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C H A PT E R  I

Introduction

1.1 Parallel Programs on Structured M ulticomputers

Structured multicomputers such as hypercubes and toroidal or pyramidal multi

computers are gaining wide acceptance, in part due to a natural match of their 

physical interconnection structures to the logical communication structures of 

many scientific applications [25, 80, 10, 60]. However, current multicomputers 

are hard to program for three reasons:

1. Any parallel program with a large number of tasks and communication chan

nels is difficult to design, implement, and debug [35].

2. Multicomputers such as hypercubes are harder to program than shared- 

memory multiprocessors because programmers have to construct complex 

communication structures such as trees or rings spanning many application 

processes and hypercube nodes. Such structures may be inherent parts of an 

application’s computation, or they may be auxiliary structures superimposed

1



[38] by the programmer or used by the operating system [33] for purposes of 

maintaining multiple program views for program control, monitoring, debug

ging, or other purposes [74, 48, 75, 81]. In current multicomputer operating 

systems, such structures must be built from OS primitives and physical com

munication links that connect only two nodes at a time.

3. One issue in the programming of multicomputers is that (as with all other 

parallel applications) good speedup of execution by use of parallelism cannot 

be attained unless efficient use is made of the multicomputer’s distributed 

processors and memories. This requires decomposition of the application 

program into multiple, independently executable processes such that global 

data and control, and therefore interprocess communication, are minimized 

[75, 35, 25].

This dissertation introduces an operating system and programming construct— 

termed topology—that allows programmers to build distributed objects that may 

internally consist of complex computational communication structures. It provides 

a versatile mechanism for interprocess communication and structuring of tasks. As 

an interprocess communication mechanism (IPC) it allows communications among 

multiple tasks transparent to the user program. As a structuring mechanism it 

provides an object-oriented view of shared resources in the multicomputer. It may 

implement distributed objects performing a wide variety of functions, including
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the exchange of data or control information relevant to the tasks’ computations 

and/or communications required for task synchronization, message forwarding and 

filtering under program control, and others.

1.2 Topologies— Distributed Objects in Multicomputers

As a widely accepted paradigm, the object model has been used for designing op

erating systems, languages, and architectures. It is attractive for its ability to pro

vide abstractions and a uniform and simple model of programming. A distributed 

object, similar to the conventional object, provides abstractions for parallel and 

distributed programs and consists of a distributed data representation and a set 

of operations that can be performed on an instance of the object. For instance, a 

distributed queue object may be abstracted as a single queue consisting of queue 

elements distributed across several processors and insert and delete operations 

performed in a parallel and cooperative manner on an instance of the queue. The 

operations can be implemented to enforce different queuing disciplines, such as a 

priority queue or a first-in-first-out queue.

Topologies are distributed objects implementing abstractions on a structured 

multicomputer such as a hypercube. A topology consists of a distributed data type 

and a set of operations concurrently executable on the multicomputer’s proces

sors. However, unlike object implementations on network architectures [46, 2, 67] 

or other multiprocessors [22, 7, 73, 28], it enforces the distribution of data repre



senting an object and of the object’s operations to match the architecture and the 

parallel applications using the object. Distribution is expressed in terms of explic

itly defined interconnections of a set of nodes implementing the object’s data and 

operations, hence the term “topology”.

Each topology implements a distributed object as ah arbitrary communication 

graph linking multiple nodes, which in turn may be attached to specific processors 

of the parallel program. The operations of a topology are performed cooperatively 

by the nodes linked by the graph. Specific attributes of a topology are

• multiple connectivity—multiple nodes may be linked by a communication 

structure defined by the graph,

•  activeness—a topology employs an active message-passing mechanism that 

performs distributed computations, and

• separation of concerns—topologies can be constructed independently of the 

applications using them.

As a simple example, a distributed queue object among three producers and 

one consumer, each on a different processor, can be implemented as a tree topology 

with the root node (consumer) and three children (producers) (Figure 1.1). In the 

figure the gray rectangular area denotes the queue object, consisting of directed 

edges representing the communication links, and the black dots representing the 

tree’s nodes, where distributed data (queue elements) are stored and distributed
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Figure 1.1: A Distributed Queue Object

operations (such as insert and remove) are executed. Parallel insertions by pro

ducers are not ordered, and therefore each node attached to a producer either 

buffers the data locally or forwards it to the consumer. Removal by the consumer 

retrieves data buffered locally or on one of the producers’ processors. The routines 

to perform insert operations are distributed and replicated on the producers’ pro

cessors so they can be executed in parallel. Thus, the tree topology provides the 

abstraction of a queue, but its structure and internal interprocess communication 

are invisible to the user of the queue.

1 .3  M o t i v a t i o n

As stated in the previous section, topologies differ from other implementations of 

distributed objects in that they are distributed implementations of objects; data



and operations in each topology have a well-defined communication structure which 

is crucial to its performance. Most parallel systems do not provide extensive sup

port for such explicitly structured abstractions. A set of processes in a parallel 

application either communicates in an unstructured manner, or the communica

tion structure is hidden in the processes’ implementations. Some exceptions are 

the Hierarchical Process Composition (HPC) system [45] where an object-oriented 

model is used to specify the connections between processes and Thoth [14] where 

a process may have several sub-processes within its address space. However, in 

HPC, communication structures are composed of low-level connections that are 

incapable of performing computations. In Thoth, high level descriptions of the 

communication structures are not represented as long-term connections among 

processes.

Difficulty in structuring mainly stems from the currently available IPC mech

anisms in multicomputers. Existing mechanisms are based on a message passing 

between two processes. In general, there are two basic communication primitives: 

send and receive. The send primitive specifies the destination process identifier 

and a message. The receive primitive specifies the sender process identifier and the 

buffer to receive the message. One process executes a send call while the other ex

ecutes a  matching receive call. The process identifiers of both sender and receiver 

must be globally known to use these primitives.

The premise of the topology concept is that the communication structures



within a distributed object on a multicomputer should not be hidden from their 

implementor. Instead, such structures should be explicitly programmable as sep

arable units in implementing the objects.

Although topologies define communication structures among several tasks, they 

differ from other IPC’s in several ways. First, conventional message-based IPC’s 

provide general-purpose channels with which a variety of functions may be im

plemented. In contrast, topologies are abstractions implementing well-defined op

erations. For instance, a tree structure of processes can form a logical multicast 

bus, allowing values from one process (the root) to send values to the remaining 

processes. A topology describes such a structure as a multicast bus object offering 

the operations multicast-send and multicast-receive. The implementation of such a 

structure using IPC constructs would require that addressing information be main

tained throughout the processes using the structure. Such low-level information is 

not visible to the users of a topology. Instead, a topology has a global name and 

the semantics of its operations determine which of the processes invoking it are 

affected by the operations’ executions.

A second difference between topologies and conventional IPC constructs con

cerns the implementation of a topology’s operations. With conventional IPC con

structs, the precise semantics of send and receive are determined at operating 

system design time. This may not provide a convenient or efficient basis for the 

implementation of the specific semantics required by an application. For example,



it may be impossible to route messages using an application-specific routing algo

rithm or to terminate the message forwarding based on the state of a particular 

process participating in the IPC. In contrast, for a topology, the ability to perform 

computations in conjunction with the messages transferred on its communication 

links facilitates implementation of a wide range of link semantics.

Since topologies may be used to implement arbitrary, distributed abstract data 

types, their efficient implementation requires support by low levels of the operating 

system. Efficiency is gained by avoiding unnecessary layers of protocol [85]. In 

addition, low-level support must be provided such that message-sending and - 

receiving semantics remain variable as with packet filters in Mach [1]. An example 

of such variability is the implementation of a user-defined routing algorithm as 

part of a topology.

Two additional benefits arise from the decision to support topologies at the 

operating system level. First, once a topology has been constructed, it can be 

shared by multiple applications and it can be reused. The client thus treats it like 

any other operating system resource. Second, language-independent interfaces to 

topologies encourage their use in a wide variety of parallel applications.

As with the programming of communication protocols, programming topologies 

can be complex. For instance, it is difficult to debug a large structure mapped 

onto a hypercube of dimension 4 or more partly because it is hard to visualize 

the structure. Complexity in debugging may be compounded by the fact that
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computations are performed on messages in transit which makes it difficult to 

keep track of partial or incomplete results. Thus, an effective use of topologies 

in the development of parallel applications requires support tools for topology 

specification, loading, and debugging. In addition, manipulation of topologies’ 

structures and selection of sub-structures based on certain attributes should be 

facilitated. Such manipulation should be provided in conjunction with tools for 

the visualization of multiple views of topologies. The development and evaluation 

of tools for topology visualization and manipulation for debugging is the second 

thrust of this thesis.

To conclude, we note that the communication structure of a topology depends 

on its intended use by a  parallel application. Thus, it may not be identical to the 

structure of the underlying multicomputer. The efficient mapping of the topology 

to the multicomputer [64] is application dependent and is left to the applications 

programmer.

1.4 Desirable Properties of a Topology’s Communication 
Structure

To provide abstractions through the distributed object model, a topology’s com

munication structure must be powerful enough to implement a wide range of func

tionalities required in the distributed objects. An ideal communication structure 

should have the following properties:
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1. Flexibility—Efficiency and ease of abstraction require that the composite 

structure of communication links should be changeable. It should support 

simple one-to-one connections to a regular structure such as a mesh, a tree, 

or arbitrary graphs. The structure should be scalable with the number of 

processes linked by it and should not depend on the underlying hardware. 

Furthermore, it should be able to be created and deleted dynamically, it 

should be possible to add and delete communication links dynamically, and 

links should be migratable from one processor to another.

2. Variable semantics of link protocols—Ease of representation of arbitrary, dis

tributed operations requires that the semantics of each communication link 

should be variable along the following dimensions:

(a) protocol attributes such as time-out periods, flow control, or acknowl

edgments;

(b) send/receive semantics such as blocking/nonblocking, buffering/nonbuffering, 

or return/no return information;

(c) multiplexing of logical onto physical communication channels;

(d) typed/untyped logical channels; and

(e) implicit logical channels that accept and forward (to the intended re

cipient) a message even when there is no matching receive operation.



3. Ability to map communication structures to physical machines—Independence 

of physical communication structures requires that topologies with arbitrary 

structures be mappable to the physical hardware.

4. Ease o f programming/debugging—The programming of communication struc

tures and of the computations associated with the structures should be 

straightforward. In addition, it requires the availability of debugging and 

powerful program visualization tools since communication structures may 

span a large number of processes and processors. For debugging, the state 

of communication structures and the messages in these structures must be 

monitorable and controllable. This implies that communications structures 

should be compositional such that complex structures may be formed as 

compositions of multiple, simple structures.

1.5 Usefulness of Topologies

Topologies are useful and important elements of any parallel application on a 

multicomputer. For instance, a linear topology may act as a simple communication 

link object connecting two processes. In this case, data is not manipulated but 

simply transferred. Alternatively, a broadcasting object may be implemented as 

a binary-tree topology, and this tree may be used to broadcast values sent by the 

root process to all connected processes. In this case, the computations performed 

by each link consist of buffering and forwarding the values at intermediate nodes.
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The simple examples above demonstrate the usefulness of topologies. More im

portantly, however, topologies are a necessary element of most parallel applications 

because they can efficiently represent the global data and operations required by 

the application. It is well known[76, 35] that the appropriate implementation of 

global data and operations in parallel programs is important for several reasons:

1. Global data or operations are unavoidable. Any decomposition method for a 

serial program will require the resulting parallel program’s use of some global 

operations or data as shown in Chapter 3.

2. Global data and operations significantly affect performance. Application pro

grams may spend significant amounts of time in nonlocal program portions[35, 

76]. More generally, in the absence of other serial phases of a parallel pro

gram, sequential implementations of global data and operations limit the 

parallel program’s maximal possible speedup to 1/a, where a is the fraction 

of the program’s total execution time consumed by global data access or 

global operation execution (a version of Amdahl’s law).

1.6 The Thesis

The thesis of this dissertation is that topologies are useful and desirable constructs 

for programming parallel programs on multicomputers. Furthermore, they are 

efficient and appropriate for programming global data and operations.
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The major contributions of this thesis are

1. the development of topologies, which are novel high-level constructs for the 

specification and implementation of distributed objects in a parallel program, 

and

2. the demonstration of the ease of programming of topologies by the provision 

of a set of tools for their programming and debugging, and examples of their 

use.

1.8 Scope, Goals, and Dissertation Overview

This dissertation focuses on two issues—the runtime support for topologies and 

the ease of programming of topologies. Although some of the design decisions 

resulted from the specific characteristics of nex, the Intel iPSC/1 hypercube’s node 

operating system, the basic concept of topologies is readily applicable to other 

parallel systems.

To prove the thesis, this dissertation addresses three major topics:

1. D esirab ility  of topologies. Chapter 3 and 4 show that topologies are 

desirable primitives for the interconnection of parallel tasks. Chapter 3 de

scribes various methods of decomposition of parallel applications; each of 

which results in global data and operations that are efficiently programmed



14

with topologies. Chapter 4 describes two typical parallel applications and 

identifies their global data and operations, and Chapter 5 shows how topolo

gies are conveniently used for programming them.

2. A ppropria teness of th e  topologies co n stru c t w ith  respec t to  im ple

m en ta tion . Chapter 5 describes the topology construct and its components, 

and Chapter 6 describes the implementation and performance evaluation of 

the construct. These two chapters show that the construct can be built and 

used and that it is efficient. Thus, it is a realistic primitive.

3. Ease of p rogram m ing  of topologies. Chapter 6 describes the tools and 

facilities for specifying, compiling, and loading topologies, and it shows that 

topologies are easily programmable demonstrating tools for the visualization 

of topologies for debugging and monitoring.



C H A P T E R  II 

Survey o f R elated  W ork

A topology is characterized by (i) multiple process interconnection, (ii) its active 

message-passing mechanism, and (iii) its capability to be constructed and pro

grammed separately from application programs. In this chapter, other research 

related to these aspects of topologies is described. Accordingly, the chapter is 

organized as three sections: (i) process connection and IPC structures, (ii) IPC 

support on multicomputers, and (iii) programming environment and program vi

sualization support for software components.

2.1 IPC Structures

Few systems offer IPC constructs that can establish entii'elPC structures connect

ing many processes. However, simpler IPC constructs are an integral part of many 

operating systems. Those systems that offer some support for the establishment 

of IPC structures are reviewed here.

15



D em os’ S w itchboard  P rocess. In the Demos Operating System [5] process 

connections are established by means of a switchboard process. Initially, each 

process only possesses a link to the switchboard process. A link is a  sim

plex communication path that is addressable by a link identifier and can be 

created and destroyed dynamically. When a process wishes to communicate 

with another named process, it sends a message to the switchboard pro

cess. The switchboard process matches pairs of processes based on the name 

specified and passes the link from one process to another. This allows a pro

cess to form a connection with another consenting process. While complex 

structures may be built in this fashion, they must be constructed explicitly 

from many process-to-process connections as is the case with IPC constructs 

in other research and commercial operating systems such as StarOS [33], 

Medusa [59], Argus [46], Mach [87], and Unix [63].

Unlike Demos’ IPCs which perform several process-to-process connections 

through a switchboard process to create an IPC structure, the communication 

structure of a topology is set up as a whole, independent of the processes 

using the topology.

S M P ’s IP C  S tru c tu res . SMP [44] is a message-based programming environ

ment that supports the construction of process families—a set of processes 

that communicate via asynchronous messages according to a given intercon



nection structure and naming scheme. It is very similar to topologies in that 

arbitrary structuring is allowed. The interconnections within the family are 

defined in a special data structure called topology, which is provided during 

process creation. This data structure is used by the SMP implementation 

to allocate buffers and to enforce the interconnection restrictions. Commu

nications employ the family name and a list of family members to specify 

message recipients. Similarly, the recipients use the family name and list of 

family members to identify the messages to be received.

Enforcing a process structure based on a given interconnection pattern is sim

ilar for both SMP and topologies. But naming differs in that SMP requires 

both the name of the family of processes and the list of family members while 

topologies only require the structural name. Also SMP channels are passive 

while topologies have links that can perform computations.

H P C ’s IP C  S tru c tu res . HPC—Hierarchical Process Composition [45], is a 

design that supports hierarchical communication structures. Each process is 

defined as an object consisting of an internal state, an executable code, and a 

set of communication interfaces. A composite object is constructed by a com

bination of already created objects, communication channels among those 

objects, an encapsulation shell, and a set of interfaces to the external world. 

Object connections are unidirectional channels, and they are established by
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connect calls on the objects’ local interfaces. The location and identity of the 

partners of such connections are transparent. Connect calls are executed and 

channels are created by third parties called controllers. The controller associ

ated with each shell modifies and maintains the arbitrary connections among 

the processes or objects within the shell and enforces protection within the 

shell. Among shells, communication structures are hierarchical since shells 

are composed hierarchically.

HPC’s IPC structures differ from topologies in that they are hierarchical, 

resulting in tree structures, whereas topologies can have arbitrary graph 

structures. One interesting aspect of HPC is the semantics of its commu

nication interface. A communication interface can be a simple, a bundle 

(where a number of channels may be combined), a multicast or a multiplex 

interface. These semantics allow one-to-one, many-to-one, one-to-many, and 

many-to-many connections among objects. These semantics are fixed and 

cannot be modified whereas the semantics of the interface for topologies to 

an application process may be varied arbitrarily.

C h a rlo tte ’s Links and C onnector. Charlotte [3] is a distributed operating 

system with a communication package called nugget which provides process 

control and IPC. Its IPC provides full duplex links addressable by a link 

identifier and employs nonblocking send and receive calls. It can also cancel



a send or a receive and destroy a link or transfer a link from one process 

to another. A process connection is established by two utility processes— 

Switchboard and Connector. The Switchboard helps client processes find 

server processes. Given a description of the processes and the links connect

ing them, the Connector searches for the process in the Switchboard, creates 

a new process from a given program file if it is not found, and sets up the 

links. An interesting aspect of Charlotte’s IPC is the ability to cancel a mes

sage after it is sent and to perform link migration. However, Charlotte does 

not provide any facilities for connecting a  set of processes or for addressing 

such a set as a single unit as in topologies.

Although Charlotte provides several interesting aspects, such as its ability to 

cancel a message after it is sent and link migration, it does not provide any 

facilities for connecting a set of processes or for addressing such a set as a 

single unit as topologies can. In addition, as in Demos and unlike topologies, 

Charlotte has a switchboard process to help establish the communication 

links.

T h o th ’s M ulti-process S truc tu ring . In Cheriton’s Thoth system [14] a con

current program is described at 3 levels: procedure call, data abstraction, 

and process. Thoth processes communicate via messages, and they may be 

grouped into teams, each consisting of a proprietor process which controls
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access to a resource and a set of helper processes (subprocesses) executing 

within the same address space as the proprietor, much like threads in Mach 

[1]. Connections between processes are implicit and short term, lasting from 

the time the sender sends a message to the time the receiver replies to it. 

During this connection, the receiver may transfer data to or from the sender 

or send a reply to the sender without blocking. Dynamic process creation 

and destruction allow the process structure to change dynamically.

In the Thoth System, the connections last until the receiver sends a reply 

message to the sender. Thus, the connections are short term and they are 

not reusable by another set of processes. In contrast, connections in the 

topologies are long term.

O th e r System s. The summary of related research presented above is not com

plete regarding designs of systems offering IPC constructs. They are merely 

a representative sample of modern IPC systems. Implicit communication 

structures exist in IPCs which use a process identifier for addressing. One 

such facility is broadcasting and multicasting in Intel’s iPSC/1 nex OS. It 

provides limited broadcasting and multicasting on the hypercube using pro

cess identifiers. The restriction is that the receiving processes must have 

the same process identifier and must be on a sub-cube including the sending 

node.



Several other systems exist which support the connection of multiple pro

cesses. A multi-RPC facility [66] allows an RPC call to be multicasted to 

several servers with at-least-once semantics. In Cooper’s Replicated Dis

tributed Programs [16], Troupes form a group of replicated programs ad

dressable by a single name. Also in Cheriton’s V System, V process groups 

allow multicasting to a set of processes in a group using a group identifier. 

Caltech’s MOOSE operating system has included two levels of process group

ing in its design: teams—a collection of processes, and leagues—a collection 

of teams. These systems either offer a simple communication structure or 

have no explicitly defined structures at all.

2.2 IPC Support On Structured Multicomputers

Several of the currently available operating systems on structured multicomputers 

and on the hypercube in particular provide IPC as send and receive calls. These are 

low-level calls using as the process name a <processor identifier, process identifier> 

pair. The process name is global, and routing is simplified by the symmetry of the 

hardware topology. IPC’s of some of the current operating systems are summarized 

below:

C rO S. The Crystalline Operating System (CrOS) [25] is an operating system for 

Caltech’s Mark II and Intel iPSC hypercubes and is most suitable for algo

rithms that exhibit regular communication structures. Basic calls in CrOS II
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are rdelt, which receives a communication packet from a (physical) channel; 

wtelt, which sends a packet through (physical) channel; rdres, which receives 

a unique packet from the host; and sendres, which sends a unique packet to 

the host. In CrOS III, basic calls are cread and cwrite, which are similar to 

rdelt and wtelt respectively. They are all synchronous calls, and the oper

ating system provides no routing of the packets. Special calls such as pass, 

shift, and pipe in CrOS II and cshift, vshift, broadcast, combine, and concat in 

CrOS III are provided to assist routing which must be performed by the node 

program. These calls are also synchronous and must be executed by all the 

node programs at roughly the same time. This forces the complete parallel 

program to be written in a synchronous style, whereas all communications 

are done in a lock-step fashion. It is a very low-level operating system with 

little concern for programmability.

M O O SE. MOOSE [65] is an operating system implemented on Caltech Mark II 

hypercubes for automatic load balancing. It provides multi-tasking, dynamic 

creation of processes, and priority-based scheduling. The IPC mechanism is 

pipes in the flavor of UNIX although the actual implementation is more like 

mailboxes with fixed record-length entries. A pipe is created by the system 

call pipopen with a depository on the named processor. System calls pread 

and pwrite can be used for exchange of data using pipes. Shared memory may 

be used if the processes are on the same processor. MOOSE also provides
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globally accessible semaphores for locking and synchronization.

R eactive  K ernel. Reactive kernel [79] is an operating system for the Ametek 

Series 2010 toroidal multicomputer which, together with the Cosmic Pro

gramming Environment, addresses portability of the operating system. It 

consists of a set of daemon processes, utility programs, and libraries. The 

IPC is based on a message-passing model using process identifiers. The ker

nel is reactive or message driven since it schedules a process when a message 

it is waiting for has arrived, and it does not force a context switch until 

some system exception occurs or until it is blocked for another message. An

other interesting aspect of its IPC is that messages are sent and received 

using buffers from a message heap. These buffers are explicitly allocated 

and deallocated for sending. A receive call returns a pointer to the buffer, 

avoiding buffer copy completely. Although sending and receiving messages 

occur between two processes only, it does allow multicasting by providing 

a list of destination processes. The reactive kernel has a notion of process 

groups, but it was only intended for cube sharing in terms of space rather 

than manipulating a set of processes as a unit.

2.3 Activeness in Message-based IPCs

Operations in the distributed objects implemented by topologies can be executed 

in parallel, in a cooperative manner. Such cooperation is implemented with active
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message-passing. Active message-passing has been used in several related research 

efforts.

R P C  and  R em ote  Invocation . Nelson’s remote procedure call (RPC) [9] is an 

IPC mechanism for which the manner of association of application-dependent 

computations with IPC actions is particularly obvious. In addition, some 

changes in RPC semantics are easily made, as shown by Spector’s work on 

remote memory operations [85], by Schwan’s work on remote object invoca

tion with varying invocation semantics [73], and by similar recent research at 

the University of Washington in the Presto Programming Environment [7]. 

Most of this research is similar in spirit to topologies in that it avoids the 

strict layering of communication protocols, thereby facilitating the efficient 

association of application-dependent computations with communications. In 

fact, a simple topology with a link from the caller to the remote node and a 

return link to the caller constitutes an implementation of a remote procedure 

call.

A ctive C hannels. Linvy and Manber’s work on active channel [47] in Active 

TOken ring Network (ATON) is also related to active links in topologies. 

Here the token ring protocol is extended so that shift arithmetic operations 

may be performed directly on the node interfaces. Operations consist of 3 

groups: arithmetic, selection, and counting. Each operation is executed as
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a sequence of 1 bit operations by the ATON interface hardware consisting 

of a modem, an input state machine, an output state machine, and a 1-bit 

ALU. This makes active channels highly efficient for implementing a number 

of algorithms for determining global information such as minimum load on 

the ring network.

F etch-and-$ . Another primitive similar in spirit to topologies is the Ultra

computer’s fetch-and-$ construct [76]. Although fetch-and-<& operations are 

designed for accessing shared locations on shared-memory machines, they 

can be viewed as specialized topologies for process synchronization, where 

topologies are implemented as computational structures embedded in the 

machine’s combining network. The queueing of memory requests and per

forming operations, as defined by $  functions implemented in the combining 

switches, are in essence identical to similar operations performed in topolo

gies. In fact, $  exactly defines the computations of analogous topologies’ 

links.

P acke t F ilte rs . Packet filters [49] in the Mach operating system are another 

means of associating application-dependent operations with the IPC. A fil

ter is a kernel- resident packet demultiplexer that can distinguish between 

packets according to arbitrary and dynamically variable user-specified crite

ria. A simple language is defined for specifying such filter predicates. The
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filter predicates can be loaded in the kernel and interpreted, or they can be 

compiled together with the kernel. A received packet is matched with all 

local filters’ predicates in the order of filter priority until it is either accepted 

by some filters or is rejected. An accepted packet is delivered to the user 

process while a rejected packet is dropped from the network.

2.4 Novel IPC Semantics

Recent work [12, 11, 72] is beginning to look at process communication activi

ties as the sharing of information among processes by use of message sending. 

If interpreted as shared memory in the sense of multiprocessor hardware, such 

global sharing in a multicomputer using messages can be expensive due to the 

communication cost imposed on each process. Such costs arise from the shared- 

memory requirements of reliable communication, consistent sequencing, and effi

cient updating. They grow linearly with the number of processors involved [12] 

and worse than linearly if network failures are considered. Cheriton’s ideas re

garding problem-oriented shared memory are similar to our intended and actual 

uses of topologies [71] in that we contend that costs should be reduced by use 

of application-dependent forms of consistency and reliability. Thus, some of the 

generic characteristics identified by Cheriton are trivially and efficiently imple

mented as computational messages in topologies—e.g., detection of stale data on 

use, sufficient accuracy of stale data, optional data, discardable updates, and demo
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cratic memory.

In contrast to our notion of application-dependent sharing, Linda [11] supports 

a programming model based on a globally shared associative memory mechanism 

called tuple space that consists of data elements called tuples. Processes com

municate by adding (writing), reading, and retrieving tuples from tuple space. 

However, it offers only one type of semantics for read or write—all shared infor

mation is strictly consistent and fully reliable. Application-dependent forms of 

sharing cannot be done in Linda. For instance, shared variables in Linda are dis

tributed across the processors using a hashing function, and the user cannot define 

the distribution of the variables directly. Also, Linda’s implementation has a high 

demand for multicasting on the system, and this may cause substantial communi

cation overhead in many systems where the multicast operation is not efficiently 

supported.

2.5 Programming Environments and Program Visualiza
tion

Our programming system for implementing topologies called PRISM consists of 

a number of tools including a topology compiler, a loader, and a graphical dis

play system integrated through a database. Using a data-manipulation language, 

topologies can be controlled and manipulated. Some current work related to 

PRISM concerns systems which provide an integrated environment for display



28

of data structures and/or code of parallel programs. Four examples are discussed 

here.

Poker. Poker [83] is a parallel programming system in which a parallel program 

is described as a graph defining the communication structure of the program. 

The user defines the communication graph by drawing its connections on a 

two-dimensional stylized lattice using an interactive display system. Graph

ical symbols depict processes and ports respectively. Ports are linked to 

sequential program text that is entered textually. Poker does not allow the 

user to customize displays. Poker’s internal database is mainly used to store 

program segments and other information; it is not intended for tool integra

tion. Hence, user-written mapping schemes are not easily incorporated into 

a Poker application.

In contrast to Poker, the PRISM system described in Chapter 7 of this the

sis is not intended as a graphical programming system. Its displays are not 

hardwired; they are defined by the user and can be easily changed or ma

nipulated. The database in PRISM stores interesting attributes of a parallel 

program and is used for manipulating the program. In addition, it provides 

a basis for uniformly integrating several programming tools.

G A R D E N  System . The GARDEN system [62] is an experimental system for 

large-scale graphical programming; it allows pictures to be described and
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executed using an object-oriented programming environment. A set of types 

defining the program’s objects and their semantics are defined for the vi

sual language. An evaluation function associated with each type defines its 

semantics. Then for each type, the display prototypes are created and the 

graphic editor is augmented to support these new types. Thus, in GARDEN, 

several visual languages can be easily prototyped to describe programs con

veniently. The GARDEN system also has a package called GELO, which 

performs automatic layout of graphical objects.

PRISM differs from GARDEN in several ways. First, it offers no facilities 

for defining any visual languages, nor does it encourage programming using 

different visual languages for different applications. Instead it uses the same 

language to manipulate displays as well as the program structures. Second, 

PRISM differentiates manipulation of program components from manipu

lation of their displays while GARDEN considers graphical objects as the 

same as their corresponding program components. Third, GARDEN is not 

intended for integration of nongraphical tools whereas PRISM is intended to 

integrate several tools in addition to the visualization tool, such as program 

monitoring and resource allocation. Unlike GARDEN, the current imple

mentation of PRISM does not have an automatic layout package similar to 

GELO. However, it could be implemented as a separate tool and integrated 

into PRISM.
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P V  E nvironm ent. Program Visualization environment [40, 26] developed at the 

Computer Corporation of America is an interesting environment that pro

vides the user with representations of the program structure and monitoring 

information, and allows animation of program execution. A program’s code 

and data structure are displayed both graphically and textually, and dynamic 

changes in data structures or in the control sequence of program execution 

can be displayed graphically. Users can define their own graphical pictures, 

which are linked to code and data, permitting the display of different levels 

of abstraction.

As with the PV environment, PRISM also allows user-defined graphical icons, 

which may represent different levels of abstractions of the program. However, 

PRISM is a parallel-programming environment while the PV environment is 

not, and PRISM does not display code.

Incense. Incense [54], as part of Xerox’s MESA environment, provides graphical 

displays of data structures defined in the strongly typed Mesa language and 

also depicts the execution sequence graphically. To display a variable, a 

collection of graphic procedures called the Artist is called with parameters 

that specify the variable’s location on the screen. Artist retrieves data from 

run-time tables or calls other artists associated with each component of the 

display.
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PRISM is similar to Incense in that its display concerns data structures 

rather than code and in that it is capable of monitoring the execution of the 

topologies. In both systems, users can define their own displays and can use 

multiple displays for a single data structure. Incense automatically updates 

all displays of the same data structure if they are currently displayed, while in 

PRISM a user-written data-manipulation program must update the displays.

2.6 Conclusions

As with distributed objects, topologies address issues of parallel programming 

However, the concept of topologies focuses on establishing distributed objects’ 

IPC structures. Remote execution on more than one processor has been addressed 

by Troupes as well as by topologies. Program visualization is also an area ad

dressed by systems such as PV and also by topologies. However, fundamental 

differences in architecture (i.e., structured multicomputers versus unstructured or 

simple ethernet-based multicomputers) have implications on the design of topolo

gies that make this work different from others. For instance, it would be inappro

priate to have a switchboard (as in Demos or Charlotte) to establish connections 

on a machine like a hypercube. In the next chapter, the testbed for implementing 

topologies is described to establish the experimental environment together with 

the sample applications with which they are evaluated.



C H A PT E R  III

D ecom position  M ethods: Global D ata and
O perations

This chapter summarizes several well-known decomposition methods for paral

lelizing serial programs and indicates the unavoidable global data and operations 

resulting from such decompositions. It also discusses the importance and the need 

for a facility for programming global data and operations efficiently in order to 

obtain good performance.

3.1 Domain Decomposition and Global Data

This is one of the most commonly used methods for programming structured mul

ticomputers such as hypercubes. Domains are typically defined as data structures 

that model physical systems [58, 25, 36, 27], such as a matrix representing a finite 

element mesh [10], and they are decomposed and mapped onto the parallel machine 

so that replicated code operates in parallel on different partitions of the structure 

[34, 35] (also termed SPMD—single program, multiple data). The need for global 

data arises when a domain’s structure is not easily decomposed to match the un

32
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derlying multicomputer. However, even when the application can be decomposed 

to match the target hardware perfectly, global data may exist (i) as data shared 

between processes iterating over adjoining partitions in PDE solution methods 

[36, 35], (ii) as aggregations of distributed local data and the subsequent broad

cast of the aggregates, as in the computation of global objective functions [23, 72] 

and as in the computation and broadcast of a global error norm from partial local 

norms when performing convergence testing in the solution part of FEM applica

tions [10], (iii) as global minima or maxima in other Compute-Aggregate-Broadcast 

algorithms [32], or (iv) as cumulative output from partial local outputs, such as al

ternate scanlines generated by replicated tasks and combined to a complete image 

in computer graphics applications [24, 60].

3.2 Domain Decomposition and Global Operations

Some domains are constructed during program execution, such as the search tree 

constructed during the execution of a parallel branch-and-bound algorithm [72] on 

a hypercube machine. This dynamic tree must be mapped and remapped to the 

application’s processes performing the search, thereby balancing workloads among 

processes [51, 23]. Remapping involves the dynamic selection of a process able to 

offload work by a process seeking additional load. This entails the sending of a 

request seeking work to loaded processes, which may accept or reject it based on lo

cal, application-dependent information. Work may be migrated as data describing



it [72] or as a process able to perform it [88]. In either case, the selection and mi

gration of work constitute examples of global operations implemented as multiple 

distributed actions that cooperatively implement such worksharing. Additional 

global operations in parallel programs generated by domain decomposition con

cern synchronization between processes that are working independently on data of 

different age. Some parallel algorithms require strict lock-step synchronization of 

neighboring [6] or all [43, 42] nodes (i.e., all data must be of the same age), as with 

barrier synchronization [32, 84]. Parallel algorithms developed using relaxation 

techniques can tolerate the existence of distributed values of differing ages [35] 

but still require occasional synchronization. The distributed actions implementing 

global synchronization will use state information about application processes based 

on which synchronization is performed, and for process control, they will interact 

with the multiple-node operating system kernels.

3.3 Divide and Conquer and the Task/Queue Model

The task/queue model [17] is a  generalization of the notion of work sharing. Here 

each process defines computational tasks dynamically, typically using divide and 

conquer techniques [35], and offers them for execution to other processes by task 

insertion into single or multiple, global, or regional [30] queues (this paradigm has 

also been called generate and solve [23, 32]). Sample tasks are subtrees of the 

search tree in branch and bound algorithms [51], sublists of a list to be sorted [21],
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futures in Butterfly Scheme, or tasks in the Butterfly’s Uniform System [17]. Such 

global or regional queues constitute abstractions implementing global operations. 

Their implementations should be distributed ones. (See Section 5.4.2 for a design 

of a distributed global pool.) Dynamic task generation also occurs with the use of 

fork and join instructions in automatic methods for program parallelization, such 

as the DoLoop parallelization methods and constructs used by Kuck [41, 32] and 

at IBM [84]. Here a single thread of execution spawns (forks) multiple threads, 

which may later synchronize (or join) at barriers embedded in the code. Spawned 

threads must be submitted for execution by entry in a global queue, which again 

(like barriers) constitutes an abstraction used for global operations.

3.4 Functional Decomposition and Pipelining

Parallelism generated in this fashion does not pose new problems for the program

ming of multicomputers. However, the nonhomogeneous parallelism generated in 

this fashion leads to complications with the previous decomposition methods’ uses. 

Additional instances of global operations may arise in the form of multiple, global 

task queues [30], and nonuniform communication structures may need to be used, 

such as multicasting instead of broadcasting [16]. An interesting class of applica

tions typically decomposed functionally are robot control programs [57, 73, 69]. 

Such applications may require that global deadlines are guaranteed during exe

cution [52]. Global deadline scheduling can be implemented efficiently using dis
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tributed objects, which may be explored in future research. In addition, robot 

control programs may require communication constructs in addition to those pro

vided by the node operating system [69, 73],

3.5 M ultiple Phases

Most realistic, large parallel applications consist of multiple phases each contain

ing substantial parallelism. For example, the first phase of the FEM application 

described in Section 4.2 and [4, 10] concerns the parallel generation of distributed 

data: its second phase concerns the solution of a system of equations based on that 

data. Global operations are required due to the fact that the second phase cannot 

start before the first phase has completed. In other applications global data may 

occur due to data redistribution between phases, which often constitutes a limiting 

factor in the performance of a parallel program [78].

3.6 Global Data and Operations in Operating Systems

Many global computations in parallel applications on structured multicomputers 

implement functionalities typically provided by the operating systems of shared- 

memory multiprocessors, such as I/O , exception handling, multicast communica

tions, etc. [33, 45]. For example, the output of a multicomputer application may 

be performed by a distributed object that implements a spanning tree of processes, 

where each tree node explicitly collects its neighbors’ outputs, possibly performing
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some post-processing, and then forwards the resulting concatenated output data, 

etc. Other communication structures may be designed to carry certain control 

messages, such as instructions to processes to resume or terminate execution.

In general, any large parallel program will exhibit many such distributed ab

stractions among its independently executable processes, where the importance of 

some of those abstractions is shown by their explicit support in multiprocessor 

operating systems. For example, an abstraction expressing the dependencies [33] 

between a program’s multiple processes in the StarOS operating system for the 

Cm* multiprocessor allowed certain processes to terminate or control others, as 

with parent and child processes in Unix. Similarly, a bailout abstraction allowed 

one process within a parallel application to handle the exceptional conditions of 

the application’s remaining processes (i.e., to bail out other processes [33]).

In contrast to the OS support for multiprocessors described in the previous 

paragraph, the abstractions implementing OS functions in multicomputers must 

be programmable by application programmers to attain suitable performance. For 

example, a specific parallel application may require partially ordered output data, 

which may not be provided by the standard output utility. Instead the standard 

utility may be optimized to produce output at the fastest rate possible using a 

distributed object with nodes that simply concatenate and forward the outputs 

from neighboring nodes within a spanning tree. Similarly, for specific applications, 

it may be desirable to associate some output post-processing the output abstrac
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tion’s concatenation actions, such as filtering, correlation of output data, etc. For 

example, one implementation of a computer graphics application for the hypercube 

designed by our research group required pixel data output by one process to be 

correlated with data on the same pixels known to other processes.

Programmability will also be required for other inherently global operating sys

tem facilities, such as program input, program monitoring [55, 82], and debugging, 

support for process scheduling and/or migration [70, 72], and the implementa

tion of process groups [13, 45]. Monitoring is of particular interest because the 

obvious approach of sending all monitored data collected at a  certain node to a 

central monitor is infeasible [82]. Monitoring is best performed by distributing 

both the collection and analysis functions associated with a particular monitoring 

query across the multicomputer [55, 56]. Thus, a distributed monitoring object 

consists of cooperating nodes that filter and partially analyze collected data and 

then forward the reduced amounts of data to other nodes, thereby reducing to

tal communication as well as parallelizing the potentially time-consuming analysis 

actions. Similarly, the global operations desired for debugging a parallel program 

may be implemented using a distributed object with nodes that are able to affect 

their local application processes’ execution states.

Higher-level operating system facilities currently being developed for multicom

puters also exhibit global data or operations. For example, the names of objects or 

procedures being invoked are global in RPC and in distributed object implemen
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tations [8, 2, 19, 77]. Similarly, tuple space is global in Linda [11], which causes 

substantial overheads for Linda’s hypercube implementation [78].

3.7 Conclusions

Several commonly used decomposition methods for parallelizing serial programs 

exhibit global data and operations. The most significant point of this chapter 

is that regardless of the decomposition method used, global data and operations 

will arise, either between different computation phases or as a part of the paral

lel computation, and that without having a facility to program them efficiently, 

performance may be drastically affected.



C H A P T E R  IV

E xperim ental T estbed and Sam ple Parallel
A pplications

This chapter describes the testbed for implementing topologies and the sample 

parallel applications used to evaluate topologies and identifies the global data and 

operations in these applications.

4.1 Testbed Environment

4.1.1 Hardware

The underlying nonshared-memory machine which serves as a testbed for imple

menting topologies and sample applications is a  32 node Intel iPSC/1 hypercube. 

The node processors are connected as a hypercube interconnection, as shown in 

Figure 4.1. In a hypercube interconnection an n dimensional cube has 2n total of 

processors, with each processor having n directly connected neighboring proces

sors. The average distance between two arbitrary node processors is n/2 and the 

maximum distance is n. A hypercube is a versatile structure onto which trees, 

rings, meshes, or other regular structures can be mapped easily [64, 25].
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Each node consists of a 12 MHz Intel iAPX 286 processor, 512 kilobytes of 

memory, an iAPX 287 floating point co-processor, and 8 ethernet communications 

channels built from local area network (LAN) controllers (each controller is the 

iAPX 82586 chip), of which 6 channels are in use. Five channels are connected to 

the neighboring processors to form a hypercube, and the last channel is a global 

channel which links all the processors to the host, also called the cube manager. 

The cube manager is an Intel System 310/AP running the Xenix 3.4 operating 

system on an iAPX 286/10 processor. A framebuffer attached to the cube man

ager provides 640 by 480 pixels display and a total of 1024 colors with 256 colors 

displayable at a time. Figure 4.2 shows the hardware testbed. Note that a global 

ethernet connects all the node processors and the cube manager. The cube man

ager is also connected through the departmental ethernet to a number of Sun 

workstations. A Sun 3/50 is used as a remote host to the hypercube in place of 

the Intel System 310/AP for the PRISM environment for programming topologies.

The internal architecture of a node processor is shown in Figure 4.3. The 

memory is organized as a dual-port memory with two independent buses—one con

nected to the processor and the other to the communication controllers. Commu

nication between each controller and the processor is provided by data structures 

called system control blocks in the memory. The hardware controllers understand 

the system control blocks and are capable of retrieving the list of messages and 

buffers linked to each of the system control blocks. A message to be sent is linked
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Figure 4.2: Testbed—Cube Manager and the Hypercube

to the system control block through a command block and a buffer header. A set 

of buffers for loading incoming messages is linked through buffer headers [31].

4.1.2 Software

Software provided by Intel for the iPSC/1 testbed consists of a node operating 

system called nex, which supports multi-tasking; a dynamic loader for loading 

processes; and a logger for debugging user applications. The interprocess commu

nication primitives provided by nex can send or receive messages of sizes up to 16 

Kbytes using send, recv, sendw or recvw calls. A send call initiates the sending 

of a message, and a sendw call causes the calling process to be blocked until the 

message transmission is done. A recv call initiates the receipt of a message but 

does not block the calling process, whereas a recvw call does. Each process on the
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hypercube is uniquely addressed by the node processor number on which it resides 

and by the process identifier, which is unique on each node.

4.2 A  Finite Element Modeling Program

The first application used in this thesis is a finite element modeling (FEM) program 

[10] for metal-forming problems. It is a parallel version of a code called ALPID. 

This application typifies large-scale, scientific applications in that a large domain 

represented by some data structure is decomposed to generate parallelism. Briefly, 

the FEM program computes an approximate solution to the behavior of nonlinear 

materials [10] by repetitively performing a computation consisting of two phases. 

In the first phase, a  matrix [K] is generated that contains the coefficients of a 

system of linear equations [K][u] =  [F]. This generation is based on an initial guess
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for [u]0 or on information from the second phase ([u]j) and on information about 

the elements of the finite element mesh, such as elemental stiffness matrices, etc. 

In the second phase, the system of linear equations with the given coefficients is 

solved with an iterative solution method [4].

The two-phased computation continues until the solution vectors [u]j and [u]j.j 

are sufficiently close to each other. For problems of reasonable size, total execution 

time is distributed roughly equally across both phases. As problem size grows, the 

solution phase starts to dominate. Thus, subsequently, we concentrate on the 

solution phase of the computation,

A parallel program for the solution step of the FEM application is generated 

by partitioning the matrix [K] and the vectors [u] and [F] and replicating the 

solution code, followed by mapping partitions of the data and replicated solution 

code (solver processes) onto different nodes of the hypercube. To guarantee that 

only nearest-neighbor communications are required between solver processes when 

computing matrix/vector products, the matrix [K] is partitioned and mapped using 

a one-dimensional strip-mapping method [64]. This method partitions [K] into a set 

of rows containing the coefficients of a number of consecutive finite element nodes of 

the mesh; the total number of partitions is equal to the total number of processors. 

Nearest-neighbor communications are obtained by mapping consecutive partitions 

onto a linear chain of processors, where each processor is one hop away from its 

neighbors. The elements of the vectors [u] and [F] are mapped onto processors
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Figure 4.4: Strip Mapping and the Linear Chain of Processors

in accordance with the mapping of the coefficient matrix [K]. The resulting linear 

chain of processors and the finite element nodes mapped to these processors are 

shown in Figure 4.4. The strip mapping will also perfectly balance processor loads 

under certain conditions [64].

The actual method for solution of [K][u] =  [F] is iterative, using the restruc

tured conjugate gradient solution method [4]. In this solution method, one of two 

required global operations performed during each iteration has been removed. The 

pseudo-code of each solver appears below. Operations requiring nonlocal commu

nication are labeled with **’ for nearest neighbor communications and with [G] 

for global communications/operations. Nonlocal communications performed once 

during initialization are labeled with ‘I’:

(I)Receive and distribute mapping information 
(I)Receive [K] matrix 
(I)Receive [F] vector
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Initialize
direction vector [p] 
residual vector [r] 
solution vector [u]

repeat
(*)perform matrix-vector product [m] = [K][p]
(G)perform inner-products [p].[m], [m].[m] to compute global scalars 
(G)distributed global scalars to all processors 
compute global residual norm from global scalars 
update vectors [p], [r], [u] 

until
global residual norm < tolerance

In each iteration the sparse matrix-vector product of the [K] matrix and the 

direction vector [p] are formed1. This requires communications with neighboring 

processors only, which is indicated by **’ in the program code. Next, two inner 

products involving the vector [m] are formed. Since [m] and [p] are distributed, 

these inner product computations are global computations—global sums (first G). 

In fact, for a problem of matrix size 25x25 on a 32-node Intel iPSC hypercube, 

speedup was improved by 13 percent when changing the basic CG method, in 

which two global sums were performed, to a restructured CG method, in which the 

global sum to update [p] was avoided by accumulating the two inner products in 

one step (as indicated by the first G in the program code above).

The computation of global scalars from the inner products and the computation

of the residual norm as well as the updates of vectors [p], [r], and [u] do not require

1The direction vectors constitute a sequence of vectors from which the sequence of approximate 
solution vectors are constructed, starting from the initial guess.
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any nonlocal communication. The criteria for terminating the iterative process is 

a tolerance that must be achieved by the global residual norm.

It is apparent that the efficient computation of the global sum is critical to 

the performance of this parallel application. However, additional global data and 

operations exist in this application; they stem from the cooperation between the 

two phases since the results of Phase 2 must be fed into the next execution of Phase 

1 and since Phase 2 cannot start before Phase 1 has completed. Furthermore, the 

first phase of the application must compute a global minimum from local, partial 

minima in a fashion similar to the computation of the global residual norm.

In the next chapter we formulate a topology for performing the global sum 

computation in the FEM application.

4.3 A Traveling Salesperson Program

The second application is a branch-and-bound algorithm for solving a traveling 

salesperson problem [72, 51] (TSP). This application performs optimization in a 

dynamically constructed search space [51], which is typical of many nonnumerical 

computations. The algorithm is the LMSK branch-and-bound algorithm [50] which 

heuristically constructs and traverses a search tree. It starts out at the root with 

the entire graph representing the initial problem. Two independent subproblems 

are generated on each expansion of a node by selecting an edge and excluding it 

in one subproblem; while in the other subproblem the selected edge is the only
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edge included between the corresponding two nodes. Each of these subproblems 

is expanded further until a tour value is found. This value is used to prune some 

branches of the search tree [72].

The application’s parallel implementation exhibits a three-level process tree. 

At the root of the tree is a single process that coordinates the actions of multiple 

subprocesses. Each subprocess independently computes a solution for a different 

subproblem. The subproblem is solved either by the subprocess itself, resulting in 

a flat two-level tree, or the subprocess employs additional searcher processes (up 

to four) that each solve a well-defined part of the subproblem. All computations 

at the leaf level of the tree (the searcher processes) proceed by expansion of nodes 

of a dynamically constructed, distributed search tree. This search tree consists of 

multiple subtrees, where each subtree root is represented by a matrix that describes 

a particular subproblem. This is shown in Figure 4.5 in which a three-level process 

structure is shown. The problem to be solved is indicated by a graph associated 

with the coordinator process, and subproblems defined by elimination of edges are 

indicated next to the subprocesses and searcher processes, along with the search 

trees constructed when searching along specific edges (the edges being searched 

are bold-faced in the problem graph.)

The pseudo-code describing the coordinator, subprocesses, and the searcher

processes appears below.

Coordinator:
generate and distribute one subproblem for each subprocess



problem

subproblem
Co-ordinator Process

search tree

O  subprocesses

searcher
processessubproblem subproblem

search tree search tree

;ure 4.5: Three-level Process Structure for Solving the TSP
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repeat
if a better tour value is received

send this value to all subprocesses 
if a subprocess is idle

ask a busy subprocess to send work to idle subprocess 
until all subprocesses are idle

Subprocess:
receive work from coordinator 
do forever 

repeat
while there are idle searchers and unexpanded subproblems 

send a subproblem to the idle searcher 
if a better tour value is received 

update the low tour value 
if a request to share work is received

send a subproblem to idle subprocess 
if expanded subproblems are received from searchers 

add to the list of subproblems 
until all searchers are idle and there are no more nodes to expand 
send idle message to coordinator 
wait for work

end

Searcher Processes: 
do forever

receive work from a subprocess
expand the nodes into a subtree of a given size
send the subtree to subprocess

end

A Global Shared Memory in TSP. TSP is interesting because it exhibits sev

eral unavoidable global data and operations, the first of which resembles global 

shared memory [12]. Namely, whenever the solution of a subproblem results in 

the detection of a tour, the value or length of this tour must be communicated to 

all other processes expanding the search tree. By comparing the current values of
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their own, incomplete tours to the value of a found tour, the search tree can some

times be pruned, thereby reducing the amount of useless work being performed. 

Thus conceptually, all processes expanding nodes should share the value of the 

variable best Jour associated with their subproblems. However, the shared memory 

semantics of best Jour do not require that the global consistency of best Jour is 

maintained at all times.

W ork Sharing  in  TSP. A significant source of complexity in the implemen

tation of the parallel TSP program is the sharing of work among subprocesses. 

Specifically, each searcher must acquire a new subproblem whenever it completes 

the solution of (finds a  tour) or aborts (prunes) its current subproblem. This en

tails finding a good subproblem currently known to a different searcher and then 

interacting with that searcher to share some of the subproblem. The direct imple

mentation of the above TSP program demonstrates that even with dynamic work 

sharing, the parallel TSP implementation may spend a significant amount of its 

total execution time idling waiting for work. Therefore, implementing a global 

pool which allows the rapid sharing of work can lead to substantial performance 

improvements for the following reasons:

• A global pool as a repository for all work to be shared may be manipulated to 

remove units of work that are less useful than others, and it may order work 

units by their potential usefulness. Then, the scheduling of work now part of
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the user’s application, is performed by a part of the pool’s abstraction.

•  If it can be assured that the pool always contains at least one unit of work 

while there is still work to do, the total waiting time of subprocesses for 

requested work is reduced.

• Larger problems may become solvable due to improved balancing of memory 

usage per processor (i.e., processors with problems that are too large could 

divest themselves of work).

The global pool can be implemented as a distributed pool object connecting 

the processes which need to access the pool. The detailed design of such a pool is 

described in the next chapter.

4.4 Conclusions

Summarizing the discussion in this chapter, it is apparent that multicomputers 

will not become more easily programmable until a wide variety of global data and 

operations programmed as distributed objects can be implemented conveniently 

and efficiently. The topology construct described in the next chapter can be used 

to program such global data and operations by designing multiple, arbitrary com

munication graphs that link the independently executable processes of a parallel 

application program and by defining operations performed in parallel at the nodes 

of such graphs.



C H A P T E R  V

Topologies

Topologies, briefly introduced in Chapter 1, are defined in detail in this chapter. 

Designs of topologies for implementation of global data and operations in the two 

sample parallel applications of Chapter 4 are also described, thereby demonstrating 

how such distributed objects can be used in parallel applications.

5.1 Topologies— Basic Definition

Operationally, a topology defines a communication protocol among a number of 

identified, communicating parties. Figure 5.1 depicts the basic components of a 

topology associated with an application program. These are (i) the communicat

ing processes’ identifications (the object users), (ii) their interfaces to the topology 

(object operations), and (iii) the topology’s implementation (object representa

tion), which consists of the logical communication links used for data transmission 

and the vertices containing data buffers, execution state, code, and intermediate 

results. The topology’s code consists of (a) software for the efficient, reliable trans-

54



55

Object user

Process

vertex
vertex

wM

vertex

Trigger Conditions

Execution State

Service Routine 1

Service Routine 2

Service Routine 3
Operations

Vertex

Object Representation

Figure 5.1: Topology—A Distributed Object

fer of data between two specific parties using some given means of data transfer 

(i.e., link-level software in the ISO model of data communication), (b) software 

that has knowledge of all connections from/to each vertex (roughly equivalent 

to network-level software in the ISO model) and also implements the topology’s 

operations (called service routines).

Therefore, using the topology construct defined next, application programmers 

may define a distributed, abstract object consisting of the following components:

1. Object Structure and Type Definition—It defines the object as a topology 

with a certain logical communication structure and the topology’s service 

routines implementing the object’s operations and interaction with the struc-
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ture’s communication links. Service routines are executed when certain 

application-dependent or system-dependent trigger conditions (e.g., receipt 

of a data packet at the link-level) become true. It also defines execution 

state and intermediate data to be stored in the vertices of the communica

tion graph.

2. Object Mapping—The object’s logical communication structure and vertices 

(the object’s distributed representation) are mapped to the underlying phys

ical machines and communication channels of the multicomputer;

3. Object Instantiation—An object is instantiated statically (i.e., at compile 

time), and a unique name is associated with the instance.

4. Object Binding—Binding of an application to an object is done by identifying 

the parties (i.e., application processes) involved in communications with the 

topology (i.e., with the instance of the distributed object).

An object’s structure is a directed graph, which may be described as a list of 

vertices connected with edges. (The grammatical and sample language construct 

descriptions below use boldfaced keywords; nonterminals are italicized; ‘::=’ de

fines a production as in Backus-Naur form, whereas ‘= ’ is a terminal symbol; for 

convenience in notation, grammar operators like sequencejof are used. £. . .’ 

indicates the omission of some details. A complete description of the grammar 

appears in Appendix B.)
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typejdeclaration ::= Type jzf.Topology TopologyType is { 
S tructure is {

Vertices = sequence_of (vertexjd)’,
Connections = list_of (triplejof (vertexjd));
}

•  •  •

•  •  •

}
triple.of (vertexJd) ::=

host-vertexJd: input-vertexJd: output-vertexjd

sequence_of(vertexjd) ::=
smallest-vertexjd. . largest-vertexJd

list_of(elements ) ::=
firstjelement\ listjof(remainingelements)

Type-ofJopology is an identifier for a specific type of topology, as described by 

its set of triples. Thus, multiple instances may be created of each type of topology. 

Vertex ids are integers. Host-vertexJd, input.vertexJist, and outputjoertexJd are 

defined below.

The sample type of distributed object below is a ring of 8 vertices, where 

integers are used as vertex id. In this ring, a vertex with id i is connected to 

another vertex with id (i +  1) modulus 7. (For brevity, vertex descriptions and 

edge descriptions are elided below.)

Ring T op ologyT yp e is {
S tru ctu re is {

V ertices =  0..7;
C onnections =

0 : 7 :  1;
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1 : 0 : 2;
2 : 1 : 3 ;
3 : 2 : 4 ;
4 : 3 : 5 ;
5 : 4 : 6 ;
6 : 5 : 7 ;
7 : 6 :  0;
}

} '  ’

A topology’s vertices (described by the hostjvertexJds above) contain the appli

cation-dependent components (object operations) of the topology’s communication 

protocol—termed services. Each vertex contains information about its execution 

state, storage for intermediate data, and services represented as executable code 

segments.

An edge in a topology defines a uni-directional, logical communication path be

tween two vertices. Edges provide a link-level communication protocol that guar

antees the correct sequencing and reliable delivery of single, variable-size packets. 

Flow control for multiple packets and automatic buffering of multiple packets are 

not performed at the link-level', such actions may be application dependent and 

are therefore performed by services.

Object operations in a vertex must be associated with a specific service rou

tine. However, in our implementation, a single service routine may be associated 

with multiple topologies, where each topology uses a different serviceJype for the 

routine:
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servicejroutinejname on nodeJd as servicejype 

Thus, multiple topologies may share the same physical copy of a service routine’s 

reentrant code.

Application-dependent services in a vertex are executed based on the truth 

values of trigger conditions stated with the vertices’ specifications. For example, a 

two-vertex topology connecting two processes may filter messages such that only 

nonredundant values are seen by the receiving process. In this case, the application 

programmer might associate a service with the source vertex that performs value 

filtering by comparison of the current value being provided by the source with the 

previously transmitted value. The trigger condition for activation of the service in 

the sending vertex is provision of input value by process bound to the source vertex, 

and its trigger condition for producing an output (i.e., sending a value across the 

edge) is new value. Note that such filtering may be useful in robotics applications 

where a value produced by an iterative sending process is of interest to an iterative 

receiving process only when it differs from the value seen in the previous iteration 

[69, 73, 57].

More specifically, an edge and a vertex of a topology are described by the

following abstract data type (nonterminals are italicized):

Vertex is
hostjvertexJd; 
type-ofjopology;
MapJd (defined below); 
bound^processJd; 
private jdatajsize\
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stackjsize;
services: listjof ( service -type);
mp«is:list_of(tuplejof(mp«LeJ^e, inputjqueue)); inputjcondition’, 
outputs:list_of(tuple_of(output_ed<7e, output.queue)); output_ condition;

Edges are
transmission j>rotocoljittributes; 
state;

In these descriptions the transmissionjprotocoLattributes of the edge specify 

the attributes of the network-level protocol, such as number of retries, network- 

level flow control, routing, or whether the packets are to be acknowledged or not.

Regarding the vertex , the permanent execution state and intermediate data 

maintained in privatejdata can be arbitrarily complex1, and it may be used for im

plementation of user-specified scheduling code and queueing structures that define 

arbitrary orders of input processing, service invocation, and output generation. 

Temporary execution state is maintained in the vertex’s stack.

Note that trigger conditions are stated separately for input and output. Input 

conditions may be used to control the activation (scheduling) of services based 

on the availability of inputs. For instance, an input condition may state that a 

service is executed incrementally as each input arrives (e.g., when the service is 

a simple addition of incoming data values). Alternatively, a service may require

that all inputs are present for it to execute. An input condition does not identify

1Since storage and buffer space in the 286-based hypercube are limited, the current implemen
tation limits the number of queued input packets to one for each input link. Similarly, the 
priva te jda ta  segment associated with each vertex must be small.
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the services to be used for certain inputs. However, such identifications are found 

within headers of packets traversing the topology, and they are provided by the 

user programs accessing vertices (see the next section). Input conditions may also 

be used to implement different models of computation. For example, a topology 

implementing the data-flow model [20, 29] would contain conditions that cause 

services to execute when all inputs for a particular vertex have received new data. 

Other boolean conditions stating that a service should execute when 2 out of 3 

inputs or any one input has new data may be formulated as well.

Output conditions control the scheduling of output generation; an output may 

be generated after each service execution or only after some delay required or 

desired by the application. Furthermore, the results of a service’s execution may 

be sent to one, some, or all output links of a vertex.

Implicit in the descriptions above is the distinction of queueing and nonqueue

ing vertices. Specifically, when a service may be invoked incrementally because its 

order of execution viz. incoming messages is immaterial, then the vertex need not 

queue incoming messages. If a vertex must wait for a set of inputs for the input 

conditions to come true, then the input messages will be queued. For performance 

reasons both types of vertices are supported in our system (see Section 5.1.2).



5.1.1 Services (Object Operations)

The distributed object operations are performed by services which are threads of 

execution distributed across the processors. A service maintains a state, which is 

stored in the data part of a vertex, and a user-definable segment of code called 

a service-routine. It is activated by an arrival of a message or a set of messages. 

Once activated, it executes until the activation is completed. Only then can it 

be reactivated by the arrival of another message. The activation may terminate 

by generating one or more messages, or it may generate no message at all. These 

messages may initiate operations at other nodes or simply be queued at the user 

process bound to the service node. Services interact with that process through such 

messages in either one or both of the following two ways: (i) control of execution 

or (ii) transfer of data via (a) system buffers and (b) shared data areas.

For a given topology, a particular service may be activated by specifying a ser

vice id unique to the topology. When an object operation is executed concurrently 

and cooperatively by replicating the service routines on different processors, these 

routines are named by the same service id. For instance, a  global sum performed 

as a tree structure may have partial summing service routines distributed on the 

processors at the tree’s nodes; the summing services on the processors have the 

same ids. When the sum operation is invoked by a user process, the local sum

ming service routine is executed. If such an operation is not completed or cannot



63

be performed locally, remote service routines are executed by sending a topology 

message carrying the remote service id and the parameters required for remote 

execution.

5.1.2 Topologies— Extended Definition

The descriptions in the previous section are overly simplified because, in general, 

the services performed by a topology’s vertices may range from simple, low-latency 

message switching to complex, application-dependent computations. Thus, our ac

tual implementation offers alternative representations for the services of each ver

tex. This results in significant differences regarding a service’s execution overhead, 

latency, and predictability in performance. The following alternative representa

tions of services are provided:

• Small-grain computations may be performed by services implemented as pro

cedures called at interrupt level within the operating system kernel following 

the execution of the link-level communication protocol. Such services may 

be invoked and executed with very low and predictable overhead and latency 

(see Section 6.3 for performance measurements). Their execution is atomic.

• Medium-grain computations may be performed by services represented as 

interruptable small tasks executing within the kernel’s address space and 

scheduled in a round-robin fashion. Such representations may increase fair

ness and average throughput in the execution of multiple topologies and
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services within a single operating system kernel but may increase the latency 

of execution for specific services, as shown by our implementation of kernel 

tasks for character processing within the Unix System V kernel [39],

• Large-grain computations may be performed with higher latency and lower 

predictability by embedding services within a process that executes in user 

space. Such a process may be notified using an upcall-like mechanism [15] 

when the condition determining the service’s execution becomes true, or it 

may service a queue of inputs associated with such a condition.

5.2 Topologies— Instantiation and Binding

A distributed object is instantiated separately from an application program so 

that it may be reused or changed dynamically. For its instantiation a topology’s 

vertices and edges must be mapped to the nodes and physical communication 

links of the underlying computer ensemble. A mapping is defined separately from 

an object’s structure by assigning vertices to physical nodes, where MapJd is a 

numeric identifier for the mapping:

MapJd is m ap  listjof (tuple_of (node-id:hostjvertexJd)) 

or

MapJd is m app ing jrou tine  { routinejnameQ }
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Thus, whether they are user-defined or generated by automatic mapping algorithms 

[64], mappings may be varied independently of an object’s structure, thereby re

sulting in nearest-neighbor communications, balancing loads, or optimizing other 

performance criteria.

Given a structure definition, the vertex mapping is either stored as data (as 

suggested by the first grammatical description above), or it is computed dynam

ically. A stored mapping is implemented by partitioning the structure definition 

and mapping information such that each processor maintains information only for 

those vertices that are mapped to it. This permits dynamic changes to a topology 

without having to broadcast those changes to all nodes. A computed mapping is 

implemented by services in a vertex that derive the physical nodes for the ver

tex’s inputs and outputs. Sample computed mappings are dynamically spanning 

broadcast or multicast trees, rings, and other regular structures [29]. Computed 

mappings may be enhanced to implement dynamic routing algorithms [18].

Given a topology structure definition (a topology type) and a mapping, a global 

unique name is associated with a specific topology instance by combining the type 

with the mapping:

TM Jd  Topology is type-ofJopology and  m apjd  

Once named in this fashion, the topology is fully instantiated and may be loaded 

onto the nodes of the distributed architecture. Once loaded, it can be used by ap

plication programs. A topology may also be generated by a user-written topology
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generating routine. This routine generates the topology structure, vertex descrip

tions, and edge descriptions which are then down loaded into the node operating 

system kernel. Such a topology may be defined as:

TM Jd  Topology is { routinejname }

A distributed object cannot be used by an application program until a binding 

of its vertices with the application’s processes has been established. Each vertex 

may be bound to zero or one process of the application program, and each process 

may be bound to multiple vertices of the same or of different topologies. Bindings 

are made dynamically and under program control by reference to a specific topology 

using the call:

thandle =  T opO pen ( TMJd, hostjvertexJd, initJag)

Here hostjvertexJd identifies the name of the specific vertex of topology TMJd 

to which the calling process wishes to be bound (recall that multiple vertices of 

one topology may be mapped to the same node). Init-tag is an initial value for the 

tag to be used by this vertex for this process (tags are described in Section 5.3.1). 

Thandle is a system-provided object handle for the topology identified by TMJd.

The effect of a binding of a vertex to a process is the association of two pre

defined input and output links of the vertex with the process. Thus, the binding 

is bi-directional. The input and output conditions associated with those links are 

ignored when no process is bound to the vertex. A binding is explicitly broken 

using the call:



TopClose (thandle)

This allows processes to ignore communications they do not wish to handle, but 

it need not deactivate the vertex itself given that its input and output conditions 

are written to ignore the links to the specific process when necessary.

5.3 Programming with Distributed Objects

5.3.1 Using Topologies

Once defined, instantiated, and bound, a topology represents an instance of a dis

tributed, abstract object that can perform certain user-defined operations. While 

each such topology should appear to the application as a distributed, abstract 

object [70, 2, 23] encapsulating some desired functionality, the operating system’s 

interface to arbitrary topologies should be type independent. Toward this end, 

we provide calls resembling message operations with which an application process 

may access the object via a vertex to which it is bound and identify the operation 

(service) to be executed:

TopSend (thandle, serviceJd, parameters, count, tag)

The effect of TopSend is that the parameters are made available to the service 

routine identified by serviceJd associated with the bound vertex of topology with 

object handle thandle. The object handle is obtained from TopOpen call described 

in the previous section. Parameters is a pointer to a buffer into which the required 

parameters have been packed (in the order expected by the service routine), and
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count denotes the size of the buffer. Tag will be explained below. 2

The service routine identified by service id is activated when its input condition 

becomes true, which may be immediately following the execution of a TopSend 

call. The call returns with the value true to the calling process either after the 

parameters have been queued as an input to the queued service or after the service 

routine of the nonqueued, incremental service has completed its execution. If the 

service is nonincremental or if the service’s execution entails the generation of an 

output across one of the vertex’s output edges, then the user may wish to ascertain 

that an output has been generated and transmitted successfully to a target vertex. 

In this case, the calling process may use the call:

TopSendW  (thandle, serviceJd, parameters, count, tag)

This call blocks the calling process until an output has been generated by the 

vertex.

In both TopSend calls the tag argument is a user-provided value that is incre

mented with each call. Tag may be used to identify a particular set of input data. 

For instance, service routines can use the tags on their input data for the explicit 

matching/sequencing of their inputs, as required for systolic programs. Similarly, 

in a ring topology the tag can be used to distinguish messages from different nodes. 

A process obtains the result of its operation invocation by performing the call:

TopR ecv (thandle, service Jd, parameters, count, tag)

2 Service J d ,  count, and tag are all of type integer; param eters  is of pointer type which may point 
to any other types, thandle is of type object_handle.
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This call returns the result parameters of the service service J d  if the value of tag 

specified by the caller matches the tags of the inputs based on which the outputs 

of the service were generated (thus, tag values are matched for outputs, as well). If 

such outputs are not currently available, then the call returns with an error status. 

Service routines may be programmed to maintain a short history of the tag values 

of their inputs and outputs so that they may return the most recent value of their 

input and output tags into tag. In addition, TopRecv has a wild-card value of tag. 

This results in the return of the service’s most recent output.

While TopRecv is a nonblocking call, the following call will block until a result 

with a matching tag becomes available.

TopR ecvW  (thandle, serviceJd, parameters, count, tag)

However, such a call will not block forever; it will time-out using a specification

time time-out value.

Note that the send/receive primitives shown here are not the only ways in which 

the computations performed by a topology’s services may be associated with the 

computations of the bound application processes. Services may implement their 

own interfaces, including those that directly activate the execution of user processes 

(such as upcalls [15]) or directly access the processes’ address spaces (see Section 

5.4.2 for an example of such an interface).
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5.3.2 W riting Services

Service routines written for each topology may be classified into three kinds: initial

ization services, operation services, and termination services. Initialization service 

routines are executed at the time a topology is loaded. Such services are local 

and are replicated on all the processors on which the vertices reside. Thus, the 

topology initialization is fully distributed. Likewise, the termination service is a 

local operation and is executed at the time the topology is reset, in part to release 

the resources allocated for each vertex of the topology.

The operation services are the service routines implementing the distributed 

object’s operations and are explicitly executed by requests from the user program. 

Since such service routines are event driven, their execution is activated by the 

arrival of a topology message requesting their services. Execution is terminated 

when the routine is completed. At termination the state of the service routine be

comes inactive. Inactiveness is different from the blocked state of a process since 

reactivation transfers control to the start of the service routine whereas unblocking 

resumes control from the last state. However, the state of a service routine must be 

saved and restored explicitly if its execution is to proceed from the last activated 

state. Furthermore, the execution of a service routine of medium or high granu

larity may be preempted before the completion of the service and then resumed 

from the preempted state, but at the completion time of the service, control always 

returns to the start of the routine. This ensures that there will be one activation
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Figure 5.2: Broadcast and Inverse-broadcast Trees

per topology message and that all the topology messages are treated uniformly.

5.4 Using Topologies to Program Global Data and Oper
ations

5.4.1 The FEM Application

On a hypercube, a global sum is efficiently performed with a summing object 

having the structure of an inverse-broadcast tree since this structure minimizes 

the number of nonlocal communications required. The directed graphs of the 

broadcast and inverse-broadcast trees for a 3D-hypercube are described in Figure 

5.2.
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In Figure 5.2 V0-V7 are vertices of topologies mapped to the processors of a

3D-hypercube. The numbers next to the vertices are the names of the processors

to which vertices are mapped. The root vertex is located at processor 0. Since

a hamming code is used to number all processors on a hypercube, this mapping

results in the placement of all connected vertices onto neighboring processors. The

following topology types and mappings are defined to realize the broadcast tree

and the inverse-broadcast tree shown in the figure.

BroadcastTreeType T op ologyT yp e is {
S tru ctu re is { 

v ertices =  0..7; 
connections =

0::1,2,4;
1:0:3,5;
2:0:6;
3:1:7;
4:0:;
5:1:;
6:0:;
7:3:;

}
V ertex  is {

V tx ld : * ;
Services: RESULTS_OP;
Inputs: *: *+;
O utputs: *: *+;
}

E dges are {
(0,1) =  ACK.FLOWCTL ;
(0,2) =  ACK.FLOWCTL ;
(0,4) =  ACK.FLOWCTL ;
(1,3) =  ACK.FLOWCTL ;
(1.5) =  ACK.FLOWCTL ;
(2.6) =  ACK.FLOWCTL ;
(3.7) =  ACK.FLOWCTL ;

}
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InvTreeType TopologyType is {
S tructure is { 

vertices = 0..7; 
connections =

0:1,2,4 :;
1:3,5:0;
2 :6:0 
3:7:1 
4::0;
5::1;
6 ::2;
7::3;

}
Vertex is {

V txld: * ;
Services: GLOBALSUM;
Inputs: *: *+;
Outputs: *: *+;
}

Edges are {
(1.0) = ACK.FLOWCTL
(2.0) = ACK.FLOWCTL
(4.0) = ACK.FLOWCTL
(3.1) = ACK.FLOWCTL
(5.1) = ACK.FLOWCTL
(6.2) = ACK.FLOWCTL
(7.3) = ACK.FLOWCTL

}

Ml is map {(0:0),(1:1),(2:2),(3:3),(4:4),(5:5),(6:6),(7:7)}

Services are {
DoSum() on * as GLOBALSUM;
Nojop() on * as RESULTS.OP;
}

Given the type definitions and the map Ml, unique names for both topologies 

are defined as:
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Broadcast Topology is BroadcastTreeType and  Ml;

InvBroadcast Topology is InvTreeType and Ml;

The service routines associated with the broadcast topology will not be de

scribed here since they are basically implementations of store and forward actions 

and are not highly illustrative of the distributed computations performed by the 

object. The computations in the InvTree are more interesting since this is where 

the global sum is performed:

• Each node in the GlobalSum topology determines, from topology structure and 
mapping information, a set of source nodes for partial sums.

• It then obtains a message from each source node and adds its contents to its local 
partial sum.

• After that addition and after all source messages have been received, it sends the 
partial sum to the next node up the tree.

Thus, the DoSum service routine sketched in C-like syntax below accumulates

the value of incoming partial sums with identical tags in the static variable par-

tialjsum (located in the privatej&ata of the vertex and implemented as a  global

variable of type double precision floating point in this service routine). Addition is

performed incrementally once for each input edge, including the input edge used

by the process that is bound to this vertex. An output is generated to the single

output edge as a result.

DoSum (input_buffer, count, tag) 
char *input_buffer; 
int count; 
int tag;
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(*partial_sum) = (*partial.sum) 4- (double) input_buffer; 
if(all inputs have been received)

send_tojoutput (output jedge, partial_sum, count, tag); 
partial_sum = 0.0; /* Reset partial sum */

Given the service routine indicated above, we can now sketch the code of the

user programs bound to the root vertex and to the other vertices of the InvTree

and BroadcastTree topologies. The process bound to the root vertex executes the

program Coordinate that collects the global sum by receiving from the InvTree,

adds its own partial sum, and then sends the result to the BroadcastTree, whereas

the programs Participate at the other vertices send their own partial sums to the

InvTree and receive the global sum from the BroadcastTree. Myvid is a variable

containing the id of the vertex to which each of the processes will be bound,

and RESULTS-OP and GLOBALSUM  are (numeric) identifications of the specific

service routines to be used for each TopSend or TopRecv.

coordinateQ /* Root process */
{

int tag, size;
double partialjsum, global_sum; 
object .handle ibt, bt; 
boolean status;

ibt = TopOpen (InvTree, myvid, 0);
bt = TopOpen (BroadcastTree, myvid, 0);
status = TopRecv (ibt, GLOBALSUM, global_sum, size, tag);
global_sum =  partial j3um +  global_sum;
status = TopSend (bt, RESULTS.OP, global_sum, size, tag);
TopClose (ibt);
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TopClose (bt);
}
participate () /* non-Root processes */
{

int tag, size;
double partialjsum, globaljsum; 
object_handle ibt, bt;

ibt = TopOpen (InvTree, myvid, 0);
bt = TopOpen (BroadcastTree, myvid, 0);
status = TopSend (ibt, GLOBALSUM, partialjsum, size, tag);
status = TopRecv (bt, RESULTSjOP, global_sum, size, tag);
TopClose (ibt);
TopClose (bt);

}

Note that these programs are written to use a topology exactly once after 

opening it. Thus, the program need not explicitly use or update tag values.

G lobal M inim um

Recall that the FEM application’s K matrix generation phase also makes use of a 

global minimum operation. A topology for computation of such a value is simply 

constructed by using the topologies for the global sum and replacing the service 

routine DoSum with a routine that incrementally computes a local minimum from 

the values received as inputs and sends the resulting minimum to its outputs. The 

global minimum is then accumulated at the root node and broadcast to partici

pating nodes. Since both the global sum and the global minimum topologies have 

the same structure and mapping, they are implemented with the same InvTree and
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BroadcastTree topologies. Each phase simply uses a different set of service routines 

in InvTree, both of which are available in the topology.

5.4.2 The TSP Application

As described in Chapter 4, the TSP application exhibits two global data and 

operations—global shared memory and work sharing. Topologies to program these 

global data and operations are described below:

Global shared-m em ory  O bject

The following distributed object provides an implementation of shared memory 

by use of a ring structure connecting all subprocesses and searcher processes (see 

Figure 5.3).

The precise semantics of shared memory used in this object are that a read re

quest (Readjshared) by a searcher returns to it the current value of best Jour stored 

at this node (in the vertex’s private.data), whereas a write request (Writejshared) 

causes the propagation of a new value of best Jour around the ring. A new value 

for bestJour is accepted by service routines asynchronously of Read operations 

whenever the new value is less than (better than) the current value of bestJour. 

Propagation around the ring proceeds in one direction, which assures that only the 

best tours are actually fully propagated around the ring. However, no guarantees 

are made as to the consistency of the tour values stored and used at different ring
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Figure 5.3: Shared-memory Ring Topology

nodes at any one time. Such guarantees are not required by this application, and 

their implementation and enforcement would be detrimental to the application’s 

performance. It is for reasons such as these that we reject approaches like Linda 

[11] in which a single semantics of shared memory is supported.

The shared-memory object is used by the application program as defined by 

its interface routines:

Interface routines:

Setupjshared (initial.value, size)
{

TopSend (thandle, screate, initial.value, size, tag)
}
Read.shared (best.tour, count)
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{
TopSend (thandle, sread, best.tour, count, tag) 
TopRecv (thandle, sread, best.tour, count, tag)

}
Write.shared (new_tour, count)
{

TopSend (thandle, swrite, new.tour, count, tag)
}

The interface routine Setup-shared activates the service screate in order to ini

tialize bestJour. Readjshared first communicates its own, current value of bestJour 

to the vertex then reads the vertex’s bestJour.

The interface routines are implemented using the following service routines: 

Service routines:

screate(initial_value)
{

stored.best.tour = initial.value;
}
sread (best_tour, count)
{

bestJour = stored_best_tour; 
return (bestJour);

}
swrite (new.tour, count)
{

if (new.tour < stored_best_tour) { 
stored-best.tour = new.tour;
send_to_output(link_to_next_vertex, new.tour,count,tag);

}
return;

}
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Stored Jest Jour is the location in the vertex’s private data in which the cur

rent value of the best tour is stored. In this design, Setupjshared initializes the 

shared memory of a single vertex. I t could be redesigned such that a single ver

tex may initialize the shared memory of all vertices in the topology. In addition, 

Setupjshared, Read^shared and sread, swrite could be redesigned to allow the vertex 

to directly update the value of the variable bestJour located in the bound process’ 

address space. In that case, the call Readjshared would not be needed. It would be 

replaced by an efficient, noninterruptable (locking) access to the process’ internal 

variable bestJour. Performance measurements and additional detail are reported 

in Section 6.4.

W ork-sharing  O bject

The TSP’s work-sharing object is a nearest-neighbor ring that implements a global 

pool of work-sharing requests. Requests are entered into the pool by processes that 

seek work and are removed by processes willing to share work. In addition, each 

vertex of the ring is connected to the single, coordinator process for purposes of 

termination detection, thus forming a pyramidal topology.

Requests are entered into the topology using its Workjrequest service. A request 

is entered at a vertex only if work is available, otherwise it is forwarded to the next 

vertex thereby avoiding unnecessary delays. Thus, a request message potentially 

travels along the entire ring. Work is assumed available if the searcher process
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attached to the vertex is busy; work is assumed unavailable if the searcher is idle.

Since each distributed component of the global pool associated with a particular 

vertex may become quite large, it is stored in the address space of the process 

attached to the vertex. Thus, the insertion of a request implies the interaction of 

the vertex with its attached process. In our implementation, this interaction is by 

direct access from the vertex to three variables in the process’ address space: the 

variables pfirst and plast are pointers to the first and last elements of the pool, and 

psize is the current pool size. Plast and psize are. updated by the vertex’s service 

routine when entering a new request message at the tail of the pool. Pfirst and 

psize are updated by the attached process when removing a request for work from 

the head of the pool. Psize is updated atomically. The status of each searcher 

process is maintained in the variable busy in the process’s address space and is 

inspected by the vertex’s service routine and atomically updated by the searcher.

A searcher process attached to the pool inspects its local pool component prior 

to the time it chooses a new node of the search tree for expansion. At that time, all 

locally pending requests are removed, good subproblems to be shared are selected 

[72], and subproblem descriptions are generated [72, 23], which are then sent as 

direct messages to the processes seeking work. The requesting process and node 

are identified in each request message.

Note that a searcher process using the object may have received requests while 

expanding its last node. In addition, it may not have sufficient work to honor all
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requests for work stored locally. In these cases, the searcher flushes all pending 

requests by resending them on the object’s structure (as a single message) on behalf 

of the original requestors. Such a re-sent request is marked onjbehalf in the request 

message’s status field, and if it is received by its requestor, it is re-sent around the 

ring. If a  requestor receives a re-sent request, it concludes that no more work is 

available anywhere and terminates. The first vertex to discover this condition also 

notifies the coordinator process.

Finkel in a similar implementation [23] of work sharing for parallel TSP imple

mentations has discussed various schemes for fair distributions of requests. Naively, 

each request may be entered at the first process that has available work. This im

plies that specific processes are likely to be overloaded with requests for work while 

others are not able to share any work at all. An alternative method of distribution 

is one that attempts to balance pool sizes by use of a tag value in each message. 

The tag value indicates the size of the pool of the last vertex visited. A request is 

entered into a pool only if that value is equal to or exceeds its own psize.

Service routines implementing the balanced pool of work requests appear below: 

Service routine:

Work_request()
{ if (message is from local process) { /* from the bound process */ 

on_behalf = 0
send_to_Dutput(link_to_next_vertex, request, request .size, tag)

>
/* check termination */ 

for(i = 0; i < number of requests in the message; i++) { 
if (request is from local process){



83

if(on_behalf ==  0) {
send_tojoutput(link_tojcoordinator,stop_message,size,tag); 

} else
on.behalf = 0;

if (busy){ /* process has some work */
if (psize <= tag) { /* insert the request if psize < tag */ 

insert_the_request();
} else {

tag = psize;
send_tojoutput(link_to_next_vertex, request, request_size,tag)

}
}

}

The interface of the work-sharing object presented to a searcher process is the 

following TopSend call:

TopSend (topjhandle, WORKJREQUEST, buffer, buffer_size, 0) 

Buffer contains the request consisting of the originating node’s number, process 

id, and the initial value of onJbekalf, which is zero.

There are several interesting attributes of the distributed, global pool. First, we 

maintain requests for work in the pool rather than descriptions of available work 

[23], due to the large size of work descriptions for problems of reasonable size (e.g., 

TSP problems with more than 25 cities). Second, we do not signal or interrupt a 

searcher process upon arrival of a request in order to minimize the disruption of 

the process’ programming and control flow caused by its use of the global pool. 

Third, to be able to insert large numbers of requests or to insert larger items, the 

pool is stored within the address space of the participating processes. Fourth, the
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current implementation offers high performance of insert and remove operations 

because the discipline for insertion or removal is nondeterministic. Imposition of 

a deterministic discipline implies maintenance of some global ordering, thereby 

causing additional overhead even for the ring topology. Note that the use of a tree 

topology for the global pool would result in quite unacceptable overhead when 

attempting to maintain almost any global ordering. Last, pool membership is 

entirely dynamic since searcher processes can open and close their connections to 

individual vertices of the work-sharing object.

5.5 Conclusions

In this chapter, we discussed the basic concepts of the topology construct. The 

definition of a topology’s structure, instantiation and binding, the programming of 

service routines, and a topology’s interface to user programs were described. The 

topology construct provides a separately programmable communication structure, 

with computations performed by the service routines at the structure’s nodes. Once 

processes are bound to a topology, they are linked with a distributed abstract 

object, which is programmed separately from the application and is capable of 

performing distributed computations.

Furthermore, this chapter demonstrated how the topology construct may be 

used to implement the global data and operations of the two sample applications 

in Chapter 4. Next, we show that the topology construct is realizable by im
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plementing and evaluating the construct and the applications’ global data and 

operations implemented with the construct on the Intel hypercube iPSC/1.

In place of topologies, we might have used two alternative means to imple

ment the application-dependent global data and operations of the sample appli

cations: (i) on the basis of simulated, globally shared memory, as in Linda [11] 

and (ii) using library packages or generic utilities constructed at the user level. 

We explicitly rejected (i) because it is apparent from the sample global data and 

operations described above that the desired, precise semantics of sharing (e.g., 

the consistency requirements of global data and control) are application depen

dent. Thus, mismatches are likely to occur between the single, offered semantics 

of simulated, shared memory and the required functionality of the global data and 

operations implemented with it. Our past experience on shared-memory multipro

cessors [35, 69, 73] demonstrates that programmers concerned with performance 

will simply not use an offered mechanism when such mismatches occur.

It is also apparent that insufficient performance will result from library packages 

or generic utilities constructed at the user level, outside the existing operating 

system kernel. Such packages have been built for certain global operations (e.g., 

a user-level implementation of a global sum for use in numeric applications in the 

Intel iPSC’s operating system), and they have been devised for the support of 

certain classes of applications, such as branch-and-bound algorithms [23].



C H A P T E R  V I 

Im plem entation  and Evaluation o f Topologies

In this chapter the topology construct’s implementation on the Intel hypercube is 

described and evaluated. Sample distributed objects are implemented in conjunc

tion with the FEM and TSP parallel applications, and the performances of these 

applications with and without the use of these objects are compared.

6.1 Implementation of Topologies

The topology construct is implemented on a 32-node 286-based Intel IPSC hyper

cube. This implementation assumes the following:

• Compatibility—The topology addition to the iPSC kernel is performed such 

that any iPSC application may execute without change. Compatibility also 

requires that the performance of existing iPSC applications is not affected 

by the presence of topologies.

• Performance—In the best case, the use of a topology should improve the 

performance of an application program compared to its implementation of

86
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similar functionality using the existing iPSC communication constructs. In 

the worst case, the use of topologies should not degrade an application’s 

performance.

• Variability and Usability—A topology’s implementations should offer a vari

ety of performance characteristics, such as different latencies and predictabil

ities of execution times. In addition, a constructed topology should be 

reusable, like any standard operating system utility.

The goals listed above are attained by an implementation of topologies within 

the existing iPSC 3.1 kernel. Compatibility is achieved by support of all standard 

iPSC kernel primitives in addition to the topology construct. High performance 

is achieved by representation of topologies’ small grain services as short segments 

of code executed within the address space of the kernel at the interrupt level. 

This should also offer consistent, predictable performance since the execution of 

services is not subject to the scheduling of user processes containing them, which 

is particularly important when multiple user processes share a single node of the 

hypercube.

The variability of topologies is attained by providing alternative representations 

of services as schedulable, kernel-level tasks or as user processes (also see Section 

5.3). Topologies are made reusable by providing system calls (TopClose, TopOpen) 

which user processes can attach to or detach from topologies.
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Figure 6.1 depicts the actual extensions of the iPSC 3.1 kernel:

• Additional header information is included with topology packets. A topology 

demultiplexer in the modified iPSC kernel matches topology packets with 

the topologies resident on the node schedules the execution of the topolo

gies’ service routines, and also schedules the topologies’ outgoing packets for 

output across the node’s physical output channels.

•  The modified kernel contains the vertices and the structural information of 

each topology resident in the node as well as the mapping tables used by the 

demultiplexers. These tables map topology identifiers and service identifiers 

found in topology packets to the vertices and service routines of the topologies 

resident on the node.
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Figure 6.2: Demultiplexing a Topology Packet

•  Additional system calls (TopSend, TopRecv, etc.) allow user processes to 

access and manipulate existing topologies, and to construct new topologies.

The headers of the iPSC 3.1 communication packets have been extended to in

clude a topology identifier, an identifier of the destination v'ertex, and the identifier 

of the service being requested. In addition, each packet carries a tag value set by 

the sending vertex (also see Figure 6.2). These extensions do not increase mini

mum packet lengths because existing fields in the iPSC’s communication packets 

are being reused. However, a one-bit field has been added to the header of each 

packet; it is used by the demultiplexer to distinguish topology packets from packets 

sent and received using the iPSC 3.1 communication primitives.
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The demultiplexing of an incoming topology packet to a service of a specific 

topology is shown in Figure 6.2. Each packet is uniquely mapped to a single service 

of a single topology. This may cause two kinds of actions: (i) the execution of a 

target service in a target vertex when its input conditions are satisfied (e.g., all 

other inputs required for the service are present) or (ii) the queueing of the packet 

on the input queue of the target vertex. After execution of a service routine, 

the demultiplexer always evaluates the output conditions of the vertex. If such 

conditions are satisfied, output messages are queued on the appropriate physical 

output channels. Thus, the demultiplexer executes in three steps:

1. In p u t—Input conditions and queueing/nonqueueing options are checked.

2. Services—A service routine is executed to perform the operation requested 

in the topology packet.

3. O u tp u t—If output conditions are satisfied, the single or multiple result 

packets are forwarded to the single or multiple destinations.

Note that the tag field in the topology packet is not accessed by the topology 

demultiplexers; it is manipulated solely by services or by application code.

Topology packets are sent using the same low-level communication protocol 

as other iPSC communication packets. Therefore, future communication speed 

increases offered by Intel’s new 386-based communication hardware may be realized 

for topology packets as well. The low-level protocol performs store-and-forward
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routing and flow control of multi-packet messages.

In these implementations the maximum number of input and output links per 

vertex is restricted to six because the amount of efficiently addressable (without 

manipulation of segment descriptors) memory space in the 286 kernel is limited to 

64K bytes 1. This restriction would not apply in the 386-based kernel. In addition, 

to minimize the overheads of buffer allocation at interrupt level, the sizes of the 

output packets produced by a vertex cannot exceed either 1 KBytes or the sum of 

the sizes of the vertex’s input buffers used to produce the output.

6.2 Performance and Implementation of Topology Sys
tem  Calls

The semantics of the system calls TopSend, TopRecv, TopOpen, and TopClose 

have been defined in Sections 5.2 and 5.3. The straightforward implementation of 

these calls is explained below to provide insights regarding their performance.

Since topologies are not opened or closed frequently, neither the TopOpen nor 

the TopClose construct have been optimized for low latency. TopOpen simply 

performs a linear search for the named vertex on the list of vertices of the named 

topology. It binds the calling process to the vertex by storing the process’ unique 

identifier (pid) in the data structure describing a vertex. It also allocates message

1The 32 bit length addresses of the 386-based hypercube will permit the efficient addressing 
of up to 4 Giga Bytes of memory space without manipulation of segment descriptors. In 
addition, total memory per node may be increased to 4 MBytes so that the kernel’s memory 
can be increased easily
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frame headers used by subsequent TopSend and TopRecv calls by this process. 

The TopClose call unbinds the process from the vertex, and it releases the message 

frame headers and any buffer attached to these headers.

The execution of a TopSend call involves three steps: (i) kernel entry, (ii) send 

processing and (iii) invoking the demultiplexer and the appropriate service routine. 

Similarly, execution of TopRecv involves kernel entry and receive processing, which 

involves searching for the desired packet. Thus, aside from the possible execution 

of services, the latencies of TopSend and TopRecv are determined by the latencies 

of send processing, receive processing, and demultiplexing. Specifically, in send 

processing a topology message header is built, and the demultiplexer is invoked. 

The demultiplexer then takes the same three steps for TopSend as for any other 

incoming topology packet (see the description above). In receive processing, a 

header is built and a buffer is allocated in the user’s address space for receipt of 

a message, the output queue of the appropriate vertex is searched, and the found 

message is copied from the buffer located in kernel space to the user’s buffer.

The measurements of TopSend and TopRecv in Tables 6.1 and 6.2 are attained 

on a single node of the iPSC hypercube running a single-user process by computing 

the total time of 1000 consecutive calls then reporting the average time of a single 

call. In both calls a single integer is used as a parameter, resulting in use of a single 

buffer of size 2 bytes. This and all subsequent timings use the node clocks with 

a resolution of 5 milliseconds. Timings are performed under low-load conditions.
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Table 6.1: Latency of TopSend System Call

Steps in TopSend Call execution
time(/x-sec)

1. Kernel entry 55
2. Send processing before topology service 250
3. Demultiplexing and no-op service routine 145
Total: 450

Table 6.2: Latency of TopRecv System Call

Steps in TopRecv Call execution
time (fi-sec)

1. Kernel entry 55
2. Receive processing, two bytes buffer copy 420
Total: 475

That is, no extraneous processing or I/O  is being done. The underlying Intel 

286 processor has an 12 MHz clock and a cycle time of 83 nanoseconds. For 

comparison, a procedure call without parameters takes approximately 2.5 micro

seconds. Additional comparative information will be provided below whenever 

appropriate.

The latency of a TopRecv call when a packet is already available in the desired 

vertex’s output queue is comparable to that of the TopSend operation as shown in 

Table 6.2.

The service routine used in the timing of TopRecv is a no-op, i.e., it does nothing.
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The timings in Tables 6.1 and 6.2 demonstrate that topology messages exhibit 

acceptable overhead. In fact, as will be shown in the next section, topology mes

sages may even show increased performance compared to iPSC messages because 

they use different message-queueing structures.

6.3 Performance of Topologies Spanning M ultiple Pro
cesses

Next, we compare the performance of synchronous and asynchronous topologies 

with the performance of the same computational structures implemented using the 

message operations available in the iPSC’s node operating system.

•  An asynchronous topology is one that can execute independently of the ap

plication processes bound to it. Namely, its vertices’ input conditions do not 

define dependencies with respect to the user processes bound to them. Such 

a topology may execute at the highest speed permitted by the physical com

munication channels and CPUs. An example of an asynchronous topology 

is the shared-memory topology in the TSP application (see Section 5.4.2) in 

which all vertices (with the exception of the first vertex where the new tour 

value is entered) may update their local copies of best Jour  independently of 

the processes bound to them.

© A synchronous topology has vertices with input conditions that define depen

dencies with respect to most processes bound to them. Namely, most services
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cannot execute until the processes bound to them have provided inputs. In 

this case, the performance of the topology depends on the scheduling of the 

user processes bound to it. Such a topology is exemplified by the Global-sum 

topology in the FEM application.

6.3.1 A Small Synchronous Topology

The timings shown in Table 6.3 demonstrate that in the worst case (synchronous 

topologies not executing any services), the performance of the topology construct 

does not differ significantly from that of iPSC messages. Specifically, a comparison 

of the performance of a topology linking two processes on neighboring nodes or on 

the same node with the performance of the iPSC’s message constructs linking two 

processes demonstrates that the presence of a topology slows down the send and 

corresponding receive operations no more than 207 to 312 microseconds, depending 

on message sizes. Thus, the additional overheads of demultiplexing and vertex 

processing incurred by each topology message compared to iPSC messages are 

quite acceptable. The measurements in Table 6.3 are attained by measuring the 

time it takes to perform a TopSend with a no-op service to a neighboring node, 

which receives the 2-byte message and returns it to the sending node, also using 

a no-op service. Thus, the timings shown in Table 6.3 are round-trip times for 

neighboring nodes. Again the average time of 1000 iterations is reported. Exactly 

one application process is resident on each participating node.
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Table 6.3: A Linear Topology vs. iPSC Messages (nonlocal communications)

Number 
of bytes

iPSC messages 
(//-sec)

Topology messages 
(//-sec)

2 2340 2755
128 2515 3175
256 2685 3335
512 3330 3865

1024 4365 4980

Table 6.4: A Linear Topology vs. iPSC Messages (local communications)

Number 
of bytes

iPSC message 
(//-sec)

Topology messages 
(//-sec)

2 1085 905
512 1350 1035

1024 1620 1175

Interestingly, for message transmissions between two processes on the same 

node topology messages are faster than iPSC messages as shown in Table 6.4. 

This is because with topology messages there is only one buffer copy for local 

communication whereas with the iPSC messages at least two buffer copies are 

required.

Note that for a topology linking two processes on neighboring nodes each topol

ogy message is sent by the originating process to the local vertex, then to the remote 

vertex, and then to the remote process. In comparison, an iPSC message is sent 

directly from the originating to the remote process via buffers in the operating



system kernels of each node.

6.3.2 Asynchronous Topologies

The small synchronous topology measured above does not execute any services. 

Typically, simple services can be executed with topologies with significant gains 

in performance compared to their execution by application processes using iPSC 

message operations. Consider an asynchronous topology resembling the shared- 

memory topology of the TSP application. This topology is a ring that links one 

application process to itself with a ring of vertices spanning up to 32 hypercube 

nodes. In this case, the topology’s services simply perform routing of incoming 

messages (the comparison to bestjour is elided). The topology’s mapping to the 

hypercube does not guarantee that all vertices are connected to their physically 

nearest neighbor nodes. The nontopology structure compared to the ring topol

ogy consists of up to 32 user processes, each executing on a dedicated node using 

the same physical and logical communication links (also not always nearest neigh

bor) as in the ring topology. (The topology times shown in Table 6.5 are the 

average round-trip times of single ring traversals measured on a 3D, 4D, and 5D 

cube respectively. At user-level the interval of time starting with the sending of 

the message onto the ring and ending with its receipt at the originating node is 

measured.)

Note that topologies like the ring are easily scaled to larger hypercubes. As
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Table 6.5: A Ring Topology vs. User-level Ring

Cube
dim.

message size 
(bytes)

topology
(ms)

user-level
(ms)

3D 2 7.75 12.52
512 13.6 19.43
1024 19.45 26.05

4D 2 15.4 26.17
512 27.79 40.81
1024 40.20 54.86

5D 2 30 55
512 56.5 81.8
1024 81.8 110.2

shown by the measurements in Table 6.5, increased performance improvements 

should be realized as cube dimensions increase.

The significant improvements in the performance of the ring topology compared 

to the user-level computational structure are explained as follows:

Reduced buffering. For reasons of protection, each message receipt by a user pro

cess requires a copy of the message buffer from system to user space. In com

parison, a service executing in the kernel may directly access an incoming 

message’s buffer via an address pointer. The address pointer is a segment 

descriptor used to translate from the kernel’s logical address space to the 

physical addresses of the communication buffers, which is a low overhead 

operation.
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Kernel access costs. Since services are executed at kernel level, the costs of kernel 

entry and exit are not accrued.

Immediate response. Since all low-granularity services like the ring-forwarding ser

vice or the shared-memory service operate at interrupt level, they can respond 

immediately to the receipt of an incoming message. Such immediate response 

cannot be guaranteed for user-level services, which depend on the scheduling 

of the processes executing them. In fact, the user-level timings shown above 

are best-case timings in that a typical application may have more than one 

process resident on each node.

Multiple message queues. Last, the iPSC message system enters all received mes

sages in a single, multiply-linked receive queue. The receipt of such a message 

by a  user process requires that the posted receive is matched against all pack

ets in this queue. In comparison, a packet for a topology is either not queued 

at all (as with the ring topology above) or it is queued on a specific vertex, 

thereby avoiding extraneous searching.

Direct access to process address spaces. A last, possible advantage of topologies 

compared to user-level implementations of their structures is that each vertex 

of a topology may perform a direct access to the address space of the process 

bound to it. As a result, the ring topology could be extended to implement 

distributed shared memory in the processes bound to it by directly writing
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Table 6.6: Latencies of User-memory Update

message size 
(bytes)

time 
(fi-sec)

2 95
128 130
512 230
1024 365

into reserved locations in the processes’ address spaces. Such accesses require 

manipulations of segment descriptors, but their costs are small compared to 

the costs of message sending. The measurements in Table 6.6 depict latencies 

of writing to user from kernel space, including the costs of data movement 

and of the required conversions of logical to physical addresses.

The performance gains attained with direct accesses to address spaces will be 

evaluated jointly with TSP application’s evaluation in Section 6.4.

6.3.3 Larger Synchronous Topologies

The performance advantages of topologies compared to user-level implementations 

are not as evident for the synchronous case. Consider the global-sum topology 

described in Section 5.4 in which each vertex sums the values contributed by all of 

its inputs. Since each vertex is associated with a user process that must contribute 

a value, a vertex cannot generate an output until the process’ computation proceeds 

to the required point. Thus, the performance of the global-sum topology also
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Table 6.7: A Tree Topology vs. User-level Tree

message size 
(bytes)

topology (ms) 
non-queued

topology (ms) 
queued

user-level(ms) 
(user level)

2 8.28 10.31 9.84
4 8.59 10.31 10.00
8 8.9 11.25 10.31
16 9.21 12.44 11.56

256 21.71 45.16 34.84
512 36.56 79.21 59.84

depends on the schedule of the application processes bound to it.

In Table 6.7 the global-sum implementations in queued and in nonqueued mode 

are evaluated. In nonqueued mode the partial sums arriving at a vertex are added 

as soon as they are received. In queued mode partial sums are queued and added 

only when all inputs to the vertex are present. This particular implementation 

is adding variable length vectors of 2-byte integers. Measurements are attained 

by first performing the global-sum operation 1000 times so that all user processes 

involved in the user-level implementation of the global sum or bound to the global- 

sum topology are executing approximately synchronously. Then, the 1001st iter

ation is timed. In this fashion, the performance of the global-sum construct can 

be evaluated without perturbations caused by differences in process schedules on 

individual nodes due to differences in their starting times or execution speeds. 

The user-level operation is similar to the nonqueued service since add operations 

are performed whenever messages are received.
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As can be seen from the measurements in Table 6.7, the nonqueued global-sum 

topology performs significantly better than its user-level implementation. However, 

due to the additional overhead imposed by queueing at vertices and demultiplex

ing, the queued global-sum topology performs slightly worse than its user-level 

counterpart. This result was to be expected given the measurements of the topol

ogy mechanism presented above. However, the nonqueued topology performs con

sistently better than the user-level operation, and the difference in performance 

increases with the size of the vector being operated on. This implies that topolo

gies supporting I/O pre- or post-processing are essential in information-intensive 

applications.

An interesting result not shown by the measurements above concerns the consis

tency in the performance of topologies vs. user-level global operations. Specifically, 

the iPSC’s node hardware has the unfortunate property (which has been corrected 

in the 386-based implementation of Intel’s hypercube) of having a very small ef

fective bandwidth of the connection from the physical channels to main memory. 

This forces the node operating system to service one physical channel at a time. If 

more than one channel is actually active (e.g., trying to provide inputs to a vertex 

resident at a node), packets are lost, causing timeouts and retransmission at the 

sending node. In the current iPSC operating system, timeout values are quite high 

(starting at 10 milliseconds) and vary from channel to channel.

For the implementation of the global-sum topology, this implies that the upper
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Table 6.8: Best and Worst Performances of the Global-sum Topology

message 
size (bytes)

topology (ms) 
nonqueued

topology (ms) 
queued

best worst best worst
2 8.47 21.52 10.63 10.78
4 8.44 17.41 10.73 11.25
8 8.75 28.48 11.25 11.52

16 9.1 39.84 12.03 12.66
256 21.25 23.13 45.47 45.91
512 37.09 37.34 79.73 80.63

nodes in the InvTree may experience the loss and subsequent retransmission of 

incoming messages, which in turn causes some global-sum operations to be much 

slower than others. Essentially one cannot push the hardware too hard. This is 

demonstrated by the measurements in Table 6.8 in which the best and worst times 

of 1, 2, 3, 4, 5, 10, and 100 iterations are reported. As can be seen, the slower, 

queued topology shows more consistent performance than the nonqueued topology.

The global-sum measurements shown in Table 6.8 also imply that future multi

computer hardware must increase the effective bandwidth of physical communica

tion channels to the main memory of each node. Otherwise, performance gains due 

to increased available total bandwidth of communication channels and to increased 

processor speeds will not be realized.
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6.4 Performance and Usefulness of Topologies with Ap
plication Programs

In the introduction, we state that global data and operation pose one obstacle 

to improving the performance of parallel applications. In this section, the perfor

mance effects of the topology construct are evaluated for two different application 

programs—the FEM and the TSP applications.

6.4.1 The FEM Application.

In the FEM application’s solution phase each solver process spends approximately 

50 percent to 69 percent of its time performing global norm computations when 

using the user-level implementation of global sum. The measurements in Table 

6.9 demonstrate that performance improvements may not always be possible even 

when using the nonqueued topology construct. This is because the topology must 

execute entirely synchronously with the application’s processes. In addition, and 

as shown in Section 6.3, the nonqueued implementation of global sum exhibits 

occasional aberrations in performance because it is driving the hardware too hard.

The solution time of the application with and without topologies are tabulated 

in Table 6.9. Both worst and best times observed for the global-sum topology over 

3 to 6 runs are shown.

Tolerance is the tolerance value used in the iterative method for the FEM’s 

solution step. The total number of actual global-sum operations performed is 72



105

Table 6.9: Solution Times for the FEM Application

Mesh-size Cube-size Tolerance User-level(sec) Topology(sec)
15 x20 4-D 0.00001 6.64 6.59 (6.78)
11 x 36 4-D 0.00001 10.66 11.28 (11.37)

5-D 0.00001 7.89 7.47 (7.83)

for mesh-size 15x20 and 99 for 11x36.

It is interesting to note that use of the global-sum topology typically improves 

performance slightly. As expected, inconsistencies in the execution times of the 

FEM’s solution step are due to packet retransmission. This is substantiated by 

the retransmission counts for the 11x36 mesh on a 4d cube shown in Table 6.10 on 

processors 1 and 2, which are next to the root (processor 0) of InvTree. This table 

shows the channels which have the maximum number of retransmission counts in 

each run for three different runs. For these measurements 99 global-sum operations 

were performed. Note that collisions on a communications channel with a higher 

timeout value result in worse performance than collisions on a channel with a 

lower timeout value. (See the difference in performance viz. the total number of 

retransmissions on the channel from node 2 to node 0 vs. the channel on node 1 to 

node 0.) This suggests that the current iPSC architecture is too sensitive to the 

proper choice of time-out values. Furthermore, it suggests that future hypercube 

architectures should offer hardware-implemented flow control between multiple 

channels connected to a single node, thereby avoiding collisions and the resulting
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Table 6.10: Maximum Retransmission Counts of the FEM Application

Ch num retrans.count Time-Out (ms) Solution (sec)
Node 2 to 0 7 20 11.15
Node 2 to 0 9 20 11.44
Node 1 to 0 11 10 11.41

expensive software-controlled time-outs and retransmissions.

The measured solution times shown in Table 6.10 differ slightly from those 

shown in the previous table due to the instrumentation required to collect re

transmission counts.

6.4.2 The TSP Application.

As described in Section 4.3, the TSP application has two global data and opera

tions: (i) global shared memory (bestJour) and (ii) work sharing among searcher 

processes. In this section the performance of TSP with and without the use of 

topologies are presented. First, the performance of the global shared-memory 

topology is evaluated as a stand-alone and in conjunction with the TSP applica

tion.

The global shared-memory topology is a nearest-neighbor ring connecting ver

tices resident on all nodes on which searcher processes are located. Service routines 

in those vertices perform forwarding of best Jour  values and update the copies of 

best Jour values maintained in variables in the address spaces of searcher processes.
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Table 6.11: Performance of A Shared-memory Ring Topology

Num of 
bytes

User-level
(ms)

Topology
(ms)

Shared-memory
Update(ms)

2 35.05 17.80 19.95
4 35.05 17.90 20.20
8 35.20 17.95 20.15

128 39.30 21.60 24.50
256 43.60 24.75 29.15
512 52.30 33.09 38.55

1024 69.75 47.70 56.00

The measurements in Table 6.11 report the times required for one searcher process 

to simply send values around the entire ring (labelled Topology) or to send val

ues and also perform the global update of bestjtour variables in searcher processes 

(labelled Shared-Memory Update). The ring spans 32 nodes.

Note that the shared-memory topology performs consistently better than its 

user-level counterpart. Furthermore, the update of best Jour variables in searcher 

processes’ address spaces increases the topology’s execution time by less than 20 

percent.

Interestingly, measurement of the actual TSP application with the shared- 

memory topology or with a single, centralized coordinator process (and processor) 

performing the sharing of best Jour  demonstrates that performance may not al

ways be improved as expected. This is because this version of TSP only improves 

performance of one of its two global data and operations, where increased pruning
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Table 6.12: Completion Times of the TSP Application

Prob. num. of num of better Avg time Avg num of
size searcher tours found (sec) work-sharing msgs

without topology
25 4 3 35.11 18
25 12 8 49.34 88
30 4 3 423.74 30
30 12 3 28.26 34

with shared-memory topology
25 4 3 35.21 25
25 12 6 49.99 94
30 4 3 426.54 35
30 12 3 27.86 42

with shared-memory and work-sharing topologies
25 4 4 36.00 10
25 12 3 26.87 27
30 4 3 423.66 43
30 12 3 24.36 26

activity due to improved speed of global memory leads to increased worksharing 

(see the ‘Avg num of work-sharing messages’ in the versions with and without the 

shared-memory topology), which constitutes its second, nonoptimized global data 

and operation.

The timings in Table 6.12 are nondeterministic due to the probabilistic nature 

of the searching problem. However, the numbers shown here, which are averaged 

over 3 to 6 runs, are indicative of the trend of increase in work sharing when 

improving the speed of updating the global memory. Measured timings fluctuate 

from 1 to 6 percent, and the number of work-sharing messages varies from 1 to 20
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percent (in very few cases) of the corresponding average values.

The third set of timing measurements using both the shared-memory and the 

work-sharing objects indicates that, in general, there has been improvement in 

performance when both global data and operations are optimized. Except for the 

case of the largest number of better tours found, execution times are improved 

from 1 percent to 53 percent. The case in which the application with distributed 

objects performs worse than the one using the coordinator is explained by the larger 

number of better tour values being passed. This indicates that low tour does not 

reach its final value as rapidly as the nonglobal queue version, thereby causing 

more useless work. Thus, the performance improvements shown above are not 

only due to the use of the two distributed objects but also result from complicated 

interactions among (i) pruning caused by lowtour values, (ii) the selection of best 

work units, and (iii) global queue accesses. Direct comparisons with the results 

shown in Section 6.3 are not possible since the performance effects of the work

sharing and shared-memory objects cannot be isolated. However, with the work

sharing object, good performance is attained even when the total number of work

sharing messages is large (as seen in the test configuration with problem size 30 

on 4 processors).

Note that the current implementation of the work-sharing object indirectly 

affects performance by providing a time-dependent ordering of work-sharing mes

sages: a work request is filled by the first process that has shareable work. This
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implementation should be outperformed by one that provides a fair queue in which 

each process having work is assumed to have equal probability of containing the 

solution.

6.5 Conclusions

Implementation of and experimentation with the topologies in this chapter provide 

several interesting results. First, it shows that the topologies are realizable con

structs. Second, the results indicate that with topologies, performance improve

ment is possible. Third, by allowing the programmer to design the distributed 

objects separately from the user processes, it facilitates programming and encour

ages modular development. However, debugging topologies is no less complicated 

than debugging communications protocols. It is especially difficult to trace the 

execution paths of messages routed by the fine-grain services since such messages 

travel faster than the error-logging messages themselves. This leads us to sug

gest the implementation of debugging topologies or specialized tools for debugging 

topologies. Also, topologies’ communication structures and their mappings to the 

multicomputer are difficult to keep track of when the number of processors grows. 

To alleviate these problems, an environment is needed to support the programming 

of topologies. We next describe an environment called PRISM which provides a 

set of integrated tools for programming topologies on structured multicomputers.



C H A P T E R  VII

P R ISM — A Program m ing Environm ent for
Topologies

This chapter describes PRISM—a PRogrammlng System for Structured Multi

computers. PRISM is designed to support the programming and debugging of 

topologies. Its implementation focuses on program debugging and visualization.

7.1 A  Structured M ulticomputer Programming Environ
ment

7.1.1 System Requirements

A parallel programming environment for multicomputers must provide program

ming support for improving the performance of parallel programs in addition to 

standard support such as programming languages, debugging support, and user 

interfaces. For instance, it must facilitate the manipulation of a parallel program’s 

processes, communication structures, and program monitoring to permit efficient 

use of the underlying architecture. In addition, various heuristics for mapping 

the parallel applications to the underlying architecture must be supported. Pro

111



112

gram manipulation, mapping, and monitoring must share information [75, 61] and 

operate coherently. In contrast to other research [7], our emphasis regarding pro

gramming support for structured multicomputers is the development of facilities 

for the efficient use of topologies’ complex communication structures.

The PRogrammlng System for Structured Multicomputers (PRISM) addresses 

the development of high-performance parallel programs for structured multicom

puters. PRISM is based, in part,on results of the ISSOS project at the Ohio State 

University [37]. Below, the features of PRISM that naturally evolve from ISSOS 

are described, followed by a discussion of its unique attributes.

Although the main focus of ISSOS is to write statically and dynamically adapt

able programs for real-time and long-running applications on multiprocessors and 

loosely coupled networks of processors, many of its concepts are applicable to 

structured multicomputers. In all such environments, parallel programming im

plies experimentation involving static adaptations like mapping and remapping 

an application and dynamic adaptations like dynamic load balancing. Similarly, 

program tuning abounds, such as changing a multicomputer application to accu

mulate data and sending it as a single message rather than as several messages. 

Another concept originated with the ISSOS project [68, 73] is that of operating 

software, which is defined as application software integrated with the operating 

system components. Fine grain service routines in topologies linked together with 

the operating system are examples of such operating software for multicomputers.
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In addition, research on program instrumentation and performance monitoring 

[55], as well as graphical tools [48] is applicable to the PRISM system. Lastly and 

most importantly, the integration of multiple tools in PRISM can be based on past 

research in ISSOS, which utilizes an active database [61].

Unique to PRISM is its support for the development and testing of topolo

gies because PRISM addresses structured multicomputers and not shared-memory 

multicomputers and networked workstations.

7.1.2 Basic Features of PRISM

PRISM provides a set of tools for writing programs, monitoring them, and display

ing certain program attributes. Multiple levels of programming languages are used 

for programming different portions of a parallel program. At the highest level each 

program’s parallel structure is described; at the next level program modules are 

written using a procedural language such as C while the interface between different 

modules is described with a data manipulation language.

P rog ram m ing  P arad igm

PRISM describes a parallel program as a set of processes interacting through 

distributed abstract objects. The distributed objects provide abstractions 

hiding the underlying architecture of the parallel machine from the processes 

while their implementations may explicitly take advantage of the architec

ture.
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Figure 7.1: The PRISM Programming Environment 

C om ponen ts o f P R IS M

The PRISM system consists of the following components integrated through 

the database process as shown in figure 7.1.

P ro g ra m  C onstruc tion  System : It consists of C and Fortran compilers, 

a linker for processes, and a topology compiler. Direct support of a 

concurrent language may be implemented on top of these basic tools.

Loader: Two kinds of loaders are available: a loader for loading processes 

and a loader for loading communication structures. Processes can be 

loaded on a given processor or on a given set of processors. The topol

ogy loader can load the communication structures independently of the 

processes that will use them.

D atabase: The database is an active database that integrates the various 

tools shown in Figure 7.1. Operations on the database can be performed
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using a data-manipulation language (DML).

G raphical Tool: The Graphical tool provides displays of various aspects 

of a program. It consists of a set of icons that represent the information 

to be displayed, and a library of graphics routines. Specific displays are 

generated by means of a user-written DML program.

M onitor: It monitors the program execution as specified by the DML 

program. It consists of a local monitor residing on each node processor 

and a central monitor on the host processor.

U tilities , L ibraries, e tc .: These consist of a set of routines for implement

ing heuristics for mapping standard problem structures and packaged 

topologies.

R un -tim e  System : It supports the process abstraction and interprocess 

communications including topologies and implements the kernel inter

face through a set of system calls.

It has been argued in Chapter 3 that to obtain high performance, global data 

and operations must be programmed efficiently. The aspects of PRISM described 

in this chapter concern the programming and display of topologies that implement 

such global data and operation. Specifically we describe (i) how PRISM supports 

the programming of topologies using a topology compiler and a loader and (ii) 

how programmed topologies may be manipulated (creation, loading, resetting)
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and visualized using a high-level data-manipulation language.

Concerning (i) and (ii), our approach differs significantly from past work such 

as Poker in that we do not choose to program graphically for three reasons. First, 

although visually appealing, it is tedious to explicitly construct a large number 

of processes and the associated process-to-process connections. Second, once a 

process structure is constructed, unlike VLSI design, each element (process) is 

likely to make use of several topologies (communication links) so that a single 

screen is likely to contain a confusing number of overlapping communication links 

[83]. Third, it is difficult to specify graphically the application-dependent semantics 

that may be associated with communication links [86]. We conclude that a concise 

data model offering powerful operations for extraction, display, and highlighting 

of processes and communication structures is required. For example, consider a 

tree topology for which one might wish to monitor and display the queue length 

of the second-level vertices mapped to a set of processors. A graphical primitive 

to perform this task should be useful for the monitoring and display of queue 

lengths in a ring topology as well. Thus, such a primitive cannot be application 

specific. Instead it must be based on a uniform model of representations of topology 

structures, their mappings to the parallel machine and the machine’s structure. 

We choose the entity-relationship model for this purpose. The entity-relationship 

model of data representation has the power and expressiveness to represent all 

necessary information about the target system. An added advantage is that it
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allows attributes that characterize an entity to be separated from those attributes 

that characterize the entity’s relationships with other entities.

7.2 Programming Topologies

PRISM allows the programmer to build topologies by specifying them in an inter

mediate language, and by compiling and loading them. It offers

1. a topology compiler

2. a loader

3. mapping of a topology

4. a vertex-monitoring utility and

5. a system call library for services.

7.2.1 Topology Compiler

The topology compiler takes as input a topology specification and generates as out

put an initialization program that loads the kernel data structures for the topology 

on each node. It also generates a set of header files that defines the service routines 

and their names, which are to be linked and loaded with the node operating sys

tem or with the application program depending upon the service granularity. The 

C-code for generating the structure is generated as a stub routine that is called 

by a system-provided driver. The structure of the stub routine generated by the
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compiler is shown below. The ’ indicates unnecessary details that have been 

elided. In the stub routine initializing the vertex data structures involves setting 

the topology id, input connections, output connections, input conditions, output 

conditions, vertex name, stack size, and data size.

buildTopQ
{

switch (mynode()) of {
0: /* executed on processor 0 */

for all vertices on processor 0 
initialize the vertex data structures 
break;

1: /* executed on processor 1 */
for all vertices on processor 1 
initialize the vertex data structures 
break;

2: /* executed on processor 2 */
for all vertices on processor 2 
initialize the vertex data structures

}
}

Apparently, for a large number of processors, the above stub routine can become 

fairly large. In that case, the user must provide a function which returns a list of 

input vertices and a list of output vertices given the vertex name. For example, a 

function for a ring topology connecting vertex name n to n-1 and n+1 will be as 

follows:
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ring(n, inputvids, Numoflnputs, outputvids, NumofOutputs) 
int n, inputvids[], outputvids[];
{

inputvid[0] = (n + 1) % totaLvids; /* totaLvids is a constant */ 
outputvid[0] = (n -1) % totaLvids;
Numoflnputs = 1 ;
NumofOutputs = 1;

}

In this case, the mapping of the vertices to the nodes must also be provided as 

a function or a mapping array which maps the vertices to the node processors.

7.2.2 Mapping of a Topology

Mapping of a topology to processors can be defined as part of the topology’s specifi

cation. Mapping is done by assigning vertices to processors with a goal to optimize 

the execution time of the global operation the topology is implementing. As a re

sult, a logical link between two vertices may span more than one physical link, and 

the default routing scheme used by the iPSC kernel ensures that messages are sent 

to the right destination. The topology compiler takes the mapping specification 

into account when generating the code so that each vertex is mapped to the right 

processor.

For example, a mapping for a ring topology with vertex identifiers 0 to 5 onto 

an 8-processor hypercube can be stated as part of the topology’s specification as 

follows. As described in Chapter 5, the mapping specification has an identifier 

which may be used by more than one topology.



Logical King Ring mapped to 3D cube

Figure 7.2: Logical and Mapped Ring

M l is map{(0:4);(l:0);(2:l);(3:3);(4:7);(5:6)}

Ring Topology is RingTopologyType and Ml

Here the first number in each tuple of the mapping description is the vertex 

name and the second number is the processor number. In the ring the vertex i 

is connected to i+1 modulo 5. The resulting ring topology is shown in the figure

7.2.2 where the physical links involves are marked.

7.2.3 Loader

The loader implements the loading of two different abstractions—processes and 

topologies. The loader for loading the node processes runs on the host machine 

and communicates with the local loader process on each node processor. This part 

of the loader is functionally the same as the loader provided on the Intel iPSC
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hypercube.

The topology loader loads a topology onto the hypercube by loading the pro

grams generated by the topology compiler or written by the user onto the node 

processors and executing them. The programs register the topology in the kernels 

and set up the kernel data structures for the vertices. The loader can also remove 

previously loaded topologies.

In loading the services, the fine-grain service routines must be compiled together 

with the operating system and loaded as a unit with the operating system. The 

process loader can be used to load medium-grain and large-grain services.

7.2.4 A Vertex-monitoring U tility

A Vertex Monitor is a utility for debugging topologies. It is basically a resident 

monitor for the vertex on a node processor. It returns the information regarding 

the status of the vertex such as its internal queue sizes, input conditions, outgoing 

vertices, and incoming vertices. It retrieves the status of the vertex that has 

been requested on a certain processor node and sends it back to the host for 

inspection. The resident monitor can be loaded dynamically while the application 

is in execution.

The monitoring command invoked by the user specifies the topology id tid and 

a vertex name vid on a given processor as follows: 

vinfo vid tid processor-number
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This command causes a resident monitor to be loaded on the given processor, 

sends request messages to the monitor to retrieve the desired information and 

receives the information which is then presented to the user. If the processor 

number is not specified, a resident monitor is loaded onto each processor, and the 

monitors that cannot locate the vertex terminate. Although this type of command 

monitors only a single vertex at a time, it can be used in conjunction with a DML 

program to retrieve information from a set of processors.

7.2.5 Support System Calls for Services

A system call library provides calls for writing service routines, such as calls for 

mapping memory from the user or system address space to message buffers, filling 

the message headers, allocating and deallocating memory descriptors, and loading 

topologies from within a user program. The system calls can be grouped into (i) 

memory-mapping and -unmapping calls (ii) message-manipulation calls and (iii) 

service-binding calls.

Memory-mapping calls are used to allocate and initialize memory descriptors 

so that service routines can directly access a buffer or the address space of a 

user process without violating privilege-level protection. This allows accessing the 

user buffer or the system buffer directly and avoids buffer copying or repeatedly 

making system calls to access a certain memory location in the user space. Since 

the memory descriptors are a scarce resource, they must be deallocated after the
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activation of the routine. The unmapped_ptr() call is provided for this purpose.

Message-manipulation commands are used for setting up the fields in the mes

sage header and allow the service routines to closely control buffer copying and 

certain attributes of the communication protocol like routing and acknowledge

ment.

Service-binding calls allow medium- and large-grain services which are loaded 

dynamically to be linked to the operating system. They are bound by noting their 

entry points, service identifiers, and stack- and data-segments addresses in the 

kernel’s topology-related data structures.

7.3 Manipulation of Programmed Topologies

A parallel program may have a set of attributes of interest to the user. Such a set 

of attributes is called a program view. A program view may consist of program 

module names, their interconnections or their interaction attributes concerned with 

other modules, etc. An interesting view of a parallel program is one describing its 

topologies. By representing the topologies as a tuple in a relational database and 

by using a data-manipulation language, various operations can be performed on 

the topologies.

Topology manipulation is performed using two components as shown in figure

7.3:

1. Topology management: Once programmed, the low-level tools described in
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Figure 7.3: Topology Manipulation Tools

section 7.2 may be activated and controlled via the database, thus removing 

from the programmer detailed knowledge regarding topology construction. 

Specifically, a topology can be generated, compiled, and loaded through the 

database. A user-written DML program specifies high-level commands such 

as creation, loading, resetting, or removal of topologies.

2. Graphical views of the topologies: A graphical view is a graphical represen

tation of a specific program view. In the case of a topology, such a view may 

contain different levels of granularity or abstraction. For example, it can 

display the complete structure or just a single vertex. In addition, it may 

convey different kinds of information about each display item.

Note that 1 and 2 are separated on purpose, because the manipulation of the 

program entities (topology components) is a separate activity from their display. 

Furthermore, there may be more than one type of display for a given entity, de

pending on the information to be viewed, or the same type of displays may be
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Figure 7.4: High-level and Low-level Tools Integrated Through the Database 

shared among similar program entities.

7.3.1 The Database Model and Interface

The data model of the database for the PRISM environment is an augmented 

Entity-Relationship (E-R) model. The E-R model represents topologies and their 

graphical views using E-entities, R-entities and S-entities explained in the following 

section. Interface to the database is through a data-manipulation language which
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provides a set of operations that can be performed on the database. Below is the 

description of the entity-relationship model and the database operations provided 

in the database. The operations are described in terms of C procedures.

7.3.2 Entities, Relationships, and Sets

An E-entity is a collection of the attributes of a parallel program’s components. It 

is similar to a record structure in a programming language with fields as attributes. 

The value of one of the attributes may serve as the identifier of an entity. Except 

for the identifier, the values of other attributes may vary during the existence of 

the E-entity.

Information about relationships among one or more components is represented 

by a Relationship relation. In the E-R model a relationship relation is represented 

by an R-entity. In addition to the identities of the E-entities involved in the rela

tionship, an R-entity may also have attributes that characterize the relationship.

An S-entity represents a collection of entities of pre-defined types. They may 

be E-entities, R-entities, or S-entities. An S-entity may also have simple attributes 

related to the set.

Every entity in the system is an instance of a programmer-defined type called 

a Schema. A schema may be considered a template for an entity, which defines 

whether the entity is an E-entity, an R-entity, or an S-entity. In addition, the 

schema also defines the types and names of attributes for E-, R-, and S-entities
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and the schemas of component entities in the case of R- and S- entities.

7.3.3 Action Routines

An Action Routine is a trigger that may be associated with a type of schema. When 

a database operation such as create, remove, or update is performed on a relation 

in the database, this piece of code is executed to perform some set of semantic 

actions on the database as a separate thread of execution. The routine receives 

information on the type of database operation to be performed and on the input 

values of the operation, allowing it to make decisions based on these parameters. 

It can also access another tuple in the database, causing another action routine to 

fire, and this chain of actions can propagate even further. This characteristic of the 

action routine can be used to ensure the semantic consistency among the related 

tuples in the database or to initiate a graphical display of an icon associated with 

a tuple.

The general form of an action routine consists of a trigger condition, pre

operation part, and a post-operation part as shown below.

if  conditions of trigger are satisfied th en

execute the pre-operation part of action routine

perform the database operation

execute the post-operation part of the action routine
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7.3.4 Database Operations

Database operations are described below in terms of C procedure calls.

O perations on Schemas: To register a type of Schema with the database:

_tdb_schema_reg(”schemajiame” schema-type”,

” contains Jis t”,” relates Jist”,

” attributes Jist”, Action Jtoutine_N ame)

In registering a schema definition the relates Jist is valid only for an R-schema 

while the containsJist is valid only for an S-schema. For example, the following 

calls register in the database an E-schema, R-schema, and S-schema respectively.

Jdb_schema_reg(” VertexSchema”,” e”

”services:int[5];vid:int;queues:int[5];”,

VertexActionRoutine);

_tdb.schema_reg(” SetOfVertices”,” s”,” Vertices” , 

”Topologyid:int”, 

SetofVeticesActionRoutine);

_tdb_schema_reg(” ProcesstoPRocessorMap”,” r” , 

’’ProcessID —► ProcessorlD”,
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The _tdb_ent_getschem a call returns the schema type of an already created 

entity. Here, -tdbjsnttype is a database entity type.

_tdbjent_getschema(entity_name)

where:

entity_name: _tdb_enttype;

O pera tions on E ntities: All types of entities can be created by the _tdb- 

_ent jc rea te  call and can be removed by the tdb_ent_delete call.

1. _tdb jent jcreate(” SchemaType,” ExtraA ttributes” );

where:

SchemaType: Name of a previously registered schema.

ExtraAttributesfList of any entity-specific 

attributes(if any).

2. _tdb_ent jdelete(”EntityName”);

where:

EntityName: Name of a previously created entity.
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O perations on A ttrib u tes : There are two operations that can be performed 

on attributes:

1. _tdb_get.attr(”EntityName”/ ’AttributeName”, Index)

where:

EntityName: A previously created entity.

AttributeName: Name of the attribute.

Index: Integer offset if AttributeName

represents an array.

2. _tdb_set_attr(”EntityName” / ’AttributeName”,Index)

where:

EntityName: A previously created entity.

AttributeName: Name of the attribute.

Index: Integer offset if AttributeName

represents an array.

O pera tions on R -E ntities: The _tdb_set J in k  and _tdb_ent_get are two

operations unique to R-entities.

The _tdbjent_setlink() call can be used to set up a link from the RJEntity to a 

component entity. Both the RJEntity and the component entity must exist.
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_tdbjent_setlink(R_EntityName, ”Field_Name” , Component_Entity) 

where:

RJEntityName: A previously created R-entity.

Field_Name: Field to which to link.

Component_Entity: A previously created entity 

that is to be linked in.

The _tdb_ent_get() call returns the identifier of the entity that is linked to the 

component field of an R-Entity.

_tdbjent.get(StartEntity, PtrChain) 

where:

StartEntity: A previously created R-Entity.

PtrChain: A string of the form ’’FieldName—

O perations on S-Entities: The operations defined on S-entities allow creation 

and initialization of a  set; accessing an element of the set; and union, intersection, 

difference, and assignment operations between two sets.

1. Initialize a set to a NULL set. The following call returns a NULL set and is 

used in conjunction with _tdb_set.assign() call described later.



_tdb_set_init()
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2. To determine if an element E is in Set S. If it is, the call will return true.

_tdb_set Jnset(S, E)

3. Remove an element from a set S, returning a pointer to the element. Re

peated remove calls return the elements of a set in sequence.

_tdb_set_removeelt(S)

4. Union of Sets SI and S2, creating a new set. The call returns a pointer to a 

new set.

_tdb_set_union(Sl, S2)

returns: pointer to a new set.

5. Intersection of Set SI and S2, creating a new set. The call returns a pointer 

to a new set.

_tdb_set_inter(Sl, S2)
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returns: pointer to a new set.

6. Difference of Set SI and S2, creating a new set. The call returns a pointer 

to a new set.

_tdb_set_diff(Sl, S2)

7. Create a new set that contains all elements of Set S. 

-tdbjentJVLL(S)

8. Return a new set that contains all created entities of schema type Schem- 

aName.

_tdb_sch_ALL (SchemaN ame) 

where:

SchemaName: A previously registered schema

9. Return a new singleton set that has an Entity E as its only element.

_tdb_setjmakeset(EntityName)
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where:

EntityName: Name of a previously created entity.

10. Assign all elements in a set Si to the S-Entity S2.

_tdb_set_assign(S2, Si)

7.4 Topologies and Their Graphical Views in E-R Model

All components of a parallel application in general are represented in the E-R 

model as entities, relationships, or sets. Topologies consist of sets of vertices and 

edges which are represented by a combination of E-, R-, and S-entities. The 

attributes of interest are defined in the schema of these entities. The topologies 

can be stored in the database together with the information about the parallel 

machine they are mapped to. The latter information is also represented as E-, 

R-, or S-entities. Furthermore, the mapping of the topologies to the machine is 

a relationship entity definable as an R-entity. Lastly, the graphical view of the 

topologies can be represented in the database as sets of icons defined as entities. 

Thus the entities for representing the topologies and their graphical views can be 

grouped into five kinds:

1. Entities representing the topologies
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2. Entities representing the parallel machine

3. Entities representing the mapping of topologies to the parallel machine

4. Entities representing the graphical icons depicting the above abstractions

5. Entities representing the mapping of topologies and the parallel machine to

graphical icons

7.4.1 Representing Vertices and Edges

The lowest-level representation of a topology is a vertex and an edge. A vertex is 

represented as an entity and an edge is defined as a relationship as follows:

Vertex = e-schema
attribu tes vid: int;

incond: int;
outcond: int; 
inlist: int[5];
outlist: int[5];
stacksize:int; 
datasize: int; 

action none;

Edges = r-schema
relates dst_vtx —*■ Vertex;

src_vtx —► Vertex; 
a ttribu tes eid: int;

Ack: int;
FlowControl: in t ;

action none;

Vertices are grouped into a set of vertices and the edges are grouped into a set 

of edges. A set consisting of these two sets is defined as a topology schema.
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vertex.set = s-schema
contains Vertex;
attributes none;
action none;

edgejset = s-schema
contains Edges;
attributes none;
action none;

Topology = s-schema
contains Set_of_Vertices;

SetjofJEdges ; 
a ttributes Topologyjd: int;
action none;

7.4.2 Representing Processors and Communication Links

Similarly, processors and physical communication links can be represented as E-

entities and R-entities respectively. A set consisting of the sets of these two entities

can then represent the hypercube machine.

Processor = e-schema
attributes procJd: int;

vectorJboard: int;
mem^ize: int;
action none;

Commlink = r-schema
relates procl —> Processor;

proc2 —*• Processor; 
a ttributes linkid: int;

router_present: int;
retransmission_count: int ;

action none;

SetofProcessor = s-schema
contains Processor;
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attributes none;
action none;

SetofLinks = s-schema
contains CommLinks;
a ttributes linkJd: int;
action none;

Multicomputer = s-schema
contains SetofProcessors;

SetofLinks; 
attributes Type: string;

Dimension: int; 
action none;

7.4.3 Representing Mapping of a Topology to Processors

Each mapping of a vertex to a processor is defined as an R-entity. A group of

mappings are organized as an S-entity.

VtoPmap_Schema = r-schema
relates vid -* Processor;
attributes vtxid: int;
action none;

SetofVPmap = s-schema
contains VtoP map-Schema;
action none;

7.4.4 Representing Graphical Icons

A graphical icon is represented as a tuple in the augmented E-R database. Each 

icon consists of two components: graphical attributes and icon-drawing compo

nents. The graphical attributes are a set of attributes which are modifiable by the
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application in the course of its execution and display. The icon-drawing component 

is an active component which actually does the drawing on the display screen. It 

consists of a code segment that retrieves the attribute values, performs required 

computations, and makes calls to the graphics routines to display the icon.

Icons represented as database entities may be created, displayed, and deleted. 

An icon’s various graphical attributes such as the color, position, and mode of 

display may be modified using the database operations.

A more complicated display for a S-entity, which has an icon for each of its 

elements, can be constructed by building a set of icons and a representative icon 

for the S-entity itself. Each element of the set is responsible for creating its own 

display. The icon set also has two components as above—one that consists of 

display elements and one that actually does the drawing, in this case scanning 

through its own list of icon elements and calling the display command to create 

the display.

A general representation of an icon is as follows:

Icon-Name = e-schema 
attributes

graphical attributes that may be modified;
action

Icon_Drawing_Routine;

The actual drawing of an entity is performed by the action routine. The basic 

structure of the action routine for drawing an icon is as follows. The displayJJag,
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one of the attributes of an icon entity, is used to indicate if the display is inactive, 

to be initiated, or already active but modifiable.

if action-xoutine-disable-flag is set 
retu rn

if database-operation is set-attribute and the attribute is display Jlag 
if attribute-value is 0 

retu rn  
elseif attribute-value is 1

disable further activation of the action routines 
retrieve values of other attributes 
enable further activation of the action routines 
draw the icon

else
retrieve value of the attribute displayJlag 
if display^flag is 2

disable further activation of the action routinesft
retrieve values of other attributes if needed 
enable further activation of the action routines 
draw changes to the icon

Layout of the overall display is crucial for aesthetical displays as well as for 

conveying information. Since automatic layout of arbitrary graphs is not the focus 

of this thesis, it is not addressed here. It is left to the programmer to set up the 

layout as desired.

The following graphic icons defined as E-entities represents the vertices, edges,

processors, and physical communication links.

VtxJconl = e-schema
attributes xpos: int;

ypos: int;
diameter:int; 
magnification: int;
color: int ;
vid : int;
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display -flag: int;
action DrawVertexl;

Vtx Jcon2 = e-schema
attributes xpos: int;

ypos: int;
magnification: int;
color: int ;
vid: int;
displayJlag: int;

action DrawVertex2;

EdgeJconl = e-schema
attributes src .xpos: int;

src_ypos: int; 
dst_xpos:int; 
dst.ypos:int; 
color: int;
display_flag: int;

action DrawEdgel;

EdgeJcon2 = e-schema
attributes corner_xpos: int;

corner^ypos: int;
displayJlag: int;

action DrawEdge2;

ProcJcon = e-schema
attributes xpos: int;

ypos: int;
diameter:int; 
magnification: int;
color: int ;
displayJlag: int;

action DrawProc;

Commlink Jeon = e-schema
contains src_xpos: int;

src_ypos: int; 
dst_xpos:int; 
dst.ypos:int; 
linktype: int;
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length: in t ; 
color: int ;
displayJlag: int;

action DrawLinks;

7.4.5 Mapping E-, R-, and S-Entities to Graphical Enti
ties

Topologies are represented as E-entities, R-entities, S-entities or a combination of 

these entities. Each of them can be associated with an icon entity representing 

the graphical icon. The mapping of the topology entities to their icons can be 

done by performing a relational join on the set of topology entities and the set 

of icons representing them. For instance, the graphical icon to which a vertex is 

mapped can be determined by a relational join on the set of vertices and the set 

of icons. The mapping can also be done by defining R-entities, which map from 

topology entities, to their respective icons. Defining R-entities is appropriate when 

the mappings remain unchanged of the times. Searching through R-entities can 

also be less costly than performing a join, and mapping to different types of icons 

can be easily done by defining one set of R-entities for each mapping. In PRISM 

the mapping is implemented using this approach.

The R-entities used for mapping must relate not just an entity to an icon but 

must also relate an icon to an entity. This is because the icon drawing routine 

needs to access the values of the entity and then convert them to display screen 

commands. Thus the mapping entity is bi-directional.
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As yet another alternative for having a set of R-entities for mapping the topo

logical entities to their graphical representations, it is possible to have an attribute 

in the topology entity that indicates the icon associated with it. However, icons are 

not logical attributes of a topological entity in general; also, topological entities 

may not always have an icon, and there may be more than one icon associated 

with each entity.

VtoViconmapJSchemal = r-schema
relates Viconptr —*• Vtxiconl;

Vtxptr —> Vertex; 
attributes vid: int;

iid: int;
action none;

VtoViconmap_Schema2 = r-schema
relates Viconptr —*■ Vtx_icon2;

Vptr —* Vertex; 
attributes vid: int;

iid: int;
action none;

PtoPiconmapJSchema = r-schema
relates Piconptr —► ProcJcon;

Pptr —* Processor; 
attributes procid: int;

iid: int;
action none;

CtoCiconmap_Schema = r-schema
relates CtoCiconptr —> Commlink Jeon;

Cptr —> Commlink; 
attributes Clink: int;

iid: int;
action none;

EtoEImap_Schemal = r-schema
relates Eiconptr —► EdgeJconl;

Edgptr —»■ Edge;
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attributes

action

EtoEImap2_Schema2 ; 
relates

attributes

action

eid: int; 
iid: int; 
none;

r-schema
Eiconptr —*■ EdgeJcon2; 
Edgptr —*• Edge; 
eid: int;
iid: int;
none;

The following S-entities organize each R-entity above into corresponding sets.

SetofVImapl = s-schema
contains VtoViconmap_Schemal; 
action none;

SetofVImap2 = s-schema
contains VtoViconmap_Schema2; 
action none;

SetofEImapl = s-schema
contains EtoEiconmapJSchemal; 
action none;

SetofEImap2 = s-schema
contains EtoEiconmapJ3cliema2; 
action none;

SetofPImap = s-schema
contains PtoPiconmapJSchema;
action none;

SetofCImap = s-schema
contains CtoCiconmapJScliema;
action none;

A topology can be represented by a set of icons built from a set of basic icons.
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The schema that defines the set of icons is associated with an action routine which

displays each of the icons in its set.

SetofVtxicons = s-schema
contains Vtxiconl;
action none;

SetofEdge icons = s-schema
contains Edgeiconl;
action none;

Topology Jeon = s-schema
contains SetofVtxicons;

SetofEdgeicons; 
action DisplayTop;

A set of icons for displaying the multicomputer structure may be constructed

from the set of icons for processors and communication links as follows:

SetofProcicons = s-schema
contains Vtxiconl;
action none;

SetofCommlinkicons = s-schema 
contains Edgeiconl;
action none;

Multicomputer Jeon = s-schema
contains SetofProcicons;

SetofCommlinkicons; 
action DisplayMulticomputer;

7.4.6 Estimating Database Size

Since the database uses in-core storage, there is a limit to the size of data that 

can be stored. To estimate the memory required, the representation of data in the
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database must be considered. The database consists of (i) a database table which 

stores the information on the actual data values such as pointers to the allocated 

data and (ii) a symbol table which maintains information on each schema, such as 

string name of the schema, the name of attributes and pointers the schema has, 

the type of schema, etc. Main storage requirements for the database results from 

these two data structures

The size of the database table can be estimated as follows. The database table 

consists of entries for the schemas where each schema has a predefined number of 

entities and each entity has a predefined number of attributes and pointers. The 

storage requirement for the database table is the size of the table data structure 

plus the size of the real data which is stored as character strings. Let m 3Chema, 

mentities and mpointen, be the maximum number of schema types that can be defined, 

the maximum number of entities per schema, and the maximum number of pointers 

an entity can have respectively. Also, let Spointer be the size of each entry of a 

pointer in an entity. The size So of the table data structure is then

So = (m p 0inters X Spointer * m tn titie s  4" ^e) X Tnschema -f- b3. (7*1)

In the above equation, b3 and be are fixed bookkeeping overheads for each schema 

entry and each entity entry respectively.

The memory-size requirement for stored data can be estimated for a given 

number of vertices, edges, processors, communication links, and graphical icons.
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Let V  be the number of vertices, E  be the number of edges, P  be the number of 

processors, and L  be the number of physical communication links. Let the sizes 

of the entities representing a vertex, an edge, a processor, and a  link be S v , S e, 

S p and S i  respectively and let their corresponding icons be represented by entities 

of sizes S vi, S ei , S ci, and Then the size of the data for storing the entities 

representing the vertices, edges, processors, and links is given by

5 x =  y x ( 5 „  +  S vi) +  E x ( S e +  S ei)  +  P x ( S p  +  S p i) +  L x ( S t +  S ti) .  ( 7 .2 )

Another set of data stored in the database are mappings. Let Svp be the size of 

an entity representing a mapping of a vertex to a processor. All the mappings 

of entities to graphical icons use the same amount of storage and this amount 

is denoted by Simap- The total storage size S 2  required by the mappings can be 

computed as

S 2 = V  X  Svp +  (V +  E  +  P  +  L) X  Simap- (7 -3 )

Thus the total storage requirements of the database table is given by

Sdatabasetable =  S o  H" S i  -f" S2-  (7*4)

A symbol-table entry consists of the type of schema, the address of the action

routine, a set of attribute names, a set of pointer names, and a set of extra attribute 

entries (the entries for extending the attributes at entity creation time). The total 

number of entries of the symbol table is m achtma- If S att is the size of the attribute
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name, S ptr the size of the pointer name, S extra the size of the extra attribute entry, 

m att the maximum number of attributes a schema can have and bBt the fixed storage 

overhead the table has, then the size of the symbol table is

Ssymbol table — Ttlschema X (S a it  X Ttlatt "H Sp tr  X Tflpointers Sextra  X Tfl entities “t” ̂ at)* (7.5)

The total size required for the database is then

SDatabase ~  S^atabasetable “b  Ssymbol table • (7*6 )

7.5 Implementation and Evaluation of PRISM

7.5.1 Implementation of the PRISM Database

Central to the PRISM enivronment is the active database implemented on the 

Sun 3/50 workstation, which serves as a remote host of the hypercube. It is 

implemented as an in-core database residing in a single UNIX process. All the 

entity, relationship, and set relations representing vertices, edges, and graphical 

icons are stored in the database. Storage is allocated statically for the tables 

and dynamically for the actual values. In the current implementation, the action 

routines are linked to the database process directly, and the database operations 

are provided as C-language function calls. The DML program is written as a 

C program making database operation calls and is compiled together with the 

database process. This, however, is not a limitation since the database process 

and the DML program can be easily modified to run separately with processes 

communicating with each other via IPC messages.
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Table 7.1: Estimated Database Storage Requirements

Topology
Type

cube
dim.

numof
vertices

numof
edges

Storage 
size (bytes)

Tree 3 8 7 64,570
Tree 4 16 15 156,874
Tree 7 128 127 2,148,842
Ring 3 8 8 64,700
Ring 4 16 16 157,004
Ring 7 128 128 2,149,028

To represent the topologies, the physical machine, and the display icons as 

entities in the database, the amount of storage used by the database is significant. 

To represent a topology on a hypercube with one set of icons for each entity 

that represents a vertex, an edge, a processor, or a physical link, the storage 

requirements are shown in Table 7.1. The database is configured to meet the 

requirements of a given topology in determining the storage size. There are a total 

of 34 schemas, each with attributes as defined in Section 7.4. The size of each 

entity is determined from these schema definitions. In representing the data an 

integer value may take up to 10 characters since the value is stored as a character 

string. A pointer takes 4 bytes. The CommlinkJcon has the maximum number 

of attributes (m0« =  8), and the Commlink schema has the maximum number of 

entities (me„<,<iea =  n2n-1, where n is the dimension of the cube). Fixed overhead 

for the tables implemented on the Sun workstation are found to be as follows: be 

=  16 bytes; b„ = 4 bytes; and bat = 36 bytes.
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The maximum size of a topology that can be represented in the database de

pends on the available run-time memory, the number of vertices and edges in the 

topology, and the number of processors and physical links in the machine repre

sented as entities.

7.5.2 Implementation of the DML Programs 

M anipu la tion  of Topologies

The DML program can perform database operations on the entities that represent 

the topologies and retrieve sets of vertices or edges that satisfy certain conditions. 

For example, a set of vertices mapped onto a particular hypercube node can be 

determined using the following segment of DML program. The DML program 

determines all the vertices residing on a given processor node by scanning the set 

relation which defines the mapping of the vertices to the processors. The resulting 

vertices are obtained in the set vertex-on-procset. In this program, the variables 

used are defined as below:

SetofVtxS : schema defining the set of vertices

tem plet : a variable that represents a temporary set

ent_ptr : pointer to an entity

VPmap_set: set of relationship relations that map a processor

to a vertex.

int_frm_ent: a utility routine that retrieves the value of a given
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field as a character string from an entity 

and returns and integer value.

D M L  P rogram  Segm ent::
vertex_on_proc_set = _tdbjentjcreate( ’’SetofVtxS”,””); 
temp-set = _tdb_ent_ALL( VPmap-set ); 
while( !(_tdbjset Jsempty( templet))) {

ent.ptr = _tdb_set_removeelt( &temp_set); 
processor _num = int_frmjent(ent_ptr,”proc”,0); 
if( procjium == PROCESSOR )

_tdbjsetjassign(vertexjon_procj3et,
_tdb_set _union( _tdbjent _AXL( vertex j3n.proc.set), 

_tdb_set_makeset(ent_ptr)));
}

As another example of manipulating the topologies, the following segment of 

DML program determines a set of leaf vertices at level two of a tree topology. It 

first determines a set of leaf vertices and then a set of vertices at the second level 

of the tree. By intersecting these two sets, the set of vertices at level 2 of the tree 

can be determined. The leaf vertices are determined by first obtaining a set of 

vertices that are nonleaves and then performing a set difference from the set of 

vertices. The vertices at level 2 are determined by a breadth-first search starting 

from the root node.

The variables in the program segment are defined as follows:

nonleaves .set : A set of vertices that are not leaves

edg^et : A set of Edges
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vtxjset A set of vertex entities

ent_ptr, ent_ptrl, ent_ptr2 Pointer to an Entity

root_set 

parentjset 

level_set 

leaves .set 

level21eaves_set 

src_vid 

dst_vid 

vid, vidl

A set containing the root vertex 

A set containing the parent vertices 

A set the vertices at a level of a tree 

A set the leaf vertices 

A set containing the level 2 leaf vertices 

Source vertex name 

Destination vertex name

Vertex name

temp_setl, temp_set2, temp_set3, temp .set 4 : Temporary sets

_upstrtoint : A utility routine which converts a string to integer

find^attinset : A utility routine to find an entity in a given set

with a given attribute value

D M L  P rogram  Segm ent:
/* To determine the set of leaves vertices, 
first determine the set of vertices that are not leaves */ 
nonleaves .set = _tdb_entxreate(”SetofVtxS”, 
_tdb_set_assign( nonleaves .set, _tdb_set_init() );
/* For each edge, determine the outgoing vertex entities */ 
temp.set = _tdb_ent_ALL( edgjset ); 
while(!(_tdb_setjsempty(temp-set))) {

ent_ptr = _tdb_set_removeelt( &temp_set ); 
src.vid = _tdb_ent_getattr( ent_ptr, ’’srcvid”, 0);
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temp_set2 = _tdb_ent_ALL( v tx je t ); 
while( !(_tdbjet Jsempty(tempjet2) ) ) {

ent_ptrl = _tdb_set_removeelt( &temp_set2 ); 
vidl = _tdbjent_getattr( ent_ptrl, ”vid”, 0); 
if( vidl ==  src_vid ) {

_tdbjet_assign(nonleavesjet,
Jdbjetjinion(_tdbj2ntJlLL(tem pjetl)),
_tdbjet_makeset(ent.ptrl));

}
}

}
leaves je t  = _tdb_entjcreate(”SetofVtxS”,
_tdb_set _assign( leaves je t, _tdbjet init() );
_tdb_setjassign( leaves je t,

_tdbjetjdiff( _tdbjent_ALL(vtxjet), _tdbjent_ALL(nonleavesjet) )); 
/* Determine the set of vertices at level 2 */ 
parent je t  = _tdbjent_create(”SetofVtxS”,
_tdbjetjassign( tempjet,_tdb_ent.ALL( rootjet )); 
leveljet = _tdbjentjcreate(”SetofVtxS”, 
level = 0;
tem pjetl = _tdb_ent_A.LL(parentjet); 
while( !(_tdbjetJsempty(tempjetl) )) { 
level++;
_tdbjetjassign( leveljet, _tdbjetJnit()); 
while( !(_tdbjetisempty(tempjetl) )) {

ent_ptr = _tdbjet_removeelt( &tempjetl ); 
vid = _tdb_ent_getattr( ent_ptr,”vid”,0); 
tempjet3 = _tdb_ent_ALL( e d g je t); 
while( !( _tdbjetjsempty( tempjet3))) {

ent_ptrl = _tdbjet_removeelt( &tempjet3); 
src_vid = _tdb_ent_getattr( ent_ptrl,”srcvid”,0); 
if( src_vid == vid ) {

dst_vid = int Jrmjent( ent_ptrl,”dstvid”,0); 
ent_ptr2 = findjattinset( v txjet, ”vid”, dst.vid); 
_tdbjet_assign(leveljet,

_tdbjet_union(_tdb_ent_A.LL(leveljet)),
_tdbjet_makeset(ent_ptr2));

}
}

}
_tdbjetjassign( parent je t, _tdb_ent_A.LL(leveljet)); 
tem pjetl = _tdbjent_ALL(parentjet);
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if( level ==  2 ) break;
}
level21eaves_£et = _tdb_ent_create(”SetofVtxS”,
_tdbjsetjassign( level21eaves.set,

_tdb_set_inter( _tdb_ent_ALL(level_set), _tdb_ent_AXL(leaves.set) ));

The DML program is simple, flexible, and straightforward to implement, and 

it can easily compute subsets of vertices and edges satisfying certain properties.

Visualization of Topologies

The DML program, together with the PRISM database, can generate and manip

ulate displays of topologies in several ways. Most of these display manipulations 

can be done in a uniform manner—by changing certain attributes of the graphical 

icons of a relation or a set of relations. Also, alternate displays of the same relation 

are obtained by defining different schemas that represent them.

R ep resen ting  d ifferent levels o f de ta il uniform ly. Topologies can be visu

alized in several ways. In the simplest form, each vertex can be represented by a 

circle and each edge by a line. As a whole, a topology can be displayed as a graph 

aesthetically laid out on the color screen. Or a vertex can be displayed in detail 

as a tabular icon indicating the details of its attributes. In accordance with the 

principle of least effort for effective displays [53], the programmer should be able 

to choose the type of display with the amount of detailed information he or she 

wishes to convey. The PRISM database provides a very convenient way to display



Figure 7.5: Different Representations of a Vertex and an Edge.

different levels of details of a relation by allowing different relations to be defined 

for each level.

Figure 7.5 indicates the different representations of a single vertex and a sin

gle edge. Simple action routines draw each icon, and they are associated with 

appropriate relations. They can be displayed by setting the display attribute to 1.

D isplaying th e  s tru c tu re s . When displaying structures like trees, it is not 

trivial to generate a viewer-pleasing layout. A simple layout strategy is one that 

places the nodes of the structure in a regular pattern and then connects the nodes 

as defined in the structure.

A layout routine can be implemented as an action routine of the set relation



Figure 7.6: D5 Hypercube

which represents the graph when the display attribute is set, or it can be imple

mented separately as a routine initializing the screen coordinates of each vertex or 

node. Figure 7.6 displays the regular layout of the hypercube architecture, with 

the squares representing the hypercube processors and both curved and straight 

lines representing the physical communication links. The screen coordinates are 

determined when the database is initialized. Figure 7.7 displays a tree laid out 

aesthetically. The arrow represents the edges while the dots represents the vertices. 

Similarly, Figure 7.8 displays a ring topology of 16 vertices.

For these displays layout can be changed easily by simply changing the at

tributes xpos and ypos of the corresponding icons.



Figure 7.7: A Spanning Tree Topology

Figure 7.8: A Ring Topology
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Use o f color for d isplaying sem antic  in form ation . As described in section 

7.5.2, a subset of the vertices or edges can be determined by set manipulation op

erations provided by the da tabase interface. Such a set can be displayed separately 

by setting the display attributes of the corresponding icons in the icon set. The 

subsets can also be displayed as part of the original set and by highlighting or 

changing the colors of the elements which represent them. Although such use of 

colors is not new, the ability to change the color attribute in the icons provides a 

uniform and simple way to illustrate the subset. This also allows colors to be used 

to represent semantic information such as containment in a set.

The displays generated by the following figures illustrate the use of color for 

displaying subsets of the vertex set. Figure 7.9 shows the subtree with the root at 

vertex id 1, and Figure 7.10 shows the set of vertices at the second level, which are 

leaves, by using a different color to indicate the vertices in a particular set.

C om position of icons. Graphical icons may be overlaid, attached, or composed 

in several ways to convey the semantics of the display. For example, overlaying 

may be used to illustrate the fact that a vertex is mapped to a hypercube node. 

This can be done by overlaying on top of each processor icon the corresponding 

vertex icon. Such composition of icons can be done easily in a DML program as 

follows. First, the set that represents the mapping of the two icons is determined 

using the database. Next, the xpos and ypos screen-coordinate attributes of the



158

t  f  ▼

r  . - .

Figure 7.9: Subtree of Vertex Id 1

Figure 7.10: Leave Vertices at 2nd Level of the Tree



Figure 7.11: Vertices Mapped to a Hypercube

underlying icon are set to the same values as those of the overlaying icon. This 

causes one icon to be drawn on top of the other.

An example of such a display is shown in the following three figures. In Figure 

7.11 the hypercube structure is displayed with the vertices mapped onto it. This 

can be done by assigning the xpos and ypos attributes of the processor icons to 

xpos and ypos attributes of the vertex icons. Figure 7.12 and Figure 7.13 display 

the logical structure of processors by assigning the xpos and ypos attributes of the 

vertex icons to the xpos and ypos attributes of the processor icons.



160

f  1

» ; *  a t  T

f

Figure 7.12: Logical Tree Structure of Processors

Figure 7.13: Logical Ring Structure of Processors
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7.6 Conclusions

Experimentation with the partial implementation of PRISM in this chapter demon

strates not only the kinds of manipulations that can be done using the database, 

but also how they can be done. In using a DML as an integration language, 

abstractions can be conveniently represented as entities or sets of entities, and 

manipulating these sets is easy and convenient. Specifically, manipulation of topo

logical entities such as determining the subsets of their structures and mappings, 

and manipulation of their graphical representations such as overlaying the icons 

and high-lighting the subsets, can be easily programmed and modified. This is 

because representations and operations can be done in a uniform manner.



C H A PT E R  V III 

Conclusions and Future R esearch

This chapter reviews the goals of the research, summarizes the results, and de

scribes possible future research.

8.1 Review of the Goals

The thesis of this work is that topologies form a basis for a useful and desirable 

paradigm for programming multicomputers. Our motivation is that communica

tion structures of a parallel program on parallel machines such as a hypercube must 

be programmable in a modular, efficient, and flexible manner. To demonstrate this 

thesis, the following goals were established.

1. Desirability of topologies. Chapter 3 argues that topologies are desirable 

because they allow efficient programming of global data and operations that 

arise from various decomposition methods. Chapter 4 describes two specific 

parallel applications that use topologies to implement their global data and 

operations.
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2. Appropriateness of the topology construct for implementation. Chapter 5 

and 6 describe the topology construct and its components, its implemen

tation, and its performance evaluation demonstrating that the construct is 

appropriate because it can be built and used and can improve performance.

3. Ease of programming of topologies. Chapter 7 describes the tools and facili

ties for specifying, compiling, and loading the topologies, and it describes the 

use of a database interface for visualizing these topologies to aid debugging 

and monitoring.

The implication of meeting these goals is that topologies can be a viable 

paradigm for implementing parallel programs on multicomputers. Furthermore, 

they should also be a basis for structuring a set of parallel tasks in a message- 

passing system. They can be highly efficient when implemented properly and are 

appropriate for programming global data and operations in parallel programs.

8.2 Summary of Lessons Learned

In working towards the above goals we learned several lessons.

• Through our survey of decomposition methods, we observed that global data 

and operations arise in several of these methods from sharing of or performing 

operations on global information and that a single application may exhibit 

several global data and operations.
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• Topologies are implementable and can improve the performance of the global 

operations, as exemplified by topologies performing a global sum or imple

menting global shared memory. Experiments also indicate that when the 

global operation is as fast as or faster than the time-out values of communi

cation links, performance can be significantly affected by the retransmission 

of messages.

• Topologies are programmable and help improve the programmability of par

allel computations by providing modularity, flexibility, and abstraction. Ex

perience in using topologies indicates that the capability to load a communi

cations structure separately from an application program is a very convenient 

facility. In addition, service routines are found to be a powerful mechanism. 

For instance, passing addresses (capabilities) to service routines and allowing 

them to access user memory is quite useful.

•  Experience with building and using topologies indicates that they can be 

difficult to debug. Specific tools to build the topologies and monitor their 

data structures have been found to be useful in debugging them. Use of even 

more sophisticated tools, such as visual monitoring of topologies, would be 

advantageous.

• In experimenting with the TSP application, we observed that optimizing 

a single global data and operation in an application with multiple global
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data and operations may make the performance of the other global data and 

operations more critical.

• Reusability of topologies is helpful, especially for experimentation with dif

ferent structures with minimal change in the application or when running 

different applications that use the same types of communication structures.

• The ISSOS Project has shown that a programming environment for the uni

form integration of tools is useful for parallel programming on a network of 

processors. As an extended implementation of ISSOS, PRISM demonstrates 

such an environment is also useful in programming topologies and display

ing certain views. The partial database constructed allows easy and uniform 

manipulation of structures and of graphical views. In particular, the action 

routines implementing graphical icons can be a convenient mechanism to 

uniformly represent topological views. Program visualization thus obtained 

has helped in debugging topologies because it allows different levels of detail 

to be displayed.

We also learned that the topology construct is not without drawbacks.

o Some of the objects’ data structures implemented partly in the kernel and 

partly in the user process will make process migration difficult to implement. 

Also, scheduling of the operation execution is limited to meeting input and
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output conditions in a vertex. There should be a more general scheduling 

mechanism either to schedule locally or globally.

• Another drawback is that topologies should be able to change dynamically 

either with process migration or by addition and deletion of communica

tion links. The current naming scheme must be extended to support such 

functionality.

• The major drawback in the implementation is the difficulty of debugging 

topologies. Messages themselves are computational and their routing may 

be application dependent. Debugging can be even more difficult if services 

are written such that the interaction between user applications and topologies 

is not defined clearly. It might be useful to extend the TopSend and TopRecv 

calls to impose some limitation on the implementation of such interactions.

•  The major drawbacks of the current programming system are its slow interac

tion, and the limitation of the size of the database for representing topologies 

with large numbers of vertices and edges.

8.3 Future Research

From our implementation of topologies, we learned that debugging may be difficult, 

and highly complex topologies spanning hundreds of processors may be tedious to 

specify. An interesting area to investigate is the automatic generation of topolo
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gies. Because both the structure and the services of a topology must be designed 

jointly to match the application’s characteristics, both must be generated auto

matically. Although an optimum structure to perform a certain global function 

may be hard to determine, libraries of structures for typical decomposition meth

ods may be possible. Automatic generation of services can be done for well-defined 

domains such as user-defined protocols or channel semantics. For instance, a user- 

defined high-level protocol may be compiled into service routines implementing the 

protocol. Likewise, service routines that enforce certain semantics of the commu

nication channels (such as multiplexing channel or a multicast channel) may be 

automatically generated for a given set of channel types.

One aspect of topologies not taken into account in our current implementation 

is the failure of communication links or of the processor nodes in the multicomputer 

system. Various reliability semantics may be explored for the distributed remote 

operations implemented by the topologies in the manner similar to the reliability 

semantics of RPC calls.

For highly efficient implementation of topologies, service routines must be 

highly reactive and must be executed with minimum processing overhead. Ar

chitectural support for topologies must provide not only hardware level routing 

but also execution of services concurrently with the user application. It may be 

worthwhile to implement on each node a communication co-processor capable of 

performing message processing, service execution, and of interacting with the node
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processor.

Several programming environment aspects of topologies can be explored fur

ther. First, additional tools can be integrated into PRISM to implement a more 

powerful and comprehensive environment. Examples of such tools are an inter

active graphical interface to define the entities and relationships and to build 

graphical icons, a tool to automatically generate icons and to lay them out, a 

more complete and efficient monitoring system for monitoring performance or pro

gram states, and tools for automatic resource allocation. Second, the currently 

implemented program visualization system depicts only one type of view of the 

parallel program-namely, the topological view. Further work should be done to 

display other types of view, such as performance statistics, execution traces, load 

distribution, and the higher-level abstractions implemented by topologies, such 

as a representative display of an object rather than its internal communication 

structure.

To summarize, the work of this thesis presents several areas that call for further 

exploration for multicomputers, such as the automatic generation of topologies, 

architectural and hardware support for their efficient implementation, reliability 

semantics, and an environment for monitoring and visualization.



A ppendix A  

System  Calls for Services

Following are the system calls or kernel-level calls (calls made within the kernel) 

implemented as extension to iPSC 3.1 that are used in conjunction with the topol

ogy primitive.

1. Basic communication calls as seen by the user:

• TopReset()

• TopLoad()

• TopSend[w]()

• TopRecv[w]()

• TopOpen()

• TopClose()

2. Other Utility calls (used by the tload/vinfo commands)

• tquery()
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Large-grain service loading and utilities

•  setJservices()

•  waitq()

•  mappedJd()

• mapped_buf()

•  mapped_vtx()

• output()

•  load_msgbuf()

•  fd_onJink()

• unmapped_ptr()

Medium-grain service loading and utilities (in addition to the above calls)

• set jmser vices ()

• mappedJdQ 

t  mapped_buf()

• mapped_vtx()

• output()

• load_msgbuf()

• fd_onJink()
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•  unmapped_ptr()

5. Fine-grain services utilities (these are not system calls but are just macros 

or simple routines inside the kernel.)

• getbufferaddress()

•  output()

• load_msgbuf()

A .l Detailed Descriptions

1. TopReset()

This system call will clean up the vertex data structures by setting the block 

memory storing them to zeroes. The whole structure is cleaned up and all 

the topologies previously loaded on the processor that executes this call will 

be lost. This must be considered as a privileged call and should be used 

with care since this will clean up all the vertices in spite of the caller not 

being bound to any of them. This is helpful when the previous programs 

have used the topology and did not close the topology properly or if the user 

wishes to have a clean start of loading a topology from scratch. Note that 

the topologies are still left around even if the processes which created them 

have died.

2. status =  TopLoad( &vtx.structure )
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struct tvertex vtx-structure

Returns : if status is -1, a topology with same id has already been loaded; 

otherwise okay status

This parameter is the initialized data structure of type struct tvertex which 

basically contains a list of input/output links, queues, and conditions. The 

user must know the structure of the tvertex to be able to make use of this 

call or must use the stub routine generated by the topology compiler (tcc).

Loading of the vertex on a processor causes the systems’ internal data struc

ture to be initialized to the vertex structure that is loaded. Specifically, it 

performs the following steps:

(i) It reads the topology id and vertex name of the new vertex, (ii) checks if 

any identical topology id and vertex name have been already loaded, (iii) if 

not, loads the vertex into an empty slot of vertex structures set the pids to 

-1, indicating no process is bound and (iv) sets the output and input channel 

descriptors to -1 (i.e.,none have been allocated).

3. tcount =  TopSend[w] (top .handle, service id , &buffer, count, tag) 

int top Jiandle : The handle of the bound topology.

int service jd  : An integer value which is designated as a specified service or 

operation

char buffer[] : Address of the buffer



int count : size of the buffer 

int tag : value of tag

Returns -1 if the topJiandle is illegal; -2 if the process is not bound to the 

vertex

This call is used to send a topology packet on a given topology structure to 

perform an operation specified by the service Jd. The contents of the buffer of 

size count is sent with a tag value tag. The command will cause the execution 

of the operation in the vertex which the process is bounded. If the service 

forwards the packet, it will also cause remote execution of the service on the 

target node.

4. tcount =  TopRecv[w] (topjiandle, serviceJd, &buffer, count, &tag)

int top_handle : The handle of the bounded topology.

int serviceJd : An integer value which is designated as a specified service or 

operation

char buffer[] : Address of the buffer 

int count : size of the buffer

int tag : address of tag -  if null address, then tag is ignored; if value is 

negative, the received packet’s tag is returned.
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int tcount: value of the number of bytes received; if negative, error in received 

packet.

Returns -1 if the topJiandle is illegal; -2 if the process is not bound to the 

vertex.

This call causes the user process to search for the corresponding message in 

the output queue of the vertex that is bound to the process. If there is no 

message received yet, the process is put on a wait queue and is woken up 

when the packet arrives. Data is copied from the system buffer into the user 

buffer if the packet is found.

5. thandle =  T opO pen (tmid, vid, initiaLtag) 

int tmid : The topology-mapping id

int vid : vertex name

int initiaLtag : initial value of tag

Returns int thandle : Handle to the vertex of the topology bounded

This call binds the user process to the vertex specified by tmid and vid. The 

value of the tag in the vertex is set to initiaLtag at the binding time. Also 

channels for sending messages are allocated for the vertex at this time.

6. status =  TopClose (thandle)

int thandle : Handle of the topology to be closed.
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returns int status : if negative, illegal handle.

This call unbinds the process from the vertex allowing other user processes 

to gain access to the topology and be able to use the services.

7. status =  tquery(function, buffer, count)

int function : Integer code for the following functions

(a) NUMTOP - Number of topologies loaded Buffer must be of size 2 bytes 

a t least

(b) GETMID - Read out the tmid’s of the topologies loaded The buffer 

should be as long as 2*number of topologies

(c) RTMS - Determine number of retransmission counts. Number of chan

nels that will be read is 7 or count/2 channels which ever is less.

(d) RDVTX - Read out the vertex data structure. Must provide the topol

ogy and vertex name in buffer[0] and buffer[l] respectively. The results 

are returned in buffer[0] up to the size of the struct tvertex

int buffer[] : buffer for input and output parameters

int count : size of the buffer in number of bytes

returns int status : if negative, illegal function is given

This call is not for user processes but is used by system utilities to down load, 

send an inquiry, and retrieve information about the vertices and topologies.
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8. se t Jservices(serviceJd,routine_name, localjstack)

int serviceJd : integer value of the service to be loaded

int routine_name: name of the service routine identified as serviceJd.

int localjstack : The stack for the interrupt task. Should be defined as a 

linear array of integers of size 2K or whatever amount desired.

returns none.

This call sets up the service routine located inside the large-grain service pro

cess’ address space. When this large-grain service is requested, the topology 

demultiplexer will wake up the large-grain service process.

9. w aitq  (topid, vertexJd, serviceJd)

int topid : integer values of the topology mapping identifier 

int vertexJd : integer value of the vertex name 

int serviceJd : service identifier

This call puts the large-grain process on the wait queue of the large-grain 

service routine.

10. set_mservices(serviceJd, trap_number, routine_name, local_stack)

int serviceJd : integer value of the service identifier to be loaded

int trap_number : trap number assigned to the service. Currently, it can be 

from 18 to 27.
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int routine_name: The address of the routinejiame which is basically a stub 

routine that calls the actual service routine.

int local_stack : The stack for the interrupt task. Should be defined as a 

linear array of integers of size 2K or whatever amount desired.

returns none.

This call sets up the trap-handier routine located inside the user address 

space, which calls the service routine. Allowable trap numbers are 18 to 27.

11. address =  m appedJd(fdJndex)

int fd Jndex : Index of the message header to be mapped.

returns struct fd * address : address of the fd as seen from user address 

space.

This call sets up the global descriptor that maps the user-defined pointer to 

the frame descriptor (message header) inside the system space. Any attempt 

to access past the header structure will result in access violation.

12. address =  mapped_buf(fd_index, ithBuffer)

int fd Jndex : Index of the message header attached to the buffer.

int ithBuffer : The ith buffer if the buffers are linked as a list.

returns struct fd * address : address of the fd as seen from user address 

space.
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This call is similar to the above call except that it maps the system buffer 

attached to the message header in the system space into the user space. 

Access beyond the buffer size will result in access violation.

13. address =  m apped_vtx(fdjndex)

int fd Jndex : Index of the message header of the message destined to the 

vertex.

returns struct fd * address : address of the fd as seen from user address 

space.

This call is similar to the above call except that it maps the vertex to which 

the messages have arrived into the user space. Access beyond the buffer size 

will result in access violation.

14. fdJndex =  output(fi, serviceJd, link_num, tag) 

int f i : Index of currently received message header.

int serviceJd : Service Identification in the message to cause an operation to 

be performed.

int link_num : Link number to be output, 

int tag : Tag value to be set in the message.

This call basically sets up the destination of the topology packet by loading 

appropriate fields in the header.
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15. load_msgbuf(fi, buffer, count)

int f i : Index of the message header to attach a buffer, 

char bufferfl : User buffer, 

int count : size of the buffer.

This call loads a local buffer into a system buffer attached to the message 

header.

16. fd jndex =  fd_on J in k ( link_num)

int link_num : Link number of the vertex that the user wishes to retrieve.

Returns int fdJndex : Index of the message header of the message on link 

number ”link_num”. Note that link_num =  0 refers to the bounded process.

This call returns the frame descriptor (message header) of a packet queued 

on an input queue of link jink_num\

17. unm apped_ptr(address)

char *address: Address or pointer that is desired to be removed from the 

global descriptor table.

This call allows garbage collection of the descriptors.



A ppendix B  

Gram m ar o f Topology D escription  Language

In the grammar rules below, ‘*’ is a special terminal symbol expressing ‘any of

the above’. For example ‘V txld:*;’ implies that the vertex ids are those that are

defined in the structure definition. Similarly, ‘Inputs:*;*-}-;’ implies that the input

edges are as defined in the structure definition, and the input condition is that all

the input edges are to be or-ed (‘+ ’). Terminal symbols are bold-faced. A null

string is denoted by e.

<Top-Desc> ::= <top-type-decl-list>
< mapping-decl-list>
<service-block>
<top-decl-list>

<top-decl-list> ::= <top-decl-list> <top-decl> I <topjdecl>
<top-decl> ::= <top-id> T opology is <top-type> and <mapping>

I <top-id>Topology is { <routine-name> } ;
<top-type> ::= <id>;
<mapping> ::= <id>;
<mapping-decl-list> <mapping-decl-list> <mapping-decl>

I < mappingjdecl>
<mapping-decl> ::= <id> is m ap { <mapping-list> }

I <id> is m apping-routine { <routine-name> } 
<mapping-list> ::= (<processor-id>:<set-of-vertices>)

I < mapping-list >,( < processor-id >: <set-of-vertices > ) 
<top-type-decl-list> ::= <top-type-decl-list> <top-type-decl>
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< top-type-decl>

<structure-decl> ::
<vertex-decl> ::
<set-of-vertices> ::
<range-of-vertices > ::
<conn-decl> ::
<conn-list> ::
<connection> ::
<in-vertex-list> ::
<out-vertex-list> ::
<vertex-list> ::
<host-vertex-id> ::
<vertex-no> ::
<edge-decl> ::
<edge-attribute-list> ::

<edge-attributes> ::
<edge-list> ::
<vertex-pair> ::

<vertex-desc-list> ::
<vertex-desc> ::

<vid> ::
<service-list> ::
<input-edge-list> ::
<output-edge-list> ::
<input-cond> ::
<output-cond> ::
<cond> ::
< op-vertices > ::

<transmission- 
protocol-attributes> ::

<attributes> ::

I <top-type-decl>
<id> TopologyType is
{ <structure-decl> <vertex-desc-list> <edge-decl>} 
Structure is { <vertex-decl> <conn-decl> } 
Vertices = <set-of-vertices> ;
<range-of-vertices> I <vertex-list>
<vertex-no>. .<vertex-no>
Connections = <conn-list> ;
<conn-list> <connection> I <connection> 
<host-vertex-id>:<in-vertex-list>:<out-vertex-list>; 
<vertex-list> I e 
<vertex-list> I e
<vertex-list>,<vertex-no> I <vertex-no> 
<vertex-no>
<numerals>
Edges are { <edge-attributes-list> }
<edge-attribute-list > < edge-attributes >
I <edge-attributes>
<edge-list> = <transmission-protocol-attributes>; 
<vertex-pair> I *
< vertex-pair> (< vertex-no> ,<vertex-no>)
I (<vertex-no>,<vertex-no>)
<vertex-desc> I <vertex-desc-list> <vertex-desc> 
Vertex is {
V txld :<vid>;
Services: <service-list>;
Inputs: < input-edge-list>;<input-cond >;
0  u tputs: < output- edge-list >; < output-cond >;
}
<host-vertex-id> I *
<service-typo I <service-type>,<service-list> 
<vertex-list> I e I *
<vertex-list> I e I *
<cond>
<cond>
<op-vertices> <vertex-no> I *+ I *.
< op-vertices > <vertex-no>.
1 <op-vertices> <vertex-no>+ | e

<attributes>
I <transmission-protocol-attributes> .<attributes> 
ACK I NOACK I FLOWCTL I NOFLOWCTL
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<service-type>
<service_block>
<service-decl>
<service-name>
<routine-name>
<processor-id>
<top-id>
<id>
<letter>
< numerals >
< digit >

<id>
Services are { <service-decl> }
<service-name> I <service-name> <service-decl>
< routine-name> on< processor-id > as <service-type> 
<id>();
< numerals >
<id>;
<id> <letter> I <letter> 
a..z I A..Z
<digit> I <digit><numerals> 
0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9
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