TOPOLOGIES ON GROUPS AND A CERTAIN L-IDEAL OF MEASURE ALGEBRAS

KEIJI IZUCHI AND TETSUHIRO SHIMIZU

(Received July 19, 1972)

1. Introduction. Let G_{τ_0} be a non-discrete locally compact abelian group with a topology τ_0 . Let $M(G_{\tau_0})$ be the commutative semisimple Banach algebra consists of bounded regular Borel measures on G_{τ_0} . We write \mathfrak{M} the maximal ideal space of $M(G_{\tau_0})$. For $\mu \in M(G_{\tau_0})$, we put $\mu^*(E) = \overline{\mu(-E)}$ for all Borel subset E of G_{τ_0} . Then we have $\mu^* \in M(G_{\tau_0})$ and $M(G_{\tau_0})$ is considered a Banach *-algebra. Let Δ be the set of all symmetric multiplicative linear functionals on $M(G_{\tau_0})$, that is $\Delta = \{f \in \mathfrak{M}: f(\mu^*) = \overline{f(\mu)} \text{ for all } \mu \in M(G_{\tau_0})\}$. A closed subspace (subalgebra, ideal) N of $M(G_{\tau_0})$ will be called an *L*-subspace (*L*-subalgebra, *L*-ideal) if N satisfies the condition; $\mu \in M(G_{\tau_0}), \nu \in N$ and μ is absolutely continuous with respect to ν , then $\mu \in N$. For a subspace N of $M(G_{\tau_0})$, we put $N^{\perp} = \{\mu \in M(G_{\tau_0}): \mu$ is mutually singular with $\nu \in N\}$.

In this note, we consider the following subspace of $M(G_{\tau_0})$; $M(\varDelta) = \{\mu \in M(G_{\tau_0}): \hat{\mu}(f) = 0 \text{ for all } f \notin \varDelta\}$. J. H. Williamson ([9]) showed that for every $\mu \in M(\varDelta), |\hat{\mu}_d(f)| < |\hat{\mu}_o(f)|$ for all $f \in \mathfrak{M}$, where μ_d and μ_o are the discrete part and the continuous part of μ , respectively. And he conjectured that $\mu_d = 0$ for every $\mu \in M(\varDelta)$ ([9]). Using the results of J. L. Taylor ([7]), T. Shimizu ([6]) showed that $M(\varDelta)$ is a proper *L*-ideal of $M(G_{\tau_0})$ and Williamson's conjecture is true. For a locally compact group topology τ on *G* which is strictly stronger than τ_0 , we may consider $M(G_{\tau})$ a prime *L*-subalgebra of $M(G_{\tau_0})$ with natural injection ([3]). It is clear that $M_e(G_{\tau_0})^{\perp} = M(G_{\tau_d})$, where τ_d is the discrete topology on *G* and $M_e(G_{\tau_0}) = \{\mu \in M(G_{\tau_0}): \mu \text{ is continuous}\}$. From the above fact, we have the following conjecture:

Conjecture I. $M(\varDelta)$ is contained in $M(G_{\tau})^{\perp}$.

For $M(G_{\tau})$, there is a Raikov system \mathfrak{F} such that $M(G_{\tau}) = M(\mathfrak{F})$, where $M(\mathfrak{F}) = \{\mu \in M(G_{\tau_0}): \text{ there is } A \in \mathfrak{F} \text{ such that } \mu \text{ is concentrated on } A\}$. Thus we have a more generally conjecture as follows:

Conjecture II. For a proper Raikov system \mathfrak{F} , we have $M(\mathfrak{A}) \subset M(\mathfrak{F})^{\perp}$. In §1, we show that our conjecture II is true, if G_{τ_0} is metrizable. In §2, we show that our conjecture I is true. In §3, we show a property of the Gelfand transforms of $M(\Delta)$, using Taylor's structure semigroup of $M(G_{\tau_0})$.

2. Metrizable group. Throughout this section, let G be a non-discrete locally compact abelian group. A subset of G is called type F_{σ} if it is a countable union of compact subsets of G. A collection of subsets of G of type F_{σ} is called a *Raikov system* if the following properties hold:

- (1) If $A_1 \in \mathfrak{F}$ and A_2 is a subset of A_1 of type F_{σ} , then $A_2 \in \mathfrak{F}$.
- (2) The union of a countable collection of sets in \mathfrak{F} also in \mathfrak{F} .

(3) If $A \in \mathfrak{F}$ and $t \in G$, then $A - t \in \mathfrak{F}$.

(4) If $A \in \mathfrak{F}$, then $A + A \in \mathfrak{F}$.

Let *m* be a Haar measure on *G*. A Raikov system \mathfrak{F} such that m(A) = 0 for every $A \in \mathfrak{F}$, will be called proper. For a σ -compact subset *A*, there exists a minimal Raikov system containing *A*. Such a Raikov system will be called a single generated Raikov system. For a Raikov system \mathfrak{F} , we put $M(\mathfrak{F}) = \{\mu \in M(G): \text{ there exists } A \in \mathfrak{F} \text{ such that } \mu \text{ is concentrated on } A\}$. For a Raikov system \mathfrak{F} , if $A \in \mathfrak{F}$ implies $-A \in \mathfrak{F}$, then \mathfrak{F} is a symmetric Raikov system. For a single generated symmetric Raikov \mathfrak{F} , there is a group which generates \mathfrak{F} .

J. L. Taylor ([7]) showed that there exists a compact topological semigroup S and an isometric isomorphism θ from M(G) into M(S) such that the image of θ is weak* dense in M(S) and the maximal ideal space of M(G)is identified with the set \hat{S} of all continuous semicharacters on S. For $\mu \in M(G)$, the Gelfand transform $\hat{\mu}$ of μ is given by $\hat{\mu}(f) = \int_{S} f d\theta \mu$ for every $f \in \hat{S}$.

For a given subset E of G which contains 0, we shall say a subset F of G is (E, 1)-independent if the following relation holds:

 $\sum_{r=1}^{N} n_r x_r \in E$ if and only if $n_r = 0$ for $1 \leq r \leq N$, where x_1, \dots, x_N are distinct elements of F and n_1, \dots, n_N , are integers with $|n_r| \leq 1$.

THEOREM 1. Let \mathfrak{F} be a proper symmetric Raikov system with a single generator. Let H be a group which generates \mathfrak{F} . If there exists a perfect compact (H, 1)-independent set P, then we have $M(\varDelta) \subset M(\mathfrak{F})^{\perp}$.

PROOF. Let μ_0 be a positive continuous measure concentrated on P, with $||\mu_0|| = 1$. We put $\mu = (1/2)(\mu_0 + \mu_0^*)$, then $\mu = \mu^*$ and μ is concentrated on $Q = P \cup (-P)$. For a non-negative measure $\omega_0 \in M(\mathfrak{F})$ with $||\omega_0|| = 1$, we put $\omega = (1/2)(\omega_0 + \omega_0^*)$ and $\sigma = \omega^2 - \mu^2$. As the proof of Proposition 2 of [10] we obtain that $\mu^{n_1}\omega^{m_1} \perp \mu^{n_2}\omega^{m_2}$ for $(n_1, m_1) \neq (n_2, m_2)$ where n_i, m_i (i = 1, 2) are positive integers. So we have

$$||\sigma^n|| = \left\|\sum_{k=0}^n \binom{n}{k} (-1)^k \mu^{2k} \omega^{2(n-k)} \right\| = \sum_{k=0}^n \binom{n}{k} ||\mu^{2k} \omega^{2(n-k)}|| = \sum_{k=0}^n \binom{n}{k} = 2 \;,$$

54

and the spectral norm of σ is 2. Hence there is a complex homomorphism h of M(G) such that $|h(\sigma)| = 2$. Since $||\mu|| = 1$, we have that $|h(\mu^2)| \leq 1$, and $|h(\omega^2) - h(\mu^2)| = |h(\sigma)| = 2$ if and only if $h(\omega^2) = -h(\mu^2)$ and $|h(\omega)| = |h(\mu)| = 1$. This shows that h is non-symmetric. Let f be a continuous semicharacters on S such that $h(\lambda) = \int_S f d\theta \lambda$ for every $\lambda \in M(G)$. Since $||\omega|| = 1$, $|f| \leq 1$ and $|h(\omega)| = 1$, we obtain $\operatorname{supp} \theta \omega \subset \{x \in S \colon |f(x)| = 1\}$. By Shimizu [6], we have $\omega \in M(\Delta)^{\perp}$. Then $M(\Delta) \subset M(\mathfrak{F})^{\perp}$.

COROLLARY 2. If G is metrizable, then we have $M(\Delta) \subset M(\mathfrak{F})^{\perp}$ for a proper Raikov system \mathfrak{F} .

PROOF. For any $\mu \in M(\mathfrak{F}_0)$, there exists a single generated Raikov system \mathfrak{F}_0 such that $\mu \in M(\mathfrak{F}_0)$ and $M(\mathfrak{F}_0) \subset M(\mathfrak{F})$. If \mathfrak{F}_0 is a non-symmetric Raikov system, we can easily see $M(\varDelta) \subset M(\mathfrak{F}_0)^{\perp}$. If \mathfrak{F}_0 is a symmetric Raikov system, there is a group H that generates \mathfrak{F}_0 . Then there is a perfect compact (H, 1)-independent set P as in the proof of Proposition 1 of [10]. By Theorem 1, we have $M(\varDelta) \subset M(\mathfrak{F}_0)^{\perp}$. Thus we have $M(\varDelta) \subset$ $M(\mathfrak{F})^{\perp}$.

3. Topologies on groups and $M(\Delta)$. Let G be a non-discrete locally compact abelian group and \hat{G} be the dual group of G. Let H be a closed subgroup of G and φ the canonical continuous homomorphism from G onto G/H.

PROPOSITION 3. We put $\Phi\mu(E) = \mu(\varphi^{-1}(E))$ for every Borel set E of G/H. Then we have the followings:

(a) Φ is a norm decreasing positive homomorphism from M(G) onto M(G/H).

(b) For every non-negative measure $\nu \in M(G/H)$, there exists a non-negative measure $\mu \in M(G)$ such that $\Phi \mu = \nu$.

(c) $\Phi(\mu^*) = (\Phi\mu)^*$ for every $\mu \in M(G)$.

PROOF. At first, we shall show (a). For every Borel subset E of G/H, we have

for every $\mu \in M(G)$, where χ_E is a characteristic function of E. Then for every Borel function f on G/H, we have

(5)
$$\int_{G/H} f(y) d\Phi \mu(y) = \int_{G} f(\varphi(x)) d\mu(x)$$

for every $\mu \in M(G)$. Let Λ be the annihilator of H, then we may consider Λ as the dual group of G/H. By (5), we have $(\Phi \mu)(\gamma) = \hat{\mu}(\gamma)$ for every

 $\gamma \in \Lambda$. Then we get $(\varPhi(\mu * \nu))(\gamma) = (\varPhi(\mu * \varPhi(\nu))(\gamma)$ for every $\gamma \in \Lambda$. From the uniqueness theorem, we obtain $\varPhi(\mu * \nu) = \varPhi(\mu * \varPhi(\nu))$. By the definition of $\varPhi(\varphi, \varPhi(\varphi)) = \varPhi(\varphi) * \varPhi(\varphi)$. By the definition of $\varPhi(\varphi, \varPhi(\varphi)) = \varPhi(\varphi) * \varPhi(\varphi)$. By the definition of $\varPhi(\varphi, \varPhi(\varphi)) = \varPhi(\varphi) * \varPhi(\varphi)$. Thus (a) is proved. (c) is clear by the definition. Finally, we shall show (b). For every non-negative measure $\nu \in M(G/H)$, there exists $\mu_0 \in M(G)$ such that $\varPhi(\mu_0) = \nu$. Let $\mu_0 = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$ be the Jordan decomposition of μ_0 , where $\mu_i \ge 0$ (n = 1, 2, 3, 4). Since $\varPhi(\mu_0) \ge 0$, we have $\varPhi(\mu_0) = \varPhi(\mu_1 - \varPhi(\mu_2))$. Since $\varPhi(\mu_2) \ge 0$, we get $\varPhi(\mu_1) \ge \varPhi(\mu_1) \ge \varPhi(\mu_1) \ge 0$. Then from Radon-Nikodym's theorem, there exists a non-negative Borel measurable function $f \in L^1(\varPhi(\mu_1))$ such that $||f||_{\infty} \le 1$ and $\varPhi(\mu_0) = f \varPhi(\mu_1)$. We put

(6)
$$\mu(E) = \int_{E} f(\varphi(x)) d\mu_{1}(x)$$

for every Borel subset E of G. Then μ is a non-negative measure on G. By (5) and (6), we get

$$egin{aligned} & \varPhi\mu(A) = \int_{g} \chi_A(arphi(x)) f(arphi(x)) d\mu_{\scriptscriptstyle 1}(x) = \int_{g/H} \chi_A \cdot f d \varPhi \mu_{\scriptscriptstyle 1} \ & = \int_{g/H} \chi_A d \varPhi \mu_{\scriptscriptstyle 0} =
u(A) \end{aligned}$$

for every Borel subset A of G/H. Thus we have $\Phi \mu = \nu$. q.e.d.

PROPOSITION 4. Let H be a σ -compact closed subgroup of G. If E is a σ -compact subset of G/H, then $\varphi^{-1}(E)$ is a σ -compact subset of G.

PROOF. Without loss of generality, we may assume that E is compact. Let H be a σ -compact open subgroup of G. Since $\varphi(H_0)$ is open, there exists a finite set $\{x_1, \dots, x_n\} \subset G$ such that $E \subset \bigcup_{k=1}^n (\varphi(x_k) + \varphi(H_0))$. Then we have $\varphi^{-1}(E) \subset \bigcup_{k=1}^n (x_k + H_0 + H)$. Since H_0 and H are σ -compact, $H_0 + H$ is σ -compact. Then $\bigcup_{k=1}^n (x_k + H_0 + H)$ is σ -compact. Since $\varphi^{-1}(E)$ is σ -compact. Q.e.d.

Let G_{τ_0} be an abelian group G with a non-discrete locally compact abelian group topology τ_0 . Let τ be a locally compact abelian group topology on G strictly stronger than τ_0 . Now we consider that G_{τ_0} and τ are fixed. Let η be the continuous identity mapping from G_{τ} to G_{τ_0} . For $\mu \in M(G_{\tau})$, we put $\Psi \mu$ the restriction of μ to the Borel field of G_{τ_0} . Then Ψ is an isometric isomorphism from $M(G_{\tau})$ into $M(G_{\tau_0})$ and we may consider that $M(G_{\tau})$ is a prime L-subalgebra of $M(G_{\tau_0})$. The following proposition is important for our purpose.

PROPOSITION 5 (J. Inoue [3]). For $\mu \in M(G_{\tau_0})$, $\mu \in M(G_{\tau})$ if and only if there exists a Borel set C of G_{τ_0} such that $\eta^{-1}(C)$ is a σ -compact subset of G_{τ} and μ is concentrated on C.

COROLLARY 6. For $\mu \in M(G_{\tau_0})$, $\mu \in M(G_{\tau})^{\perp}$ if and only if $\mu(C) = 0$ for every Borel set C of G_{τ_0} such that $\eta^{-1}(C)$ is σ -compact.

Let H be a closed subgroup of G_{τ_0} , and φ_1, φ_2 be the canonical homomorphisms from G_{τ_0} onto G_{τ_0}/H , from G_{τ} onto G_{τ}/H , respectively. Let ψ be a continuous identity mapping from G_{τ}/H to G_{τ_0}/H . Then we have the following commutative diagram.

$$\begin{array}{ccc} G_{\tau} & \stackrel{\eta}{\longrightarrow} & G_{\tau_0} \\ & \varphi_2 \\ & & & \downarrow \varphi_1 \\ & G_{\tau} / H \stackrel{\psi}{\longrightarrow} & G_{\tau_0} / H \end{array}$$

Let Φ be a canonical homomorphism from $M(G_{\tau_0})$ onto $M(G_{\tau_0}/H)$ induced by φ_1 . The following proposition is followed by Lebesgue's decomposition theorem.

PROPOSITION 7. Let N be an L-subspace of $M(G_{\tau_0})$, then N^{\perp} is an L-subspace and $M(G_{\tau_0}) = N \bigoplus N^{\perp}$.

PROPOSITION 8. Suppose H is a closed subgroup of G_{τ_0} and a σ -compact subset of G_{τ} . Then we have

(7)
$$\Phi(M(G_{\tau})) = M(G_{\tau}/H)$$
 and

 $(8) \quad \varPhi(M(G_{\tau})^{\perp}) = M(G_{\tau}/H)^{\perp}.$

PROOF. At first, we shall show (7). Let $\mu \in M(G_{\tau})$, then by Proposition 5 there exists a Borel set C of G_{τ_0} such that $\eta^{-1}(C)$ is σ -compact and μ is concentrated on C. Then $\Phi\mu$ is concentrated on $\varphi_1(C)$. Since $\psi^{-1}(\varphi_1(C)) =$ $\varphi_2(\eta^{-1}(C))$ and $\eta^{-1}(C)$ is a σ -compact subset of G_{τ} , $\psi^{-1}(\varphi_1(C))$ is a σ -compact Then we have $\Phi \mu \in M(G_{\tau}/H)$ by Proposition 5. subset of G_{τ}/H . Let $\nu \in M(G_{\tau}/H)$, then there exists a Borel set C_1 of G_{τ_0}/H such that $\psi^{-1}(C_1)$ is σ -compact and ν is concentrated on C_1 . There exists $\lambda \in M(G_{\tau_n})$ such that $\Phi \lambda = \nu$ by Proposition 3. We put $\lambda_0(E) = \lambda(E \cap \varphi_1^{-1}(C_1))$ for every Borel set E of G_{τ_0} . Then we have $\Phi\lambda_0 = \nu$. Since $\eta^{-1}(\varphi_1^{-1}(C_1)) = \varphi_2^{-1}(\psi^{-1}(C_1))$, $\eta^{-1}(\varphi_1^{-1}(C_1))$ is a σ -compact subset of G_r by Proposition 4. By Proposition 5, we have $\lambda_0 \in M(G_{\tau})$. Then $\Phi(M(G_{\tau})) = M(G_{\tau}/H)$. Next, we shall show (8). For every Borel set C_2 of G_{τ_0}/H such that $\psi^{-1}(C_2)$ is a σ -compact subset of G_{τ}/H , $\eta^{-1}(\varphi_1^{-1}(C_2))$ is σ -compact. Then $\Phi\mu(C_2) = \mu(\varphi^{-1}(C_2)) = 0$ for every $\mu \in M(G_{\tau})^{\perp}$. By Corollary 6, we have $\Phi \mu \in M(G_{\tau}/H)^{\perp}$. Conversely, for $\nu \in M(G_{\tau}/H)^{\perp}$, there exists $\mu \in M(G_{\tau_0})$ such that $\Phi \mu = \nu$. By Proposition 6, we have $\mu = \mu_1 + \mu_2$ where $\mu_1 \in M(G_\tau)$ and $\mu_2 \in M(G_\tau)^{\perp}$. Since $\Phi \mu_1 \in$ $M(G_{\tau}/H)$ and $\Phi\mu_2 \in M(G_{\tau}/H)^{\perp}$, we have $\Phi\mu_2 = \nu$. Then $\Phi(M(G_{\tau})^{\perp}) = M(G_{\tau}/H)^{\perp}$. q.e.d.

The following lemma is essential to show our main theorem.

LEMMA 9. Let K be a σ -compact open subgroup of G_{τ} . Then there exists a compact subgroup H of G_{τ} such that G_{τ_0}/H contains a perfect compact ($\mathcal{P}(K)$, 1)-independent subset, where \mathcal{P} is the canonical map from G_{τ_0} onto G_{τ_0}/H .

PROOF. Let $K = \bigcup_{m=1}^{\infty} K_m$, such that $K_1 \subset K_2 \subset \cdots, K_m \subset \cdots$ $(m = 1, 2, \cdots)$ are compact subsets of G_{τ} . There exists a countable family $\{U_n\} (n = 1, 2, \cdots)$, where U_n is a compact neighborhood of $0 \in G_{\tau}$ such that $(9) \quad U_n = -U_n \ (n = 1, 2, \cdots),$

(10) $U_n \supset U_{n+1} + U_{n+1}$ $(n = 1, 2, \cdots).$

Let $K_0 = \bigcap_{n=1}^{\infty} U_n$, then K_0 is a compact subgroup of G_τ . By Proposition 3 of [1], there exists a countable family $\{W_{m,n}\}$ $(m, n = 1, 2, \dots)$, where $W_{m,n}$ is a compact neighborhood of $0 \in G_{\tau_0}$ such that

 $(11) \quad W_{m,n} = -W_{m,n},$

- (12) $W_{m,n} \supset W_{m,n+1} + W_{m,n+1}$, and
- $(13) \quad W_{m,n} \cap K_m \subset U_m.$

Let $V_n = \bigcap_{j=1}^n \bigcap_{k=1}^n W_{j,k}$, then $\{V_n\}$ $(n = 1, 2, \dots)$ has the following properties:

 $(14) \quad V_n = -V_n,$

(15) $V_n \supset V_{n+1} + V_{n+1}$, and

(16) $V_n \cap K_n \subset U_n$ $(n = 1, 2, \cdots)$.

Let $H_0 = \bigcap_{n=1}^{\infty} V_n$, then H_0 is a compact subgroup of G_{τ_0} . For $x \in H_0 \cap K$, there exists a positive integer n_0 such that $x \in K_n \cap V_n$ for every $n \ge n_0$. Since $U_1 \supset U_2 \supset \cdots$, we have $x \in K_0$. Thus we get that $H_0 \cap K \subset K_0$, and $H_0 \cap K$ is a compact subgroup of G_{τ} . Let φ_0 be the canonical map from G_{τ_0} onto $G_{\tau_0}/H_0 \cap K$, then

(17) $\varphi_0(H_0) \cap \varphi_0(K) = \{0\}.$

We consider the following two cases.

Case I. Suppose $\mathcal{P}_0(H_0)$ is an infinite compact subgroup of $G_{\tau_0}/H_0 \cap K$. Then there exists a perfect independent set of $\mathcal{P}_0(H_0)$. By (17), it is a $(\mathcal{P}_0(K), 1)$ -independent set. Thus $H = H_0 \cap K$ and $\mathcal{P} = \mathcal{P}_0$ satisfy this lemma.

Case II. Suppose $\varphi_0(H_0)$ is a finite compact subgroup of $G_{\tau_0}/H_0 \cap K$. Let φ_1 be the canonical map from G_{τ_0} to G_{τ_0}/H_0 . Since $\varphi_0(H_0)$ is finite, H_0 is a compact subgroup of G_{τ} . Now, we show $\varphi_1(K)$ is a set of the first category in G_{τ_0}/H_0 . Otherwise there exists a positive integer n such that $\varphi_1(K_n)$ contains an interior point. Since $\varphi_1^{-1}(\varphi_1(K_n)) = K_n + H_0$, $K_n + H_0$ contains an interior point in G_{τ_0} . Then we have $m_{\tau_0}(K_n + H_0) > 0$, where m_{τ_0} is a Haar measure on G_{τ_0} . Since $K_n + H_0$ is a compact subset of G_{τ} ,

58

by Proposition 5 we have $m_{\tau_0}(K_n + H_0) = 0$, a contradiction. Since G_{τ_0}/H_0 is metrizable ([2]), there is a $(\mathcal{P}_1(K), 1)$ -independent compact perfect subset of G_{τ_0}/H_0 ([10]). We put $H = H_0$ and $\mathcal{P} = \mathcal{P}_1$, then the proof is complete. q.e.d.

THEOREM 10. Let τ be a locally compact abelian group topology on G strictly stronger than τ_0 , then we have $M(\varDelta) \subset M(G_{\tau})^{\perp}$.

PROOF. Since $M(\Delta)$ and $M(G_{\tau})$ are L-ideals, it is sufficient to show that for any non-negative $\mu \in M(G_{\tau})$, we have $\mu \notin M(\Delta)$. Let K be a σ compact open subgroup of G_{τ} . We take H and φ satisfying Lemma 9. Let φ be the homomorphism from $M(G_{\tau_0})$ to $M(G_{\tau_0}/H)$ induced by φ . Let \mathfrak{F} be the Raikov system generated by $\varphi(K)$, then $M(\mathfrak{F}) = M(G_{\tau}/H)$. By Proposition 8 and Theorem 1, for any nonzero $\mu \in M(G_{\tau})$, there exists a non-symmetric complex homomorphism f on $M(G_{\tau_0}/H)$ such that $f \circ \Phi(\mu) = f(\Phi\mu) \neq 0$. From (c) of Proposition 3, $f \circ \Phi$ is a nonsymmetric homomorphism f on $M(G_{\tau_0})$. Thus we have $\mu \notin M(\Delta)$.

3. Gelfand transforms of $M(\Delta)$. Let G be a nondiscrete locally abelian group, and S be Taylor's structure semigroup of M(G). The maximal ideal space of M(G) is identified with \hat{S} , with the weak*-topology of M(G), the set of all nonzero continuous semicharacters on S. We may consider \hat{S} , a compact separately continuous abelian semigroup. Let $H = \{f \in \hat{S} : |f|^2 = |f|\}$, then $\hat{S} \setminus H \neq \emptyset$ (c.f. [7]).

B. E. Johnson [4] showed that $(\hat{S}\backslash H) \cap \Delta \neq \emptyset$. In this section, we give a topological characterization of $(\hat{S}\backslash H) \cap \Delta$. For $f \in \hat{S}\backslash H$, we put $J(f) = \{x \in S: f(x) = 0\}$ and $\mathfrak{M}(J(f)) = \{\mu \in M(G): \operatorname{supp} \theta \mu \subset J(f)\}$. Let C be the complex field and $C^+ = \{z \in C: \operatorname{Re} z > 0\}$.

THEOREM 11. $\hat{S} \setminus H$ is contained in the weak*-closure of $\hat{S} \setminus \Delta$ in \hat{S} , that is $\overline{\hat{S} \setminus \Delta} \supset \hat{S} \setminus H$.

PROOF. Let $f \in \widehat{S} \setminus H$ and $f \in \mathcal{A}$. Then there exists $h_f \in H$ such that $f = h_f |f|$ by the polar decomposition theorem ([7]). We put $f_z = h_f |f|^z$ for $z \in C^+$, then $f_z \in \widehat{S}$. Let V be any neighborhood of f. We may assume that

$$V = \{g \in \widehat{S} \colon |\widehat{\mu}_i(f) - \widehat{\mu}_i(g)| < \varepsilon, \ \mu_i \in M(G), \ i = 1, 2, \ \cdots, n\}$$

Since $f_z \to f(z \to 1)$ is uniformly convergent, there exists $\delta > 0$ such that $f_z \in V$ for $z \in \{x \in C^+ : |1 - x| < \delta\}$. Since $f \in \hat{S} \setminus H$, there exists $x_0 \in S$ such that $0 < |f(x_0)| < 1$. We take a neighborhood $U(x_0)$ of x_0 such that 0 < |f(x)| < 1 on $U(x_0)$. The image of M(G) is weak*-dense in M(S), then there exists $\mu \in M(G)$ such that the support of $\theta \mu$ is contained in $U(x_0)$

and $\hat{\mu}(f) \neq 0$. We put $F(z) = \hat{\mu}(f_z)$ for $z \in C^+$. Then F(z) is a nonconstant analytic function on C^+ . Suppose that $\{f_z: |1-z| < \delta\} \subset \Delta$. Then we have $\overline{F(z)} = \overline{\hat{\mu}(f_z)} = \widehat{\mu^*}(f_z)$ for $z \in \{x \in C^+: |1-x| < \delta\}$, and F(z) is an analytic function on $\{x \in C^+: |1-x| < \delta\}$. Thus $\overline{F(z)}$ is a constant on $\{x \in C^+: |1-x| < \delta\}$. By identity theorem, F(z) is a constant function on C^+ . This is a contradiction. Then there exists $g \in \{f_z: |1-z| < \delta\}$ such that $g \notin \Delta$.

COROLLARY 12. If $\mu \in M(\Delta)$, then $\hat{\mu}(f) = 0$ for all $f \in \hat{S} \setminus H$.

Let \hat{G} be the dual group of G. T. Shimizu ([6]) showed that $(\hat{S}\backslash d) \cdot \hat{G} \subset (\hat{S}\backslash d)$.

Since \hat{S} is a separetely continuous topological semigroup, we have

$$(\widehat{S\backslash d}) \cdot \widehat{G} \subset \overline{(\widehat{S}\backslash d)}$$
 .

COROLLARY 13. If $f \in \widehat{S} \setminus H$, then $M(\varDelta) \subset \mathfrak{M}(J(f))$.

PROOF. Since $f \in \widehat{S} \setminus \Delta$, we have $f \cdot \widehat{G} \subset \overline{\widehat{S}} \setminus \Delta$. Let $\mu \in M(\Delta)$, then we have $\widehat{\mu}(g) = 0$ for $g \in f \cdot \widehat{G}$. This shows that $\mu \in \mathfrak{M}(J(f))$ by Shimizu ([6]). Thus we have $M(\Delta) \subset \mathfrak{M}(J(f))$. q.e.d.

References

- [1] C. DUNKL AND D. RAMIREZ, Bounded projections on Fourier-Stieltjes transforms, to appear.
- [2] E. HEWITT AND K. A. Ross, Abstract harmonic analysis I, Springer-Verlag, 1963.
- [3] J. INOUE, Some closed subalgebras of measure algebras and a generalization of P. J. Cohen's theorem, J. Math. Soc. Japan, 23 (1971), 278-294.
- [4] B. E. JOHNSON, Symmetric maximal ideals in *M(G)*, Proc. Amer. Math. Soc., 18 (1967), 1040-1045.
- [5] W. RUDIN, Fourier analysis on groups, Interscience Publishers, New York, 1962.
- [6] T. SHIMIZU, L-ideals of measure algebras, Proc. Japan Acad., 48 (1972), 172-176.
- [7] J. L. TAYLOR, The structure of convolution measure algebras, Trans. Amer. Math. Soc., 119 (1965), 150-166.
- [8] _____, L-subalgebras of M(G), Trans. Amer. Math. Soc., 135 (1969), 105-113.
- [9] J. H. WILLIAMSON, Banach algebra elements with idempotent powers and theorem of Wiener-Pitt Type, Function algebra, Chicago (1966), 186-198.
- [10] ----, Raikov systems and the pathology of M(G), Studia Math., 31 (1968), 399-409.
- [11] _____, Raikov systems, Symposia on theoretical physics and mathematics, 8 (1968), 173-183.

DEPARTMENT OF MATHEMATICS Tokyo University of Education Tokyo, Japan and Institute of Applied Electricity Hokkaido University Sappro, Japan