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Ideal is a fundamental concept in topological spaces and plays an important role in the study of topological problems. This
motivated us to use two ideals to generate different topologies to take the advantage of the two ideals at the same time. Two ideals
represent two opinions instead of one opinion which is very useful for using the insights of two groups of experts to study the
problem and elicit decisions based on their common vision. Topology is a rich source for constructs that is helpful to enrich the
original model of approximations spaces. Rough set theory has inbuilt topological concepts. Hence, the main purpose of this paper
is to point out that the concept of rough sets has a purely topological aspects nature. To do so, new approximations spaces are
introduced and defined based on the topologies generated by two ideals. The results in this paper show that the topological
concepts can be a powerful method to study rough set models. The basic properties of these approximations are studied and
compared to the previous ones and shown to be more general. The importance of the current paper is not only introducing a new
kind of rough set based on bi-ideals, increasing the accuracy measure, and reducing the boundary region of the sets which is the

main aim of rough set but also introducing a chemical application to explain the concepts.

1. Introduction

It is well known that Pawlak’s rough set theory [1, 2] is
constructed on the basis of an equivalence relation or a
partition. An equivalence relation or a partition plays an
important role in Pawlak’s rough set; however, it seems to be
restrictive for many applications. Many generalizations to
Pawlak space in order to change the constraints of the
equivalence relation have been proposed [3-8]. Topology is a
useful theoretic framework for the study of this theory as the
topological notions are closely related to the notions and
results of this theory. Lower and upper approximations
operators are the central concepts in this theory and have the
properties of the closure and interior operators. So, ap-
proximations operators in the rough sets theory are topo-
logical operators. Hence, the conjoint investigation of the
rough set theory and topology becomes essential. Therefore,
there are several generalizations of this theory, and each
generalization employs topological concepts. The concept of

the topological rough set by Wiweger [9] in 1989 is one of
the most important topological generalizations of rough sets.
The significant conjoint studies of the rough set theory and
topology have been done by many researchers [9-23]. Ideal
in topological spaces has been considered since 1930. This
concept has won its importance by Vaidyanathaswamy [24].
In 1990, Jankovic and Hamlett [25] further introduced the
ideal topological spaces and their applications to various
fields. After the advent of the concept of ideals, there have
been many great attempts, so far, by topologists to apply the
notion of ideals for manoeuvring investigations of different
problems of topology. So, many researchers [26-33] were
interested in applying the concept of the ideals in the rough
set theory. Abd El-Monsef et al. [34] introduced mixed
neighborhood systems to approximate the rough sets. After
that, Abd El-Monsef et al. [35] applied the concept of
“j-neighborhood space” (briefly, j—-NS) to generalize the
classical rough set theory by using different general topol-
ogies induced from binary relations. In 2020, Hosny [28]
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generated different topologies by using the notion of ideals.
Additionally, she defined the approximations by using these
topologies as a generalization of [34, 35].

This paper aims to study a certain extension problem via
two ideals. Aware of the fact that ideals play an important
role in the study of topological problems, this work is fo-
cused on generating different topologies by using two ideals
instead of one. Moreover, the current study highlights the
interdependencies of these topologies and the classical rough
set theory. This paper comprises 6 sections and its sequence
is as follows. Section 2 outlines some definitions and basic
concepts of topology and the rough set theory. Different
topologies are induced by two ideals in Section 3. The
comparisons between these topologies are introduced. The
present topologies are more general than the previous ones
in [28, 35]. It is shown that these topologies are finer than the
previous ones. The current definitions coincide with Abd El-
Monsef et al.’s [35] definitions if the two ideals are empty set
and coincided with Hosny’s [28] definitions if the two ideals
are equal to each other. So, the previous definitions [28, 35]
are a special case of the current definitions. Section 4
contains two methods to propose new approximation spaces
by using two ideals. In the first method, the lower ap-
proximations are defined by the union of two lower ap-
proximations, whereas the upper approximations are
defined by the intersection of two upper approximations.
The second one is based on the generated topologies which
are introduced in the previous section. Moreover, the main
properties of these methods are presented. These methods
are an extension of the previous approximations in [28, 35].
The present methods reduced the boundary region and the
current accuracy is greater than the previous ones. At the
end of this section, the relationships among the current
approximations are summarized in Table 1. It should be
noted that even though Kandil et al. [31] presented two kinds
of approximations via ideals in which one of them was based
on one ideal and the other depended on two ideals, both of
them depended on one neighborhood only. It is considered
to be the main difference between these approximations and
the current approximations which are based on open
(closed) sets of topology (family of closed sets) generated by
j-neighborhood and two ideals. Thus, there exist many
differences between the main properties of the current
approach and the previous one [31]. At the end of this work,
an applied example is suggested in the chemistry field by
using the current methods to illustrate the definitions in a
friendly way. Section 6 compiles the conclusion of this work.

2. Preliminaries

Definition 1 (see [25]). A nonempty collection ¥ of subsets
of a set U is called an ideal on U if it satisfies the following
conditions:

(1) Ae Fand Be S/>AUB¢e ./
(2) Ae .F and BcA=>B e .J
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That is, .7 is closed under finite unions and subsets.

Definition 2 (see [31]). Let .,,.#, be two ideals on a
nonempty set U. The smallest collection generating by
J1,F, is denoted by #,V.7, and defined as

J VI, ={GUF: Ge J,F € 7,}. (1)

Proposition 1 (see [31]). If .7, 7, are two ideals on a
nonempty set U and A, B are two subsets of U. Then, the
collection 7 \V.7, satisfies the following conditions:

(1) F VI +¢

(2) Ae 7 VSI,,BCA=B e J VS,

(3) A,Be #VF,»AUB e F,VS,

It means that the collection FV.7, is an ideal on U.

Definition 3 (see [35]). Let R be an arbitrary binary relation
on a nonempty finite set U. The j-neighborhood of
X € U(Nj (%)), j € {r, L, <{ry, ), i,u, i), {uy} is defined as

(1) r-neighborhood: N, (x) = {y € U: xRy}

(2) I-neighborhood: N;(x) = {y € U: yRx}

(3) {r)-neighborhood: N, (x) = N e, (»Nr (»)
(4) <I)-neighborhood: N (x) = ﬂxeNl(},)Nl(y)

(5) i-neighborhood: N;(x) = N, (x)NN;(x)

(6) u-neighborhood: N, (x) = N, (x) U N;(x)

(7) <i)-neighborhood: N (x) = N,y (x) NNy (x)
(8) <uy-neighborhood: N, (x) = N,y (x) NN ¢y (x)

Definition 4 (see [35]). Let R be an arbitrary binary relation
on a nonempty finite set U and let fj: U— P(U) be a
mapping which assigns for each x in U its j-neighborhood in
P(U). The triple (U,R, & j) is called a j-neighborhood space
(briefly, j-NS).

Theorem 1 (see [35]). Let (U,R, E ) be a j-NS, and ACU.
Then, Vje{r,L,{r),{D,i,u, ), (u}} the  collection
T = {AQU Vpe AN, (p)gA} is a topology on U.

Definition 5 (see [35]). Let (U, R, fj) be a j—-NS. A subset
ACU is called a j-open setif A € 7, and the complement of a
j-open setis called a j-closed set. The family I'; of all j-closed
sets of a j-neighborhood space defined by
I = {FQU: F' e Tj}, where F' is the complement of F.

Definition 6 (see [35]). Let (U, R, fj) be a j-NS, AcU, and
Vje{r,L,{r), <), i,u,{i),{uy}. The j-lower, j-upper ap-
proximations, j-boundary regions, and j-accuracy of A are
defined, respectively, as
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(V) eponip8 =€ U5WV)

' ={0}5¢ = (V) 01 0 AIRUONIPPY (V) ¢n1/ = {€ TIS(V) epn1 /8 = {€}5¢ = (V) ¢ 01/ wow g1} = v ey Ojdwrexs 10g

NN‘.\/ _\.
1 [ n n 1 [ n n I [ n n 1 ¢ n n n
1 ¢ e e €n {ec} frea 2] /1 {eg freat ¥} I ¢ reg peat peat
T [ pe1} ren) v/€ (¢} n pen i {c n fren) 1 [ ren) {recal {Fcal
1 [ i frecat ¥/ {¢} n [t /€ {e} n i i {e} n pcat A
1 ¢ {eT1} {ec1} €/T (e} {ect {c i I ¢ {ec1} {eca} €Iz {¢} feT} {c 1} feT}
1 ¢ ¢} {ree} A {¢} {ree} 2] wn {e} {ree 2] I [ {reet e} i3]
I [ i} 2] ¢/l {e<¢} Fe {w} [l {c} i} {r} (94 {€} wect v il
I [ {ec} {e g} 0 {et {et [ 0 {ec} {eg ¢ [} {e} e {¢} {ett
1 [ et w1t T {e<tt n w1t [ {e<ct n i €/T {e} {reet i i
I [ fe i} {e1} ¢/l (4] {eTa} {1} €/T {¢} {e<ca} {e1} Ut {€} {e 1} {1} {e1}
T [ {c 1 {en} €/T {e} {ecny {cu €T {¢} fezel {c 1 I [ {c i {1} {c
I ¢ ¥ ¥ [ {e} ¢} ¥ I [ 2} i) [ {e} {r ¢} ¥} i)
1 ¢ {g} {e} 0 {g} {g} ¢ 0 {g} {e} ¢ 0 {g} {g} ¢ {¢}
1 [ {¢} (¢} 0 {t} {c [ 0 {¢} {c ¢ I [ {7} {c} {a}
I [ {1} {1} [ {e<ct {ec} {1} ¢/l {e<tt {ec} {1} I [ {1} {1} {1}
W epn 0 Dot W W W epnf0 Wi W) W Wit W d W I M W e fo WMiopfd (W) o, 8 (V) g

1= [ 10 T uontuya ur suonewrxordde juarmd ayf,

n = [ 10§ 1 uontuya ur suonewrxordde juarmo ayf,

1= { 103 $1 vontuya ur suonewrxordde Juarmd ayf,

\4
4 = [ 10§ 1 uontuya ut suoneunxordde yuarmo ayf,

“$1 UOTIUYS(] UI SUOTIBWT

-xoxdde juarmd ayy Suisn £q pajenores st Loeanooe-f-2 4 Al 4 pue suordar Arepunoq-/-¢4Al 4 suoneunxordde raddn-£-T 4 AT 4 Tomol-[-E 4 A4 93 wsamIaq uostredwo)) (] ATAV],



R (A) = U{G € 7;: GeAl = int; (4),
J
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where int : (A) represents j interior of A,

ﬁj (A)=n {H €r;: AgH} = clj (A), where clj (A) represents j closure of A,

Bj (A) = Fj (A) - Rj (A),

R (A)

0;(A) = ‘ where [R; (4)| 0.

Definition 7 (see [35]). Let (U,R,fj) be a j-NS and
Vje{r,L,{r),{),i,u, (i), {uy}. A subset ACU is called a
j-exact set if ﬁj(A) =R (A). Otherwise, A is called a
j-rough set. !

Theorem 2 (see [28]). Let (U, R, fj) bea j-NS, AcU, and .5
an ideal onU Then, Vj € {r,1,<r), <1}, i,u, (i), {uy}, and the
collection T = {ACU Vpe AN;(p)nAe J} is a to-
pology on U

Theorem 3 (see [28]). Let (U, R, E ) bea j-NS, AcU, andf
an ideal on U. Then, Vj € {r,1,{r), <l> i, u, (i), {uy}, T;C

(2)

Definition 8 (see [28]). Let (U, R, E ) be a j-NS and .~ an
ideal on U. A subset ACU is called an .7 ;-open set if A € T]
and the complement of an .# ;-open set is called an.# ;-closed
set. The family 1"‘7 of all .7 ;-closed sets of a j-neighborhood
space is defined by FJ {FCU F' e ry}

Definition 9 (see [28]). Let (U, R, Ej) be a j-NS, ACU, .# an
ideal on U, and Vje {r,L,{r),{D,i,u, (i), {uy}. The
J j-lower, .7 ;-upper approximations, . ;-boundary regions,
and 5 j-accuracy of the approximations of A are defined,
respectively, as

R (A)=U {G € ‘r GCA} intf(A), where intf (A) represents .F — j — interior of A,

R} (A) = n{H e T: AcH} = cI] (A),

B/ (4) =R (4)- R/ (A),

o] (4)

5
= ||I;]y Ej;:, where |R}7 (A)| +#0.
j

Definition 10 (see [28]). Let (U, R, fj) be a j-NS, .# an ideal
onU, and ACU,Vj € {r,L, {r),{I),i,u, (i), {uy}. A subset A
i_sj called an 7-j-definable (.7-j-exact) set if
R; (A) = R}-y (A). Otherwise, A is called an .#-j-rough set.

Corollary 1 (see [28]). Let (U, R, €j) be a j-NS, F an ideal
on U, and ACU. Then, ¥j € {r,1,{r), {),i,u, (i), (ud}.

(1) Every j-exact subset in U is F-j-exact
(2) Every 7-j-rough subset in U is j-rough

3. Topology Based on Different
Neighborhoods by Using Bi-Ideals

In this section, topologies based on different neighborhoods
are generated by using bi-ideals as a generalization of the
previous results in [28,35]. The main properties of these
topologies are studied and compared to the previous ones in
[28,35] and shown to be more general.

Theorem 4. Let (U, R, f ) be a j-NS, ACU, and .#\V.%, an
ideal on U. Then, Vj € {r LA<ry, <, i,u, i), (u)} and the
collection TJJ VT3 {ACU VpeAN; (pnA'es sz}
is a topology on U.

where cljj (A) represents .7 — j — closure of A,

(3)

Proof

(1) Clearly, U and ¢ belong to le vz,

(2) Let Aj € T]J V72 (Vo e A) and a € UjzpAs.
3y, € A such that a € Ay

Then,

=N;(a)NAs € I VT,
=N, (@) (Uihs) € VT, (4)

RAVES
:>U5€AA5ET z,

(3) Let A,B e T}Y‘V‘yz and a € ANB:

:>Nj(a)ﬂA' € lejzande(a)ﬂB' € VS,
=(N;@nA")u(N;(@nB')e.7,V.5,

=N;(@)n (A'UB') € 7 V.5, (5)
=(N;(@)n (AnB)') € 7,v.7,

=ANBe¢ rf”z

From 1, 2, and 3, TJ-JIVJZ is a topology on U.
The following theorem shows that the present topologies
are than the previous ones in [28, 35]. O
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Theorem 5. Let (U, R, E]-) be a j-NS, ACU, and F,V.%, an

ideal on U. Then, Vje{r,L,{r),{D,i,u, ), udl,
Tjgrf"grj-jlv‘jz,k € {1,2}.

Proof. ;Ct; 7+ by Theorem 3 [28]. To prove T}kaT]j V2 et

A€t/ Then, N;(p)nA' e 7, Vp e A Therefore,
N(pﬁnA € F NI NVpeA So, Aer): Hence,
T LT

T et . O

i =i

Remark 1. The following points should be noted:

(1) If #,v.7, = {¢} in Theorem 5, then the current
generated topologies coincide with the previous one
in Theorem 1 [35]. So, the present results are con-
sidered as a generalization of Abd El-Monsef et al.’s
work [35].

(2) If #, = ., in Theorem 5, then the current generated
topologies coincide with the previous one in Theo-
rem 2 [28]. So, the present results are an extension of
Hosny’s work [28].

3) 1. e A

ST TS as shown in the following example.

Example 1. Let U ={1,2,3,4},R={(1,1), (1,2), (1,3),
(2> 3)) (3>4)}) jl = {(/)) {2}}, jz = {¢, {3}}, and ‘YIVJZ =
{¢,{2}, {3}, {2, 3}}. The following results are clear:

W 7 = (U, ¢, 14}, 3,4},{1,3,4},2,3,4}}, 77 = {U, ¢,
{2},{4},{1,2},{2,4}, {3,4}, {1, 2,4}, {2, 3, 4}}, and
/Y (U, ¢, (11,42}, 141,{1,2), (1.4, 2,4), (3.4,

{1,2,4}, {1,3,4},{2,3,4}}. Thus, 7", 7,2y V2.

@) 7 = {U, ¢, {1}, (1,2}, {1,3}, {1,2,3},{1,3,4}},7] =

{U,Jb,{l} {4},{1,2}, {1, 4} {1,2,34{1,2,4}}, and

{U,¢,{1}, {1%;13}}14 {1,2,3},

{1 2,4}, {1, 3, 4}}. Thus, LT ZCTI

3) P(U) {144, 7 = V2 =
TJICT

4) T U,jé,{134}ru ={U, ¢,{4},{1,2},{1,2,4}

} and T U,}b,{l} {49 {1,2},{1,4},{1,2,4},
{1 3, 4}}. Thus, Tu ,TMZCT

= P(U). 'Thus,

(5) Ty = {U ¢, 35 (4L {13}, (3,4}, {1,2,3},{1,3,4}},
T = U,}b, Gh (411,234, (1,2,3),{1,2.4)},
and T\ ={U,$, {1}, {3}, {4},{1,2},{1,3},

14};4}123}{124} Thus,
T<r>’ TRET

(6) T 9¢> = {U, ¢, {3}, {4} {1,3}, 3,4}, {1, 2,3}, {1,3,4}},
Ty —§Uy, 3}, 14}, {1, 2}, {3, 4}, {1, 2, 3}, {1, 2, 4}},

(1,3,4}}.

and 70> = {U, ¢, {1}, 3}, 4}, {L.2}, 1L, 3 {14,
{3, 4} ;{71 2,35{1,2,45{1,3,4}}.  Thus, T,5, T3
S
Similarly, we can add an example to show that
® T<l§ cr
TV,

(2) TeT

Proposition 2. Let (U,R,§)) bea j-NSand .J,V.7, an ideal
on U. Then,

TINI,  TNT TINT,  TINT
(1) e and T, U CT VT

@) IV J]vJZ TVIr JIVJZ

and )
5 Vs
C 2
and ng >vJT<l> TINT
1 ZC 1 2
and T T

() T(u TNT, CT?;)VJZ
F\VS J VI
(4) Ty PCT

Proof

(1) Let Aet)™ 2 ‘Then, N,(p)nA' € .7 V.7,
Vpe A. Thus, (N,(p)UN;(p)NA" €7 V7,
Vp € A. Hence, N, (p)nA' € F,V.7,,¥p € A and

(vg)ﬂA €IV sz‘v’p €A }Q/(&}efoge,vjzA €

and A € T 2, Hence, 7, '~ 2C1y and
T] VJZCTf v Slmllarly, we can prove 3.
(2) Let Aet/":. Then, N,(p)nA' €.7 V.7,

Vp € A. Thus, (N (p)nN,(p))nA € F\ VI, Vp
€ A. Hence, N;(p)nA’ € J sz,VJJ € A. There-
fore, A € TJ‘V : . Hence, 77! 72 . Similarly,
we can prove 4. O

Corollary 2. Let (U, R, fj) be a j-NS and 7 \V.%, an ideal
on U. Then, ¥j € {r,, {r), I}, i,u, (i), (up}.

(1) 70TV eV

2) 7V CT}yleZ Ase

INI, TN, JIVJZ
(3) T<u CT )\ ey

J VS F VS J V.S
(4) Ty STy STy

Remark 2

(i) Example 1 shows that the inclusion in Proposition 2
and Corollary 2 cannot be replaced by equality re-
lation as follows:

EAA

) TJ VT, ¢r IINI, Ase

and T;
2) £V ¢_TJ VT ond levfz jt_Trle]Z
I a 1

(ii) Similarly, we can add an example to show that
1) 771 \/ng; EAT S B AR A

d T ¢r
g, s g, o0 P, s,
(2) 7y ey T and T ET

Remark 3. Let (U, R, Ej) be a j-NS and .#,V.7, an ideal on
U. Then, the following statements should be noted:

1) T}ylvjz is not the dual of szlvjz (see Example 1).

Although 7, is the dual of 7, it is proved in [35].

FINT 5 .
(2) 77 '"7? and T, are not necessarily to be com-

parable (see Example 1).

(3) T] V2 and T<l are not necessarily to be com-

parable (see Example 1).

(4) ‘r‘y V2 and T{ol v

comparable.

VI,

1V

are not necessarily to be



(5) If R is a reflexive relation, then the following to-
pologies are comparable as follows:
(a) TZ‘;UZ /v
(b) 73" e
(¢) T‘@szgrfrlvjz

Definition 11. Let (U,R,{;) bea j-NSand .7,V.7, an ideal
on U. A subset ACU is called an #|V.7, ;-open set if
A e 1/ and the complement of an #,V.%, open set is
called an 7,V.7, ;-closed set. The family I’; Y2 of all
levj , i-closed sets of a j-neighborhood space is defined by
I

j

M2 BCU: F e v/

Theorem 6. Let (U,R,§;) be a j-NS and J\V.7,, 7\V.7,
two ideals on U. If F\VI,CF VF,  then
Vj e {r L <{r), KDy i u, i), <}

) TJIVJZCTZlVJZ
J -
I\VI s I 1V,

() 1/"ecr

Proof

() Let  Aer!"5 then, VpeAN;(p)nAe
IWNILCF\VF,. Thus, Vpe AN (p)nA' € 7,V
£, Hence, A € T‘]Z‘V‘jz. Therefore, 7 1VJ2§T];‘V]2.

(2) Immediately from (1). O
4. # V.#,- j-Approximations Spaces

In this section, more general notions of approximations are
suggested. One of these notions is based on the union of two
lower approximations and the intersections of the two upper
approximations. On the other hand, there exists a close
relationship between topologies and rough sets. So, the other
notions explore rough set theory from the point of view of

topology.

Definition 12. Let (U, R, E]-) bea j-NS, AcU, 7, Vk € {1,2}
two ideals on U, and Vj € {r,,<r),<I),i,u, (i), (up}. The
I, I ,-j-lower, S, I ,-j-upper approximations,
J1,F,-j-boundary regions, and .7, .#,-j-accuracy of the
approximations of A are defined, respectively, as

R;"*(A) = R{" (A)URY? (A), where R*(A) is the
J-j-lower approximations of A with respect to
Sk € {1,2} as in Definition 9
R/ (4) =R/ (A)nR]* (), where R;*(A) is the
J-j-upper approximations of A with respect to
F -k € {1,2} as in Definition 9
B/"">(4) =R/ (4) - R/ (4)
2 72 77172
o772 (A) = IR (AR (A,

P where
R (A)l £0

Proposition 3. Let (U,R,{;) be a j-NS, A,BCU,.J,,.7,
two ideals on U, and Vj € {r,1,{r),<I),i,u, (i), {u)}. Then,
the following properties hold:

Journal of Mathematics

(1) R (A)AR, " (AR (A)cAcR] ™ (A);
equality holds if A= ¢ or U

(2) AcB=R7"72 (AR (B)and R (A)c
R (é) / /

J

(3)R,"7(AnB)<R,"”* (A)nR/""* (B)

4) R/ (AUB)2R,""* (A)UR/ " (B)

(5) RY"7* (AnB)CR] "7 (A)nR]"* (B)

(6) R{"”*(AUB)2R] "2 (A)UR] "> (B)

)R () = R (A, R (4) = R

Ay’
Proof. The proof is straightforward by using Definitions 12
and 9 [28]. O

Remark 4. Example 1 shows that

(1) The inclusion in parts 1, 3, 4, 5, and 6 of Proposition
3 cannot be replaced by equality relation:

(i) For part 1, if A={1,4}, tth:n Rfrjl’j2
(A) = {4} #{1,4} = A+{1,3,4} =R, " .7, (A)

(ii) E(}r jpart 3, if A= {1,3},B_; {}, 4}, then
Bryl’jz (AnB) ={1}#{1,3} = (R, " *(A)N
R (B))

(iii) For part 4, if A={2},B =_{§},Jthen
LéUJB) ={1,2,3} #{2,3} = (R, ""* (AU
R (B)

(iv) For part 5, if A =1{1,2,4},B={1,3,4}, then
R (ANB) = 4} #(L 4} = (R/7:(A)n
R7+7:(B))

(v) For vpart 6, if A={1,3},B={1,4},
R772(AUB) = {1,3,4} # {4} = (R
F,(A)UR" .7, (B))

7172
-

then

(2) The converse of part 2 of Proposition 3 }ys not nec-
essarily true; if A= {3},5}:}4}, then R, "”*(A) =
{3} ¢{3,4} =R’ ""*(B)and R/ (A) =
¢c{4} = R77"2(B), but A¢B

Definition 13. Let (U,R, fj) be a j-NS and .#,,.7, two
ideals on U, ACU,Vj € {r,L,{r), {I},i,u, (i), {u)}. A subset
éjis;alled an J}lyfz-j-deﬁnable (an J,, 7, j-exact) set if
R; "2 (A) = R; " (A). Otherwise, A is «called an
S 1, F,-j-rough set.

Relationships between Abd El-Monsef et. al’s approxima-
tions in Definition 6 [28], Hosny’s approximations in Definition
9 [35], and the present approximations in Definition 12 are
given in the following proposition.

Proposition 4, Let (U,R & j) be a j-NS,
AcU, S, Vk € {1,2} two ideals on U, and
Vje{r,L,{r), {),i,u, i), {uy}. Then,

(1) R (A)CR]* (AR (4)

(2) R (AR (A)CR; (4)

(3) B (A)SB]* (A)<B, (A)

(4) 0;(A) <07 (A) 0] (A)
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Proof. Immediately by using Definitions 12, 6 [35] and 9
[28]. O

Definition 14. Let (U,R,&;) be a j-NS, ACU,.7,V.%, an
ideal on U, and Vje{r,L{r), {),iu, G),<{uy}. The

R/™2(A) = U[G € 1/ GeAl = int]"2 (4),

ﬁfl”z (4) = n{H e1/""*: AcH} = ]2 (4),
B/ (4) =R/ () - R (A,
R/ ()
JNJ’z( A) = '7 where ﬁzlvjz (A)|#0.
: R (a) s |

The basic properties of the current .#,V.7,- j-lower and
JVJ,-j-upper approximations are introduced in the
following proposition.

Proposition 5. Let (U,R,{;) bea j-NS, 7 ,V.7, an ideal on
U, and A,BCU. Then, ¥j € {r,1, {r), {I),i,u, (@), ud}:

(1) R/ (A)ACR] ™ (A) equality holds if A= ¢
or U

(2) AcB=R;""* (A)<R;™"* (B)

(3) ACB:>RJ V72 (A)CRJ V72 (B)

(4) R/ (A NB)cR/" e (AR (B)

(5) RJ V2 (AUB)2RTY2 (A) U R"l”z (B)
6) RJVJZ(AuB) JVJZ(A)URJVJZ(B)
% RJVJZ(AHB) JV]Z(A)HRJV.Yz(B)

J
(8) RV (4) - (R (A1),
Ry (A) = (R (A
A A A
(10) R/™> (R (4)) = R (4)
(11) R/ (R (AR s (R (4))

(12) R TV <R"’ e (A))ch e <F‘7 Y2 (4))

The proof of this proposition is simple using the
properties of .#,V.#,-j-interior and .#,V.7,-j-closure, so
we omit it.

Remark 5. Example 1 shows the following:

(1) The inclusion in parts 1, 4, 5, 11, and 12 of Prop-
osition 5 cannot be replaced by equality relation
(take j =r):

(i) For part 1, if A={3},R/ V]2§A) = ¢, then
A;t_Rf VT 2 (A). If A={4.R TV (A) = (3,4},
thenR ¥ T(A)¢A.

A
where int; !

TSI
where clj 12

I VI ,-j-lower, S VI ,-j-upper approximations,
JFV.#,-j-boundary regions, and .#,V.%,-j-accuracy of the
approximations of A are defined, respectively, as

72 (A) represents .7 V.7, — j — interior of A,

(A) represents 7, V.7, — j — interior of A,

(6)

(ii) For part 4, if A-{3}B-{4}AﬂB ({S/R

72 (4) = 31, R VT2 (B) = 13, 4};5 ‘
(AnB) ¢ then RV (A)nR V72 (B)
- 3}¢¢ = 7" .7, (ANB).

(iii) For part 5, if A = {3}, B = {4},
AUB={3,4},R/V2(A) = ¢,R1 Vv.7,(B) =
{4},R7V2(AUB) = {3,4}, then R/

(AUB) =
(B).

(iv) For gart 11, if A = {4}, R7V> (R7V2(A)) =
ARV RJV 7,(A) = (3,4}, then
ﬁ;f VT, (Rf VJ2 (A))g;RJ VT, (RJ VI, ‘}A))

(v) For part 12, if A = f3}, ROY®Y (4)) =
AJ%KJJVJZJ VI (R, - (A)) y (()/J then

*(R Z(A))?éR] WS (R (A)).

{3,4}¢{4} = R7V> (A)UR/ M2

(2) The converse of parts 2 and 3 of Proposition 5 is not
necessarily true (take j =r):

(i) For Jpart 2, if J ={3},B=1{4}, then
Jl JZ (4) = {3}, }z V2 (B) = {3, 4). Therefore,
Y72 (A)CR7Y? (B), but A¢B.
(ii) For part 3, if A={3},B={2}, then
RS V2 (A) = ¢, R71V2(B) = {2}. Therefore,
RS2 (A)CR71V72 (B), but A¢B.

Definition 15. Let (U, R, Ej) be a j-NS, 7,V.7, an ideal on
U,AcU, andVj € {r,L,{r), {I},i,u, (i), {uy}. A subset A is
callec{iy an f VJ’2 } definable (an 7 ,V.7,-j-exact) set if
*(A) = R; SV (A). Otherwise, A is called an
J VI H-j- rougl’ll set.
In Example 1, A = {3}is
S VI ,-r-rough.

{2}is 7, Vv.7,-r-exact, while B =

Remark 6. Let (U, R, fj) be a j-NS, .#,V.#, an ideal on U,
and ACU. Then, Vj € {r,L,{r),<I),i,u, i), {uy}, the inter-
section of two % ,V.7,-j-rough sets need not be an
VI ,-j-rough set as in Example 1, {1,3} and {1,4} are



JF VI ,-r-rough sets, and {1,3}N{1,4} = {1} is not an
VI ,-r-rough set.

The following theorem and corollary present the com-
parisons between the present approximations in Definitions
12 and 14 and the previous ones in Definitions 6 [35] and 9
[28].

Theorem 7. Let (U, R, Ej) be a j-NS, F V.7, anideal on U,
and ACU. 'Then, Vje{r,L,{r), )i, u, i), {uy} and
vk € {1,2}.

(1) R (A)CRr “(A)CR; T1T (A)CRJIVJZ (4)
(2) R.l7 VI, (A) _Jl fz (A)CRJk (A)CR (A)

Proof

1) R (A)CR k (A)CR 172 by Proposition 4. To prove,
R}yl 72 (A)CR] SV 2(A) Since
le 72 (A) = RJ1 (A) UR 2 (A) and since Rijf" (A) =
uiGe i GcA}cu
{G e 7/ GcA} = R (4) (by Theorem 5),
Jl ) (A)c RJIVJZ (A).

(2) It is similar to (1). O

Corollary 3. Let (U, R, fj) bea j-NS, 7 VI, anideal on U,
and ACU. Then, Vje{r,L,{r),{I),i,u,i),{u)} and
Vk € {1,2}.

(1) BJ%VJZ (A)gB]:flJz (A)gB}yk (A)CB, (4)
2) 0 (A)< O'jjk (A) < O'}YI’JZ (A) < O-jJIVJz (A)

Corollary 4. Let (U,R, Ej) bea j-NS, 7 V.7, an ideal on U,
and ACU. ‘Then, Yje{r,L{r),{),i,u,{i),{ud} and
Vk € {1,2).

(1) Ais j-exact = A is J-j-exact A is F, .7 ,-j-exact
=A is VI ,-j-exact

(2) Ais I VI ,-j-rough =>A is F,,.F,-j-rough =A is
F-j-rough =A is j-rough

Remark 7

(1) The converse of parts of Theorem 7 and Corollaries 3
and 4 is not necessarily to be true as shown in Table 2.
This table is calculated by using Example 1.

(2) Theorem 7 shows that the present method in
Definitions 12 and 14 reduces the boundary region
by increasing the lower approximations and de-
creasing the upper approximations with the com-
parison of Abd El-Monsef et al.’s Definition 6 [35]
and Hosny’s Definition 9 [28]. Moreover, Corollary
3 shows that the current accuracy in Definitions 12
and 14 is greater than the previous ones in Defi-
nitions 6 and 9.
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The following propositions and corollaries are studied
the  relationships ~ among the  .#,V.7,-j-lower,
JF VI ,-j-upper approximations, .#,V.7,-j-boundary re-
gions, and .#,V.7,- j-accuracy.

Proposition 6. Let (U,R,{;) bea j-NS, 7 \V.7, an ideal on
U, and ACU. Then, Vj € {r,1, {r), {D>,i,u, (i), {uy}. Then,
the following statements are true in general:

(1) R7V72 (A)SRT V72 (A)eR Y2 (A)

(2) RV (AR (AR ™2 (4)

(3) RGy 7 (MRS (A)SRE, (A)

4 R{ >”2 (AR (AR (A)

Proof. By using Proposition 2, the proof is obvious. O

Proposition 7. Let (U, R, fj) be a j-NS, .7 \V.7, an ideal on
U, and ACU. Then, Vj € {r,1, {r), {>,i,u, (i), {uy}. Then,
the following statements are true in general:
1) B (AR (AR (4)
2) R/ (AR (ACR], (4)
J S 5, 5,
(3) R jv <A>cR<,>v <A>cR<u>v (4)

@) R (AR (AR (A)

Proof. By using Proposition 2, the proof is obvious. O

Corollary 5. Let (U,R,{;) bea j-NS, .7 ,V.7, anideal on U,
and ACU. Then, Vj € {r,1, {r), 1), i,u, (i), {up}.

(1) B (A)eB/ ™ (A)eB (4)

) B/ (A)B M (A)eB M (A)

(3) BV (B (A)eB Y (A)

D BT repS
(4) B3 "? (A)SByl "2 (A)SB, )2 (A)

Corollary 6. Let (U,R,§;) bea j-NS, .J,V.7, an ideal on U,
and ACU. Then, ¥j € {r,1, (r), )i, u, Gy, (u)}:

@) a2 (A) <07V (A) <672 (4)

(2) J VI, (A)< FI\VI, (A)<0'J VI, (A)

() o737 (W) <07 () <0 (4)

4o f ”2 (4)< o<,>”2 UNEL ARG

Remark 8. Let (U, R, Ej) be a j-NS and .#,V.¥, an ideal on
U. Then, the following should be noted that

1) 0‘} Ak (A) and 0<r>\/]2 (A) are not necessarily to be
comparable

2) aflv‘yz (A) and U‘Z;ij (A) are not necessarily to be
comparable

(3) aij‘VJz (A) and G“Z;VJZ (A) are not necessarily to be
comparable

(4) aujlvjz (A) and a‘él)\/jz (A) are not necessarily to be
comparable
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TaBLE 3: Quantitative attributes of five amino acids.
ay a as ay as ae a;

{x,} -0.11 -0.22 0.29 335 3.458 -1.19 127.5

{x,} -0.51 -0.64 0.76 311.6 3.243 ~1.43 120.5

{x3} 0 0 0 2249 1.662 0.03 65

{x,} 015 013 -0.25 337.2 3.856 -1.06 140.6

{xs} 1.2 1.8 -2.1 322.6 3.35 0.04 131.7
TaBLE 4: Right neighborhood of the seven relations.

xR, u;R, u;Rs u;R, u;Rs u;Rq u;R;

{xl} {xl,x3,x4,x5} U {xl,xz,x3,x4} {xl,x4,x5} {xl’x2>x4’x5} U {xl’x2>x4’x5}

{x,} U X1, %, {x1, x5, x4, x5 X1, Xy5 X4 X5} U X15 X9, X45 Xs5

{3} {215 %3, x4, 25} {215 %3, x4 25} {215 %, X3, 24} {23, x5}

{x4} X1> X35 Xy X5 X1> X35 Xy X5 X1 X X35 Xy {xl,x4,x5} {xl’x4} X1 X3, X4 X5 {xl,x4,x5}

{xs} {xs} {xs} % {215 %, X4 %5} {215 %, X4 x5} {23, x5} {215 %, X4 %5}

Remark 9. Table 1 shows the following results:

(1) The comparison among the #,V.7,-j-lower,
S VI ,-j-upper approximations,
VI ,-j-boundary regions, and
J VI ,-j-accuracy in Definition 14 by using Ex-
ample 1, for j € {r,,i, u}.

(2) There are dlfferent methods to approximate the sets
by using T R j€{r,l,i,u} in constructing the
approx1mat10ns of sets. The best one of these
methods is given by using 7; TV i constructing the
approximations of sets since the boundary regions,
in this case, are decreased (or canceled) by increasing
the lower approximations and decreasing the upper
approximations. Moreover, the ., V.#,-i-accuracy is
more accurate than the other types since

o (A) < (A) <0 (A) and
Jv Z(A)<UJ]VJZ(A)<O_J1V 2 (A).

It should be noted that the same as in Table 1 we can add
an example to show the comparison among the
JI VI ,-j-lower, S VI ,-j-upper approximations,
JF VI ,-j-boundary regions, and .#,V.7,-j-accuracy in
Definition 14, for j € {{r), I}, i), <uy}, and to illustrate
that there are different methods to approximate the sets by

using Tjjl\/JZ,Vj € {{r), ), (i), {uy} in constructing the
approximations of sets. The best one of these methods is
in constructing the approximations of

sets since the boundary regions in this case are decreased (or
canceled) by increasing the lower approximations and de-
creasing the wupper approximations. Moreover, the
S VI ,-(iy-accuracy is more accurate than the other types

. AV
given by using 75"

since a‘{ugvjz (A)< a{rgvjz (A)< ‘7?;1 V72 (A) and
e 87 RV
To 2(A)<a<l>v 2(A) <o (A).

Remark 10. It should be noted that the relationships
among the %, 7,-j-lower, .7, 7 ,- j-upper approxima-
tions, J 1,5 ,-j-boundary regions, and

J1,F,-j-accuracy are the same as in Propositions 6 and
7 and Corollaries 5 and 6.

5. Application

Example 2. Let U = {x,, x,, X3, X, X5} be five amino acids
(for short, AAs). The AAs are described in terms of seven
attributes: a, = PIE, a, = PIF (two measures of the side chain
lipophilicity), a; = DGR =AG of transfer from the protein
interior to water, a, =SAC = surface area,
as = MR = molecular refractivity, a; = LAM = the side chain
polarity, and a; = Vol =molecular volume [36,37]. Table 3
shows all quantitative attributes of five AAs.

We consider the following seven relations on U defined
as follows: R;= {(xi,xj): x; (a)- xj(ak) < (04/2),
i,j=1,2,...,5,k=1,2,...,7} where o, represents the
standard deviation of the quantitative attributes
ap.k=1,2,...,7. The right neighborhoods for all elements
of U = {xy, x5, x3, x4, x5} with respect to the relations Ry, k =
1,2,...,7 are shown in Table 4.

Therefore, we find the intersection of all right neigh-
borhoods of all element k=1,2,...,7 as follows: x;R =
N (1 Ry) = {xp, x4} R = N (R = {xy, 65}, x5R =
Nt (eaRe) = {oesh X, R = N (04Ry) = {x, x,}, x5R =
N7_ (xsR) ={xs}.  Then, R=AU{(x;,x,), (x5, %)),
(x4,x,)}, where A is the identity relation and equal to
{Cers x1)s (3, X2)5 (33, X3), (x4 X4), (X5, %5)}. Let 7y = {9,
{xa}h 75 = {¢ {x,}} and 7, v, = {e, {x, ] {xg ] {0, x4}
Then, we calculate the lower, upper approximations, boundary
region, and accuracy by using Abd El-Monsef et al.’s Definition
6 [35] and Hosny’s Definition 9 [28] and the current method in
Definitions 12 and 14 as shown in Table 5. Hence, for any
concept ACU (collection of amino acid), this concept is de-
termined by lower and upper approximations which define its
boundary. The accuracy increases by the decrease of the
boundary region. Clearly, the accuracy measure by using the
current approximations in Definitions 12 and 14 is greater than
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the accuracy measure by using Abd El-Monsef et al’s
Definition 6 [35] and Hosny’s Definition 9 [28].

6. Conclusions

The rough theory is a new mathematical tool to deal with
vagueness and imperfect knowledge by using the concept of the
lower and upper approximations. If the lower and upper ap-
proximations of the set are equal to each other, then it is called a
crisp (exact) set; otherwise, it is known as a rough (inexact) set.
Therefore, the boundary region is defined as the difference
between the upper and lower approximations, and then the
accuracy of the set or ambiguous depending on the boundary
region is empty or not respectively. A nonempty boundary
region of a set means that our knowledge about the set is not
sufficient to define the set precisely. The main aim of the rough
set is to reduce the boundary region by increasing the lower
approximation and decrease the upper approximation. An
interesting and natural research topic in the rough set theory is
to study the rough set theory via topology. The topology in-
duced by binary relations on the universes and bi-ideals was
used to generalize the basic rough set concepts. In this paper,
different new types of rough set based on bi-ideals were defined
to reduce the boundary region and increase the accuracy
measure which is the main aim of rough set theory. The
concepts of lower and upper approximations based on bi-ideals
were presented for these types. Several properties and examples
were provided. Additionally, some important properties and
results of these approximations were instituted. The relation-
ships between the present approximations and the previous
approximations were established and shown to be more
general. We conclude that the suggested topological operations
and structures open the way for more topological applications
in rough context. We can say that the improvements in abstract
topology results help in some way in the modifications of rough
sets theory and consequently in its real-life applications. It
should be noted that any one can extend the current method
similarly by using #-ideals. In the real life, this comparison is
represented if we need to make a decision about a manuscript
and send it to two reviewers .7 |, .7,. Then, we have two cases:

(1) Take two reports separately from the referees and use
one of the mathematical methods to find the final
decision

(2) Take a combined report from the referees together

It is clear that the second case is better than the first one
such as the approximations of the present study.
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