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TOPOLOGICALLY SLICE KNOTS OF SMOOTH
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Abstract

The existence of topologically slice knots that are of infinite
order in the knot concordance group followed from Freedman’s
work on topological surgery and Donaldson’s gauge theoretic ap-
proach to four-manifolds. Here, as an application of Ozsváth and
Szabó’s Heegaard Floer theory, we show the existence of an in-
finite subgroup of the smooth concordance group generated by
topologically slice knots of concordance order two. In addition, no
nontrivial element in this subgroup can be represented by a knot
with Alexander polynomial one.

1. Introduction.

In [7] Fox and Milnor defined the smooth knot concordance group
C. Their proof that C is infinite quickly yields an infinite family of dis-
tinct elements of order two. Results of Murasugi [27] and Tristram [41]
demonstrated that C also contains a free summand of infinite rank. This
work culminated in Levine’s construction [22] of a surjective homomor-
phism φ : C → G, where G is an algebraically defined group isomorphic
to the infinite direct sum Z∞ ⊕ Z∞

2 ⊕ Z∞
4 .

Classical surgery theory allowed Levine to prove that φ is an isomor-
phism in high (odd) dimensions. The first distinction between classical
and high-dimensional concordance was seen in the work of Casson and
Gordon [2], who showed that the kernel of φ is nontrivial; this was fol-
lowed by a proof by Jiang [21] that ker(φ) contains a subgroup isomor-
phic to Z∞. In [23] it was shown that ker(φ) also contains a subgroup
isomorphic to Z∞

2 .
The work of Donaldson [4] and Freedman [8, 9] on smooth and topo-

logical 4–manifolds, respectively, revealed further subtlety present in
low-dimensional concordance. One can define a concordance group Ctop
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in the topological, locally flat, category. The distinction between the
smooth and topological categories is highlighted by considering the ker-
nel of the natural surjection C → Ctop. This kernel is generated by
topologically slice knots, and we denote it CTS . To underscore the im-
portance of CTS it should be mentioned that a single non-trivial ele-
ment in CTS implies the existence of a smooth 4–manifold homeomor-
phic, but not diffeomorphic, to R4 [11, Exercise 9.4.23]. Several people,
including Akbulut and Casson, observed that the results of Donald-
son and Freedman can be used to produce non-trivial elements in CTS

(see [3]), but until recently little was known about the structure of
CTS . Using techniques developed by Donaldson [4] and later enhanced
by Fintushel-Stern [6] and Furuta [10], Endo [5] proved that CTS con-
tains a subgroup isomorphic to Z∞ (see also [15, 16, 17] for other
constructions of infinite rank free subgroups). Techniques derived from
Heegaard Floer theory and Khovanov homology (specifically the Ras-
mussen invariant [40]) were used to show that CTS contains a summand
isomorphic to Z3 [24, 25, 26]. Recently that work has been superseded
by work of Hom [18] which applies a deep analysis of the structure of
Heegaard Floer complexes to construct a summand isomorphic to Z∞.

With the abundance of 2–torsion in C, one might expect that CTS

likewise has such torsion. However, producing torsion classes in CTS is
quite difficult since one needs a manifestly smooth invariant to detect
them. Many of the known techniques for analyzing CTS , however, fail
at detecting torsion classes (for instance, the Ozsváth-Szabó [34] or
Rasmussen [40] concordance invariants). Our main result shows that
like the concordance group, CTS has an abundance of 2–torsion.

Theorem 1. CTS contains a subgroup isomorphic to Z∞
2 .

We conjecture that, in line with Hom’s result, a summand isomorphic
to Z∞

2 exists, but current tools seem insufficient to prove this.
Freedman’s work [8, 9] implied that all knots of Alexander polyno-

mial one are topologically slice, and these knots provided all the early
examples of nontrivial elements in CTS . However, in [16] it was shown
that CTS in fact contains a subgroup isomorphic to Z∞ with no nontriv-
ial element represented by a knot with Alexander polynomial one. Here
we extend this to 2–torsion. Let C∆ denote the subgroup of C generated
by knots with Alexander polynomial one.

Theorem 2. The subgroup from Theorem 1 can be chosen so that no
nontrivial member is representable by a knot with Alexander polynomial
one. In particular, the group CTS/C∆ contains a subgroup isomorphic
to Z∞

2 .

This theorem can be strengthened by replacing the subgroup of knots
generated by Alexander polynomial one knots with the subgroup gen-
erated by knots with determinant one.
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To prove these theorems we consider knots KJ,n as illustrated in
Figure 1. These knots are defined to be the boundaries of surfaces built
by adding two bands to a disk as shown: the bands are tied in knots
J and −J and have n and −n full twists, where n > 0. An important
special case occurs when U is the unknot, whereby KU,1 is the figure
eight knot. We have the following easy proposition:

Proposition 1.1. KJ,n is negative amphicheiral (KJ,n = −KJ,n); in
particular, 2KJ,n = 0 ∈ C. If J1 and J2 are concordant, then KJ1,n and
KJ2,n are concordant.

The amphicheirality of KJ,n can be demonstrated just as for the case
J = U . Indeed, an isotopy to −KJ,n is obtained by pulling the bottom
band through the rectangular region and then rotating the knot 180◦

about a vertical axis running down the center of the page. The second
part of the lemma follows from the fact that satellite operations descend
to concordance, and KJ,n is a two-fold satellite operation with compan-
ions J and −J . The proposition allows for the immediate construction
of elements of order at most two in CTS .

Corollary 1.2. For U the unknot, 2(KJ,n#KU,n) = 0 ∈ C. If J is
topologically slice, then the knot KJ,n#KU,n is topologically slice; that
is, KJ,n#KU,n ∈ CTS.

−J J

−n n

Figure 1

Let D denote the untwisted Whitehead double of the right-handed
trefoil knot, T2,3, and letDk denote kD. The knotsKDk,n#KU,n provide
the subgroups appearing in Theorem 1 and Theorem 2.

Theorem 3. There exists an infinite set of pairs of positive in-
tegers {(k, n)} with the property that the corresponding set of knots
{KDk,n#KU,n} generates a subgroup of CTS and of CTS/C∆ as described
in Theorems 1 and 2.

The proof of Theorem 3 is presented in Section 3 after necessary
background is given in Section 2. The proof depends on a detailed
analysis of the Heegaard Floer d–invariants of the branched cover of S3
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branched over KDk,n. That analysis occupies Sections 4, 5 and 6. Some
of the most technical work has been placed in appendices.

Acknowledgements. We are indebted to the referees for their unusu-
ally thorough and thoughtful reading of the original manuscript. Their
contribution significantly enhanced the clarity and accuracy of the pre-
sentation.

2. Preliminary constructions

2.1. Algebraic slicing obstructions. The proofs of our main results
are based on considering two-fold branched covers of S3 overKJ,n, which
we denote M(KJ,n). According to [1], M(KJ,n) has a surgery descrip-
tion as illustrated in Figure 2, in which the meridian μ is labeled for
later reference. In the diagram, Jr denotes the orientation reverse of
J , and the meridian of the surgery curve is oriented consistently with a
choice of orientation for that curve. (In general, if a link is formed from
the Hopf link by tying a local knot K1 in one component, K2 in the
second, and then performing n1 and n2 surgery on the link, we denote
the resulting manifold S3

n1,n2
(K1,K2).) If J is reversible, then M(KJ,n)

has the surgery description S3
−2n,2n(−2J, 2J).

From this surgery description, a quick calculation yields a compu-
tation of the homology of M(KJ,n). In particular, H1(M(KJ,n)) is a
cyclic group of order 4n2 + 1. Notice that given the choice of generator
μ of H1(M(KJ,n)), the identification with a cyclic group is canonical.
In particular, this observation along with Poincaré duality permits us to
identify H2(M(KJ,n)) with H2(M(KU,n)) for all J . For emphasis and
for later reference we state this as a proposition.

Proposition 2.1. The choice of surgery description of M(KJ,n) pro-
vides a canonical isomorphism H2(M(KJ,n)) ∼= H1(M(KU,n)) ∼= Z4n2+1.

−J J

−Jr Jr

μ

2n−2n

Figure 2

As a special case, we note that M(KU,n) is given by (4n2 + 1)/2n–
surgery on the unknot: M(KU,n) = L(4n2 + 1, 2n).
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If a knot K is slice with slice disk F 2, then M(K) bounds the two-fold
branched cover of B4 branched over the slice disk, W (F 2). In this case
we have the following from [2].

Proposition 2.2. The homology groups Hi(W (F 2),Z2) = 0 for i ≥
1. The image I of the restriction map H2(W (F 2)) → H2(M(K)) is
a subgroup of order satisfying |I|2 = |H1(M(K))|. Furthermore, I
is self-annihilating with respect to the linking form. (Via duality, we
can view the linking form, usually defined on H1(M(K)), as a form on
H2(M(K)).)

2.2. Slicing obstructions from Heegaard Floer theory. Heegaard
Floer theory associates a (filtered homotopy class of) chain complex
CF∞(M, s) to a 3–manifold M with Spinc structure s. For a manifold
X, the set of Spinc structures, Spinc(X), is in bijection with elements
in H2(X), though not canonically so. However, associated to each s ∈
Spinc(X), there is a first Chern class, c1(s) ∈ H2(X), and in the case
that H2(X,Z2) = 0, the map:

c1 : Spin
c(X) → H2(X)

provides a bijection that is natural with respect to the transitive action
of H2(X) on both sides and with respect to pull-back; that is

1) c1(s+ α) = c1(s) + 2α for all α ∈ H2(X), and
2) c1(i

∗
s) = i∗c1(s) for an embedding i : Y → X with trivial nor-

mal bundle. In particular, for the inclusion of a codimension zero
submanifold Y ⊂ X, or for Y ⊂ ∂X, we have c1(s|Y ) = c1(s)|Y .

Thus, in cases in which H2(X,Z2) = 0, via the Chern class we can
denote Spinc structures by sα for α ∈ H2(X). There is an involution
on the set of Spinc structures called conjugation; the conjugate of s is
denoted s and one has sα = s−α.

As described in greater detail in Section 4, there is an invariant
d(M, s), called the correction term, defined in terms of the filtered ho-
motopy type of CF∞(M, s). It satisfies the following properties.

1) d(−M, s) = −d(M, s).

2) d(M1#M2, s1#s2) = d(M1, s1) + d(M2, s2).

3) d(M, s) = d(M, s).

The following theorem from [31] provides the obstruction we will use
to show that knots are not smoothly slice. (The use of d as a slicing
obstruction first appeared in [26], where it was applied only for the Spin
structure. In [12, 20] it was used in conjunction with a careful analysis
of Spinc structures to study concordance.)

Proposition 2.3. Suppose (W, t) is a Spinc four-manifold satisfying
Hi(W,Q) = 0, i > 0, and M = ∂W . Then d(M, t|M ) = 0.
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Note. In the case that M3 is constructed as −n–surgery on an oriented
knot K ⊂ S3, there is the following enumeration of Spinc structures on
M , parameterized by integersm with −n/2 ≤ m < n/2 (see [33, Section
4] for details). If W denotes the four-ball with a two-handle added along
K with framing −n < 0, we let tm denote the Spinc structure on W
satisfying 〈c1(tm), [S]〉 + n = 2m, where [S] is the generator of H2(W )
represented by an oriented Seifert surface for K, capped off with the
core of the two-handle. We denote by sm the restriction of tm to M .
This is well-defined whether n is odd or even. The Poincare dual of
c1(sm) satisfies PD(c1(sm)) = 2m[μ], where [μ] ∈ H1(M) is the class
represented by the meridian of K.

3. Main theorem.

In Appendix C we use a theorem of Iwaniec to obtain a number
theoretic result.

Proposition 3.1. There exists an infinite set N of positive integers
greater than one such that for all n ∈ N , 4n2 + 1 is square free and
4n2 + 1 is a product of at most two primes. Furthermore, for each
m,n ∈ N , 4m2 + 1 and 4n2 + 1 are relatively prime.

The main results of this paper are consequences of the following the-
orem.

Theorem 3.2. For each n ∈ N there is a positive integer kn having
the following property: If n ∈ N and L is any knot with |H1(M(L))|
relatively prime to 4n2 + 1, then KDkn ,n

#KU,n#L is not slice.

Most important, as an immediate corollary we have the result that
implies Theorems 1, 2, and 3 of the introduction.

Corollary 3.3. For all nonempty finite subsets N ′ ⊂ N ,
∑

n∈N ′

(KDkn ,n
#KU,n) /∈ C∆.

In particular, the set of knots {KDkn ,n
#KU,n} generate a subgroup iso-

morphic to Z∞
2 in Cts/C∆.

Proof Corollary 3.3. Suppose that
∑

n∈N ′(KDkn ,n
#KU,n) is concordant

to a knot K with Alexander polynomial one. Then we have∑
n∈N ′(KDkn ,n

#KU,n)#−K is slice. Let m be the least n ∈ N ′ and
let N ′′ be the set N ′ with m removed. We can break up the connected
sum of knots as

(KDkm,m
#KU,m)#

( ∑

n∈N ′′

(KDkn ,n
#KU,n)#−K

)
.

At this point we can complete the proof by applying Theorem 3.2 with
L =

∑
n∈N ′′(KDkn ,n

#KU,n)#−K. q.e.d.
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3.1. Proof of Theorem 3.2. The rest of this section presents the proof
of Theorem 3.2, calling upon results from later sections as needed. The
choice of kn will be described in the context of the proof.

Abbreviate KDk,n#KU,n by Kn,k. Assuming that Kn,k #L is slice,
the manifold M(Kn,k)#M(L) bounds a rational homology ball W .
Since the orders of H1(M(Kn,k)) and H1(M(L)) are relatively prime, it
follows that the image of H2(W ) in H2(M(Kn,k)#M(L)) ∼= (Z4n2+1⊕
Z4n2+1)⊕H2(M(L)) contains a subgroup of the form M⊕0 where M ⊂
Z4n2+1 ⊕Z4n2+1 is a metabolizer for the linking form on H1(M(Kn,k)).
With this we can prove the following.

Lemma 3.4. If Kn,k #L is slice, then for some metabolizer M of
the linking form on H1(M(Kn,k)) and for all (z1, z2) ∈ M,

d(M(KDk,n), sz1) + d(M(KU,n), sz2) = 0.

Proof. It is immediate that d(M(KDk,n), sz1) + d(M(KU,n), sz2) +
d(M(L), s0) = 0. Notice that since L is assumed to be concordant
to −Kn,k, which is of order two, L is also of order 2. Because 2L is
slice, 2M(L) bounds a Z2–homology ball Z. The Spin structure on
Z restricts to the Spin structure on 2M(L). Thus, the Spinc structure
s0⊕s0 on M(L)#M(L) extends to Z. It follows that 2d(M(L), s0) = 0.

q.e.d.

We now must consider metabolizers for the linking form on (Z4n2+1)
2.

Lemma 3.5. For a fixed non-degenerate linking form on ZN , with
N square-free, each metabolizer for the double of this form on (ZN )2 is
generated by an element (1, b) where 1 + b2 ≡ 0 mod N .

Proof. Recall first that a non-degenerate linking form on ZN is given
by an element α ∈ ZN : lk(x, y) ≡ xαy mod N , where α and N are
relativity prime.

Since (ZN )2 is of rank two, any metabolizer M is of rank at most two,
so is generated by two elements, {(a, b), (c, d)}. Using Gauss-Jordan
elimination, we see it is generated by a pair of elements {(a, b), (0, c)}.
If c is nonzero it would have self-linking 0, which is impossible for a
non-degenerate form on ZN with N square-free.

Thus M is generated by a single element (a, b), so (a, b) is of order
N . If either a or b were divisible by some prime factor of N , then some
multiple of (a, b) would be of the form (0, c) or (c, 0) with c nonzero. But
again, the existence of such an element is ruled out by N being square-
free and the form being non-degenerate. Since amust be relatively prime
to N , some multiple of (a, b) is of the form (1, b′), and clearly b′ = 0. In
fact, since (1, b′) is in the metabolizer M, one has 1+(b′)2 ≡ 0 mod N ,
as desired. q.e.d.

Combining Lemmas 3.4 and 3.5 yields the following.
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Lemma 3.6. If Kn,k #L is slice, then for some b satisfying 1+b2 ≡ 0
mod 4n2 + 1 and for all x, d(M(KDk,n), sx) + d(M(KU,n), sbx) = 0.

Notice that in this statement the subscripts on the Spinc structures,
x and bx, are cohomology classes; the cohomology of the spaces are
identified using Proposition 2.1.

For our purposes, a change of signs will be convenient, as follows.

Lemma 3.7. If Kn,k #L is slice, then there is some b satisfying b2 ≡
1 mod 4n2+1 such that for all x, d(M(KDk,n), sx) = d(M(KU,n), sbx).

Proof. The knot KU,n is of order two: KU,n#KU,n is slice. Thus,
the previous argument shows that there is some b′ satisfying 1+ b′2 ≡ 0
mod 4n2+1 such that for all x, d(M(KU,n), sx)+d(M(KU,n), sb′x) = 0.
Replacing x with bx from the previous lemma yields d(M(KU,n), sbx) +
d(M(KU,n), sb′bx) = 0. The rest is arithmetic along with a renaming of
variables. q.e.d.

Completion of the proof of Theorem 3.2
According to Proposition 6.7, there is a specific Spinc structure sα

such that for all k with 0 ≤ k < n/2,

d(M(KDk,n, sα))− d(M(KU,n, sα)) = −2k.

Applying Lemma 3.7, for each k and some b satisfying 1 + b2 ≡ 0
mod 4n2 + 1, we have

d(M(KU,n), sbα)− d(M(KU,n), sα) = −2k.

Since 4n2 + 1 is the product of at most two primes, there are at most
four values of b mod 4n2 + 1 for which b2 ≡ −1 mod 4n2 + 1. Thus,
the expression on the left of the equality can have at most four distinct
values. As long as n ≥ 9 the set of integers in the interval 0 ≤ k < n/2
contains at least five elements, so we can choose k so that the equality
is violated. Any such choice can serve as kn.

4. Heegaard Floer complexes

The computation of the d–invariants of interest depends upon a de-
tailed understanding of related Heegaard Floer complexes. The main
result in this section is Theorem 4.2, the refiltering theorem, which de-
scribes the chain complex associated to the meridian of a knot K within
the manifold S3

−N (K) in terms of the chain complex associated to K

within S3.

4.1. Three-manifold complexes. We let F denote the field with two
elements. As mentioned earlier, given a 3–manifold M with Spinc struc-
ture s, there is an associated Z–filtered Q–graded complex CF∞(M, s).
This complex is a free, finitely generated F[U,U−1]–module, which is
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well-defined up to filtered chain homotopy equivalence. The filtration
of CF∞(M, s) by subcomplexes is induced by a natural filtration of
F[U,U−1] by powers of U . More precisely, we can regard F[U,U−1] as
an (infinitely generated) F[U ]–module in the obvious way. As such, it
has an exhaustive Z-indexed filtration by (free) F[U ]–submodules

... ⊂ UkF[U ] ⊂ Uk−1F[U ] ⊂ Uk−2F[U ] ⊂ ...,

and this filtration induces a Z–filtration of CF∞(M, s) by subcomplexes.
Thus the filtration level of a chain in CF∞(M, s), regarded as a sum of
Laurent polynomials in the basis elements, is given by the negative of
the minimum power of U which appears in this polynomial. The action
of U clearly lowers filtration level by one. It lowers grading by two.

Added notation permits the simple representation of subcomplexes;
for instance, we denote the subcomplex consisting of elements of filtra-
tion level at most n by CF∞(M, s){i≤n}. With this we can define several
associated complexes,

CF−(M, s) = CF∞(M, s){i<0},

CF+(M, s) = CF∞(M, s)/CF∞(M, s){i<0},

and
ĈF (M, s) = CF∞(M, s){i≤0}/CF∞(M, s){i<0}.

There are corresponding homology groups, HF−(M, s), HF+(M, s) and

ĤF (M, s).
There will also be situations in which we must shift the gradings of ele-

ments in these chain complexes. For instance, we will write CF+(M, s)[ǫ]
for the same complex as CF+(M, s), except with the homological grad-
ing of any element increased by ǫ; that is,

CF+
∗ (M, s)[ǫ] = CF+

∗−ǫ(M, s),

for all ∗.

Definition 4.1. The d–invariant d(M, s) is given by

min{gr(α) | α = 0 ∈ HF+(M, s) and α ∈ Image Un for all n > 0},

where gr(α) is the homological grading.

4.2. Knot complexes. A knot K ⊂ M induces a second Z–filtration
of the complex CF∞(M, s), which thus becomes a Q–graded, Z ⊕ Z–
filtered complex. The U action respects the second filtration, lowering
this filtration by one as well. This doubly filtered complex is denoted
CFK∞(M,K, s), and again there are associated subcomplexes such as
CFK∞(M,K, s){i≤m,j≤n}. As in the 3–manifold case, there are quotient

complexes CFK+(M,K, s) = CFK∞(M,K, s)/CFK∞(M,K, s){i<0}

and ĈFK(M,K, s) = CFK∞(M,K, s){i≤0}/CFK∞(M,K, s){i<0}; ig-
noring the j filtration yields the corresponding complexes for (M, s).
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Figure 3 illustrates the complexes for the unknot and the (2, 5)–torus
knot in S3. (For alternating knotsK, CFK∞(S3,K) is determined sim-
ply from the Alexander polynomial [30].) The dots represent elements
in a filtered F–basis and the line segments indicate components of the
boundary operator. Sometimes we will not need to include arrows on
the segments; the fact that the boundary map cannot increase either fil-
tration and ∂2 = 0 will make the direction unambiguous in most of the
examples we consider. The gradings are not indicated in the diagram;
the coordinates in the diagram correspond to the filtration, as follows:
the vertical and horizontal axes in bold separate elements of filtration
levels −1 and 0. That is, the dot just above and to the right of the origin
has filtration level (0, 0). The action of U shifts the diagram down and
to the left by one.

Convention. In all the cases we consider, CFK∞(M,K, s) is filtered
chain homotopy equivalent to C ⊗F F[U,U−1] for some finite Z ⊕ Z–
filtered F–complex C. We will simplify our diagrams and illustrate only
C, leaving out all of its U translates.

CFK∞(S3, U) CFK∞(S3, T2,5)

Figure 3

4.3. Gradings. To this point we have not described how the homologi-
cal grading is determined. Rather than review this aspect of the theory,
we refer the interested reader to [31, 35] for definitions and details.
For our purposes, the following elementary observation will be particu-
larly useful: the value of d(M, s) can be used to determine the gradings
of elements in CFK∞(M,K, s). We illustrate this with an important
example.

In the special case of S3 there is only one Spinc structure, denoted s0.
We have HF+(S3, s0) = F[U,U−1]/UF[U ] and by definition d(S3, s0) =
0. For example, in the complex CFK+(S3, T2,5, s0) (constructed from
the complex illustrated on the right in Figure 3 by quotienting by all
elements to the left of the vertical axis), we see that the non-trivial
homology class with least grading is represented by the cycles living in
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filtration levels (0, 2), (1, 1), and (2, 0). Thus, all of these have grading
0.

4.4. Meridians of knots in surgered manifolds. Let S3
−N (K) de-

note the manifold constructed as −N surgery on K ⊂ S3 and let μ de-
note the meridian of K, viewed as a knot in S3

−N (K). The work of [14]
can be extended to show that for each Spinc structure sm, the complex
CFK∞(S3

−N (K), μ, sm) is isomorphic to CFK∞(S3,K), but endowed
with a different Z⊕ Z–filtration and an overall shift in the homological
grading. We state the result for a knot in a general 3–manifold.

Notation Notice that until now, Spinc structures were denoted sα,
where α ∈ H2(M). Here they have been denoted sm with m an integer
(viewed, modulo N , in Z/NZ), according to the convention described
in the note at the end of Section 2.2.

Theorem 4.2 (Refiltering Theorem). Suppose N ≥ 2g(K). For
m in the interval

⌈(−N + 1)/2⌉ ≤ m ≤ ⌊N/2⌋,

the complex CFK∞(Y 3
−N (K), μ, sm) is isomorphic to CFK∞(Y 3,K)[ǫ1]

as an unfiltered complex, where [ǫ1] denotes a grading shift that depends
only on m and N . Given a generator {[x, i, j]} for CFK∞(Y 3,K),
the Z ⊕ Z filtration level of the same generator, viewed as a chain in
CFK∞(Y 3

−N (K), μ, sm), is given by:

Fm([x, i, j]) =

{
[i, i] if j > i+m,

[j −m, j −m− 1] if j ≤ i+m.

Before discussing its proof, we illustrate this theorem in Figure 4, which
shows for all N ≥ 8 the complexes CFK∞(S3

−N (K), μ, sm) for K = U
and K = −T2,5, with −3 ≤ m ≤ 4. We show only the F–subcomplex
that generates the full complex over F[U,U−1].

Proof. The theorem refines [14, Theorem 4.1] in two directions:

1) [14, Theorem 4.1] determines the Z–filtered chain homotopy type

of ĈFK(S3
−N (K), μ, sm). Here we seek to understand the Z⊕ Z–

filtered chain homotopy type of CFK∞(Y 3
−N (K), μ, sm).

2) [14, Theorem 4.1] applies for N ≫ 0. We wish to show that
N = 2g(K) suffices.

The first refinement is an immediate extension of the proof from [14],
so we do not belabor the details here. To begin, we note that the dif-
ference between S3 and a general 3–manifold is merely notational. The
key idea from [14] was to observe that with the addition of another
basepoint, the natural Heegaard diagram for −N–framed surgery on
K could be made to represent the knot μ ⊂ Y−N (K). The proof of
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U

m = −3 m = −2 m = −1 m = 0

m = 1 m = 2 m = 3 m = 4

−T2,5

m = −3 m = −2 m = −1 m = 0

m = 1 m = 2 m = 3 m = 4

Figure 4

[33, Theorem 4.1] shows that the Z–filtered chain homotopy type of
CF∞(Y−N (K), sm) is determined by that of CFK∞(Y,K). This implies
that the chain homotopy type of CF−(Y−N (K), sm), CF+(Y−N (K), sm),

and ĈF (Y−N (K), sm) are also determined by CFK∞(Y,K), as they are
sub, quotient, and subquotient complexes of the filtration, respectively.
Now the meridian μ ⊂ Y−N (K) induces an additional Z–filtration of any
of these complexes, and [14, Theorem 4.1] determined that in the case

of ĈF (Y−N (K), sm), the additional Z–filtration consists of two steps:

0 ⊆ CFK∞(Y,K){i≥0,j=m} ⊆ CFK∞(Y,K){min(i,j−m)=0},

where the subquotient on the right was identified with ĈF (Y−N (K), sm)
by [33, Theorem 4.1]. Strictly speaking, the proof of [14, Theorem 4.1]
only dealt with the case of positive framed surgery explicitly, leaving the
case of negative framings to the reader. The analogous proof for neg-
ative framings yields the two-step filtration above, and the extension
to CFK∞ follows easily from the same proof. (It is worth noting that
the formula from [14, Theorem 4.1] was actually for the filtration in-
duced by μr, the meridian of K with reversed orientation. The formula
above is for the meridian with its standard orientation.) To be more pre-
cise, [33, Theorem 4.1] identifies CF∞(Y−N (K), sm) with CFK∞(Y,K)
via a chain map which was denoted Φ. This isomorphism of chain
complexes respects the F[U,U−1]–module structure of both complexes,
and hence one of the Z–filtrations. The additional Z–filtration on
CF∞(Y−N (K), sm) induced by μ can be determined in exactly the same
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manner as it was determined for the case of ĈF (Y−N (K), sm) in [14],
yielding the statement of the theorem. In both cases, the key lemma is
[14, Lemma 4.2], which identifies the Z–filtration induced on any given
i =constant slice in CF∞(Y−N (K), sm) with a two step filtration as
above.

For the second refinement, recall that the proof of [14, Theorem 4.1]
relies on making the surgery parameter large enough so that an entire
Spinc equivalence class of generators for Y−N (K) is supported in the
winding region (by definition, we say that a generator is supported in
the winding region if it is represented by a k–tuple of intersection points
which contains a point in the region shown in [14, Figure 13]). This is
achieved by a pigeonhole argument: there are only finitely many Spinc

equivalence classes that can be represented by the finitely many gener-
ators not supported in the winding region, and increasing N increases
the number of Spinc structures without bound. Once we have an entire
Spinc equivalence class supported in the winding region, we can appeal
to the technique of “moving the basepoint.” In the present context this
means moving the placement of the meridian and nearby collection of
basepoints throughout the winding region; see [14, Theorem 4.3]. This
technique allows us to use the single Spinc equivalence class of inter-
section points which is supported in the winding region to represent all
|H1(Y )| ·N different Spinc structures on Y−N (K) (for a manifold with
b1(Y ) > 0, |H1(Y )| should be replaced by the number of Spinc struc-
tures on Y represented by the diagram). Thus the question is reduced to
finding a topological interpretation for the number of Spinc classes rep-
resented by generators which are not supported in the winding region.
We will henceforth refer to such generators as exterior.

To achieve a bound for the number of Spinc classes represented by
exterior generators, we use a particular Heegaard diagram which is
adapted to a Seifert surface for K with genus g. A similar Heegaard
diagram appears in the proof of the adjunction inequality [33, Theo-
rem 5.1]; such a diagram is constructed explicitly in [32, Lemma 7.3]
and [28, Proof of Theorem 2.1]. The diagram consists of a quadruple,

(Σk, �α = {α1, ..., αk}, �β = {β1, ..., βk−1, μ, λ}, {w ∪ z}),

where (Σ, �α, �β \ μ) and (Σ, �α, �β \ λ) are Heegaard diagrams for Y0(K)
and Y , respectively, and {w∪z} specifies K on the latter diagram. The
key features of the diagram are that

• There is a domain P with

∂P = αk ∪ λ

such that P ∪ {Disk bounded by αk} is isotopic to the chosen
Seifert surface.
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• The only α curves which intersect P are αk and α1, ..., α2g, where
g, as above, is the genus of K(= genus of P).

Now we observe that the diagram

(Σk, �α = {α1, ..., αk}, �β = {β1, ..., βk−1, λ
−N}, {w})

specifies Y−N (K), where λ−N is a simple closed curve isotopic to the
resolution of N parallel copies of the reversed meridian μr and one copy
of λ. Furthermore, with an additional point z′ the diagram specifies
the knot μ ⊂ Y−N (K). As above, the generators of CFK∞(Y−N (K), μ)
arising from this diagram are split according to whether they are sup-
ported in the winding region or are exterior. The exterior generators
are characterized by the fact that the point of intersection occurring on
λ−N lies outside the winding region (recall that a generator is a k–tuple
of intersection points between α and β curves, with each α and β curve
appearing exactly once; thus λ−N is used exactly once by any k–tuple
comprising a generator). The exterior generators are in bijection with
generators for the Heegaard diagram of Y0(K) (the diagram with λ as
the last curve). Our bound of 2g(K) in the theorem will be attained
if we can argue that the total number of Spinc equivalence classes rep-
resented by the exterior points is less than |H1(Y )| · 2g. This follows
from the key properties of our Heegaard diagram. Indeed, recall the
first Chern class formula [32, Proposition 7.5]:

(4.1) 〈c1(sw(x)), [P]〉 = e(P) + 2
∑

xi∈x

nxi
(P).

Here, x is a k–tuple generating a Heegaard Floer complex, [P] ∈ H2 is
the second homology class obtained by capping off the boundary compo-
nents of a periodic domain, e(P) is the Euler measure of P (which agrees
with the Euler characteristic for periodic domains with all multiplicities
zero or one) and nxi

(P) is the average of the local multiplicities of P in
the four regions surrounding an intersection point xi. For our particular
Heegaard diagram for Y0(K), the right-hand side of 4.1 becomes:

−2g + 2#{xi ∈ interior(P)}+ 2,

where −2g is the Euler characteristic of P. The additional +2 term
comes from the fact that αk and λ do not intersect and must each
contain an xi ∈ x. Since αk and λ are on the boundary of P, each of
these two xi have nxi

(P) = 1/2. Finally, the fact that there are only
2g other α curves which intersect P and that any k–tuple comprising
a generator must use one of these α curves for the intersection point
xi ⊂ λ implies that

0 ≤ 2#{xi ∈ interior(P)} ≤ 2(2g − 1),

thus showing that

−2g + 2 ≤ 〈c1(sw(x)), [P]〉 ≤ 2g.
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Now the fact that 〈c1(sw(x)), [P]〉 is an even integer which vanishes
if c1(sw(x)) is torsion implies that there are at most |H1(Y )| · 2g dis-
tinct Spinc equivalence classes represented on the Heegaard diagram for
Y0(K), and hence the same bound exists for the number of exterior
intersection points. This completes the proof. q.e.d.

5. The complex CFK∞(S3
−N (−2Dk), 2Dk)

In general, the computation of the d–invariant of surgery on a knot
K ⊂ Y from CFK∞(Y,K, s) can be rather challenging; identifying
patterns among the values that arise for various values of s is even more
subtle. If the surgery coefficient is appropriately large, however, there
are significant simplifications. This section describes the general theory
and demonstrates that in our setting the simplifications that arise from
the large surgery assumption do apply.

To be more specific, in [33, Theorem 4.1] it was shown that the com-
plex CFK∞(S3,K) determines CF+(S3

N (K), sm) for N ≥ 2g(K) − 1,
with a similar result proved for null-homologous knots in arbitrary 3–
manifolds. In [38, Theorem 4.1] this was generalized to rationally null-
homologous knots, in which case CF+(YN (K), sm) depends on the com-
plexes CFK∞(Y 3,K, s′m′) for specified classes s

′
m′ . However, the gen-

eralization of [38] did not specify how large the framing parameter had
to be in order to apply the result. Rather, it simply showed that for
sufficiently large framings such a formula exists, and then a more gen-
eral formula was proved which holds for arbitrary framings in terms of a
mapping cone complex. In our situation we will apply a special case of
the results of [38], taking advantage of the fact that Y = S3

−2n(−2Dk),
and that we are performing 2n–surgery on a knot formed as the con-
nected sum of a knot in S3 with the meridian of −2Dk. While we utilize
the full mapping cone complex, our surgery parameters are chosen so
that they will be large enough for the simpler formula to hold. This
will manifest itself in a collapse of the mapping cone complex to a single
term. In general, “large” should be taken to mean: “large in comparison
to the Thurston norm of the complement.”

Here is the statement of the result we need. The exact correspondence
between the Spinc structures sm and s

′
m′ is implicit in the proof but is

not needed in our application of the theorem.

Theorem 5.1. Let K2 ⊂ Y = S3
−N (K1) be a knot of the form

μ#K ′
2 where μ is the meridian of K1 and K ′

2 is a knot in S3. For any
N ≥ max(2g(K ′

2) + 2, 2g(K1)), there is an enumeration of Spinc struc-
tures on YN (K2), {sm}−N2/2≤m≤N2/2, such that CF+(YN (K2), sm) is
isomorphic to

CFK∞(S3
−N (K1),K2, s

′
m′)/CFK∞(S3

−N (K1),K2, s
′
m′){i<0,j<m}[ǫ].
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Elements in the above quotient with i = 0, j ≤ m and i ≤ 0, j = m are at

filtration level 0 in CF+(YN (K2), sm); these represent ĈF (YN (K2), sm).
The induced map U lowers filtration level by 1. The grading shift, ǫ, is
a function of m and N , and in particular, the grading shift does not
depend on K ′

2.

Applying this theorem to the relevant manifolds yields the following
corollary:

Corollary 5.2. For any 0 ≤ k < n/2, there is an enumeration of
Spinc structures on M(KDk,n), {sm}−2n2≤m≤2n2 for which the complex
CF+(M(KDk,n), sm) is isomorphic to

CFK∞(S3
−2n(−2Dk), μ#2Dk, s

′
m′)

CFK∞(S3
−2n(−2Dk), μ#2Dk, s

′
m′){i<0,j<m}

[ǫ],

with filtration, grading shift, and F[U ]–module structure as in Theorem
5.1.

Proof. The manifoldM(KDk,n) is obtained by performing 2n–surgery
on μ#2Dk ⊂ S3

−2n(−2Dk). Thus we need only verify that

2n ≥ max(2g(2Dk) + 2, 2g(−2Dk)),

provided that 0 ≤ k < n/2. Both 2Dk and −2Dk have genus 2k, being
the connected sum of 2k copies of the Whitehead double, a genus one
knot. q.e.d.

The rest of this section is devoted to proving Theorem 5.1.

5.1. Heegaard diagrams, Spinc structures, homology and sur-
gery. Our computation of HF+(M, s) relies on results of [38], in which
the general problem of computing the Heegaard Floer homology of ratio-
nal surgery on a knot in a rational homology sphere is studied. Although
the manifolds we consider are in some respects fairly simple, in order to
apply [38] it is essential to review some of the foundations.

The manifold M we are considering is formed by surgery on a link
(K ′,K) ⊂ S3 constructed from the Hopf link by placing local knots in
each component. More specifically, M is given by −N surgery on K ′

followed by N surgery on K. Thus, our approach to computing the
Heegaard Floer homology of M is to view it as formed by performing
N surgery on knot K, viewed as a knot in Y = S3

−N (K ′). We begin

by considering surgery on the Hopf link, in which case Y = S3
−N (U) =

−L(N, 1) and M = L(N2 + 1, N). We then move to the more general
case, encompassing the situation in which the components are knotted.

5.2. Lens space Heegaard diagram. As a starting point, we con-
sider lens spaces −L(N, 1). On the left in Figure 5 is a doubly pointed
Heegaard diagram for Y = −L(2, 1), which we use to illustrate the
general construction.
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α
β

z

w

x0

x1

α
β

z

w

x0

x1

K

μ

m

Figure 5. Doubly pointed Heegaard diagram

In the lens space, the surface Σ = T 2 represented by this diagram
bounds solid tori Uα and Uβ in which the curves α and β bound embed-
ded disks, respectively. If we let ηα be an arc from w to z on Σ missing
α that is pushed into Uα (except at its endpoints) and let ηβ be an arc
from z to w on Σ missing β pushed into Uβ , the union of ηα and ηβ
forms an oriented knot K in Y . Notice that once isotoped into Uα, K
represents the core of Uα.

The meridian to K we denote μ. The complement of K in Uα is
homeomorphic to T 2× I with H1(Uα \K) generated by μ and the curve
m illustrated on the right in Figure 5. Notice thatH1(Y \K) is generated
by μ and m, subject to the relations Nm−μ = 0. This is shown on the
left in Figure 6, which illustrates the solid torus Uα. Note that in the
figure, K has not yet been isotoped into Uα.

α

β
μ

K

m

ǫ(x0, x1)
w

z

x0

x1

α

β

μ

K

Kλ

−2

m

Figure 6. Surgery diagram of lens space L(5, 2)

5.3. Relative Spinc structures.Associated to each intersection point,
x0 or x1 in the figures and {x0, x1, . . . , xN−1} for general −L(N, 1), there
is a relative Spinc structure sw,z(xi) ∈ Spinc(Y,K). The differences be-
tween these satisfy
(5.1)
sw,z(xi+1)− sw,z(xi) = PD[ǫ(xi, xi+1)] ∈ H2(Y \ νK, ∂) ∼= H2(Y,K)
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where

ǫ(xi, xi+1) ∈
H1(Σ \ {z, w})

Span �α+ Span �β
∼= H1(Y \ νK)

is the class represented by a path that travels from xi to xi+1 along α
and then from xi+1 to xi along β. As seen from the figure, this curve is
isotopic to m in Y \ νK. (In all these equations, i ∈ Z/NZ.)

There is a natural map, called the filling map, GY,K: Spinc(Y,K) →
Spinc(Y ) which satisfies

GY,K(ξ + k)−GY,K(ξ) = ι(k),

where k ∈ H2(Y,K). If Kr denotes the orientation reverse of K, then

GY,K(ξ)−GY,Kr(ξ) = −PD[K].

Comment. As described by Turaev [42], Spinc structures on a closed
manifold correspond to equivalence classes of nonvanishing vector fields,
where two are equivalent if homotopic off a ball. In the case that K ⊂ Y
is an oriented knot, a relative Spinc structure corresponds to a nonvan-
ishing vector field on Y \ νK which points outwards on the boundary.
The map G is given in terms of a canonical extension of a vector field
from Y \ νK to Y . See [38, Section 2.2] for a further discussion.

5.4. YN (K). We are interested in performing N surgery on K. To be
clear about framings, in Figure 6 a push-off of K, Kλ, is illustrated.
The surgered manifold, YN (K) is built by removing a neighborhood of
K and replacing it with a solid torus so that Kλ bounds a meridianal
disk in that solid torus. Note that H1(YN (K)) is generated by μ and m
subject to the relations Nm− μ = 0 and m+Nμ = 0. For instance in
the illustrated case, with N = 2, we get H1(YN (K)) = Z/5Z. (In fact,
Y2(K) = L(5, 2).) In general, for N surgery on K in −L(N, 1) we end
up with L(N2 + 1, N) = −L(N2 + 1, N).

5.5. The structure of CFK∞(Y,K). To each relative Spinc structure
ξ ∈ Spinc(Y,K), there is an associated doubly filtered chain complex
CFK∞(Y,K, ξ) generated by triples [x, i, j] satisfying

(5.2) sw,z(x) + (i− j) · PD[μ] = ξ.

Here, x ∈ Tα ∩Tβ is an intersection point of the Lagrangian tori in the
symmetric product of a Heegaard diagram (Σ,α,β, z, w), and i, j ∈ Z.
For instance, in the case of Y a lens space as above, we have illustrated
examples in Figure 7. In the figure, x can denote any of the xi coming
from the Heegaard diagram in Section 5.2. The value of ξ is written
beneath each of the complexes. (The shading in these diagrams becomes
relevant later.)

Every relative Spinc structure is of the form sw,z(x0) + kPD[m] for
some k ∈ Z, and this provides a correspondence between Spinc(Y,K)
and Z. Since μ = Nm, the set of relative Spinc structures associated to
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sw,z(x)− PD[μ] sw,z(x) sw,z(x) + PD[μ] sw,z(x) + 2PD[μ]

Figure 7. CFK∞(Y,K)

each xi is a coset of NZ ⊂ Z. Also, since sw,z(xi)− sw,z(x0) = iPD[m],
for different xi the sets are distinct cosets.

5.6. Enumerating relative Spinc structures for the manifolds at
hand. We now move to our particular setting, in which Y = S3

−N (K ′)

is a manifold constructed as surgery on a knot K ′ ⊂ S3 and K ⊂ Y is
a knot of the form μ#J , where μ is the meridian of K ′ and J ⊂ S3.
Relative Spinc structures will play a central role in the surgery formula
which will be used to compute the Floer homology of YN (K). We discuss
them now.

The manifold YN (K) contains a knot, which we also denote K, in-
duced by the surgery: K is simply the core of the solid torus. There are
two surjective filling maps to consider:

GYN (K),K : Spinc(YN (K),K) → Spinc(YN (K))

and

GY,K : Spinc(Y,K) → Spinc(Y ).

There is a canonical diffeomorphism

YN (K) \ νK → Y \ νK

that provides an identification between Spinc(YN (K),K) and Spinc(Y,
K), with which we subsequently conflate elements in the two sets.
We will primarily think in terms of Spinc(Y,K), and the important
point will be to understand the images of this H2(Y,K)–torsor under
GYN (K),K and GY,K .

Since H2(Y,K) ∼= Z, we can (non-canonically) pick an affine iso-
morphism which enumerates the relative Spinc structures on Y \ νK
by integers (or elements in H2(Y,K)). For our purposes, it will be
most convenient to pick an enumeration that is compatible with the
previously established affine isomorphism Spinc(Y ) ∼= Z/NZ ∼= H2(Y )
implicit in the statement of the refiltering theorem; that is, we first
enumerate elements in Spinc(S3

−N (K ′), μ) to be compatible with our
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enumeration of Spinc structures on S3
−N (K ′), and we then use this to

induce an enumeration for Spinc(S3
−N (K ′), μ#J).

To make this precise, recall that the refiltering theorem determines
the Z ⊕ Z–filtered homotopy type of CF∞(S3

−N (K ′), μ, sm), where sm

indicates a specific absolute Spinc structure on S3
−N (K ′) = Y and m ∈

Z/NZ. As in the last section, associated to a relative Spinc struc-
ture ξ ∈ Spinc(Y, μ), we obtain a complex CFK∞(Y, μ, ξ) generated
by triples satisfying (5.2). We pick an identification of Spinc(Y, μ) with
Z so that the m-th relative Spinc structure, which we hereafter denote
tm ∈ Spinc(Y, μ), or occasionally by m ∈ Z, has infinity complex given
by the refiltering theorem; that is,

CFK∞(Y, μ, tm) = CFK∞(Y, μ, sm), for ⌈(−N +1)/2⌉ ≤ m ≤ ⌊N/2⌋,

where on the left we have the infinity complex associated to a relative
Spinc structure and on the right the filtered complex associated to the
absolute Spinc structure labeled sm by the refiltering theorem. Equation
(5.2) then determines the infinity complex for the remaining relative
Spinc structures (outside the interval of the theorem) by the equation:

CFK∞(Y, μ, tm+kN ) = CFK∞(Y, μ, tm){0,−k},

where {0,−k} indicates that we have shifted the j–filtration down by
k. Finally, we observe that having picked an affine isomorphism

Spinc(Y, μ) ∼= H2(Y, μ) ∼= Z,

we subsequently obtain an affine isomorphism

Spinc(Y, μ#J) ∼= H2(Y, μ#J) ∼= Z,

via the natural isomorphism H2(Y, μ) ∼= H2(Y, μ#J).
With our convention in hand, we hereafter regard relative Spinc struc-

tures as integers, or as elements in H2(Y,K). Similarly, we regard abso-
lute Spinc structures on Y or YN (K) as elements in H2(Y ) ∼= Z/NZ or
H2(YN (K) ∼= Z/(N2 + 1)Z, respectively. Our convention is compatible
with the filling maps, in the sense that they are now identified with the
corresponding restriction maps on cohomology:

H2(YN (K),K) → H2(YN (K))

and

H2(Y,K) → H2(Y ).

To illustrate these principles, and for use in the next section, let s be
some fixed Spinc structure on YN (K). Now define S(s) = G−1

YN (K),K(s).

We have that S(s) = {tk+(N2+1)j} for j ∈ Z and some k, 0 ≤ k ≤ N2.

Moreover, for each fixed value of k, there exists an s ∈ Spinc(YN (K))
such that tk ∈ S(s).
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5.7. The mapping cone. HF+(YN (K), s) can be computed as the
homology of a mapping cone complex built from CFK∞(Y,K) via a
construction of Ozsváth and Szabó which we now recall. We use the
notation of [37, 38] and refer the reader there for more details.

Letting S = S(s) be as above, there are complexes

A+
s
(Y,K) = ⊕ξ∈SA

+
ξ (Y,K),

B+
s
(Y,K) = ⊕ξ∈SB

+
ξ (Y,K).

Here

A+
ξ (Y,K) = CFK∞(Y,K, ξ){max(i,j)≥0},

and

B+
ξ (Y,K) = CF+(Y,GY,K(ξ)).

We can write

CF+(Y,GY,K(ξ)) = CFK∞(Y,K, ξ){i≥0},

where in the term on the right of the equality, K has provided a filtration
of B+

ξ (Y,K).

There are maps:

v+ξ : A+
ξ (Y,K) → B+

ξ (Y,K)

and

h+ξ : A+
ξ (Y,K) → B+

ξ+PD[Kλ]
(Y,K).

The map v is given by the projection map onto the quotient com-
plex of A+

ξ (Y,K) consisting of triples [x, i, j] with i ≥ 0, the so-called

vertical complex. The map h is more subtle. Interchanging the roles
of i and j replaces K with Kr, its reverse. The associated filling map
for Kr is denoted GY,Kr . Because of the string reversal, GY,Kr(ξ) =
GY,K(ξ) + PD(K). Thus, if we simply take the quotient corresponding
to the horizontal projection, the target of this chain map is a complex
homotopy equivalent to CF+(Y,GY,K(ξ) + PD(K)). The map h+ξ is

given by horizontal projection, followed by this chain homotopy equiv-
alence.

We now want to consider the set S(s) in terms of Spinc structures on
Y . To do so we write

S(s) = {tk+(N2+1)j}j∈Z

for some fixed k satisfying 0 ≤ k ≤ N2. This set can be partitioned
according to its N possible images in Spinc(Y ) under the filling map
GY,K . Let 0 ≤ l ≤ N − 1. Then S can be written as

⋃

0≤l≤N−1

(
{t[j(N2+1)+(l−k)N ]N+l}j∈Z

)
.
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Recalling that μ = Nm, this can be rewritten as
⋃

0≤l≤N−1

(
{tl + [j(N2 + 1) + (l − k)N ]PD(μ)}j∈Z

)
.

Deriving the following formula is rather delicate, but its validity is easily
checked:

l + [j(N2 + 1) + (l − k)N ]N = l mod N

and

l + [j(N2 + 1) + (l − k)N ]N = k mod N2 + 1.

5.8. Reduction to a finite complex. From this discussion it is ap-
parent that, in general, the mapping cone complex is fairly complicated.
In this subsection we observe that it always reduces to a complex that
is a quotient of a finite dimensional complex over F[U,U−1]. In the next
subsection we observe that in our special case the complex reduces to a
single Aξ term.

Consider the complexes A = ⊕Ai and B = ⊕Bi, joined by the chain
map D as illustrated below. We denote the mapping cone complex of D
by C. Since CFK∞ is finitely generated over F[U,U−1], it follows that
v : Ai → Bi is an isomorphism for all large i, and h : Ai → Bi+1 is an
isomorphism as i goes to negative infinity. The diagram below presents
a special case.

· · ·

A−3 A−2 A−1 A0 A1 A2

B−2 B−1 B0 B1 B2 B3

❅
❅
❅�

∼=

❄❄
v
❅
❅
❅�

∼=

❄
v
❅
❅
❅�

h

❄
v
❅
❅
❅�

h

❄

∼=
❅
❅
❅�

h

❄

∼=
❅
❅
❅�

h
· · ·

In this example, we have the following subcomplex, C′ = A′ ⊕ B′:

· · ·

A−3 A−2 A1 A2

B−2 B−1 B1 B2 B3

❅
❅
❅�

∼=

❄❄

❅
❅
❅�

∼=

❄

∼=
❅
❅
❅� ❄

∼=
❅
❅
❅�

· · ·

The restriction of D to this subcomplex, which we denote D′, induces
an isomorphism D′

∗ : H∗(A′) → H∗(B′). Injectivity is evident; surjec-
tivity follows from the fact that for each x in the right portion of the
complex, (h ◦ v−1)k(x) = 0 for some k. Similarly, for each x in the left
portion of the complex, (v ◦ h−1)k(x) = 0 for some k. There is a long
exact sequence

→ H∗(B
′) → H∗(C

′) → H∗(A
′) →

with connecting homomorphism given by D′. Thus, H∗(C′) = 0.
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Consider next the short exact sequence 0 → C′ → C → C/C′ → 0;
it leads to a long exact sequence, and we see that H∗(C/C′) = H∗(C).
That is, the homology of C is the homology of the complex

A−1 A0

B0

❅
❅
❅� ❄

Notice that had h : A−1 → B0 also been an isomorphism in this
example, then the complex would have reduced to a single term, A0.
This occurs in the cases of lens spaces that arise in our work, L(N2 +
1, N). We will see in the next section that this total collapse also occurs
for our manifolds M .

5.9. General complete collapse of the mapping cone complex.
In the case of lens spaces constructed as surgery on the unknot, the
CFK∞ complexes which arise are all of the form (C⊗FF[U,U

−1]){0, ki},
where C is a 1–dimensional doubly filtered F vector space generated by
a single vector xi at filtration level (0, 0). The shift {0, ki} is a j–
filtering shift of ki for appropriate integers ki. It thus follows quickly
that there is an a such that vi is an isomorphism for all i ≥ a and hi
is an isomorphism for all i ≤ a − 1. This explains our comment above
that for lens spaces there is a complete collapse of the (A,B) mapping
cone complex to a single Ai.

In the more general situation that appears for our M , the CFK∞

complexes which arise are of the form (Cı̄ ⊗F F[U,U
−1]){0, ki} for finite

dimensional doubly filtered F–chain complexes Cı̄ which are no longer
1–dimensional (here ı̄ = i mod n for some n). In particular, the CFK∞

complexes are not restricted to a single diagonal. Instead, they lie in a
band; in Figure 8 we illustrate a case in which the band is of height six.

Notice that in the example illustrated in Figure 8, the vertical quo-
tient is not an isomorphism, but the horizontal quotient is. In general,
one of the two maps will be an isomorphism unless the origin is con-
tained in the band. Furthermore, if this band is shifted up (by −2 or
more) then h continues to be an isomorphism, and if it is shifted down
by seven or more, the vertical map becomes an isomorphism.

Recall now that in our decomposition A+
s
(Y,K) = ⊕ξ∈SA

+
ξ (Y,K) we

have

S =
⋃

0≤l≤N−1

(
{tl + [j(N2 + 1) + (l − k)N ]PD(μ)}j∈Z

)
.

In order to state the next result, let the width w(C) of a doubly
filtered complex be defined as: w(C) = max(i−j)−min(i−j)+1, where
the minimum and maximum are taken over all pairs (i, j) such that there
is a nontrivial filtered generator of filtered degree (i, j). Roughly, w(C)
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Figure 8

represents the width of the narrowest U–invariant band which contains
the full complex. The width determines the Thurston norm of the knot
complement [29, 36].

Theorem 5.3 (Collapse Theorem). Suppose that for each tl ∈
Spinc(Y,K) with 0 ≤ l ≤ N − 1, the complex C = CFK∞(Y,K, tl)
satisfies w(C) ≤ N . Then the mapping cone complex A → B that
determines HF+(YN (K), s) collapses to a single Ai for some i.

Proof. Recall that as in Section 5.7, k is a specified fixed integer,
0 ≤ k ≤ N2. For simplicity, denote CFK∞(Y,K, tl){0, s}{max(i,j)≥0} by
A′

l(s) for 0 ≤ l ≤ N − 1 where, as above, {0, k} indicates that we have
shifted the doubly filtered complex up by k. Then the Ai that occur are
ordered as follows if we begin with l = 0 and j = 0:

. . . A′
N−1(N + 1 + kN), A′

0(kN), A′
1((k − 1)N), . . . ,

. . . A′
N−1((k + 1−N)N), A′

0(kN − 1−N2), . . .

Notice that the shifts increase by N , or when going from A′
N−1 to A′

0,
by N + 1. It follows that at most one of Ai is in a band which includes
the origin, with all greater Ai being in bands below the origin and all
lesser Ai being in bands above the origin. Thus the complex collapses
to a single Ai, as desired. q.e.d.

We now have all the pieces necessary to prove Theorem 5.1:

Proof of Theorem 5.1. Given that N is greater than 2g(K1), we are
able to apply the refiltering theorem (Theorem 4.2) to prove that the
complex CFK∞(S3

−N (K1), μ, s) has width at most two for any s ∈
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Spinc(S3
−N (K1)). The Künneth theorem for the knot Floer homology

of connected sums ([33, Theorem 7.1] c.f. [38, Theorem 5.1]) implies

CFK∞(S3
−N (K1), μ#K ′

2, s)

≃ CFK∞(S3
−N (K1), μ, s)⊗ CFK∞(S3,K ′

2),

for any knot K ′
2 ⊂ S3 and any s ∈ Spinc(S3

−N (K1)). Now [36, Theorem

1.2] implies that the width of CFK∞(S3,K ′
2) is equal to 2g(K ′

2) + 1,
and a simple exercise gives the addition formula, w(C1⊗C2) = w(C1)+
w(C2)−1. Thus the width of the complex forK2 = μ#K ′

2 ⊂ S3
−N (K1) =

Y is at most 2g(K ′
2) + 2.

Thus, according to the collapse theorem (Theorem 5.3), for each Spinc

structure s on YN (K2), the homology CF+(YN (K2), s) is given by a
single complex Ai. This complex is of the form C∞/C∞

{i<0,j<0} where

C∞ is the complex CFK∞(Y,K2, s
′) shifted down by some parameter

m, −N2/2 ≤ m ≤ N2/2, and where s
′ is some Spinc structure on Y .

Alternatively, it is the quotient

CFK∞(Y,K2, s
′)/CFK∞(Y,K2, s

′){i<0,j<m}.

The gradings are shifted, but the shift is independent of the choice of
K1 and K ′

2.
The action of U is to shift downward along the diagonal. Thus, the

kernel of the U action is precisely the set of elements at filtration level
0 as described in the statement of Theorem 5.1. q.e.d.

6. Computations

6.1. Knot complexes. For a given n and k we have defined KDk,n to
be the knot shown in Figure 1, with the knot J given by kD (where D
continues to denote the positive-clasped untwisted Whitehead double of
the right-handed trefoil). In this case, M(KDk,n) is given as (−2n, 2n)–
surgery on the link formed from the Hopf link by replacing the first
component with −2kD and the second component by 2kD; see Figure 2.
As mentioned earlier, n will be in the set N described in Proposition 3.1
and Proposition C.1. For each n we will choose a value for k, denoted
kn, selected to satisfy certain properties. A key result, which follows
from the work in Appendices A and B, is the following.

Proposition 6.1.

• The chain complex CFK∞(S3, D) is filtered chain homotopy equiv-
alent to the chain complex CFK∞(S3, T2,3) ⊕ A, where A is an
acyclic complex. If [x, i, j] is a filtered generator of CFK∞(S3, D),
then |i− j| ≤ 1.

• The chain complex CFK∞(S3, Dk) is filtered chain homotopy equi-
valent to the chain complex CFK∞(S3, T2,2k+1)⊕A, where A is an
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acyclic complex. If [x, i, j] is a filtered generator of CFK∞(S3, Dk),
then |i− j| ≤ k.

Proof. The first statement of the proposition expands on the compu-

tation of ĈFK(S3, D) given in [14]. Its proof occupies Appendix A.
The second statement of the proposition follows from the relationship
between CFK∞(S3, T2,3)

⊗k and CFK∞(S3, T2,2k+1) described in The-
orem B.1. q.e.d.

We next compute the knot Floer complex of the meridian of the
connected sum of 2k copies of the mirror of the doubled trefoil, in the
space formed by surgery upon this connected sum.

Theorem 6.2. For 2n ≥ 4k and −n + 1 ≤ m ≤ n, the doubly fil-
tered complex CFK∞(S3

−2n(−2Dk), μ, sm) is chain homotopy equivalent

to the complex C2n,k,m
∼= (T ⊕A)⊗FF[U,U

−1] where A is a finitely gen-
erated acyclic complex and T has one generator at filtration level (0, 0)
or (0,−1). More precisely, the generator of T has filtration level (0, 0)
if m < −2k or m odd < 2k, and has filtration level (0,−1) if m ≥ 2k
or m even ≥ −2k. For any filtered generator [x, i, j], |i− j| ≤ 1.

Proof. The theorem will be a direct application of the refiltering the-
orem (Theorem 4.2) together with the previous proposition. To begin,
note that since the genus of −2Dk is 2k, we can use the refiltering theo-
rem provided that 2n ≥ 4k (as assumed). Applying the tensor product
to the formula given in Proposition 6.1, we prove in the appendix (The-
orem B.1) that there is a (Z⊕ Z–filtered) chain homotopy equivalence

CFK∞(S3, 2kD) ≃ CFK∞(S3, T2,4k+1)⊕A

where A is an acyclic complex. Recalling that CFK∞(S3,−K) =
CFK∞(S3,K)∗, we obtain a corresponding decomposition for the mir-
rors:

CFK∞(S3,−2kD) ≃ CFK∞(S3,−T2,4k+1)⊕A∗.

Applying the refiltering theorem then gives a decomposition

CFK∞(S3
−2n(−2Dk), μ, sm) ≃ CFK∞(S3

−2n(−T2,4k+1), μ, sm)⊕A′,

where A′ is an acyclic complex concentrated on one or both of the
diagonals mentioned in the theorem (note that, by an abuse of notation,
μ is the meridian to −2Dk and −T2,4k+1 on the left and right sides of
the equivalence, respectively). Precisely, A′ is the Z ⊕ Z–filtered chain
complex which results from the refiltration of A∗.

Thus it remains to understand the result of applying the refilter-
ing theorem to the CFK∞(S3,−T2,4k+1). For reference, the figure il-
lustrates the complexes associated to T2,5, T2,9, and −T2,9. Applying
Theorem 4.2, one sees that for each Spinc structure sm, the complex
CFK∞(S3

−2n(−T2,4k+1), μ, sm) is given by a complex concentrated on
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the diagonal and one below the diagonal. We wish to understand this
complex better.

CFK∞(S3, T2,5) CFK∞(S3, T2,9) CFK∞(S3,−T2,9)

Figure 9

For example, Figure 10(a) provides an illustration of the complex
CFK(S3

−2n(−T2,9), μ, s−3), in which we have labeled two of the gener-
ators x and y. Replacing y with x + y gives a filtered change of basis,
and the new complex is as shown in Figure 10(b). Notice that this has
introduced an acyclic piece. Repeating the process yields the complex
illustrated in Figure 10(c). Applying this simplification in general shows
that for each m, the complex CFK∞(S3

−2n(−T2,4k+1), μ, sm) splits as a
direct sum of an acyclic complex (necessarily on the two stated diago-
nals) plus a complex of the form T ⊗F[U,U−1], where T is a single gen-
erator of the stated filtration (in fact the complex is filtered homotopy
equivalent to T ⊗F[U,U−1]). This completes the proof of Theorem 6.2.

x

y

x

z

(a) (b) z = x+ y (c) T ⊕A

Figure 10

q.e.d.

We next want to consider the second component of the link. This
is obtained from the meridian of the first component by forming the
connected sum with a knot whose CFK∞ is identical, modulo acyclic
summands, to T2,4k+1. Moreover, the complex for the meridian, modulo
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acyclic summands, is simply that of the unknot with a filtration shift.
Given these observations, the following result is immediate.

Theorem 6.3. For 2n ≥ 4k and for −n+ 1 ≤ m ≤ n, we have

CFK∞(S3
−2n(−2Dk), μ#2Dk, sm)i,j = CFK∞(S3, T2,4k+1)i,j−δ ⊕A,

with A an acyclic complex. Here, δ = 0 if m < −2k or m odd < 2k;
δ = −1 if m ≥ 2k or m even ≥ −2k. Cycles representing nontrivial
classes of grading 0 are located at filtration levels i + j = 2k + δ. For
any filtered generator [x, i, j], |i− j| ≤ 2k + 1.

We will need to compare this with the case of J the unknot, for which
the computation is simpler. The result is as follows.

Theorem 6.4. For 2n ≥ 3 and for −n+ 1 ≤ m ≤ n, we have

CFK∞(S3
−2n(−U), μ#U, sm)i,j = CFK∞(S3, U)i,j−δ.

Here, δ = 0 if m < 0 and δ = −1 if m ≥ 0. The cycle representing a
nontrivial homology class is at filtration level (0, δ).

6.2. d–invariants and acyclic summands. As already seen, many
of the complexes that arise have included acyclic summands. We will
need to see that these summands do not affect the computations of the
relevant d–invariants. Rather than present the most general theorem
concerning acyclic summands, we will restrict ourselves to a simpler
setting for which the proof is more straightforward.

Let D be a free, finitely generated F[U,U−1]–chain complex that is
Q–graded. Moreover, suppose that D has a distinguished basis, and is
Z–filtered (by subcomplexes) by the corresponding distinguished F[U ]–
submodules

... ⊂ UkF[U ] ⊂ Uk−1F[U ] ⊂ Uk−2F[U ] ⊂ ...

Thus the action of U lowers filtration level by one. Assume that it lowers
grading by two. We let d(D) denote the least grading of a nontrivial
homology class z ∈ H(D/Di<0) where z is in the image of Uk for all
k; here Uk is viewed as an endomorphism of H(D/Di<0). (If such an
element does not exist, then d(D) = −∞.)

A particular example can be built from a finitely generated acyclic F–
chain complex A which is filtered and graded: regard a filtered generator
x of A as a monomial x ⊗ U−(Filtration of x) and form the F[U,U−1]–
complex A = A ⊗ F[U,U−1], so that A ⊗ 1 has the same filtration and
grading as A, and U acts on the right, decreasing filtration level by one
and grading by two. Write Ak = A ⊗ Uk. Thus an element in Ak has
filtration level equal to the filtration level of the corresponding element
in A, shifted down by k.

Proposition 6.5. If D′ ∼= D ⊕ A with D and A as above, then
d(D′) = d(D).
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Proof. Forming the quotient complex ofA with the subcomplexA− =
Ai<0 of elements with filtration level less than 0 yields a complex A+ =
A/A−. This complex decomposes over F as ⊕kAk/(Ak ∩ A−).

Since A is finitely generated, there is an N such that: (1) if k > N ,
then (Ak∩A−) = Ak; and (2) if k < −N , then (Ak∩A− = 0). Recalling
that A is acyclic, we see that for all k with |k| > N , the homology group
H(Ak/(Ak ∩ A−)) = 0.

The action of U maps H(Ak/(Ak ∩ A−)) to H(Ak+1/(Ak+1 ∩ A−)).
The only possible nontrivial elements in the homology of A/A− are
sums of elements in H(Ak+1/(Ak+1 ∩ A−)) for |k| ≤ N . But no such
element can be in the image of U2N since it would then be in the image
of an element in H(Ak/(Ak∩A−)), for some k < −N , and we have seen
these groups are trivial.

Given this, we see each nontrivial elements of H(D′/D′
<0) that is in

the image of Uk for arbitrarily large k is also in the image of an element
of H(D/D<0). q.e.d.

6.3. Computations of d–invariants. We need to compute the differ-
ence of d–invariants, d(M(KDk,n), sn)− d(M(KU,n), sn), for any k with
0 ≤ k < n/2. Recall that the manifold M(KDk,n) is also denoted by
S3
−2n,2n(−2Dk, 2Dk).
In the following theorem we use ǫi to denote a grading shift. As

stated in the theorem, these are homological invariants that depend on
the value of n, but are independent of the particular knots chosen. Thus,
the values of ǫ in the first two equations and in the last two equations are
equal and their particular values irrelevant. For this reason we denote
them simply by ǫ1 and ǫ2. We also include in the statement the number
d(S3, s0) despite it equalling 0; this highlights the role of the d–invariant
of the base space in which the knot lies.

Theorem 6.6. For any 0 ≤ k < n/2

0 = d(S3
−2n(−2Dk), s−n)− d(S3, s0)− ǫ1(6.1)

0 = d(S3
−2n(−U), s−n)− d(S3, s0)− ǫ1(6.2)

−2k = d(S3
−2n,2n(−2Dk, 2Dk), sn)− d(S3

−2n(−2Dk), s−n)− ǫ2(6.3)

0 = d(S3
−2n,2n(−U,U), sn)− d(S3

−2n(−U), s−n)− ǫ2,(6.4)

where s0 is the unique spin structure on S3 and ǫi are grading shifts.
The grading shifts ǫi are homological invariants [31] and hence (6.1)
and (6.3), respectively, have the same grading shifts ǫ1 and ǫ2 as (6.2)
and (6.4), respectively.

Proof. Ozsváth and Szabó [33, Corollary 4.2] showed that for a knot
K in S3 and | − 2n| ≥ 2g(K) − 1, the complex CF+(S3

−2n(K), s−n) is
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filtered chain homotopic to

CFK∞(S3,K)/CFK∞(S3,K){i<0∪ j<−n}[ǫ],

where the grading shift ǫ is d(S3, s0) + ǫ1 according to [31]. (The value
of ǫ1 can be computed explicitly, but we do not need its exact value in
our computations.)

Proposition 6.1 along with Proposition 6.5 allows us to replace −2Dk

with −T2,4k+1. We see that in the complex CFK∞(S3,−T2,4k+1) the
cycle at filtration level (0,−2k) is the cycle of grading zero having the
least j–filtration among all grading zero cycles, and all cycles of grading
less than zero have i–filtration less than zero. Since −2k > −n, the
cycle at filtration level (0,−2k) lives and all the cycles of grading less
than zero vanish in the quotient. See Figure 11 for the case −n = −4
and k = 1.
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Figure 11

This shows the identity d(S3
−2n(−2Dk), s−n) − d(S3, s0) − ǫ1 = 0. A

similar argument shows d(S3
−2n(−U), s−n) − d(S3, s0) − ǫ1 = 0. These

two identities give rise to Equation 6.1. Equation 6.2 is similar.
By Theorem 6.3, noting n > 2k, we can identify

CFK∞(S3
−2n(−2Dk), μ#2Dk, sn)i,j = CFK∞(S3, T2,4k+1)i,j+1 ⊕A,

where the complex A is acyclic complex. Stated otherwise, the com-
plex CFK∞(S3

−2n(−2Dk), 2Dk, sn) is filtered chain homotopic to the

complex CFK∞(S3, T2,4k+1) with j–filtration shifted downward by one
plus an acyclic complex A. Combining this with Theorem 5.1 and using
Proposition 6.5 to eliminate the acyclic summand from the computation,
we have that the d–invariant associated to CF+(S3

−2n,2n(−2Dk, 2Dk),

sn) is equal to that of

CFK∞(S3, T2,4k+1)i,j+1/CFK∞(S3, T2,4k+1)i,j+1{i<0, j<0}[ǫ],
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where ǫ = d(S3
−2n(−2Dk), sn) + ǫ2 for some ǫ2 independent of T2,4k+1.

The cycles x at filtration level (i, 2k − i− 1), 0 ≤ i ≤ 2k, are all of the
grading zero cycles in CFK∞(S3, T2,4k+1)i,j+1. It is easy to see that

the cycles Ukx at filtration level (i′,−i′ − 1), −k ≤ i′ ≤ k, have grading

−2k and none of them vanish in the quotient, while at least one of Uk′x
vanishes in the quotient if k′ > k. See Figure 12 for the case n = 4 and
k = 1.
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Figure 12

This implies Equation 6.3. Combining Theorems 6.4 and 5.1, a similar
argument as done above provides the proof of Equation 6.4. q.e.d.

Combining the equations in Theorem 6.6 immediately yields the fol-
lowing proposition, which was the key step in the completion of the
proof of Theorem 3.2 at the end of Section 3.

Proposition 6.7. d(M(KDk,n), sn)− d(M(KU,n), sn) = −2k.

Appendix A. The infinity complex of the Whitehead doubled
trefoil

Let D denote the positive-clasped untwisted Whitehead double of the
right-handed trefoil. In this appendix we prove:

Proposition 6.1. The chain complex CFK∞(S3, D) is chain homotopy
equivalent to the chain complex CFK∞(S3, T2,3) ⊕ A, where A is an
acyclic complex. The presence of the acyclic summand does not change
the width:

w(CFK∞(S3, D)) = w(CFK∞(S3, T2,3)).

In order to prove this proposition, we need the following well-known
lemma about how a basis change affects the two-dimensional diagram
of a knot Floer complex. See [14, Lemma 6.1] for instance.
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Lemma A.1. Let C∗ be a knot Floer complex with a two-dimensional
arrow diagram D given by an F–basis. Suppose that x, y are two basis
elements of the same grading such that each of the i and j filtrations of
x is not greater than that of y. Then the basis change given by y′ = y+x
gives rise to a diagram D′ of C∗ which differs from D only at y and x
as follows:

• Every arrow from some z to y in D adds an arrow from z to x in
D′.

• Every arrow from x to some w in D adds an arrow from y′ to w
in D′.

Proof. First note that this basis change does not alter the grading or
double filtrations. If ∂z = y + α for z, α ∈ C∗, then ∂z = y′ + x + α,
which shows that every arrow from z to y should add an arrow from z
to x. Since ∂y′ = ∂y + ∂x, every arrow from x should add an arrow
from y′. See Figure 13 for an example. q.e.d.

z

u

y
v

w

x

z

u

v

w

x
y′

(a) (b) y′ = y + x

Figure 13. The figure represents the effect of a filtered
basis change to a portion of a Z⊕ Z–filtered chain com-
plex over F.

Proof of Proposition 6.1. Theorem 1.2 of [14] shows that

ĤFK ∗(D, j) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪

F2
(−1) ⊕ F2

(0), j = 1

F4
(−2) ⊕ F3

(−1), j = 0

F2
(−3) ⊕ F2

(−2), j = −1

0, otherwise.
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We assign F–bases to each summand in the direct sum decomposition
as follows:

ĤFK ∗(D, j) =

⎧
⎪⎨
⎪

〈u1, u2〉 ⊕ 〈x1, x2〉, j = 1

〈v1, v2, v3, v4〉 ⊕ 〈y1, y2, y3〉, j = 0

〈w1, w2〉 ⊕ 〈z1, z2〉, j = −1.

Following Rasmussen [39, Lemma 4.5] (or [14, Lemma 5.3]), ĤFK ∗(D)

is chain homotopy equivalent to ĈFK (D). Thus we can assume that

CFK∞(D)0,j = ĤFK ∗(D, j) and CFK∞(D)i,j ∼= U−iCFK∞(D)0,j−i =

ĤFK ∗−2i(D, j − i). If necessary, we put the grading in the superscript
of the generator; for instance, x21 denotes the grading 2 generator among
U ix1 for i ∈ Z. See Figure 14 for an example.

First note that there are no components of boundary maps between
generators of the same (i, j)–filtration since they would be reduced in

ĤFK ∗(D, j). If we denote the vertical, horizontal, and diagonal com-
ponents of the boundary map ∂ of CFK∞(D) by ∂V , ∂H , and ∂D,
respectively, then ∂ = ∂V + ∂H + ∂D. We will determine ∂ by first
determining ∂V , then ∂H , and lastly ∂D.

Note that F2
(0)

∂V→ F3
(−1)

∂V→ F2
(−2), or, 〈x1, x2〉

∂V→ 〈y1, y2, y3〉
∂V→ 〈z1, z2〉

is a chain subcomplex of ĈFK (D) since ∂ lowers the grading by one.

Since ĤF (S3) = F(0), by changing basis we may assume that ∂V (x1) =
∂V (y1) = ∂V (z1) = ∂V (z2) = 0, ∂V (x2) = y1, ∂V (y2) = z1, and ∂V (y3) =
z2. See Figure 14(b).

We will find ∂V (u1), which must lie in 〈v1, v2, v3, v4, z1, z2〉. If ∂V (u1) =
az1+ bz2 ∈ 〈z1, z2〉 for a, b ∈ F, then u1+ay1+ by2 represents a nontriv-

ial element of grading −1 in ĤF (S3), which is impossible. Thus ∂V (u1)
must have a nontrivial component in 〈v1, v2, v3, v4〉, which may be as-
sumed to be v1 by changing the basis for 〈v1, v2, v3, v4〉. If ∂V (u1) =
v1 + az1 + bz2, then the change of basis v′1 = v1 + az1 + bz2 gives rise
to ∂V (u1) = v′1 and ∂V v

′
1 = ∂V v1, as in Lemma A.1. So we may as-

sume that ∂V u1 = v1 and similarly that ∂V u2 = v2. The image of

〈v3, v4〉 under ∂V should be equal to 〈w1, w2〉 since ĤF (S3) = Z in
which v3, v4, w1 and w2 should vanish. So {∂V (v3), ∂V (v4)} is a basis
for 〈w1, w2〉 and we may assume that w1 = ∂V (v3) and w2 = ∂V (v4).
The vertical components of the boundary maps are all determined as
shown in Figure 14(c).

Next, we will determine the horizontal components of the boundary
map of CFK∞(D), whose columns look like those illustrated in Fig-
ure 14. We will argue that the complex will have a two-dimensional
illustration described in Figure 15. By analogy with the vertical case,

note that 〈z1, z2〉
∂H→ 〈y1, y2, y3〉

∂H→ 〈x1, x2〉 is a chain subcomplex S of
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Figure 14

CFK∞(D){j≤0}/CFK
∞(D){j<0}, since ∂ lowers the degree by one. Ob-

serve as well that for any s ∈ S, elements with grading one lower than s
are either to the left or below and hence ∂s = ∂V s+ ∂Hs. In particular
there are no diagonal components of the boundary maps restricted to
S. This implies that ∂x1 = ∂V x1 = 0 and ∂x2 = ∂V x2 = y1.

Since ĤF (S3) ∼= F(0) is isomorphic to

H∗

(
CFK∞(D){j≤0}/CFK

∞(D){j<0}

)
,

we may choose an F–basis {z1, z2} so that ∂H(z1) = 0. To keep the same
vertical description as in Figure 14(c), we adjust the basis for 〈y2, y3〉
accordingly. Observe that ∂z2 is the source of no diagonal arrows, since
elements with grading one lower are located only to the left. So we have
∂z2 ∈ 〈y1, y2, y3〉. If ∂z2 is of the form y2 + β for β ∈ 〈y1, y3〉, then
0 = ∂2z2 = ∂y2 + ∂β = z1 + ∂Hy2 + ∂β, which, on the other hand,
can never be zero since ∂Hy2 ∈ 〈x1, x2〉, ∂β ∈ 〈∂y1, ∂y3〉 ∈ 〈z2, x1, x2〉,
and z1 does not belong to 〈x1, x2, z2〉. Thus y2 does not appear in ∂z2.
Similarly, y3 does not appear in ∂z2, and thus ∂z2 must be y1.

Similarly, grading considerations and the fact that the homology of
the quotient CFK∞(D){j≤m}/CFK

∞(D){j<m} is F(2m) implies that
∂H〈y2, y3〉 = 〈x1, x2〉. If ∂Hy2 is of the form x2 + ax1 for a ∈ F, then
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∂y2 = (∂H + ∂V )y2 = x2 + ax1 + z1 and 0 = ∂2y2 = ∂(x2 + ax1 + z1) =
y1 = 0, which is impossible. Thus we have ∂Hy2 = x1. Then ∂Hy3
should be of the form x2 + ax1. By the change of basis x′2 = x2 + ax1
we may assume ∂Hy3 = x2.

To complete the analysis of ∂H we must consider the w, v and u gen-
erators. The argument is similar to what we have done already. First
notice that these elements might not generate a subcomplex of the hori-

zontal complex; ∂H(wj
i ) could contain terms of the form xj−1

k (which are
at the same j–filtration level but at i–filtration two lower). A change of

basis, adding some of the elements xj−1
k to some of the vj−1

i , eliminates
this possibility, at the expense of perhaps adding diagonal maps. Since
the change of basis combines elements at different i–filtration levels, the
vertical map is unchanged. Thus, we can assume that the w, v and u
generate a subcomplex of the horizontal complex which is complemen-
tary to the subcomplex generated by the x, y, and z generators. Using
the fact that ∂2(ui−1

k ) = 0 we conclude that ∂H must vanish on the vi1
and vi2.

Using the known homology of the horizontal complex (in particular,
that the horizontal homology at j–filtration level 0 is generated by a
single element at grading 0, and thus a zi) we can conclude that ∂H maps
the subgroup generated by v03 and v04 isomorphically to the subgroup

generated by u−1
1 and u−1

2 , and similarly for their U translates.
A change of basis among the u1 and u2 generators ensures each v3

maps to the corresponding u1 and each v4 maps to a corresponding u2.
A change of basis among the v1 and v2 elements reestablish that ∂V
maps each ui1 and ui2 to a vi−1

1 and vi−1
2 , respectively. That ∂2(uik) = 0

implies that wj
i maps horizontally to a corresponding vj−1

i .
At this point we have a diagram for CFK∞(D) as in Figure 15 with

only vertical and horizontal components of the boundary maps shown.
Finally, we will deal with the diagonal components of the boundary

maps. As mentioned earlier, due to grading constraints there are no
diagonal maps coming from the x, y, or z generators, while there may
be diagonals going in. On the other hand, there are no diagonal maps
going into the u, v, or w generators. All possible cases of diagonal maps
are: (1) from u’s to x’s, (2) from v’s to y’s, and (3) from w’s to z’s.
This implies that the complex T generated by x1, y2 and z1 is indeed a
subcomplex of CFK∞(D).

We will show that filtered basis changes can eliminate all the di-
agonal arrows going into T . Then CFK∞(D) splits into F[U,U−1] ⊗
T and a subcomplex A. Note that F[U,U−1] ⊗ T is isomorphic to
CFK∞(T (2, 3)) and A is acyclic (that is, H∗(A) = 0). This follows from
[32, Section 10], which showed HF∞(S3) ∼= F[U,U−1] and HF∞(S3) ∼=
H∗(CFK

∞(D)) ∼= H∗(F[U,U−1]⊗ T ) as F[U,U−1]–modules.
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Figure 15

First, we show that ∂v1 and ∂v2 cannot include y2. Note that they
have zero vertical and horizontal components. If ∂v1 = y2 + ay1 + by3
for a, b ∈ F, then 0 = ∂2v1 = x1 + z1 + bx2 + bz2 which cannot be zero
for any a, b. So there are no arrows from v1 or v2 to y2.

We claim that, for any a, b ∈ F and i = 1, 2, the following are equiv-
alent:

1) ∂Dui = ax1 + bx2
2) ∂Dvi+2 = ay2 + by3 + cy1 for some c ∈ F
3) ∂Dwi = az1 + bz2.

We prove the claim only for i = 1; almost the same argument applies
to i = 2. Let ∂Du1 = ax1 + bx2, ∂Dv3 = c1y1 + c2y2 + c3y3, and
∂Dw1 = d1z1 + d2z2 for a, b, c∗, d∗ ∈ F. The constraint ∂2 = 0 gives rise
to the equalities

0 = ∂2v3 = ∂(u1 + w1 + c1y1 + c2y2 + c3y3)

= (v1 + ax1 + bx2) + (v1 + d1z1 + d2z2) + c2(x1 + z1) + c3(x2 + z2)

= (a+ c2)x1 + (b+ c3)x2 + (d1 + c2)z1 + (d2 + c3)z2.

Thus a = c2 = d1 and b = c3 = d2.
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Suppose a = 1 for i = 1. Let v′1 = v1 + x1 and w′
1 = w1 + y2.

Then all arrows going into v1 or w1 come from u1, w1 or v3 and hence
we need to check the boundaries of u1, v3, w

′
1 and v′1: ∂u1 = v′1 + bx2,

∂v3 = u1+w′
1+by3+cy1, ∂w

′
1 = ∂w1+∂y2 = (v1+z1+bz2)+(x1+z1) =

v1 + bz2, and ∂v′1 = ∂v1 + ∂x1 = 0. With these new basis elements v′1
and w′

1 there are no diagonal components from u1, v3, w1 to x1, y2, z1.
A similar argument works for u2, v4, w2. Thus T can be assumed to be
a direct summand as desired. q.e.d.

We remark that a similar process of changing bases as in the previous
proof can be used to prove that CFK∞(S3, D) is isomorphic to the
complex in Figure 15. Since this result is unnecessary for our purposes
or any foreseeable applications to concordance we leave it as an exercise
for the interested reader.

Appendix B. CFK∞(S3, T2,2k+1)

Theorem B.1. CFK∞(S3, T2,3)
⊗k = CFK∞(S3, T2,2k+1)⊕A where

A is acyclic. The presence of the acyclic summand does not change the
width:

w(CFK∞(S3, T2,2k+1)) = w(CFK∞(S3, T2,2k+1)).

Proof. The proof is by induction. We show that

CFK∞(S3, T2,2k+1)⊗ CFK∞(S3, T2,3) = CFK∞(S3, T2,2k+3)⊕A.

The complex CFK∞(S3, T2,2k+1) has filtered generators at grading
0: [x, i, j] where i ≥ 0, j ≥ 0 and i + j = k. There are also generators
at grading level 1, [y, i, j] with i ≥ 1, j ≥ 1 and i + j = k + 1. The
boundary map is given by ∂[y, i, j] = [x, i − 1, j] + [x, i, j − 1]. (Notice
that the symbols x and y do not correspond to intersection points in a
Heegaard diagram. The i and j denote the filtration levels.)

In order to distinguish the complex for T2,3, we replace x and y with z
and w, so that the complex is generated by [z, 0, 1], [z, 1, 0], and [w, 1, 1].

The tensor product CFK∞(S3, T2,2k+1)⊗ CFK∞(S3, T2,3) has gen-
erators of type x⊗ z at grading level 0, x⊗w and y⊗ z at grading level
1, and y ⊗w at grading level 2. In total there are 3(2k+ 1) generators.

We now make a basis change, replacing certain generators with their
sums with other generators, relabeled as indicated:

• [x, i, j]⊗ [w, 1, 1] → [x, i, j]⊗ [w, 1, 1] + [y, i+ 1, j]⊗ [z, 0, 1] = αi,
for all 0 ≤ i < k.

• [x, i, j]⊗ [z, 1, 0] → [x, i, j]⊗ [z, 1, 0]+[x, i+1, j−1]⊗ [z, 0, 1] = βi,
for all 0 ≤ i < k.

• [y, i, j] ⊗ [z, 1, 0] → [y, i, j] ⊗ [z, 1, 0] + [x, i, j − 1] ⊗ [w, 1, 1] = γi,
for all 0 < i ≤ k.
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Now we isolate out acyclic pieces, using the following four observa-
tions.

• ∂([y, i, j]⊗ [w, 1, 1]) = [x, i−1, j]⊗ [w, 1, 1]+[x, i, j−1]⊗ [w, 1, 1]+
[y, i, j]⊗ [z, 0, 1] + [y, i, j]⊗ [z, 1, 0] = αi−1 + γi.

• ∂αi−1 = ∂([x, i− 1, j]⊗ [w, 1, 1]+ [y, i, j]⊗ [z, 0, 1]) = [x, i− 1, j]⊗
[z, 0, 1]+ [x, i− 1, j]⊗ [z, 1, 0]+ [x, i− 1, j]⊗ [z, 0, 1]+ [x, i, j− 1]⊗
[z, 0, 1] = [x, i− 1, j]⊗ [z, 1, 0] + [x, i, j − 1]⊗ [z, 0, 1] = βi−1.

• ∂γi = [x, i − 1, j] ⊗ [z, 1, 0] + [x, i, j − 1] ⊗ [z, 1, 0] + [x, i, j − 1] ⊗
[z, 0, 1]+ [x, i, j−1]⊗ [z, 1, 0] = [x, i−1, j]⊗ [z, 1, 0]+ [x, i, j−1]⊗
[z, 0, 1] = βi−1.

• ∂βi−1 = 0.

From this we see that there is an acyclic summand

〈[y, i, j]⊗ [w, 1, 1]〉
∂
→ 〈αi−1, γi〉

∂
→ 〈βi〉 .

For instance, see Figure 16 for the case k = 2.

x0z0

y1z0

x1z0
y2z0

x2z0

x0w1

y1w1

x1w1 y2w1

x2w1

x0z1 y1z1

x1z1 y2z1

x2z1

x0z0

y1z0

x1z0
y2z0

x2z0

α0

y1w1

α1 y2w1

x2w1

β0 γ1

β1
γ2

x2z1

CFK∞(S3, (T2,5)⊗ CFK∞(S3, T2,3) CFK∞(S3, T2,7)⊕A

Figure 16. Notation: xizi′ = [x, i, k − i]⊗ [z, i′, 1− i′],
xiw1 = [x, i, k − i] ⊗ [w, 1, 1], yizi′ = [y, i, k + 1 − i] ⊗
[z, i′, 1− i′], yiw1 = [y, i, k+1− i]⊗ [w, 1, 1], αi = xiw1+
yi+1z0, βi = xiz1 + xi+1z0, and γi = yiz1 + xiw1.

There are k such summands, with a total rank of 4k. The original
complex had rank 3(2k + 1) = 6k + 3. Thus, splitting off the acyclic
summands leaves a complex of rank 2k+3. Generators for a complement
to the acyclic summand are given by the set {[x, i, j]⊗ [z, 0, 1], [y, i, j]⊗
[z, 0, 1]} and two more elements, [x, k, 0]⊗ [w, 1, 1] and [x, k, 0]⊗ [z, 1, 0].
Finally, we note that this is a subcomplex of the desired isomorphism
type, as follows from three simple observations: ∂([x, i, j]⊗ [z, 0, 1]) = 0,
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∂([y, i, j] ⊗ [z, 0, 1]) = [x, i − 1, j] ⊗ [z, 0, 1] + [x, i, j − 1] ⊗ [z, 0, 1] and
∂([x, k, 0]⊗ [w, 1, 1]) = [x, k, 0]⊗ [z, 0, 1] + [x, k, 0]⊗ [z, 1, 0]. q.e.d.

Note that similar computations have recently appeared in [13].

Appendix C. Number theoretic results

Theorem C.1. There is an infinite set N of natural numbers {ni}
satisfying:

1) For all ni, 4n
2
i + 1 ≥ 9 and is either prime or the product of two

distinct primes; thus 4n2
i + 1 is square free;

2) The values {4n2
i + 1} are pairwise relatively prime.

Proof. A theorem of Iwaniec [19] states that if G(n) = an2+ bn+ c
is an irreducible integer polynomial with a > 0 and c ≡ 1 mod 2, then
there exist infinitely many n such that G(n) has at most two prime
factors, counted with multiplicity. We will apply this for G(n) of the
form 4A2n2+1, for appropriate values of A > 0. Notice that any G(n) of
this form is never a perfect square (for any n > 0). Thus, by Iwaniec’s
theorem we have that for an infinite set of positive n, G(n) is either
prime or a product of two distinct primes. In particular, it is square
free.

The ni are defined inductively, starting with n1 = 2, so 4n2
1 + 1 = 17

is prime. Suppose that for all i < k, values of ni have been selected so
as to satisfy the conditions of the theorem. Let A denote the product
of all 4n2

i + 1, i < k. Apply Iwaniec’s theorem to choose an N so that
4A2N2+1 is the product of at most two prime factors. No prime factor
of the 4n2

i +1, i < k, can divide this number, so 4A2N2+1 is relatively
prime to 4n2

i + 1 for all i < k. Let nk = AN . q.e.d.
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