 2 and 5 the ports of the first circulator A and 3, 4
and 6 the ones of the second. The output signals bi at the ports i 2 1; 6 are related
to the input signals ai by the individual circulator scattering elements sij
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To obtain the scattering matrix ~s of the 4-port unit cell, we use the additional
equations a6¼ b5 and a5¼ b6 and obtain, after some straightforward algebra
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with
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D ¼ 1� S55S66ð Þ: ð19Þ

Analytically derived bulk band structure. To obtain the bulk band structure, we
apply Bloch theorem to both input and output signals of the 4� 4 unit cell,
obtaining

b3 ¼ a1e
ikb :a

b2 ¼ a4e
� ikb :b

b1 ¼ a3e
� ikb :a

b4 ¼ a2e
ikb :b
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We can write the system equation in matrix form, introducing the Bloch matrix ~B:
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~B ¼

0 0 e� ikb :a 0
0 0 0 e� ikb :b
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Any bulk mode must satisfy both equations (23) and (18), implying

detð~s� ~BÞ ¼ 0: ð23Þ

The bulk band structure can be obtained by plotting the condition number for
the matrix ~s� ~B: when the condition number is infinite, ~s� ~B possesses a zero
eigenvalue, which is equivalent to a zero determinant. The obtained contour plots
are shown in the Supplementary Fig. 3, where the evolution of the band structure of
the nonreciprocal lattice is represented as a function of the Doppler bias, in perfect
agreement with the numerical results presented in the main text.

Analytical prediction of edge states. The existence of edge states can be
predicted analytically by considering the scattering matrix of an array of unit cells
of size 1� 20. The first 10 unit cells are assumed to experience a right-handed
Doppler bias, whereas the next 10 cells are oppositely biased, effectively creating a
domain wall between the tenth and the eleventh cells. The scattering matrix of this
42 port system is calculated numerically, and as in the case of a single unit cell,
periodic boundary conditions are enforced. We obtain again an equation similar to
equation (24), involving a 42 by 42 determinant that needs to vanish. The result for
a velocity bias of 9m s� 1 is shown in the Supplementary Fig. 4, in total agreement
with the numerical results presented in the main text.

Sound equations in moving media. The equations for sound propagation in moving
background medium can be derived from the fluid dynamics equations by their line-
arization with respect to the background velocity v (ref. 34), which assume the form

@

@t
þ v � r

� �

pþ rc2r � w ¼ 0; ð24Þ

@

@t
þ v � r

� �

wþ w � rð Þvþ
rp

r
¼ 0 ð25Þ

where p is sound pressure, w is particle velocity field of the sound wave, v is the bias
velocity of the background medium supporting propagation of sound with the speed c,
and r is its mass density. By assuming harmonic dependence of the field exp(iot) one
obtains an eigenvalue problem for the frequency o (equation 32 of ref. 34), which was
implemented as a partial differential equation model in COMSOL Multiphysics. The
standard hard wall boundary conditions n �w¼ 0 have been applied on all the
boundaries of the resonators except the opening of the connectors where the Floquet
periodic boundary conditions has been implemented by introducing the Bloch phase
shift for the fields. The Berry curvature was then found with the standard equation
O(k)¼ @kxAy � @kyAx , where Ak¼ � ihp|qk|pi is the Berry connection, and the Chern
number was calculated by integrating the Berry curvature over the Brillouin zone
C ¼ 1

2p

R

BZ O kð Þd2k.

Multiphysics simulations of air propagation in stationary fluid flow.
To consider possible effects of nonuniformity in the velocity field that may take place
in realistic structures, we have performed first-principle simulations of the airflow in
the proposed periodic lattice of resonators, allowing for mass exchange between
neighbouring resonators. Stationary Navier–Stokes equations were solved with the use
COMSOL Multiphysics, Fluid Flow module. The periodic boundary conditions were
assumed along the transverse direction of the supercell. The air motion was introduced
by fans producing a pressure difference across the resonator, as shown in Fig. 6a, where
the velocity field is plotted by arrows (direction and magnitude) and colour (magni-
tude). The obtained velocity distribution was then used to calculate the acoustic band
structure and eigenmodes (Fig. 6b,c). We found that, because the velocity field is nearly
the same across the connectors between resonators, the resultant pressure difference is
also insignificant. As a result, the airflow across neighbouring resonators was found to
be small compared to the one inside the resonators. The major difference for the
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Figure 6 | Topological edge states with mass exchange considered. (a)Velocity field in the supercell of the lattice found by solving the stationary

Navier–Stokes equation with air motion produced by a pressure difference of 10 Pa across the fan, indicated by the grey region inside resonators.

Arrows show the air velocity direction and magnitude, and the colour shows the local magnitude of the velocity, as indicated by the colour bar. (b) Acoustic

band structure of the supercell for the velocity field shown in (a). Edge modes are plotted by red and black colours, and bulk modes are shown in blue.

(c) Acoustic field profile corresponding to the topological edge mode shown by red in b.
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velocity field calculated from the flow equations as compared to the field profile used in
the main text is found in the nonuniform field profile along the transverse (radial and
vertical) directions, which do not directly impact the topological order of the system.
The results of the acoustic simulations using these velocity fields, shown in Fig. 6b,c,
indeed demonstrate that the topological edge modes remain unaffected, confirming the
inherent robustness of the proposed topological protection.
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