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1. Introduction. Let G. be a non-discrete locally compact abelian
group with a topology 7,. Let M(G.) be the commutative semisimple
Banach algebra consists of bounded regular Borel measures on G.. We
write ¢ the maximal ideal space of M(G.). For pe M(G.), we put p*(E) =
p(— E) for all Borel subset E of G.,. Then we have p* ¢ M(G.) and M(G.,)
is considered a Banach x-algebra. Let 4 be the set of all symmetric
multiplicative linear functionals on M(G.), that is 4 = {f eM: f(p*) =
F() for all pe M(G.)}. A closed subspace (subalgebra, ideal) N of M(G.)
will be called an L-subspace (L-subalgebra, L-ideal) if N satisfies the
condition; pte M(G,),ve N and g is absolutely continuous with respect to
v, then pe N. For a subspace N of M(G.), we put N* = {re M(G.): ¢
is mutually singular with v e N}.

In this note, we consider the following subspace of M(G.); M(d) =
{re M(G.): fi(f) = 0 for all fe¢4}. J. H. Williamson ([9]) showed that
for every pe M(4), |fu(f)| < |Z.(f)| for all feIM, where g, and p, are
the discrete part and the continuous part of p, respectively. And he
conjectured that g, =0 for every e M(d4) ([9]). Using the results of
J. L. Taylor ([7]), T. Shimizu ([6]) showed that M(4) is a proper L-ideal
of M(G.) and Williamson’s conjecture is true. For a locally compact
group topology = on G which is strictly stronger than 7,, we may con-
sider M(G.) a prime L-subalgebra of M(G.) with natural injection ([3]).
It is clear that M.(G.)" = M(G.), where 7, is the discrete topology on
G and M.(G.) = {¢te M(G.): ¢ is continuous}. From the above fact, we
have the following conjecture:

Congecture 1. M(4) is contained in M(G.)*.

For M(G.), there is a Raikov system % such that M(G.) = M({), where
M(B) = {¢re M(G.): there is Ae such that g is concentrated on A}.
Thus we have a more generally conjecture as follows:

Congecture II. For a proper Raikov system , we have M(4) ¢ M(F)*.
In §1, we show that our conjecture II is true, if G, is metrizable. In
§2, we show that our conjecture I is true. In §3, we show a property of the
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Gelfand transforms of M(4), using Taylor’s structure semigroup of M(G.).

2. Metrizable group. Throughout this section, let G be a non-discrete
locally compact abelian group. A subset of G is called type F, if it is a
countable union of compact subsets of G. A collection of subsets of G of
type F, is called a Ratkov system if the following properties hold:

(1) If A e and A, is a subset of A, of type F,, then A,e%H.

(2) The union of a countable collection of sets in $§ also in {F.

(8) If Ac® and te G, then A — te§.

(4) If Aec, then A + AeG.

Let m be a Haar measure on G. A Raikov system { such that
m(A) = 0 for every Ae$, will be called proper. For a o-compact subset
A, there exists a minimal Raikov system containing A. Such a Raikov
system will be called a single generated Raikov system. For a Raikov
system F, we put M(F) = {1 e M(G): there exists A€ such that g is
concentrated on A}. For a Raikov system $, if A€ implies — A€,
then ¥ is a symmetric Raikov system. For a single generated symmetric
Raikov &, there is a group which generates $.

J. L. Taylor ([7]) showed that there exists a compact topological semi-
group S and an isometric isomorphism 6 from M(G) into M(S) such that the
image of 6 is weak* dense in M(S) and the maximal ideal space of M(G)
is identified with the set S of all continuous semicharacters on S. For
€ M(G), the Gelfand transform 7 of g is given by f(f) = Ss fdoy for
every fe€ S.

For a given subset E of G which contains 0, we shall say a subset
F of G is (E, 1)-independent if the following relation holds:

SY . ma,c Eif and only if m, =0 for 1 <r < N, where x,, -+, zy
are distinct elements of F and #,, ---, ny, are integers with |n,| < 1.

THEOREM 1. Let § be a proper symmetric Raitkov system with a single
generator. Let H be a group which generates F. If there exists a perfect
compact (H, 1)-independent set P, then we have M(4) C M(F)*.

Proor. Let f, be a positive continuous measure concentrated on P,
with |[¢]] = 1. We put g = (1/2)(¢ + ), then g = ¢* and g is concen-
trated on @ = PU (—P). For a non-negative measure ,c M(%) with
[lw,]] =1, we put © = 1/2)(w, + wF) and ¢ = @* — . As the proof of
Proposition 2 of [10] we obtain that gmw™ I pumw™: for (n,, m,) # (1, m,)
where n,;, m; (¢ =1, 2) are positive integers. So we have

_'" n 2k y2(n—k) _" n _2
=5 (e =5 (%) =2,

k=0

Ho.n“ — “kzi“()(:)(_l)k#zkwﬂn—k)
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and the spectral norm of ¢ is 2. Hence there is a complex homomorphism

k of M(G) such that |h(s)| = 2. Since ||¢||=1, we have that |k} | <1, and

| h(@°) — k() | = | k(o) | =2 if and only if h(w®) = — k() and |k(w)|=|k(k)|=1.

This shows that h is non-symmetric. Let f be a continuous semicharacters

on S such that A(\) = g fdox for every v e M(G). Since ||@|| =1, |f]| =1
S

and |h(w)| =1, we obtain suppfw cC{reS:|f(x)] =1}. By Shimizu [6],
we have w e M(4)*. Then M(4) c M(F)". q.e.d.

COROLLARY 2. If G is metrizable, then we have M(4) C M(®)* for a
proper Raikov system $F.

Proor. For any pe M(F), there exists a single generated Raikov
system &, such that p#e M(F,) and M(F,) < M(F). If F, is a non-symmetric
Raikov system, we can easily see M) M(G)*. If F is a symmetric
Raikov system, there is a group H that generates %, Then there is a
perfect compact (H, 1)-independent set P as in the proof of Proposition 1
of [10]. By Theorem 1, we have M(4) C M(F,)*. Thus we have M(4) C
M(F)*. q.e.d.

3. Topologies on groups and M(4). Let G be a non-discrete locally
compact abelian group and G be the dual group of G. Let H be a closed

subgroup of G and ® the canonical continuous homomorphism from G onto
G/H.

ProPOSITION 3. We put Ou(E) = p(P~'(E)) for every Borel set E of
G/H. Then we have the followings:

(a) @ is a morm decreasing positive homomorphism from M(G) onto
M(G/H).

(b) For every non-negative measure v € M(G/H), there exists a non-
negative measure ¢ € M(G) such that Op = v.

(c) O(p*) = (P)* for every pe M(G).

PrOOF. At first, we shall show (a). For every Borel subset E of
G/H, we have

[, 1 @d2u) = | 2:@@)dpe)

for every pe M(G), where y; is a characteristic function of E. Then for
every Borel function f on G/H, we have

(5) [,/ @a0r@) = | fe@)dpe

for every pe M(G). Let A be the annihilator of H, Ehen we may consider
A as the dual group of G/H. By (5), we have (®g)(v) = f(v) for every
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ved. Then we get (@(y*vﬁ(v) = (a);z*@uf(’y) for every ve . From the
uniqueness theorem, we obtain @(uxy) = @u«@u. By the definition of
®, ® is a positive norm decreasing linear mapping. Moreover, @ is an
onto mapping by ([5]; p.54). Thus (a) is proved. (c) is clear by the de-
finition. Finally, we shall show (b). For every non-negative measure
ve M(G/H), there exists ¢, € M(G) such that &y, = v. Let g, = pt, — o +
i(¢s — 1) be the Jordan decomposition of y,, where ¢, =0 (n =1, 2, 3, 4).
Since @y, = 0, we have Oy, = Op, — Op,. Since Ou, =0, we get Op, =
Op, = 0. Then from Radon-Nikodym’s theorem, there exists a non-negative
Borel measurable function f e L'(®s,) such that || f]l. <1 and Oy, = fOpu,.

We put
(6) ) = | fe@)dme

for every Borel subset E of G. Then p is a non-negative measure on G.
By (5) and (6), we get

ou(4) = | 1(PE)SE@)nE) = | .- fdon
= SG/HXAd¢ﬂ0 = v(4)

for every Borel subset A of G/H. Thus we have @y = v. q.e.d.

PROPOSITION 4. Let H be a o-compact closed subgroup of G. If E
is a o-compact subset of G/H, then »(E) is a o-compact subset of G.

Proor. Without loss of generality, we may assume that E is compact.
Let H be a o-compact open subgroup of G. Since ®(H,) is open, there
exists a finite set {x,, - -+, ¢,} C G such that Ec ;.. (P(x,) + ®(H;)). Then
we have ¢ (F)cUp-, (x, + H, + H). Since H, and H are o-compact,
H, + H is o-compact. Then Ui, (x, + H, + H) is o-compact. Since ~(E)
is a closed set, @ '(E) is o-compact. g.e.d.

Let G., be an abelian group G with a non-discrete locally compact
abelian group topology 7,. Let = be a locally compact abelian group
topology on G strictly stronger than z,. Now we consider that G., and
7 are fixed. Let 7 be the continuous identity mapping from G. to G..
For pe M(G,), we put ¥¢ the restriction of ¢ to the Borel field of G..
Then ¥ is an isometric isomorphism from M(G.) into M(G.) and we may
consider that M(G.) is a prime L-subalgebra of M(G.). The following
proposition is important for our purpose.

PROPOSITION 5 (J. Inoue [3]). For pe M(G.), re M(G.) if and only
if there exists a Borel set C of G., such that 77'(C) is a o-compact subset
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of G. and pu is concentrated on C.

COROLLARY 6. For pe M(G.), pe€ M(G.)* if and only if 1(C) = 0 for
every Borel set C of G., such that p'(C) is o-compact.

Let H be a closed subgroup of G., and @, ®; be the canonical homo-
morphisms from G,, onto G./H, from G. onto G./H, respectively. Let
be a continuous identity mapping from G./H to G./H. Then we have the
following commutative diagram.

G.— G,

e

G./H-Y> G JH.

Let @ be a canonical homomorphism from M(G.) onto M(G./H) induced
by ®,. The following proposition is followed by Lebesgue’s decomposition
theorem.

PROPOSITION 7. Let N be an L-subspace of M(G.), then N* is an
L-subspace and M(G.) = NEH N*.

PROPOSITION 8. Suppose H is a closed subgroup of G. and a o-
compact subset of G.. Then we have

(7) 9(M(G)) = M(G./H) and

(8) O(M(G)*") = M(G./H)".

ProoOF. At first, we shall show (7). Let ¢ e M(G.), then by Proposi-
tion 5 there exists a Borel set C of G., such that 77'(C) is o-compact and g
is concentrated on C. Then @ is concentrated on #,(C). Since v '(¢,(C))=
®,(n~(C)) and 7*(C) is a o-compact subset of G., 4 (®,(C)) is a g-compact
subset of G./H. Then we have Opre M(G./H) by Proposition 5. Let
ve M(G./H), then there exists a Borel set C, of G./H such that (C,)
is o-compact and v is concentrated on C,. There exists » € M(G.) such
that ®» = v by Proposition 3. We put M\(E) = ME N @7'(C,)) for every
Borel set E of G.,. Then we have &\, = v. Since 77(*(C)) = ;' (v '(C))),
7 (prY(C,)) is a o-compact subset of G. by Proposition 4. By Proposition
5, we have N € M(G,). Then O(M(G.)) = M(G./H). Next, we shall show
(8). For every Borel set C, of G./H such that 4(C;) is a o-compact
subset of G./H, 77 (¢7(C,)) is o-compact. Then @p(C,) = p(97(C,)) = 0 for
every pe€ M(G.)*. By Corollary 6, we have @pe M(G./H)*. Conversely,
for ve M(G./H)*, there exists ¢t € M(G,) such that ¢y = v. By Proposition
6, we have p =y, + ¢, where p, e M(G.) and p,e M(G.)*. Since Oy, e
M(G./H) and @p, € M(G./H)*, we have @,=y. Then @(M(G.)*)=M(G./H)".

q.e.d.
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The following lemma is essential to show our main theorem.

LEMMA 9. Let K be a o-compact open subgroup of G.. Then there
exists a compact subgroup H of G. such that G./H contains a perfect
compact (P(K), 1)-independent subset, where @ is the canonical map from
G., onto G, /H.

Proor. Let K = UUn-, K,,, such that K,c K,c, -+, K, C -+ (m =
1,2, -..) are compact subsets of G.. There exists a countable family
{U,}(n =1,2, -.+), where U, is a compact neighborhood of 0 € G. such that

(9) U,=-U,(n=1,2,--.),

(10) U.D Ui+ Upi (n =1,2, ++4),

Let K, = Ny-, U,, then K, is a compact subgroup of G.. By Proposi-
tion 3 of [1], there exists a countable family {W,.,} (m,n =1,2,...),
where W,,, is a compact neighborhood of 0€ G., such that

(11) Wmm = - Wm,m

12) WpoD Wanir + Wani, and

1) W,.nK,cU,.

Let V, = N Ni-. W;,i then {V,} (n =1,2, ---) has the following pro-
perties:

14) V.=V,

(15) V,> V. + V., and

1) V.NnK,cU, (mn=1,2+-:).

Let H, = N7, V,, then H, is a compact subgroup of G.. For xe H,N K,
there exists a positive integer =, such that x € K, N V, for every n = n,.
Since U,> U,D---, we have x € K,, Thus we get that H,N Kc K,, and
H,N K is a compact subgroup of G.. Let @, be the canonical map from
G., onto G./H,N K, then

(17) ¢0(Ho) n @o(K) = {0}°
We consider the following two cases.

Case 1. Suppose @,(H,) is an infinite compact subgroup of G./H,N K.
Then there exists a perfect independent set of ¢,(H,). By (17), it is a
(P(K), 1)-independent set. Thus H = H,N K and @ = @, satisfy this
lemma.

Case II. Suppose P,(H,) is a finite compact subgroup of G./H,N K.
Let @, be the canonical map from G., to G./H,. Since @,(H,) is finite, H,
is a compact subgroup of G.. Now, we show ®,(K) is a set of the first
category in G, /H,. Otherwise there exists a positive integer n such that
».(K,) contains an interior point. Since #7(®.(K,)) = K, + H,, K, + H,
contains an interior point in G.. Then we have m, (K, + H,) > 0, where
m., is a Haar measure on G,. Since K, + H, is a compact subset of G,

T
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by Proposition 5 we have m. (K, + H, = 0, a contradiction. Since G./H,
is metrizable ([2]), there is a (®,(K), 1)-independent compact perfect subset
of G./H, ([10]). We put H= H, and # = ®,, then the proof is complete.

q.e.d.

THEOREM 10. Let 7 be a locally compact abelian group topology on
G strictly stromger than t,, them we have M(4) c M(G,)*.

Proor. Since M(4) and M(G,) are L-ideals, it is sufficient to show
that for any non-negative p¢t e M(G.), we have p¢ M(4). Let K be a o-
compact open subgroup of G.. We take H and ¢ satisfying Lemma 9.
Let ® be the homomorphism from M(G.) to M(G./H) induced by o.
Let § be the Raikov system generated by #(K), then M(F) = M(G./H).
By Proposition 8 and Theorem 1, for any nonzero u¢e M(G.), there ex-
ists a non-symmetric complex homomorphism f on M(G./H) such that
fo@() = f(@p) + 0. From (c) of Proposition 3, fo®@ is a nonsymmetric
homomorphism f on M(G.). Thus we have p¢ M(4). q.e.d.

3. Gelfand transforms of M(4). Let G be a nondiscrete locally
abelian group, and S be Taylor’s structure semigroup of M(G). The
maximal ideal space of M(G) is identified with S, with the weakx-topology
of M(G), the set of all nonzero continuous semicharacters on S. We may
consider S, a compact separgtely continuous abelian semigroup. Let
H={feS:|fI =|fl}, then S\H = & (c.f. [T]).

B. E. Johnson [4] showed that (S\H)N 4 %= @. In this section, we
give a topological characterization of (S\H)N 4. For f e.§\H, we put
J(f) = {weS: f(®) =0} and MJ(f)) = {¢t e M(G): supp 0 < J(f)}. Let C
be the complex field and C* = {ze C: Rez > 0}.

_THEOREM 11. S\H is contained in the weak*-closure of .§\A in S, that
is S\d > S\H.

ProoF. Let feS\H and fed4. Then there exists h;e H such that
f = hyl f| by the polAar decomposition theorem ([7]). We put f, = k| fIf
for ze C*, then f,e€S. Let V be any neighborhood of f. We may assume
that

V ={geS:|ff) — Pilg)] <&, e M(G), i =1,2, -+, 0} .

Since f, — f(z—1) is uniformly convergent, there exists 6 > 0 such that
f.eV for ze{reC*:|1 — x| < d}. Since fe §\H, there exists x,€S such
that 0 < |f(z,)| <1. We take a neighborhood Uf(x,) of x, such that 0 <
|[f(x)] <1 on U(x,). The image of M(G) is weak*-dense in M(S), then
there exists ¢t € M(G) such that the support of 6y is contained in U(z,)
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and f(f) = 0. We put F(2) = fi(f,) for ze C*. Then F(2) is a nonconstant
analytit:“_function on /g*. Suppose that {f,:|1 — 2| < d}c 4. Then we
have F(2) = f(f.) = p#*(f,) for ze{wzeC*: |1 — x| <4}, and F(z) is an
analytic function on {xeC*:|1 — x| < d}. Thus F'(z) is a constant on
{xreC*:|1 — 2| < d}. By identity theorem, F'(z) is a constant function on
C*. This is a contradiction. Then there exists ge{f,: |1 — z| < 6} such
that g ¢ 4. q.e.d.
COROLLARY 12. If pe M(4), then f(f) =0 for all feS\H.
Let G be the dual group of G. T. Shimizu ([6]) showed that
(S\4) -G < (S\g) .
Since S is a separetely continuous topological semigroup, we have
S\ -G S\a) .
COROLLARY 13. If feS\H, then M(d) c MJI(F)).
PROOF. Since feS\4, we have f-GcS\d. Let re M(d), then we

have f(g) = 0 for ge f - G. This shows that L e MJ(f)) by Shimizu ([6]).
Thus we have M(4) < M(J(f)). g.e.d.
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